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1 Steady-State Operating Points

About Operating Points

What Is an Operating Point?

An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

The following Simulink model has an operating point that consists of two variables:

* Aroot-level input signal set to 1
* An Integrator block state set to 5

CO— 1 —

In1

Integrator Sguare Gain Scope

Constant

The following table summarizes the signal values for the model at this operating point.

Block Block Input Block Operation Block Output
Integrator 1 Integrate input 5, set by the initial
conditionx® = 5

Square 5, set by the initial Square input 25

condition of the

Integrator block
Sum 25 from Square block, 1 |Sum inputs 26

from Constant block
Gain 26 Multiply input by 3 78

The following block diagram shows how the model input and the initial state of the Integrator block
propagate through the model during simulation.

! BNy 26 18 ]

Integrator Square Gain Scope

Constant

If your model initial states and inputs already represent the desired steady-state operating conditions,
you can use this operating point for linearization or control design.

What Is a Steady-State Operating Point?
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About Operating Points

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long as the
pendulum points exactly upward, it remains in equilibrium. However, when the pendulum deviates
slightly from this position, it swings downward and the operating point leaves the region around the
equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

Simulink Model States Included in Operating Point Object

In Simulink Control Design software, an operating point for a Simulink model is represented by an
operating point (operpoint) object. The object stores the tunable model states and their values,
along with other data about the operating point. The states of blocks that have internal
representation, such as Backlash, Memory, and Stateflow® blocks, are excluded.

States that are excluded from the operating point object cannot be used in trimming computations.
These states cannot be captured with operspec or operpoint, or written with initopspec. Such
states are also excluded from operating point displays or computations using Model Linearizer. The
following table summarizes which states are included and which are excluded from the operating
point object.

State Type Included in Operating Point?

Double-precision real-valued states Yes

States whose value is not of type double. For |No
example, complex-valued states, single-type
states, int8-type states.

States from root-level inport blocks with Yes

double-precision real-valued inputs

Internal state representations that impact No (see “Handle Blocks with Internal State
block output, such as states in Backlash, Representation” on page 1-98)

Memory, or Stateflow blocks.

States that belong to a Unit Delay block whose [ No
input is a bus signal
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See Also

operpoint

More About

. “Compute Steady-State Operating Points” on page 1-5

. “Handle Blocks with Internal State Representation” on page 1-98

. “Compute Steady-State Operating Points” on page 1-5
. “Find Operating Points at Simulation Snapshots” on page 1-85
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Compute Steady-State Operating Points

An operating point of a dynamic system specifies the initial states and root-level input signals of the
model at a particular time. For more information on operating points, see “About Operating Points” on
page 1-2.

To find steady-state operating points you can use optimization-based searching or simulation
snapshots.

Steady-State Operating Point Search (Trimming)

You can compute a steady-state operating point (or equilibrium operating point) using numerical
optimization methods to meet your specifications. The resulting operating point consists of the
equilibrium state values and corresponding model input levels. A successful operating point search
finds an operating point very close to a true steady-state solution.

Use an optimization-based search when you have knowledge about the operating point states and the
corresponding model input and output signal levels. You can use this knowledge to specify initial
guesses or constraints for the following variables at equilibrium:

* [Initial state values

» States at equilibrium

* Maximum or minimum bounds on state values, input levels, and output levels

* Known (fixed) state values, input levels, or output levels

Your operating point search might not converge to a steady-state operating point when you
overconstrain the optimization by specifying:

» [Initial guesses for steady-state operating point values that are far away from the desired steady-
state operating point.

* Incompatible input, output, or state constraints at equilibrium.
You can control the accuracy of your operating point search by configuring the optimization algorithm
settings.

Steady-State Operating Point from Simulation Snapshot

You can compute a steady-state operating point by simulating your model until it reaches a steady-
state condition. To do so, specify initial conditions for the simulation that are near the desired steady-
state operating point.

Use a simulation snapshot when the time it takes for the simulation to reach steady state is
sufficiently short. The algorithm extracts operating point values once the simulation reaches steady
state.

Simulation-based computations produce poor operating point results when you specify:

* A simulation time that is insufficiently long to drive the model to steady state.
* Initial conditions that do not cause the model to reach true equilibrium.

You can usually combine a simulation snapshot and an optimization-based search to improve your
operating point results. For example, simulate your model until it reaches the neighborhood of steady
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state and use the resulting simulation snapshot to define the initial conditions for an optimization-
based search.

Note If your Simulink model has internal states, do not linearize the model at an operating point you
compute from a simulation snapshot. Instead, try linearizing the model using a simulation snapshot or
at an operating point from optimization-based search. For more information, see “Handle Blocks with
Internal State Representation” on page 1-98.

Which Model States Must Be at Steady State?

When computing a steady-state operating point, not all states are required to be at equilibrium. A
pendulum is an example of a system where it is possible to find an operating point with all states at
steady state. However, for other types of systems, there may not be an operating point where all
states are at equilibrium, and the application does not require that all operating point states be at
equilibrium.

For example, suppose that you build an automobile model for a cruise control application with these
states:

* Vehicle position and velocity
* Fuel and air flow rates into the engine

If your goal is to study the automobile behavior at constant cruising velocity, you need an operating
point with the velocity, air flow rate, and fuel flow rate at steady state. However, the position of the
vehicle is not at steady state because the vehicle is moving at constant velocity. The lack of a steady-
state position variable is fine for the cruise control application because the position does not have
significant impact on the cruise control behavior. In this case, you do not need to overconstrain the
optimization search for an operating point by requiring that all states be at equilibrium.

Similar situations also appear in aerospace systems when analyzing the dynamics of an aircraft under
different maneuvers.

Choose Operating Point Search Tools

Simulink Control Design lets you search for operating points of your Simulink model both
programmatically at the command line and interactively using one of two apps.

Search Tool When to Use

findop * Programmatically compute operating points

* Compute operating points from specifications

» Find operating points at simulation snapshots

* Batch compute operating points for multiple specifications
* Batch compute operating points for parameter variations
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Search Tool

When to Use

Steady State Manager

» Interactively compute operating points

* Compute operating points from specifications

* Validate operating point search results against specifications
* Find operating points at simulation snapshots

* Generate MATLAB® code for computing operating points. This
code can be reused for batch computation.

Model Linearizer

context

* Interactively find operating points within a linearization

* Compute operating points from specifications
* Find operating points at simulation snapshots

Trimming Using Simulink Control Design Versus Simulink

Simulink provides the trim command for steady-state operating point searches. However, findop in
Simulink Control Design provides several advantages over using trim when performing an
optimization-based operating point search.

Simulink Control Design Simulink Operating Point
Operating Point Search Search

User interface Yes No — Only trimis available.

Multiple optimization Yes No — Only one optimization

methods method

Constrain state, input, and |Yes No

output variables using

upper and lower bounds

Specify the output value of |Yes No

blocks that are not

connected to root model

outports

Steady-operating points for | Yes No

models with discrete states

Model reference support |Yes No

Simscape™ Multibody™ Yes No

integration

See Also

findop | trim

More About

. “About Operating Points” on page 1-2

. “Handle Blocks with Internal State Representation” on page 1-98

. “Find Operating Points at Simulation Snapshots” on page 1-85

. “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45
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View and Modify Operating Points

You can view and modify operating point values programmatically at the command line, or
interactively using the Steady State Manager or Model Linearizer.

You can simulate the model at the modified operating point. For more information, see “Simulate

Simulink Model at Specific Operating Point” on page 1-95.

View and Modify Operating Point in Steady State Manager

To view an operating point in the Steady State Manager, in the data browser, in the Operating
Points section, do one of the following:

* Double-click the operating point you want to view.
* Right-click the operating point you want to view, and select Open Selection.

In the operating point document that opens, you can view the input and state values of the operating
point.

opl

b [ States
—» Inpuis

1-8

State Value
w watertank/PID Controller/integrator/Continuous/integrator
State - 1 1.6949

w watertank/Water-Tank System/H

State - 1 10.0796

L e \ e

To modify a state or input value in an operating point, in the Value column, click the value you want
to change, and enter the new value. If your operating point was at a steady state, changing any
values in the Steady State Manager can place the operating point into a non-steady-state condition.

View and Modify Operating Point in Model Linearizer

To view an operating point in the Model Linearizer, on the Linear Analysis tab, in the Operating
Points drop-down list, select one of the following:

* Model Initial Condition — The current states and inputs in the model

* An operating point listed under Existing Operating Points (Linear Analysis Workspace) —
These operating points are listed in the data browser in the Linear Analysis Workspace section.
When you find an operating point using trimming or a simulation snapshot, the software adds it to
this list of operating points.

* An operating point listed under Existing Operating Points (MATLAB Workspace) — These
operating points are listed in the data browser in the MATLAB Workspace section.



View and Modify Operating Points

LINEAR ANALYSIS ESTIMATION PLOTS AND RESULTS
E Load Session Analysis I/0s: Model I/0s = |:| Result Viewer
E Save Session Operating Paint:| Model Initial Condition 7\| [] Linearization Advisar ;
&) Preferences | Parameter Variations:| Predefined operating po%ﬁis Step
FILE
= J’i Model Initial Condition
A a 0 pace
Name Value @ Linearize At..
m 0.1000 ‘ba Linsarize At Multiple Points...
maghall_op1 1=1 Operatin
gnal_on p 1 Existing operating points (Linear Analysis Workspace) I

maghall_op2 1=1 Operaliné

R 2 op_snapshot1
Sy ‘scdspeedctr! .
op_trim1

v_ini 933 I
L

Existing operating points (MATLAB Workspace) I
Linear Analysis Workspace

Mame Value magksliop)

op_snapshot1 2x1 Operating magball_op2

op_trim1 1=1 Operating

Create new operating point

Trim Model...

Take Simulation Snapshot...

View/edit

Variable Preview L,L View Model Initial Condition

Then, in the Operating Points drop-down list, under View/Edit, click the view or edit option listed
for the operating point.

The dialog box that opens shows the values of the operating point. For the model initial conditions
and operating points found using simulation snapshots, you can view the input and state values. For
operating points found using trimming, you can also view the model outputs that correspond to the
operating point.

|4 Model Initial Condition Viewer - O s

States Inputs

State Value
w watertank/PID Controller/integrator/Continuous/Integrator
State - 1 0

w watertank/Water-Tank System/H

State - 1 1
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Within Model Linearizer, you cannot edit the values of the model initial condition operating point or
the values of an operating point that you found using trimming.

To edit an operating point that you found using a simulation snapshot, in the Edit dialog box, in the
Value column, select the state or input you want to edit, and enter the new value. If your simulation
snapshot was at a steady state, changing any values in Model Linearizer can place the operating
point into a non-steady-state condition.

View and Modify Operating Point at the Command Line

This example shows how to view and modify the states in a Simulink model using an operating point
object.

Create an operating point object from the Simulink Model.
sys = 'watertank';
open_system(sys)
op = operpoint(sys)
op =
Operating point for the Model watertank.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
0

(2.) watertank/Water-Tank System/H

1

Inputs: None

The operating point, op, contains the states and input levels of the model.
Set the value of the first state.

op.States(1l).x = 1.26;

View the updated operating point state values.

op.States

ans =

watertank/PID Controller/Integrator/Continuous/Integrator

watertank/Water-Tank System/H
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You can also modify other operating points in the MATLAB workspace, including operating points
found using trimming or simulation snapshots. If your operating point was at a steady state, changing
any values can place the operating point into a non-steady-state condition.

If you modify your Simulink model after creating an operating point object, use the update function
to update your operating point.

See Also
operspec | update

More About
. “Simulate Simulink Model at Specific Operating Point” on page 1-95
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Compute Steady-State Operating Points from Specifications

1-12

You can compute a steady-state operating point of a Simulink model by specifying constraints on the
model states, outputs, and inputs, and finding a model operating condition that satisfies these
constraints. You can trim your model to meet any combination of state, input, or output specifications.
Computing an operating point in this way is called trimming. For more information on steady-state
operating points, see “About Operating Points” on page 1-2.

You can trim your Simulink model:

* In the Steady State Manager. For an example, see “Compute Operating Points from
Specifications Using Steady State Manager” on page 1-19.

* At the command line. For more information, see “Compute Operating Points from Specifications at
the Command Line” on page 1-14.

* In the Model Linearizer. For more information, see “Compute Operating Points from
Specifications Using Model Linearizer” on page 1-30.

For more information on selecting a trimming tool, see “Compute Steady-State Operating Points” on
page 1-5.

For state specifications, you can constrain the values of model states to known values or ranges. You
can also define bounds for the derivatives of states that are not at steady state. Using such
constraints, you can trim derivatives to known nonzero values or specify derivative tolerances for
states that cannot reach steady state. For an example that trims a model for state specifications, see
“Compute Operating Points from Specifications Using Model Linearizer” on page 1-30.

You can constrain the values of any root-level input or output ports to known values or ranges. You
can also add output specifications to signals in your Simulink model. For an example that adds an
output specification in this way, see “Compute Operating Points from Specifications Using Steady
State Manager” on page 1-19.

If your trimming is unsuccessful; that is, if the optimization search was unable to meet all of your
specifications, determine the specifications that could not be met by validating your trimmed
operating point against the original specifications. For more information, see “Validate Operating
Point Against Specifications” on page 1-38.

After trimming your model, you can:

» Linearize your model at the resulting operating point. For more information, see “Linearize at
Trimmed Operating Point” on page 2-66.

* Simulate your model at the resulting operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also

Functions
findop | findopOptions

Apps
Steady State Manager | Model Linearizer
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More About

. “Compute Operating Points from Specifications at the Command Line” on page 1-14

. “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
. “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30
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Compute Operating Points from Specifications at the
Command Line

You can compute a steady-state operating point of a Simulink® model by specifying constraints on
the model states, outputs, and inputs, and by finding a model operating condition that satisfies these
constraints. For more information on steady-state operating points, see “About Operating Points” on
page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

To find an operating point for your Simulink model, you can programmatically trim your model using
the findop, as shown in this example.

Alternatively, you can trim your model in the:

* Steady State Manager. For more information, see “Compute Operating Points from
Specifications Using Steady State Manager” on page 1-19.

* Model Linearizer. For more information, see “Compute Operating Points from Specifications
Using Model Linearizer” on page 1-30.

In this example, you compute an operating point to meet output specifications. Using a similar
approach, you can define state or input specifications. Also, you can define a combination of state,
output, and input specifications; that is, you do not have to use, for example, only state specifications.

For more information on trimming your model to meet specifications, see “Compute Steady-State
Operating Points from Specifications” on page 1-12.

Open Simulink Model

Open the Simulink model.

mdl = 'scdspeed’;
open_system(mdl)

m—b@—h Thrattle Ang. Combustion
throttle Air change Ar charge Engine
[degreeas) # Engine Speed, N Air Change Air Charge radis Speed
> N to rpm (rpm)
Throtis & Manifald Torque ¥ Tena ]
Induction to gl M w —
Throttle Power Stroke Delay Tioad
perturbation
Load Vehicle
Cymamics
Drag Torgue
Spark Advance Copyright 2004-2008 The MathWaorks, Inc.
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Define Operating Point Specifications
Create a default operating point specification for the model.

opspec = operspec(mdl)
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opspec =

Operating point specification for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

States
X Known SteadyState Min Max dxMin dxMax
(1.) scdspeed/Throttle & Manifold/Intake Manifold/p@® = 0.543 bar
0.543 false true -Inf Inf -Inf Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
209.48 false true -Inf Inf -Inf Inf
Inputs

u Known Min Max

(1.) scdspeed/Throttle perturbation
0 false -Inf Inf

Outputs: None

Since there are no root-level outputs in the model, the default operating point specification object has

no output specifications.

For this example, specify a known steady-state engine speed. To do so, add an output specification at

the output of the rad/s to rpm block.
opspec = addoutputspec(opspec, 'scdspeed/rad//s to rpm',1);
Specify a known value of 2000 rpm for the output constraint.

opspec.Outputs(l).Known = 1;
opspec.Outputs(l).y = 2000;

View the updated operating point specification.

opspec

opspec =

Operating point specification for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

X Known SteadyState Min Max dxMin

dxMax

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p@ = 0.543 bar
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0.543 false true -Inf Inf -Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

209.48 false true -Inf Inf -Inf
Inputs

u Known Min Max

(1.) scdspeed/Throttle perturbation
0 false -Inf Inf

Outputs:

y  Known Min Max

(1.) scdspeed/rad//s to rpm
2000 true -Inf Inf

Trim Model

Find an operating point that meets these specifications.

opl = findop(mdl,opspec);

Operating point search report:

opreport =

Operating point search report for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

Min X Max dxMin dx dxMax

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p@ = 0.543 bar

-Inf 0.54363 Inf 0 2.6649e-13 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

-Inf 209.4395 Inf 0 -8.4758e-12 0
Inputs

Min u Max

(1.) scdspeed/Throttle perturbation
-Inf 0.0038183 Inf

Outputs:

Inf

Inf
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(1.) scdspeed/rad//s to rpm
2000 2000 2000

The operating point search report shows that the specifications were met successfully, and that both
states are at steady state as expected (dx = 0).

You can also specify bounds for outputs during trimming. For example, suppose that you know that
there is a steady-state condition between 1900 and 2100 rpm. To trim the speed to this range, modify
the operating point specifications.

1900;
2100;

opspec.Outputs(1l).Min
opspec.Outputs(1l).Max

In this case, since you do not know the output value, specify the output as unknown. You can also
provide an initial guess for the output value.

opspec.Outputs(l).Known = 0;
opspec.Outputs(l).y = 2050;

Find an operating point that meets these specifications.
op2 = findop(mdl,opspec);

Operating point search report:

opreport =

Operating point search report for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

Min X Max dxMin dx dxMax

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p@® = 0.543 bar

-Inf 0.5436 Inf 0 2.9879e-13 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

-Inf 209.4799 Inf 0 -9.8968e-13 0
Inputs

Min u Max

(1.) scdspeed/Throttle perturbation
-Inf 0.0050021 Inf

Outputs:

Min y Max

1-17



1 Steady-State Operating Points

1-18

(1.) scdspeed/rad//s to rpm
1900 2000.3853 2100

The operating point search report shows that the specifications were met successfully.
After trimming your model, you can:

* Linearize your model at the resulting operating point. For more information, see “Linearize at
Trimmed Operating Point” on page 2-66.

* Simulate your model at the resulting operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also
findop | addoutputspec | operspec

More About

. “Compute Steady-State Operating Points from Specifications” on page 1-12

. “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
. “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30
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Compute Operating Points from Specifications Using Steady

State

throtile
{degraas)

Thrattle
perturbation

Manager

You can compute a steady-state operating point of a Simulink model by specifying constraints on the
model states, outputs, and inputs, and by finding a model operating condition that satisfies these
constraints. For more information on steady-state operating points, see “About Operating Points” on
page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

To find an operating point for your Simulink model, you can interactively trim your model using the
Steady State Manager, as shown in this example.

Alternatively, you can trim your model:

* At the command line. For more information, see “Compute Operating Points from Specifications at
the Command Line” on page 1-14.

* Inthe Model Linearizer. For more information, see “Compute Operating Points from
Specifications Using Model Linearizer” on page 1-30.

In this example, you compute an operating point to meet output specifications. Using a similar
approach, you can define state or input specifications. Also, you can define a combination of state,
output, and input specifications; that is, you do not have to use, for example, only state specifications.

For more information on trimming your model to meet specifications, see “Compute Steady-State
Operating Points from Specifications” on page 1-12.

Open Steady State Manager

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Tt Ang. Combustion
Ajr charge P Air charge Engina
Engine Speed, N Air Charge Air Charge radis Speed
»{ N 1o fpm {rpm]
—— ol .
Throtlle & Maniold Torgue ¥ Tang
Induction to i H M o 300 D
Power Stroke Delay
— Tlead
il Vehicla
Dynamics
Drag *mque
150 Spark Advance

(Degrees)

Spark Advancea

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.
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4\ Steady State Manager - scdspeed - m} *
STEADY STATE
E ﬁ &l ’i Operating Point
Open  Szv=  Import Trim Snapshots
Session  Session Specification
FILE ADD
w Specifications Q
* Reports [+
B = To start, create a trim specification, snapshot, or operating point from the toolstrip above.
 Preview Q

Define Operating Point Specifications

To create an operating point specification, in Steady State Manager, on the Steady State tab, click
Trim Specification.

4 Steady State Manager - scdspeed

Open Save  Import
Session  Session

FILE
w Specifications

In the data browser, in the Specifications section, the software adds a default operating point
specification, specl. Also, the Specification tab opens along with a corresponding specl document.
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4\ Steady State Manager - scdspeed — O X
STEADY STATE SPECIFICATION 9
~ o7 Add Outputs
c ¥ > & &
Sync from  Initialize Trim Set Initial  Export
Model  From @ Trim Options - Conditions
UPDATE OPSPEC OPTIONS TRIM EXPORT
Specifications spect
specl -
» [ty states State Value Known ¥ Steady...  Minimum Maximum | dx Minimum | dx Maxim...
» ©» Inputs
P w scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
»0 Outputs
State - 1 0.543 v -Inf Inf -Inf Inf
w scdspeed/Vehicle Dynamicsiw = TilJ w0 = 209 radlis
State - 1 209.48 v -Inf Inf -Inf Inf
Reports

——

In the specl document, in the navigation tree, select the type of specification that you want to add.
For this example, you want to find a steady-state operating point at which the engine speed is fixed at
2000 rpm using an output specification. Therefore, click Outputs.

spect

b |y States

b % Inpuis

| »0O Outputs

The model scdspeed does not have any outputs.

_— \

Since the model does not have any root-level output ports or defined trim outputs constraints, the
operating point specification does not have any outputs. To add an output to the operating point
specification, on the Specification tab, click Add Outputs.
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4 Steady State Manager - scdspeed

@ EI CE ;i\dd Outp_uts ’> @ Q

T o o

Sync from  Initialize Trim = SetInitial Export
Model From v & Trim Options - Conditions
UPDATE OPSPEC OPTIONS TRIM EXPORT
Specifications spec

spect

v iy States
e v Inputs
_—‘-“"‘-___

In the Add Output Specifications dialog box, specify the signals to which you want to add an output
specification. To add a signal to the list, in the Simulink model window, click the output signal of the
rad/s to rpm block. Doing so adds the signal to the Add Output Specifications dialog box.

4\ Add Qutput Specifications - O *
Click signals to add them to list from Simulink model, scdspeed
scdspeediradifs to rpm:1 _—
| Highlight |
[ Remove |
[ Help | | Add Signal(s) | | Cancel |

Click Add Signal(s).

The software adds this signal to specl as an output specification. To view and edit the specification,
in the specl document, click Qutputs.
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spect
» ;g States Qutput Value Known Minimum Maximum
» o Inpuls v scdspeed/radl/s to rpm
¢ o Outputs
Cutput - 1 0 -Inf Inf
The selected signal is listed in the output specification table under the name of its source block.
Tip To go to the block in your model that is associated with a given state, input, or output
specification, in the specification table, click the block name.
speci
» g States Output Value Known Minimum Maximum
» O Inputs ;
dspeediradifs t
p—— w scdspeediradi/s to rpm
Output - 1 [ 0 -Inf Inf
Specify a known speed value. In the specl document, in the Known column, select the
corresponding row, and in the Value column set the known value to 2000.
speci
v [ States Output Value </ Known Minimum Maximum
r = Inputs v scdspeedirad//s to rpm
» >0 Outputs

OQutput - 1 2000 rd Inf

Trim Model
To compute the operating point that meets this output specification, on the Specification tab, click

Trim .
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4 Steady State Manager - scdspeed

STEADY STATE SPECIFICATION

Sync from  Initialize
Model  From = & Trim Options

A &

Set Initial  Export
onditions

El E:}l Add Cutputs

UPDATE OPSPEC OPTIOMS TRIM EXPORT
Specifications spec
spect

v iy States

| o Inpus
_-h-h'""‘--.___

The software trims the model and generates an operating point search report. The report, reportl,
is added to the data browser, in the Reports section. Also, the Report tab opens along with a
corresponding reportl document.

4\ Steady State Manager - scdspeed - m} X
STEADY STATE REPORT 0
Validation Tolerance E—r &l B
1e-06 Extract SetInitial Export
= Conditions
OPTIONS EXTRACT EXPORT
Specifications speci report1
speci =
] States State Minimum Actual Value Maximum dx Minimum Actual dx dx Maximum
» » Inputs v scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

» 2 Outputs
@ Optimization Status State -1 -Inf 054363 Inf 0 2.6649e-13 0

w scdspeed/Vehicle Dynamics/w = T/lJ w0 = 209 radl/s
State - 1 -Inf 209.4395 Inf 0 -8.4758e-12 0
Reports
report1

Operating Points

== Violations
Known
This table is read-only To edit the

specification or operating point, on the
Report tab, click Extract.

Preview

14 Added report1

]|

For this example, you use default trimming options. To specify different options, such as the
optimization method or a custom cost function, on the Specification tab, click Trim Options.
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To check whether the optimization search converged to a solution that meets the specifications, in the
reportl document, click Optimization Status.

specl report1

> bo States Maximum Error
» o Inputs 0
b O Outputs I
| Optimization Status I
L 4+
s 1%
i L
=
L]
£ L
10 |-
F + +
1 | |
1 2 3 4

kcration

\# Operating point specifications were successfully met.

y=ydes.

Iteration | Max Error | Block

4 8.476e-12 | scdspeed/Vehicle Dynamics/w = TiJ wi = 209 radlis

B viglations

Known 3 8.476e-12 | scdspeed/Vehicle Dynamics/w = TiJ wi = 209 radlis
This table is read-oniy. To edit the 2 1.223e-04 | scdspeed/Vehicle Dynamics/w = T//J w = 209 radi/s
specification or operating point, on the
Report tab, click Extract. 1 3.866e-01 | scdspeed/rad//s to rpm

Added reporti

The optimization status shows that the optimization algorithm terminated successfully, finding an
operating point that meets the specifications.

The Maximum Error plot and the Max Error column show the maximum constraint violation for
each iteration. The Block column shows the block to which the maximum constraint violation applies.

Validate Operating Point

For this example, the optimization search converged to an operating point that met the specification.
When the operating point search report indicates that the search was unsuccessful, you can validate
your operating point against the specifications. To do so, in the reportl document, in the navigation
tree, select the specifications that you want to check. For this example, click Outputs.
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speci report1

b L} States Output

b &> Inputs v scdspeed/rad//s to rpm
» 20 Outputs

) Optimization Status

BN Violations
Known
This table 15 read-only. To edit the

specification or operating point, on the
Report tab, click Extract

Added report1

Output - 1

Minimum

2000

Actual Value

Maximum

2000

2000

In the specification table, known values are highlighted in gray, and constraint violations are
highlighted in red. For this example, there are no constraint violations.

You can also verify whether the operating point is at steady state. For example, in the report1
document, click States.

spec reporti

b |y States
» ¢ Inpuis
b O Qutputs
) Optimization Status

State Minimum

w scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

Actual Value Maximum

State - 1 -Inf

v scdspeed/Vehicle Dynamics/w = TilJ w0 = 209 radils

State - 1 -Inf
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0.54363

209.4395

Inf

Inf

dx Minimum

Actual dx x Maximum
2.6649e-13 0
-8.4758e-12 0




Compute Operating Points from Specifications Using Steady State Manager

The Actual dx column shows the rates of change of the state values at the operating point. Since
these values are near zero, the states are not changing, showing that the operating point is in a
steady state.

For more information on validating operating points, see “Validate Operating Point Against
Specifications” on page 1-38.

Trim Model for Different Specifications

You can also specify bounds for your specification rather than known values. For example, suppose
that you know that there is a steady-state condition in the range from 1900 to 2100 rpm. To find this
operating point, first create another specification by copying and editing previous specification. In the
data browser, right-click specl, and select Copy.

The software adds spec2 to the data browser. To open the specification document for editing, double-
click this new specification.

In the spec2 document, click Outputs. Then, in the specification table:

* In the Value column, specify an initial guess for the value, if you have one.
* In the Known column, clear the entry for the output specification.

* In the Minimum and Maximum columns, specify the lower and upper constraint bounds,
respectively.

spect specl report1

b [y States
» ¢ Inpuis
» >0 Outputs

Qutput Value Known Minimum Maximum

w scdspeedirad//s to rpm

Output -1 2050 1900 2100

_\

On the Specification tab, click Trim L-) The software trims the model and opens the operating
point search report in the report2 document.

Click Outputs.
speci spec? report1 report2
¥ Lo States Output Minimum Actual Value Maximum
> < Inputs w scdspeedirad/ls to rpm
b+ QOutputs

) Optimization Status

Output - 1 1900 2000.3853 2100
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As shown in the Actual Value column, the trimmed output value is within the specified bounds.

Extract Operating Point from Report

The operating point search report is read-only and contains information about both the specifications
and the trimmed operating point. You can extract either a specification or operating point object from
a search report. For example, on the Report tab for report2, click Extract > Operating Point.

4 Steady State Manager - scdspeed

REPORT

Validation Tolerance |j-r @ g

12-06 Extract | Setlnitial Export
= Conditions
BRI Extract

Specifications

spect Specification

Extract specification associated with the validation report

spec2 p p Jtqu

scdkpeedirad//s to rpm
Operating Point % - P
Extract operating point associated with the validation report itputl - 1
™ ]
Repaorts
report1
report2

- \

The software extracts the trimmed operating point, op1, from the report, adding it to the data
browser, in the Operating Points section.

Export Operating Point Data

Once you have computed an operating point that meets your specifications, you can export the model
to the MATLAB workspace and set the initial conditions of your model to the values in the operating
point. To do so, on the Operating Point tab, click Export or Set Initial Conditions, respectively.
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4 Steady State Manager - scdspeed
CQPERATIMNG POINT

S ¥ & | B &

Sync from Initialize = Validate Set Initial  Export
Meodel From = | Against = || Conditions

UPDATE OP VALIDATE EXPORT
Specifications spect spec2 report1
speci
b iy States
spec? [’d
» o Inputs

For more information on setting your model initial conditions and simulating your model at a specific
operating point, see “Simulate Simulink Model at Specific Operating Point” on page 1-95.

See Also
Steady State Manager

More About

. “Compute Steady-State Operating Points from Specifications” on page 1-12

. “Compute Operating Points from Specifications at the Command Line” on page 1-14

. “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30
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Compute Operating Points from Specifications Using Model
Linearizer

throtile
{degraas)

Thrattle
perturbation

1-30

You can compute a steady-state operating point of a Simulink model by specifying constraints on the
model states, outputs, and inputs, and finding a model operating condition that satisfies these
constraints. For more information on steady-state operating points, see “About Operating Points” on
page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

To find an operating point for your Simulink model, you can interactively trim your model using
Model Linearizer, as shown in this example.

Alternatively, you can trim your model:

* In Steady State Manager. For more information, see “Compute Operating Points from
Specifications Using Steady State Manager” on page 1-19.

* At the command line. For more information, see “Compute Operating Points from Specifications at
the Command Line” on page 1-14.

In this example, you compute an operating point to meet state specifications. Using a similar
approach, you can define output or input specifications. Also, you can define a combination of state,
output, and input specifications; that is, you do not have to use, for example, only state specifications.

For more information on trimming your model to meet specifications, see “Compute Steady-State
Operating Points from Specifications” on page 1-12.

Open Model Linearizer

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Tt Ang. Combustion
Ajr charge P Air charge Engina
Engine Speed, N Air Charge Air Charge radis Speed
»{ N 1o fpm {rpm]
— ] -
Throtlle & Maniold Torgue ¥ Tang

Induction to i H M o 300 D
Power Stroke Delay
— Tlead
il Vehicla
Dynamics

Drag *mque

Spark Advance
A dalt
— (Degrees)

Spark Advancea

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.
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4\ Model Linearizer - scdspeed

LINEAR ANALYSIS ESTIMATION PLOTS AND RESULTS

3 Load Session Analysis I/0s: Model 1/0s « [ Resutt Viewer ‘ @ X/
ﬁ Save Session Operating Point  Madel Initial Condition ~ | [[] Linearization Advisor I 7\J" : - [ [z -

@ Preferences Parameter Variztions: Mone = @ More Options Step Bode Impulse MNyguist Nichals
FILE SETUP OPTIONS LINEARIZE
MATLAB Workspace
Name Value
5YS ‘scdspeed

Linear Analysis Workspace

Name Value

Variable Preview

Define Operating Point Specifications

In Model Linearizer, on the Linear Analysis tab, in the Operating Point drop-down list, select
Trim Model.

In the Trim the model dialog box, on the Specifications tab, you can define specifications for model
states, inputs, and outputs. For this example, click the States tab.
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4. Trim the model - O x
Specifications Options
States Inputs COutputs
State Value [ Known Stea... | Minimum | Maximum | dx Mini... | dx Maxi...
v scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
State - 1 0.543 O -Inf Inf -Inf Inf
v scdspeed/Vehicle Dynamicsiw = T//J w0 = 209 rad//s
State - 1 20948 O -Inf Inf -Inf Inf
|’ Sync with Model | | Import... | | Export... |
[ Hep | [ Stat Timming | [ Generate MATLAE Seript |
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By default, on the States tab, the app specifies both model states to be at equilibrium, as shown by
the check marks in the Steady State column. Both states are also specified as unknown values; that
is, their steady-state values are calculated during trimming, with an initial guess specified in the
Value column.

Change the second state, the engine angular velocity, to be a known value. In the Known column,
select the corresponding row and, in the Value column, set the value to 180.
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(4] Trim the model - O x

Specifications Options

States Inputs COutputs

State Value [=/Known [ Stea... | Minimum = Maximum | dx Mini...  dx Maxi...

v scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

State - 1 0.543 O -Inf Inf -Inf

v scdspeed/Vehicle Dynamicsiw = T//J w0 = 209 rad//s

State - 1 180 -Inf

in¥ -Inf

[ Sync with Model ][ Import... ][ Export... ]

[ Start Trimming | [ Generate MATLAB Script |

You can also specify bounds for model states during trimming. For this example, constrain the first
state to be between 0.5 and 0. 7. To do so, enter these values in the Minimum and Maximum
columns, respectively.

1-33



1 Steady-State Operating Points

(4] Trim the model - O x

Specifications Options

States Inputs COutputs

State Value [=/Known [ Stea... | Minimum = Maximum | dx Mini...  dx Maxi...

vy scdspeed/Throttle & Manifold/Intake Manifolgi_lfnl] = 0.543 bar

State - 1 0.543 O 0.5 0.7 -Inf Inf

v scdspeed/Vehicle Dynamicsiw = T/lJ w0 = 209 radlls

State - 1 180 -Inf Inf -Inf Inf

[ Sync with Model ][ Import... ][ Export... ]

[ Start Trimming | [ Generate MATLAB Script |

Trim Model

To compute an operating point that meets these specifications, click Start trimming.

The software uses an optimization search to find the operating point that meets your specifications.

(4] Trim progress viewer - O X

Optimizing to solve for all desired dx/dt=0, x(k+1)-x(k)=0, and v=ydes.

{(Maximum Error) Block

(1.46816e+01) scdspeed/Vehicle Dynamics/w =T//T wl = 200 rad//s
(1.49098e-01) scdspeed/Vehicle Dynamics/w = T//T wl) = 209 rad//s
(5.06093e-05) scdspeed/ Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
(2.47122e-10) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
(2.47122e-10) scdspeed/Throttle & Manifold/Intale Manifold/p0 = 0.543 bar

Operating point specifications were successfully met. -
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The Trim progress viewer shows the optimization progress and that the optimization algorithm
terminated successfully. The (Maximum Error) column shows the maximum constraint violation at
each iteration. The Block column shows the block to which the constraint violation applies.

The trimmed operating point, op_triml, appears in the Linear Analysis Workspace.

Linear Analysis Workspace

Name Value

op_trim1 1=1 OperatingReport

To evaluate whether the resulting operating point values meet the specifications, in the Linear
Analysis Workspace, double-click op triml.

In the Edit dialog box, on the State tab, the Actual Value for the first state falls within the Desired
Value bounds, and the actual angular velocity is 180, as specified.

The Actual dx column shows the rates of change of the state values at the operating point. Since
these values are near zero the states are not changing, showing that the operating point is in a steady
state.

4 Edit: op_trim1 — O *,

Optimizer Cutput Details

State Input Cutput

State Minimum | Actual V... ||Maximum | dx Minim..] Actual dx  dx Maxi...

w scdspeediThrottle &

anifold/p0 = 0.543 bar

State - 1 05 0.565989 0.7 0 2.4712e-10 0
w scdspeed/Vehicle Dymamicsiw = Ti/Jiw0 = 209 radlls
State - 1 180 180 180 0 2.0301e-13 0
—
[ Hep | [ initialize Modal.. |
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Constrain State Derivatives

When you trim your model to meet state specifications, you can also constrain the derivatives of
states that are not at steady state. Using such constraints, you can trim derivatives to known nonzero

values or specify derivative tolerances for states that cannot reach steady state.

For example, suppose you want to find the operating condition at which the engine angular velocity is
180 rad/s and the angular acceleration is 50 rad/s?. To do so, first open the Trim the model dialog
box. In the Model Linearizer, in the Operating Point drop-down list, select Trim Model.

In the Steady State column, clear the selection in the corresponding row. Then, in the dx Minimum

and dx Maximum columns, set both state derivative bounds to 50.

4| Trim the model - O X
Specifications Options
States Inputs Outputs

State Value [ Known | [=] Stea... | Minimum | Maximum | dx Mini...  dx Maxi...

v scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

State - 1 0.543 O 05 0.7 -l Inf

w scdspeed/Vehicle Dynamics/w = T/l w0 = 209 radil/s

State -1 180 O -Inf Inf 50 50

| Syncwith Model | | Import.. | | Export. |

[ Hep | [ Start Timming | [ Generate MATLAE Script |

To compute the operating point, click Start trimming.

In the Linear Analysis Workspace, double-click op_trim2.

In the Edit dialog box, in the second row, the Actual dx column matches the Desired dx column.

Therefore, the operating point meets the specified state derivative constraints.




Compute Operating Points from Specifications Using Model Linearizer

(4 Edit: op_trim2

Optimizer Qutput
State Input
State

Details

Qutput

Minimum | Actual ...

w scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

State - 1

State -1

|’ Help |

0.5

180

0.66605

180

w scdspeed/Vehicle Dynamicsiw = TilJ w0 =209 radlis

- O x
Maximum | dx Mini... | Actual dx | dx Maxi...
0.7 0 2.0141=.. 0
|
180 50 50 50
[ inttialize Model |

After trimming your model, you can:

* Linearize your model at the resulting operating point. For more information, see “Linearize at
Trimmed Operating Point” on page 2-66.

* Simulate your model at the resulting operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also

Model Linearizer

More About
. “Compute Steady-State Operating Points from Specifications” on page 1-12

. “Compute Operating Points from Specifications at the Command Line” on page 1-14

. “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
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Validate Operating Point Against Specifications

When you compute an operating point based on input, output, or state specifications, the Simulink
Control Design software indicates whether the specifications were successfully met during the
trimming process. If the trimming was unsuccessful, to determine the specifications that could not be
met, you must validate your trimmed operating point against the original specifications.

Validate Operating Point in Steady State Manager

When you compute an operating point using Steady State Manager, the software creates an
operating point report object and highlights any operating point values that violate the constraints in
the specification.

For example, consider the scdairframeTRIM model. Open the model and set the speed and
incidence angle parameters.

sys = 'scdairframeTRIM';
open_system(sys)

alpha ini
v_ini 933;

-0.21;

To open Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

Create a trim specification for the model. On the Steady State tab, click Trim Specification.

In the specl document, specify which states are known and which are at steady state.

spec

b |y States
» e Inpuis
» >0 Qutputs

State Value =/ Known = Steady... 1Minimum Maximum | dx Minimum | dx Maxim...
w scdairframeTRIM/Airframe Model/EOM/ Equations of Mojion (Body Axes)/Position

State - 1 0 v -Inf Inf -Inf Inf
State - 2 -3047.9999 s « -Inf Inf Inf Inf

v scdairframeTRIM/Airfraine Model/EOM/ Equations of Mofion (Body Axes)/Theta

State - 1 0 v -Inf -Inf Inf

w scdairframeTRIM/Airfralne Model/EOM/ Equations of Mofion (Body Axes)/U,w

State - 1 912.5028 i -Inf Inf -Inf Inf

£

State - 2 -194.45931 rd rd -Inf Inf

w scdairframeTRIM/Airfraine Model/EOM/ Equations of Mofion (Body Axes)iq

£

State - 1 0 v -Inf Inf
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To trim the model, on the Specification tab, click Trim [/) The software generates an operating
point report and, in the corresponding reportl document, highlights any constraint violations in red.
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specl

report1

v [y States
» e Inputs
b »O Outputs

) Optimization Stat

== violations

Known

This table is read-
only. To edit the
specification or
operating point, on the
Report tab, click

Extract.

Added reporti

State Minimum Actual Value Maximum dx Minimum Actual dx dx Maximum

w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Position

State - 1 0 0 0 -Inf 912.5028 Inf

State - 2 30479999 | -3047.9999 | -3047.9999 _— 0

w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Theta

State - 1 0 0 0 -Inf 0 Inf

253477 Inf

State - 1 912.5028 912.5028 912.5028 -Inf

State - 2 -194.4931 -194.4931 -194.4931 0

w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)iqg

State - 1 -Inf 0 Inf 0

The optimization search could not find an operating point that satisfies the specifications. As
highlighted in Steady State Manager, the three states specified to be at steady state are not. The
highlighted state values violate the specified constraints by more than the tolerance value specified
on the Report tab, in the Validation Tolerance field. For steady-state conditions, the dx Minimum
and dx Maximum constraints are both zero; that is, the rate of change for each state is zero. In the
trimmed operating point, the Actual dx values violate these constraints.

4\ Steady State Manager - scdairframeTRIM

\Validation Tolerance

1e-06

OPTIONS
Specifications
speci

& a &

Extract | Setlmitial Export
- Conditions
EXTRACT EXPORT
specl report1

b iy States

b e Inpuis

utputs
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For this model, specifying the second position state to be at steady state overconstrains the system,
making a steady-state solution impossible.

To remove this steady-state constraint, update the specification. In the specl document, in the
Steady State column, clear the corresponding row.

speci report1

¥ [y States State Value = Known =| Steady... Minimum Maximum | dx Minimum | dx Maxim...

Inputs
e Ry w scdairframeTRIM/Airframe Model/EOM! Equations of Motion (Body Axes)/Position

» >0 Qutputs

State - 1 0 rd -Inf Inf -Inf Inf
State - 2 -3047.9999 v - I -Inf Inf -Inf Inf
v scdairframeTRIM/Airframe ModeleOMﬂ quations of Motion (Body Axes)/Theta

State - 1 0 v -Inf Inf -Inf Inf

w scdairframeTRIM/Airframe Model/EOM! Equations of Motion (Body Axes)/U,w

State - 1 912.5028 v -Inf Inf -Inf Inf
State - 2 -194.4931 s v -Inf Inf -Inf Inf
w scdairframeTRIM/Airframe Model/EOM! Equations of Motion (Body Axes)ig

State - 1 0 4 -Inf Inf -Inf Inf

— __—___—-—-"""——-___

On the Specification tab, click Trim [,') The software trims the model and opens a corresponding
Report tab. The resulting report shows that there are no constraint violations.

spec report1 report2

b |y States State Minimum Actual Value Maximum dx Minimum Actual dx dx Maximum

+ © Inputs w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Position
» >0 Qutputs

) Optimization Stat

State - 1 0 0 0 -Inf 9125028 Inf
State - 2 -3047.9999 -3047.9999 -3047.9995 -Inf -194.4931 Inf
w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Theta

State - 1 0 0 0 -Inf -0.26294 Inf
4 w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/U,w

State - 1 912.5028 912.5028 9125028 -Inf -25.7932 Inf

State - 2 -194.4931 -194.4931 -194 4931 il 0 0

v scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)iq

State - 1 -Inf -0.26294 Inf 0 -3.3017e-15 0
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You can also validate an existing operating point against a set of specifications. For example, to check
if the model initial conditions satisfy the requirements in specl, first create an operating point based
on the model initial conditions. On the Steady State tab, click Operating Point. The software
creates an operating point and opens a corresponding op1 document.

To validate this operating point against the specifications in spec1l, on the Operating Point tab,
under Validate Against, select specl.

4 Steady State Manager - scdairframeTRIM
CQPERATIMNG POINT

¢ ¥ & B £

Sync from Initialize | Validate Set Initial  Export
Meodel From = [Against = || Conditions

_ |

UPDATE OP Operating Point Specifications

Specifications 1 report2 opt

: 1| specl

spec A Sfatac
I r
» o Inputs

I

The software creates an operating point report and opens a corresponding report3 document.

spect report1 report2 report3 opl

b |y States
» @ Inpuis

» 2o Outputs

State Minimum Actual Value Maximum dx Minimum Actual dx dx Maximum

¥ scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Position

State - 1 0 0 0 -Inf 9125028 Inf
State - 2 -3047.9999 -3047.999% -3047.999% -Inf -194.4931 Inf
v scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Theta

State - 1 0 0 0 -Inf 0 Inf
¥ scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/U,w

State - 1 912.5028 912.5028 912.5028 -Inf 25.3477 Inf

State - 2 194 4931 194 4931 194 4931 0 _—

v scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)iq

___\___-__—""—*___

The model initial conditions do not satisfy the operating point specifications, as shown by the
highlighted constraint violations.
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Validate Operating Point in Model Linearizer

When you compute an operating point using Model Linearizer, the software does not highlight
constraint violations. Instead, you must inspect the operating point report information for any
violations.

If you trim the model from the preceding Steady State Manager example using the same initial
specifications in Model Linearizer, the software creates an operating point in the data browser, in
the Linear Analysis Workspace.

To check whether the operating point satisfies the specified constraints, in the Linear Analysis
Workspace, double-click the operating point.

{4\ Edit: op_trim1 - O *

Optimizer Qutput Details

State Input Output

State Minimum | Actual ... | Maximum | dx Mini... | Actual dx | dx Maxi...

w ...rameTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Position

State - 1 0 0 0 -Inf 912.5028 Inf

State-2 | -3047.9.. 30479  -30479.. -- 0

v ..iframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)Theta

State - 1 0 il 0 -Inf 0 Inf
w scdairframe TRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/U,w

State - 1 912.5028 | 912.5028 @ 912.5028 -Inf 253477 Inf

State-2 | -194.4931 -194.4931 -194.4931 0 --

w scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)iq

[ Hep | [ Initialize Model |

In the Edit dialog box, the thee constraint violations are highlighted in red.

Validate Operating Point at the Command Line

When you compute an operating point at the command line, the findop function outputs an
operating point report to the Command Window by default. You can also return the operating point
report as an output argument. For more information, see findop. To validate your operating point
against the specifications, you must check whether the operating point values satisfy the constraints.

For example, open the scdairframeTRIM model and set the model parameters.
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sys = 'scdairframeTRIM';
open_system(sys)

alpha ini = -0.21;
v_ini = 933;

Create an operating point specification object, and specify which states are known and which are at
steady state.

opspec = operspec(sys);
opspec.States(1l).Known = [1;1];
opspec.States(1).SteadyState = [0;1];
opspec.States(3).Known = [1;1];
opspec.States(3) .SteadyState = [0;1];
opspec.States(2) .Known = 1;

opspec.States(2).SteadyState = 0;
opspec.States(4) .Known = 0;
opspec.States(4) .SteadyState = 1;

Trim the model.
op = findop(sys,opspec);

Operating point search report:

opreport =
Operating point search report for the Model scdairframeTRIM.
(Time-Varying Components Evaluated at time t=0)

Could not find a solution that satisfies all constraints. Relax the constraints to find a feasil
States:

Min X Max dxMin dx dxMax

(1.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Position

0 0 0 -Inf 912.5028 Inf

-3047.9999 -3047.9999 -3047.9999 0 -194.4931 0

(2.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Theta
0 0 0 -Inf 0 Inf

(3.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/U,w

912.5028 912.5028 912.5028 -Inf 25.3477 Inf

-194.4931 -194.4931 -194.4931 0 273.1028 0

(4.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/q
-Inf 0 Inf 0 31.1548 0

Inputs

(1.) scdairframeTRIM/delta

-Inf 0O Inf
Outputs:
Min y Max
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(1.) scdairframeTRIM/alpha
-Inf -0.21 Inf
(2.) scdairframeTRIM/V
-Inf 933 Inf
(3.) scdairframeTRIM/q
-Inf 0 Inf
(4.) scdairframeTRIM/az
-Inf 263.2928 Inf
(5.) scdairframeTRIM/gamma
-Inf 0.21 Inf

In the operating point search report, the dx values for the specified steady states have zero
constraints, as indicated by the 0 value in parentheses. The optimization search did not find a steady-
state operating point, since all three of these states violate the constraints.

See Also

Functions
findop | findopOptions

Apps
Steady State Manager | Model Linearizer

More About

. “Compute Operating Points from Specifications at the Command Line” on page 1-14
. “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
. “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30
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Initialize Steady-State Operating Point Search Using
Simulation Snapshot

If you know the approximate time when the model reaches the neighborhood of a steady-state
operating point, you can use simulation to get state values to use as the initial conditions for
numerical optimization.

Initialize Operating Point Search Using Steady State Manager

You can initialize operating point searches with a simulation snapshot when computing operating
points using the Steady State Manager.

1

Open the Simulink model.

sys = 'watertank';
open_system(sys)

Href Pl(g) 1 1 . > D

Desired PID Controller %
Water Level Walter-Tank System

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click
Steady State Manager.

In the Steady State Manager, on the Steady State tab, click Snapshots.

In the Create Snapshot Operating Point dialog box, enter 10 in the Simulation snapshot times
field to extract the operating point at this simulation time.

4\ Create Snapshot Operating Point — O >

Simulation snapshot times (sec):

10

Help [) Generate MATLAE Script| | Cancel

To take a snapshot of the system at the specified time, click [}'

The snapshot, opl, appears in the data browser, in the Operating Points section and contains
all of the system state values at the specified time.
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On the Steady State tab, click Trim Specification.

To Initialize the operating point states with the simulation snapshot values, on the Specification

tab, click Initialize From =, and select op1.

4 Steady State Manager - watertank

SPECIFICATION

Ell}l Add Qutputs

C | [ | oo >

Sync from | Initialize o Trim  Setlnitial Ex
Meodel From | {& Trim Options - Conditions
UPDATE ( Model DPTIONS TRIM EXPORT

Specifi N op1 spect
Initial Conditions

specl
b iy States

Operating Point
v Inputs

opl

o Outputs

In the specl document, the displayed state values update to reflect the imported values.

op1 speci
3 States State Known | ¢ Steady... ini
< Inputs w watertan egrator/Continuous/Integrator
»o Outputs
State - 1
w watertanffWater-Tank Sys#em/H
State - 1
8 To find the optimized operating point using the statesat t =

Maximum | dx Minimum | dx Maxim...

10 as the initial values, on the

Specification tab, click Trim LD The software trims the model and generates an operating

point search report.

In the report1 document, the Actual dx values are at or near zero, showing that the operating

point is at a steady state.
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opi spect report1
b |y States State Minimum Actual Value Maximum dx Minimum Actual dx dx Maximum
©> Inputs w watertank/PID Controller/integrator/Continuous/integrator
»O0 Outputs -
State - 1 -Inf 1.2649 Inf i] ] ]

) Optimization Stat

w watertank/Water-Tank System/H
State - 1 0 10 Inf 0 -1.0991e-14 0

— \

Initialize Operating Point Search Using Model Linearizer

You can initialize operating point searches with a simulation snapshot when computing operating
points using the Model Linearizer.

1 Open the Simulink model.

sys = ('watertank');
open_system(sys)

Href Pi{s) 1 1 D
Desired PID Controller %
Water Lavel ‘Water-Tank System

2 In the Simulink model window, in the Apps gallery, click Model Linearizer.

3 In Model Linearizer, in the Operating Point drop-down list, click Take Simulation
Snapshot.

4 In the Enter snapshot times to linearize dialog box, enter 10 in the Simulation snapshot times
field to extract the operating point at this simulation time.

4| Enter snapshot times to linearize

Simulation snapshot times (s):

10 |

| Take Snapshots | |§Generate MATLAB Script] |§Gancel |
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To take a snapshot of the system at the specified time, click Take Snapshots.

The snapshot, op_snapshotl, appears in the data browser, in the Linear Analysis Workspace

section and contains all the system state values at the specified time.

On the Linear Analysis tab, in the Operating Point drop-down list, click Trim Model.
To Initialize the operating point states with the simulation snapshot values, in the Trim the model

dialog box, click Import.

In the Import initial values and specifications dialog box, select op_snapshotl, and click

Import.
[4] Import initial values and specifications d
Select a source for the operating point or specification
() Linear Analysis Workspace
() MATLAB Workspace
Select an operating point or specification and click Import.
Available Data Type Size
op_snapshoti I Operating Point 2 - States
v
[ Help | [Refresh| [ impott | [ cancel |

In the Trim the model dialog box, the displayed state values update to reflect the imported

values.
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4] Trim the madel — O *

Specifications Options

States Inputs Cutputs

State Value [JKnown | @4 Stea... | Minimum | Maximum | dx Mini... | dx Maxi...

w watertank/PID Controller/integrator/Continuous/integrator

State - 1 O -Inf Inf -Inf i
w watertahk/Water-Tank [System/H
State - 1 10.0796 O 0 Inf -Inf Inf

[ Sync with Model ][ Impaort... ][ Export... ]

[ Start Timming | [ Generate MATLAB Script |

9 To find the optimized operating point using the states at t = 10 as the initial values, click Start
trimming.

10 To evaluate whether the resulting operating point values meet the specifications, in the data
browser, in the Linear Analysis Workspace section, double-click op_triml.
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4| Edit: op_trim1 - O x

Optimizer Output Details
State Input Cutput

State Minimum | Actual V... | Maximum |dx Minim... | Actual dx | dx Maxi...

w watertank/PID Controller/integrator/Continuous/Integrator

State - 1 -Inf 1.2649 Inf 0
w watertank/Water-Tank System/H

State - 1 0 10 Inf 0 -1.0991e-14 0

[ Hep

[ Initialize Model.. |

The Actual dx values are at or near zero, showing that the operating point is at a steady state.

Initialize Operating Point Search at the Command Line

You can initialize operating point searches with a simulation snapshot when computing operating
points using the findop function.

Open the Simulink model.

sys = 'watertank';
load_system(sys)

Simulate the model until it reaches a steady state, and extract an operating point snapshot. For this
example, use ten time units.

opsim = findop(sys,10);

Create an operating point specification object. By default, all model states are specified to be at
steady state.

opspec = operspec(sys);

Configure initial values for operating point search using the snapshot data.
opspec = initopspec(opspec,opsim);

Find the steady-state operating point that meets these specifications.
[op,opreport] = findop(sys,opspec);

Operating point search report:

opreport =
Operating point search report for the Model watertank.
(Time-Varying Components Evaluated at time t=10)
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Operating point specifications were successfully met.
States:

Min X Max dxMin dx dxMax

(1.) watertank/PID Controller/Integrator/Continuous/Integrator

-Inf 1.2649 Inf 0 0 0
(2.) watertank/Water-Tank System/H
0 10 Inf 0 -1.0991e-14 0

Inputs: None

The time derivative of each state, dx, is effectively zero. This value of the state derivative indicates
that the operating point is at steady state.

See Also
initopspec

More About

. “Compute Steady-State Operating Points” on page 1-5
. “Change Operating Point Search Optimization Settings” on page 1-52
. “Compute Steady-State Operating Points” on page 1-5
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Change Operating Point Search Optimization Settings

This example shows how to control the accuracy of your operating point search by configuring the
optimization algorithm. Typically, you adjust the optimization settings based on the operating point
search report, which is automatically created after each search.

You can change your optimization settings when computing operating points interactively using the
Steady State Manager or Model Linearizer, or programmatically using the findop function.

Interactively Change Optimization Settings

You can configure the optimization settings for interactively computing operating points using the
Steady State Manager or Model Linearizer using the same trimming options dialog box interface.

* In Steady State Manager, on the Specification tab, click Trim Options. Then, in the Trim
Options dialog box, specify your optimization settings.

* In Model Linearizer, on the Linear Analysis tab, in the Operating Point drop-down list, click
Trim Model. Then, in the Trim the model dialog box, on the Options tab, specify your
optimization settings.

Cptimization Method:

Optimization Method: Gradient descent with elimination w | Algorithm: Active-Set A

Optimization Options

Maximum change: Inf| Maximum fun evals: 2000
Minimum change: 0| Maximum iterations: 400
Function tolerance: Parameter tolerance: 1e-06
Constraint tolerance: 1e-08 Enable analytic Jacohian

Display results lterations A

Custom Optimization Functions
Objective function
Constraint function

Mapping function

You can specify the Optimization Method and corresponding optimization options such as the
options shown in the following table.
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Optimization Status Option to Change Comment

Optimization ends before Maximum iterations Increase the number of iterations.
completing (too few iterations)

State derivative or error in output |Function tolerance or Constraint |Decrease the tolerance value.
constraint is too large tolerance (depending on selected

algorithm)

You can also specify custom cost and constraint functions for optimization using the Custom
Optimization Functions parameters. For more information, see “Compute Operating Points Using
Custom Constraints and Objective Functions” on page 1-59.

Programmatically Change Optimization Settings

To configure the optimization settings for computing operating points using the findop function,
create a findopOptions option set. For example, create an option set and specify a nonlinear least-
squares optimization method.

options = findopOptions('OptimizerType', 'lsgnonlin');

To specify options for each optimization method, set the OptimizationOptions parameter of the
options set to a corresponding structure created using the optimset function.

To specify custom cost and constraint functions for optimization, create an operspec object and
specify the CustomObjFcn, CustomConstrFcn, and CustomMappingFcn properties. For more
information, see “Compute Operating Points Using Custom Constraints and Objective Functions” on
page 1-59.

See Also

Functions
findop | findopOptions | operspec

Apps
Steady State Manager | Model Linearizer

More About
. “Compute Steady-State Operating Points” on page 1-5
. “Compute Steady-State Operating Points” on page 1-5

. “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-
82
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Import and Export Specifications for Operating Point Search

When you modify an operating point specification in the Steady State Manager or Model
Linearizer, you can export the specification to the MATLAB workspace. Exported specifications are
saved as operating point specification objects (see operspec). Exporting specifications can be useful
when you expect to perform multiple trimming operations using the same or a similar set of
specifications. Also, you can export interactively edited operating point specifications when you want
to use the findop command to perform multiple trimming operations with a single compilation of the
model. (See “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-
70.)

You can also import saved operating point specifications to the Steady State Manager or Model
Linearizer and use them to interactively compute trimmed operating points. Importing a
specification can be useful when you want to trim a model to a specification that is similar to one you
previously saved. In that case, you can import the specification and interactively change it. You can
then export the modified specification or compute a trimmed operating point from it.

For more information about operating point specifications, see the operspec and findop reference
pages.

Import and Export Specification Using Steady State Manager

To import an operating point specification into the Steady State Manager, on the Steady State tab,
click Import.

4\ Steady State Manager - magball

SPECIFICATION

'D'} Operating Point

STEADY STATE

O &

Open Save Trim E, Snapshots Export
Session  Session Specification
FILE ADD EXPORT
Specifications spect
speci
b [y States St:
e Inputs
v!
>0 Outputs
St

In the Import Operating Point dialog box, select whether you want to import the specification from
the MATLAB workspace or from a MAT-file. Then, in the table, in the Import column, select the
specification that you want to import.
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(4| Import Operating Point - O X

Import From:

() Base Workspace

() MAT File
Import Operating Points Type
magball_op1 Operating Point
O magball_op2 Operating Point

o ) (e )

Click Import.

To export an operating point specification from the Steady State Manager, on either the Steady
State tab or the Specification tab, click Export.

4\ Steady State Manager - maghall

SPECIFICATION

I&I 'bi Operating Point

STEADY STATE

O d

Open Save  Import Trim Snapshats
Session  Session Specification
FILE ADD EXPORT
Specifications spect
speci
b [y States St:
—» Inputs
v!
>0 Outputs
Sti

In the Export Operating Point dialog box, in the Export column, select the specification that you want
to export. When you click Export from the Specification tab, the corresponding specification is
preselected in the dialog box.

Then, in the Export as column, specify the name of the workspace variable to which you want to save
the specification.

1-55



1 Steady-State Operating Points

1-56

[4\| Export Operating Point - O X
Export to Workspace
Export Operating Point Export As
speci speci

(o ) (o )

Click Export.

Import and Export Specification Using Model Linearizer

To import or export an operating point specification using the Model Linearizer, on the Linear
Analysis tab, in the Operating Point drop-down list, select Trim Model.

(4] Trim the model - O x

Specifications Options

States Inputs COutputs

State Value [ Known Stea... | Minimum | Maximum | dx Mini... | dx Maxi...
v magball/Controller/PID ControlleriFilter/Cont. FilteriFilter
State - 1 0 O -Inf Inf -Inf Inf

w magball/Controller/PID Controlleri/integrator/Continuous/Integrator

State - 1 14.0071 O -Inf Inf -Inf Inf

» magballlMagnetic Ball Plant/Current

State - 1 7.0036 O -Inf Inf -Inf Inf

w magballlMagnetic Ball Plant/dhdt

State -1 0 O Inf Inf -Inf Inf

¥ magballlMagnetic Ball Plant/height

State - 1 0.05 O -Inf Inf -Inf Inf

[ Sync with Model [ Import... ][ Export... ]

[ Start Trimming | [ Generate MATLAB Script |

To import a specification, in the Trim the model dialog box, click Import.
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Then, in the Import initial values and specification dialog box, select whether you want to import the
specification from the MATLAB workspace or the Linear Analysis Workspace. Then, in the table,
click the specification that you want to import.

4| Import initial values and specifications - O et

Select a source for the operating point or specification
() Linear Analysis Workspace

(@) MATLAE Workspace

Select an operating point or specification and click Import.

Available Data Type Size
magball_op1 Qperating Point 5 - States
magball_op2 Qperating Point 5 - States
|’ Help | | Refresh] | Import | | Cancel |
Click Import.

To export a specification, in the Trim the model dialog box, click Export.

Then, in the Export Specification dialog box, select whether you want to export the specification to
the MATLAB workspace or the Linear Analysis Workspace. Then, in the Variable Name field,
specify the name of the workspace variable to which you want to save the specification.

4\ Export Specifications ~ — O >

Destination workspace
(®) MATLABE Workspace

() Linear Analysis Workspace

Variable Name

| opspect |

|' Help | | oK | | Cancel |

Click Import.

See Also

Functions
findop | operspec

Apps
Steady State Manager | Model Linearizer
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More About
. “View and Modify Operating Points” on page 1-8
. “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
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Compute Operating Points Using Custom Constraints and
Objective Functions

Typically, when computing a steady-state operating point for a Simulink® model using an
optimization-based search, you specify known fixed values or bounds to constrain your model states,
inputs, or outputs. However, some systems or applications require additional flexibility in defining the
optimization search parameters.

For such systems, you can specify custom constraints, an additional optimization objective function,
or both. When the software computes a steady-state operating point, it applies these custom
constraints and objective function in addition to the standard state, input, and output specifications.

You can specify custom equality and inequality constraints as algebraic combinations of model states,
inputs, and outputs. These constraints let you limit the operating point search space by specifying
known relationships between inputs, outputs, and states. For example, you can specify that one model
state is the sum of two other states.

You can also specify a custom scalar objective function as an algebraic combination of model states,
inputs, and outputs. Using the objective function you can optimize the steady-state operating point
based on your application requirements. For example, suppose that your model has multiple potential
equilibrium points. You can specify an objective function to find the steady-state point with the
minimum input energy.

For complex models, you can specify a custom mapping function that selects a subset of the model
inputs, outputs, and states to pass to the custom cost and constraint functions.

You can specify custom optimization functions when trimming your model:

* At the command line: Create an operating point specification using operspec, and specify the
custom functions using the CustomConstrFcn, CustomCostFcn, and CustomMappingFcn
properties of the specification.

* Using the Steady State Manager: On the Specification tab, click Trim Options. In the Trim
Options dialog box, in the Custom Optimization Functions section, specify the function names.

» Using the Model Linearizer: On the Linear Analysis tab, in the Operating Point drop-down
list, click Trim Model. In the Trim the model dialog box, on the Options tab, in the Custom
Optimization Functions section, specify the function names.
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Optimization Method:
Optirnization Method:

Optimization Options
Maximum change:

Minimum change:
Function tolerance:

Constraint tolerance;

‘Gradient descent with elimination

Inf

1e-06

1e-06

[] Enable analytic Jacohian

Display results

[terations

Custom Optimization Functions

Objective function
Constraint function

Mapping function

myObjectiveFcn
myConstraintFen

myMappingFecn

Y Algorithrm: | Active-Set w

Maximum fun evals: | 2000
Maximum iterations: | 400

Parameter tolerance: |12-06

The following example shows how to create custom optimization functions and how to trim a model at
the command line using these custom functions.

Simulink Model

For this example, use a model of three tanks connected with each other by orifices.

mdl = 'scdTanks';
open_system(mdl)
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The flow between Tank1 and Tank2 is desired. The flow between Tank2 and Tank3 is undesired
unavoidable leakage.

At the expected steady state of this system:

* Tankl and Tank2 have the same pressure.
* Tank2 and Tank3 have an almost constant pressure difference of 1 that compensates a load.

Due to the weak connectivity between Tank1 and Tank?2, it is difficult to trim the model such that the
pressures in Tank1 and Tank2 are equal.

Trim Model Without Customizations

Create a default operating point specification for the model. The specification configures all three
tank pressures as free states that must be at steady state in the trimmed operating point.

opspec = operspec(mdl);

Create an option set for trimming the model, suppressing the Command Window display of the
operating point search report. The specific trimming options depend on your application. For this
example, use nonlinear least squares optimization.

opt = findopOptions('OptimizerType', 'lsgnonlin');
opt.DisplayReport = 'off';

Trim the model, and view the trimmed tank pressures.
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[opO, rpt0] = findop(mdl,opspec,opt);
op0.States

1.) scdTanks/Inertia
0
(2.) scdTanks/Tankl
9
(3.) scdTanks/Tank2
9.5
(4.) scdTanks/Tank3
10.5
The trimmed pressures in Tank1 and Tank2 do not match. Thus, the default operating point
specification fails to find an operating point that meets the expected steady-state requirements. If you

reduce the constraint tolerance, opt.0OptimizationOptions.TolCon, you cannot achieve a
feasible steady-state solution due to the leakage between Tank2 and Tank3.

Add Custom Constraints

To specify custom constraints, define a function in the current working folder or on the MATLAB path
with input arguments:

* X - Operating point specification states, specified as a vector.

* u - Operating point specification inputs, specified as a vector.

* y - Operating point specification outputs, specified as a vector.

and output arguments:

* C_ineq - Inequality constraints which must satisfy ¢ _ineq <= 0 during trimming, returned as a
vector.

* C_eq - Equality constraints which must satisfy ¢_eq = 0 during trimming, returned as a vector.
Each element of ¢_ineq and ¢_eq specifies a single constraint. Define the specific constraints for

your application as algebraic combinations of the states, inputs, and outputs. If there are no custom
equality or inequality constraints, return the corresponding output argument as [].

For this example, to satisfy the conditions of the expected steady state, define the following custom
constraint function.

function [c_ineq,c_eq] = myConstraints(x,u,y)
c_ineq = [];
c eq = [x(2)-x(3); % Tankl pressure - Tank2 pressure
x(3)-x(4)+1]; % Tank2 pressure - Tank3 pressure + 1
end

The first entry of ¢_eq constrains the pressures of Tank1 and Tank2 to be the same value. The second
equality constraint defines the pressure drop between Tank2 and Tank3.
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Add the custom constraint function to the operating point specification.
opspec.CustomConstrFcn = @myConstraints;

Trim the model using the revised operating point specification that contains the custom constraints,
and view the trimmed state values.

[opl,rptl] = findop(mdl,opspec,opt);
opl.States

scdTanks/Inertia

O —

(2.) scdTanks/Tankl
9.3333
(3.) scdTanks/Tank2
9.3333
(4.) scdTanks/Tank3
10.3333

Trimming the model with the custom constraint function produces an operating point with equal
pressures in the first and second tanks, as expected. Also, as expected, there is a pressure differential
of 1 between the third and second tanks.

To examine the final values of the specified constraints, you can check the CustomEqualityConstr
and CustomInequalityConstr properties of the operating point search report.

rptl.CustomEqualityConstr

ans =
1.0e-06 *

-0.0001
-0.1540

The near-zero values indicate that the equality constraints are satisfied.
Add Custom Objective Function

To specify a custom objective function, define a function with the same input arguments as the
custom constraint function (x, u, and y), and output argument F. F is an objective function value to be
minimized during trimming, returned as a scalar.

Define the objective function for your application as an algebraic combination of the states, inputs,
and outputs.

For this example, assume that you want to keep the pressure in Tank3 in the range [16,20]. However,
this condition is not always feasible. Therefore, rather than impose hard constraints, add an objective
function to incur a penalty if the pressures are not in the [16,20] range. To do so, define the following
custom objective function.
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function F = myObjective(x,u,y)
F = max(x(4)-20, 0) + max(16-x(4), 0);
end
Add the custom objective function to the operating point specification object.

opspec.CustomObjFcn = @myObjective;

Trim the operating point using both the custom constraints and the custom objective function, and
view the trimmed state values.

[op2,rpt2] = findop(mdl,opspec,opt);
op2.States

ans =

1.) scdTanks/Inertia

(

0

(2.) scdTanks/Tankl
15

(3.) scdTanks/Tank?2
15

(4.) scdTanks/Tank3
16

In the trimmed operating point, the pressure in Tank3 is within the [16,20] range specified in the
custom objective function.

To view the final value of the scalar objective function, check the CustomObj property of the
operating point search report.

rpt2.CustomObj

ans =

Add Custom Mapping

For complex models, you can define a custom mapping that selects a subset of the model states,
inputs, and outputs to pass to the custom constraint and objective functions. Doing so simplifies the
constraint and objective functions by eliminating unneeded states, inputs, and outputs.

To specify a custom mapping, define a function with your operating point specification, opspec, as an
input argument, and output arguments:

* indx - Indices of mapped states

* indu - Indices of mapped inputs

* 1indy - Indices of mapped outputs
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To obtain state, input, and output indices based on block paths and state names use getStateIndex,
getInputIndex, and getOutputIndex. Using these commands is robust to future model changes,
such as the addition of model states. Alternatively, you can manually specify the indices. For more
information on the format of indx, indu, and indy, see getStateIndex, getInputIndex, and
getOutputIndex.

If there are no states, inputs, or outputs used by the custom constraint and objective functions, return
the corresponding output argument as [].

For this example, create a mapping that includes only the pressure states for the three tanks. To do
so, define the following custom mapping function.

function [indx,indu,indy] = myMapping(opspec)

indx = [getStateIndex(opspec, 'scdTanks/Tankl');
getStateIndex(opspec, 'scdTanks/Tank2"');
getStateIndex(opspec, 'scdTanks/Tank3"')];
[1;
[1;

indu
indy

end

Add the custom mapping to the operating point specification.
opspec.CustomMappingFcn = @myMapping;

When you use a custom mapping function, the indices for the states, inputs, and outputs in your
custom constraint and objective functions must be relative to the order specified in the mapping
function. Update the custom constraint and objective functions with the new mapping.

function [c_ineq,c_eq] = myConstraintsMap(x,u,y)
c_ineq = [I;
c eq = [x(1)-x(2); % Tankl pressure - Tank2 pressure
x(2)-x(3)+1]; % Tank2 pressure - Tank3 pressure + 1
end

function F = myObjectiveMap(x,u,y)
F = max(x(3)-20, 0) + max(16-x(3), 0);
end

Here, X, u, and y are vectors of mapped states, inputs, and outputs, respectively. These vectors
contain the mapped values specified in indx, indu, and indy, respectively.

Add the updated custom functions to the operating point specification.

opspec.CustomConstrFcn = @myConstraintsMap;
opspec.CustomObjFcn = @myObjectiveMap;

Trim the model using the custom mapping, and view the trimmed states, which match the previous
results in op2.

[op3,rpt3] = findop(mdl,opspec,opt);
op3.States
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1.) scdTanks/Inertia

(

0

(2.) scdTanks/Tankl
15

(3.) scdTanks/Tank2
15

(4.) scdTanks/Tank3
16

Add Analytic Gradients to Custom Functions

For faster or more reliable computations, you can add analytic gradients to your custom constraint
and objective functions. Adding gradients can reduce the number of function calls during
optimization and potentially improve the accuracy of the optimization result. If you specify gradients,
you must specify them for both the custom constraint and objective functions. (Gradients for custom
trimming are not supported for Simscape™ models.)

To define the gradient of a given constraint or objective function, take the derivative of the function
with respect to a given state, input, or output. For example, if the objective function is

F = (u(l)+3)"2 + y(1)"2
then the gradient of F with respect to u(1) is
G = 2*¥(u(1)+3)

To add gradients to your custom constraint function, specify the following additional output
arguments:

* G _ineq - Gradient array for the inequality constraints
* G_eq - Gradient array for the equality constraints

Each column of G_ineq and G_eq contains the gradients for one constraint, and the order of the
columns matches the order of the rows in the corresponding constraint vector. The number of rows in
both G_ineq and G_eq is equal to the total number of states, inputs, and outputs in X, u, and y. Each
column contains gradients with respect to the states in x, followed by the inputs in u, then the
outputs in y.

For this example, add gradients to the constraint function that uses the custom mapping. You do not
have to specify a custom mapping when using gradients. However, defining gradients is simpler when
using mapped subsets of states, inputs, and outputs.

function [c_ineq,c eq,G ineq,G eq]l = myConstraintsGrad(x,u,y)
Cc_ineq = [];
c eq = [x(1)-x(2); % Tankl pressure - Tank2 pressure

x(2)-x(3)+1]1;

o°

Tank2 pressure - Tank3 pressure + 1

[]

D
[ ]
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0 -1];
end

In this function, row i of G_eq contains gradients with respect to state x(1).
Similarly, to add gradients to your custom objective function, specify an additional output argument

G, which contains the gradients of F. G is returned as a column vector with the same format as the
columns of G_ineq and G_eq.

function [F,G] = myObjectiveGrad(x,u,y)
F = max(x(3)-20, 0) + max(16-x(3), 0);

if x(3) >= 20
G=1[001]";
elseif x(3) <= 16
G=[00 -11";
else
G=1[000]";
end

end
Because the objective function in this example is piecewise differentiable, the value of G depends on
the value of the pressure in Tank3.

Add the updated custom functions to the operating point specification.

opspec.CustomConstrFcn = @myConstraintsGrad;
opspec.CustomObjFcn = @myObjectiveGrad;

To enable gradients in the optimization algorithm, enable the Jacobian optimization option.
opt.OptimizationOptions.Jacobian = 'on';

To use analytic Jacobians when trimming models using Steady State Manager or the Model
Linearizer, select the Enable analytic Jacobian trimming option.
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Optimization Method:
Optimization Method: | Gradient descent with elimination ~ Algorithm: | Active-5et ~

Optirnization Options

Maximum change: Inf Maxirmum fun evals: | 2000
Minimum change: 0 Maximum iterations: | 4p0
Function tolerance: 1e-06 Parameter tolerance: | {208
Constraint tolerance: 1e-06

( Enable anall,-ticJaccll:liari:)
Display results lterations w

Customn Optimization Functions

Objective function | myObjectiveiGrad
Constraint function myConstraintsGrad

Mapping function | myMapping

Trim the model using the custom functions with gradients, and view the trimmed states.

[op4,rpt4] = findop(mdl,opspec,opt);
op4.States

1.) scdTanks/Inertia
2.) scdTanks/Tankl
(3.) scdTanks/Tank2

(4.) scdTanks/Tank3
16

The optimization result is the same as the result for the nongradient solution.

To see if the gradients improve the optimization efficiency, view the operating point search reports.
For example, compare the number function evaluations for the solution:

* Without gradients:

rpt3.0ptimizationOutput.funcCount

ans =
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25

* With gradients:

rpt4.0ptimizationOutput.funcCount

ans =

For this example, adding the analytical gradients decreases the number of function calls during
optimization.

See Also
findop | operspec | getStateIndex | getInputIndex | getOutputIndex

More About
. “Compute Steady-State Operating Points” on page 1-5
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Batch Compute Steady-State Operating Points for Multiple
Specifications

m—b@—b Throttle Ang.

This example shows how to find operating points for multiple operating point specifications using the
findop command. You can batch linearize the model using the operating points and study the change
in model behavior.

Each time you call findop, the software compiles the Simulink model. To find operating points for
multiple specifications, you can give findop an array of operating point specifications, instead of
repeatedly calling findop within a for loop. The software uses a single model compilation to compute
the multiple operating points, which is efficient, especially for models that are expensive to recompile
repeatedly.

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Combustion
throttle Anr change Ar charge Engine
[degreas} { Engine Speed, N Air Charge Air Charga radis Speed
o H to rpm (rpm)
Throtis & Manifald Torque ¥| Teng ]
Induction to ™ N N w —
Throttle Power Stroke Delay Tioad
perturbation
Load \ehicle
Dymamics
Drag Torque
150 Cdera) Spark Advance Copyright 2004-2008 The MathWorks, Inc.

(Degrees)

Spark Advancea

Create an array of default operating point specification objects.
opspec = operspec(sys,3);

To find steady-state operating points at which the output of the rad/s to rpm block is fixed, add a
known output specification to each operating point specification object.

opspec = addoutputspec(opspec,[sys '/rad//s to rpm'],1);
for i = 1:3

opspec(i).Outputs(l).Known = true;
end

Specify different known output values for each operating point specification.

opspec(1l).0utputs(1l).y = 1500;
opspec(2).0utputs(1l).y = 2000;
opspec(3).0utputs(1l).y = 2500;
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Alternatively, you can configure operating point specifications using the Model Linearizer and
export the specifications to the MATLAB workspace. For more information, see “Import and Export
Specifications for Operating Point Search” on page 1-54.

Find the operating points that meet each of the three output specifications. findop computes all the
operating points using a single model compilation.

ops = findop(sys,opspec);

Operating point search report 1:

opreport =

Operating point search report for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

Min X Max dxMin dx dxMax

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p@ = 0.543 bar

-Inf 0.59562 Inf 0 3.4112e-09 0
(2.) scdspeed/Vehicle Dynamics/w = T//] w0 = 209 rad//s
-Inf 157.0796 Inf 0 -5.572e-07 0
Inputs
Min u Max

(1.) scdspeed/Throttle perturbation
-Inf  -1.6086 Inf

Outputs:

(1.) scdspeed/rad//s to rpm
1500 1500 1500

Operating point search report 2:

opreport =
Operating point search report for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

1-71



1 Steady-State Operating Points

1-72

Min X Max dxMin dx dxMax

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p@ = 0.543 bar

-Inf 0.54363 Inf 0 2.6649e-13 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

-Inf 209.4395 Inf 0 -8.4758e-12 0
Inputs

Min u Max

(1.) scdspeed/Throttle perturbation
-Inf 0.0038183 Inf

Outputs:

(1.) scdspeed/rad//s to rpm
2000 2000 2000

Operating point search report 3:

opreport =

Operating point search report for the Model scdspeed.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

Min X Max dxMin dx dxMax

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0® = 0.543 bar

-Inf 0.51066 Inf 0 1.3297e-08 0
(2.) scdspeed/Vehicle Dynamics/w = T//] w0 = 209 rad//s

-Inf 261.7994 Inf 0 -7.8334e-08 0
Inputs
Min u Max

(1.) scdspeed/Throttle perturbation
-Inf 1.4971 1Inf

Outputs:
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(1.) scdspeed/rad//s to rpm
2500 2500 2500

ops is a vector of operating points for the scdspeed model that correspond to the specifications in
opspec. The output value for each operating point matches the known value specified in the
corresponding operating point specification.

See Also
findop | operspec

More About

. “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-
82

. “Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-74

. “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19

. “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on
page 3-28
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Batch Compute Steady-State Operating Points for Parameter
Variation

Block parameters configure a Simulink model in several ways. For example, you can use block
parameters to specify various coefficients or controller sample times. You can also use a discrete
parameter, like the control input to a Multiport Switch block, to control the data path within a model.
Varying the value of a parameter helps you understand its impact on the model behavior. Also, you
can vary the parameters of a plant model in a control system to study the robustness of the controller
to plant variations.

When trimming a model using findop, you can specify a set of parameter values for which to trim
the model. The full set of values is called a parameter grid or parameter samples. findop computes
an operating point for each value combination in the parameter grid. You can vary multiple
parameters, thus extending the parameter grid dimension.

Which Parameters Can Be Sampled?

You can vary any model parameter with a value given by a variable in the model workspace, the
MATLAB workspace, or a data dictionary. In cases where the varying parameters are all tunable,
findop requires only one model compilation to find operating points for varying parameter values.
This efficiency is especially advantageous for models that are expensive to compile repeatedly.

Vary Single Parameter

To vary the value of a single parameter for batch trimming with findop, specify the parameter grid
as a structure having two fields. The Name field contains the name of the workspace variable that
specifies the parameter. The Value field contains a vector of values for that parameter to take during
trimming.

For example, the Watertank model has three parameters defined as MATLAB workspace variables,
a, b, and A. The following commands specify a parameter grid for the single parameter for A.

param.Name = 'A‘';
param.Value = Avals;

Here, Avals is an array specifying the sample values for A.

The following table lists some common ways of specifying parameter samples.

Parameter Sample-Space Type How to Specify the Parameter Samples
Linearly varying param.Value =
linspace(A min,A max,num_samples)
Logarithmically varying param.Value =
logspace(A min,A max,num_samples)
Random param.Value = rand(1l,num samples)
Custom param.Value = custom vector

If the variable used by the model is not a scalar variable, specify the parameter name as an
expression that resolves to a numeric scalar value. For example, suppose that Kpid is a vector of PID
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gains. The first entry in that vector, Kpid, is used as a gain value in a block in your model. Use the
following commands to vary that gain using the values given in a vector Kpvals:

param.Name = 'Kpid(1)"';
param.Value = Kpvals;

After you create the structure param, pass it to findop as the param input argument.

Multidimensional Parameter Grids

When you vary more than one parameter at a time, you generate parameter grids of higher
dimension. For example, varying two parameters yields a parameter matrix, and varying three
parameters yields a 3-D parameter grid. Consider the following parameter grid used for batch
trimming:

Parameter Grid Batch Trimming Results
a=10 op(l,3,4)
b=3
=200

s ~ A 7 T A L

AN
AN
N N N
AN
AN
) AN AN

-

h=3 ap(2,3,1)

Here, you vary the values of three parameters, a, b, and c. The samples form a 3-by-4-by-5 grid. op is
an array with same dimensions that contains corresponding trimmed operating point objects.
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Vary Multiple Parameters

To vary the value of multiple parameters for batch trimming with findop, specify parameter samples
as a structure array. The structure has an entry for each parameter whose value you vary. The
structure for each parameter is the same as described in “Vary Single Parameter” on page 1-74. You
can specify the Value field for a parameter as an array of any dimension. However, the size of the
Value field must match for all parameters. Corresponding array entries for all the parameters, also
referred to as a parameter grid points, must map to a specified parameter combination. When the
software trims the model, it computes an operating point for each grid point.

Specify Full Grid
Suppose that your model has two parameters whose values you want to vary, a and b:

a={al, a2}
b = {b1,b2}

You want to trim the model for every combination of a and b, also referred to as a full grid:

(al, bl)/ (all b2)
(a, by), (az, by)

Create a rectangular parameter grid using ndgrid.

al = 1;
a2 = 2;
a = [al a2];
bl = 3;
b2 = 4;
b = [bl b2];

[A,B] = ndgrid(a,b)

>> A
A:
1 1
2 2
>> B
B:
3 4
3 4

Create the structure array, params, that specifies the parameter grid.

params(1l).Name = 'a';
params(1l).Value = A;

params(2).Name = 'b';
params(2).Value = B;

In general, to specify a full grid for N parameters, use ndgrid to obtain N grid arrays.
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[P1,...,PN] = ndgrid(pl,...,pN);
Here, p;,...,py are the parameter sample vectors.

Create a 1 x N structure array.

params(1l).Name = 'pl';
params(1l).Value = P1;

params(N).Name = 'pN';
params(N).Value = PN;

Specify Subset of Full Grid

If your model is complex or you vary the value of many parameters, trimming the model for the full
grid can become expensive. In this case, you can specify a subset of the full grid using a table-like
approach. Using the example in “Specify Full Grid” on page 1-76, suppose that you want to trim the
model for the following combinations of a and b:

{(a1, b1), (a1, b2)}
Create the structure array, params, that specifies this parameter grid.
A = [al all;

params(1l).Name = 'a';
params(1l).Value = A;

B = [bl b2];

params(2).Name = 'b';
params(2).Value = B;

Batch Trim Model for Parameter Variations

This example shows how to obtain multiple operating points for a model by varying parameter values.
You can study the controller robustness to plant variations by batch linearizing the model using the
trimmed operating points.

Open the Simulink model.

sys = 'watertank';
open_system(sys)

Href —F@—P Plis) > 1 i > C]
A
Dwesired PID Controller
Water Lewvel Water-Tank System

Copyright 2004-2012 The MathWorks, Inc.
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Vary parameters A and b within 10% of their nominal values. Specify three values for A and four
values for b, creating a 3-by-4 value grid for each parameter.

[A grid,b grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each parameter.

params(1l).Name = 'A';
params(1l).Value = A grid;
params(2).Name = 'b"';
params(2).Value = b grid;

Create a default operating point specification for the model, which specifies that both model states
are unknown and must be at steady state in the trimmed operating point.

opspec = operspec(sys)

opspec =

Operating point specification for the Model watertank.
(Time-Varying Components Evaluated at time t=0)

X Known SteadyState Min Max dxMin dxMax

(1.) watertank/PID Controller/Integrator/Continuous/Integrator

0 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
1 false true 0 Inf -Inf Inf

Inputs: None

By default, findop displays an operating point search report in the Command Window for each
trimming operation. To suppress the report display, create a trimming option set and turn off the
operating point search report display.

opt = findopOptions('DisplayReport','off');
Trim the model using the specified operating point specification, parameter grid, and option set.
[op,opreport] = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination. The software uses only one model
compilation. op is a 3-by-4 array of operating point objects that correspond to the specified
parameter grid points.

View the operating point in the first row and first column of op.

op(1,1)
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ans =

Operating point for the Model watertank.
(Time-Varying Components Evaluated at time t=0)

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
1.4055
(2.) watertank/Water-Tank System/H

10

Inputs: None

Batch Trim Model at Known States Derived from Parameter Values

This example shows how to batch trim a model when the specified parameter variations affect the
known states for trimming.

In the “Batch Trim Model for Parameter Variations” on page 1-77 example, the model is trimmed to
meet a single operating point specification that contains unknown states. In other cases, the model
states are known for trimming, but depend on the values of the varying parameters. In this case, you
cannot batch trim the model using a single operating point specification. You must create a separate
specification for each parameter value grid point.

Open the Simulink model.

sys = 'scdairframeTRIM';
open_system(sys)

alpha 1sied for scheduling

delta q

garmal —>(5)

Airframe Model

In this model, the aerodynamic forces and moments depend on the speed, V', and incidence, «.

Vary the V' and « parameters, and create a 6-by-4 parameter grid.
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nA = 6; % number of alpha values
nv = 4; % number of V values
alphaRange = linspace(-20,20,nA)*pi/180;

vRange = linspace(700,1400,nV);
[alphaGrid,vGrid] = ndgrid(alphaRange, vRange);

Since some known state values for trimming depend on the values of V" and «, you must create a
separate operating point specification object for each parameter combination.

1:nA
j = 1:nV

% Set parameter values in model.
alpha_ini = alphaGrid(i,j);
v_ini = vGrid(i,j);

i =
for

% Create default specifications based on the specified parameters.
opspec(i,j) = operspec(sys);

% Specify which states are known and which states are at steady state.
opspec(i,j).States(1l).Known = [1;1];
opspec(i,j).States(1).SteadyState = [0;0];

opspec(i,j).States(3).Known = [1;1];
opspec(i,j).States(3).SteadyState = [0;1];

opspec(i,j).States(2).Known = 1;
opspec(i,j).States(2).SteadyState

0;

opspec(i,j).States(4).Known = 0;
opspec(i,j).States(4).SteadyState
end

1;
end

Create a parameter structure for batch trimming. Specify a name and value grid for each parameter.

params(1l).Name = 'alpha ini';
params(1l).Value = alphaGrid;
params(2).Name = 'v ini';
params(2).Value = vGrid;

Trim the model using the specified parameter grid and operating point specifications. When you
specify an array of operating point specifications and varying parameter values, the dimensions of the
specification array must match the parameter grid dimensions.

opt = findopOptions('DisplayReport', 'off');
op = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination. op is a 6-by-4 array of operating point
objects that correspond to the specified parameter grid points.

See Also
findop | operspec | linearize

More About
. “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
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“Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-
82

“Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on
page 3-28
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Batch Compute Steady-State Operating Points Reusing
Generated MATLAB Code

1-82

This example shows how to batch-compute steady-state operating points for a model using generated
MATLAB code. You can either simulate or linearize your model at these operating points and study
the change in model behavior.

If you are new to writing scripts, interactively configure your operating points search using the
Steady State Manager or Model Linearizer.

Before generating code for batch trimming, first compute an operating point to meet an instance of
your specifications. For more information on computing operating points in:

* Steady State Manager, see “Compute Operating Points from Specifications Using Steady State
Manager” on page 1-19.

* Model Linearizer, see “Compute Operating Points from Specifications Using Model Linearizer”
on page 1-30.

After computing an operating point, generate a MATLAB script. To do so in the:

+ In Steady State Manager, on the Specification tab, click Trim '*, and select Script.
* In Linear Analysis, in the Trim the model dialog box, click Generate MATLAB Script.

For more information on generating scripts, see “Generate MATLAB Code for Operating Point
Configuration” on page 1-112.

The generated script opens in the MATLAB Editor window. You can then modify the script to trim the
model at multiple operating points.

This example demonstrates batch trimming using the magball Simulink model.

1 Open the model.

open_system('magball"')

2 To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click
Steady State Manager.

3  On the Steady State tab, click Trim Specification.

In the specl document, in the Known column, select the magball/Magnetic Ball Plant/height
state.



Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code

spect
v [ig States State Value = Known | ¥ Steady... | Minimum Maximum | dx Minimum | dx Maxim...
= Inputs v magballController/PID Controller/Filter/Cont. Filter/Filter
»o Outputs
State - 1 0 v -Inf Inf -Inf Inf
w magball/Controller/PID Controller/integrator/Continuous/Iintegrator
State - 1 14.0071 7 -Inf Inf -Inf Inf
w magball/Magnetic Ball Plant/Current
State - 1 7.0038 7 -Inf Inf -Inf Inf
w magball/Magnetic Ball Plant/dhdt
State - 1 | 0 | | v -Inf Inf -Inf Inf
w magball/Magnetic Ball Plant/height
State -1 0.05 v | v -Inf nf -Inf Inf
__—-_-_-_-""-—-.___

Generate the trimming MATLAB code. On the Specification tab, click Trim '*, and select
Script.

4\ Steady State Manager - maghball

SPECIFICATION

EE:I Add Quiputs

Remove tout -

c
Sync from
Model

Set Initial
Conditions

#

Initialize Trim Export

From + O Trim Options

UPDATE OPSPEC OPTIONS Find Operating Point
Specifications spect
speci — Trim
» Sta Find operating point that satisfies specifications Value = Kn
e In
? Generate MATLAB Code roller/PID Controll
» Oul
Script 140071
Repaorts E Generate MATLAE code for specification I} +
e===———si1etic Ball Plant/C
|
State - 1 7.0036
w magballlMagnetic Ball Plant/dh

State - 1 0

In the MATLAB Editor window, modify the script to trim the model at multiple operating points.

a Remove unneeded comments from the generated script.
b  Define the height variable, height, with values at which to compute operating points.
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¢ Add a for loop around the operating point search code to compute a steady-state operating
point for each height value. Within the loop, before calling findop, update the reference
ball height, specified by the Desired Height block.

Your script should look similar to the following code.

%% Specify the model name
model = 'magball’;

%% Create the operating point specification object.
opspec = operspec(model);

% Set the constraints on the states in the model.

State (5) - magball/Magnetic Ball Plant/height

- Default model initial conditions are used to initialize optimization.
opspec.States(5).Known = true;

o® o o

%% Create the options
opt = findopOptions('DisplayReport', 'iter');

%% Specify ball heights at which to compute operating points
height = [0.05;0.1;0.15];

%% Loop over height values to find the corresponding operating points
for i = 1:1length(height)

% Set the ball height in the specification.

opspec.States(5).x = height(i);

% Update the model ball haight reference parameter.
set _param('magball/Desired Height', 'Value',num2str(height(i)))

% Trim the model
[op(i),opreport(i)] = findop(model,opspec,opt);
end

After running this script, op contains operating points corresponding to each of the specified
height values.

See Also

Apps
Steady State Manager | Model Linearizer

Functions
findop

More About

“Generate MATLAB Code for Operating Point Configuration” on page 1-112
“Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19

“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on
page 3-28

“Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
“Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-74



Find Operating Points at Simulation Snapshots

Find Operating Points at Simulation Snapshots

You can find a steady-state operating point using a model simulation. The resulting operating point
consists of the state values and model input levels at a specified simulation snapshot time.

To use simulation-based operating point computation, first configure your model initial conditions
such that the model converges to an equilibrium point. You can then simulate your model and create
operating points interactively using Steady State Manager or Model Linearizer. You can also find
snapshots programmatically at the MATLAB command line using the findop function.

To find operating points using snapshots, the software simulates the model and creates an operating
point at each simulation snapshot time. Each operating point contains the input and states values of
the model at the corresponding snapshot time.

To verify that the operating point is at steady state, initialize your model with the operating point
values, simulate the model, and check if key signals and states are at equilibrium. For more
information on initializing your model with an operating point, see “Simulate Simulink Model at
Specific Operating Point” on page 1-95.

Note If your Simulink model has internal states, do not linearize the model at an operating point you
compute from a simulation snapshot. Instead, try linearizing the model using a simulation snapshot or
at an operating point from optimization-based search. For more information, see “Handle Blocks with
Internal State Representation” on page 1-98.

Compute Operating Points at Simulation Snapshots Using Steady
State Manager

You can find an operating point at specified simulation snapshot times using the Steady State
Manager.

Open the Simulink model.

sys = 'magball’;
open_system(sys)

Refarence Errar
Signal Signal v h
0.05 1 1 In Out ' > D

Desired

Haight Conltroller Magnetic
Ball Plant

¥

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

To specify the simulation snapshot time, in the Steady State Manager, on the Steady State tab,
click Snapshots.
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Specify simulation times at which to take snapshots. For this example, take snapshots at 1 and 10
time units. In the Create Snapshot Operating Point dialog box, in the Simulation snapshot times
field, enter [1 10].

4\ Create Snapshot Operating Point - O *

Simulation snapshot times (sec):

[1110]

Help [) Generate MATLAB Script | | Cancel

To take the snapshots, click L")

An array of operating points, opl, appears in the data browser, in the Operating Points section. This
array contains two operating points, one for each specified snapshot time.

The software also opens a corresponding op1 document where you can view the operating points.

To select which operating point to view, use the Select Operating Point drop-down list.

opl
b iy States Select Operating Point | | (1. 1), Time =1 ju
» Inputs (1,1), Time=1
State Value
(2. 1), Time =10

vmgballIControl E1ir i Con o
State - 1 5.7581e-06
w magball/Controller/PID Controller/integrator/Continuous/integrator
State - 1 14.0071
w magball/Magnetic Ball Plant/Current
State - 1 7.0036
w magball/lMagnetic Ball Plant/dhdt
State - 1 -6.69612-08
w magball/Magnetic Ball Plant/height
State - 1 0.05

L pm—— \ e

Compute Operating Points at Simulation Snapshots Using Model
Linearizer

You can find an operating point at specified simulation snapshot times using the Model Linearizer.

Open the Simulink model.

sys = 'magball’;
open_system(sys)



Find Operating Points at Simulation Snapshots

Refarence Error
Signal Signal v
0.05 |2 2 ' i »in  ou o]
Desired
Haight Controller Magnatic
Ball Plant

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

To specify the simulation snapshot time, in the Model Linearizer, on the Linear Analysis tab, in the
Operating Point drop-down list, select Take Simulation Snapshot.

Take simulation snapshots at 1 and 10 time units. In the Enter snapshot times to linearize dialog box,
in the Simulation snapshot times field, enter [1 10].

[4\| Enter snapshot times to linearize - O *

Simulation snapshot times (s):

[110] |

Take Snapshots] | Generate MATLAB Script‘| |'Cancel |

To take the snapshots, click Take Snapshots.

An array of operating points, op_snapshotl, appears in the data browser, in the Linear Analysis
Workspace section. This array contains two operating points, one for each specified snapshot time.

To view the operating points, in the Linear Analysis Workspace, double-click op_snapshotl. You
can select which operating point to view using the Select Operating Point drop-down list.

|4 Edit: op_snapshot] - [m] X

[ Select operating point [Operating point eriginally taken at t= 10 A |]

States Inputs

State Value

w magball/Controller/PID Controller/Filter/Cont. Filter/Filter
State - 1 -5.5728e07

w ...ontroller/PID Controller/Integrator/Continuous/integrator
State - 1 14.0071

w magballlMagnetic Ball Plant/Current

State - 1 7.0035
w magballlMagnetic Ball Plant/dhdt

[ hep | [ Refresn | [ Initialize Model... |
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Find Operating Points at Simulation Snapshots at Command Line

This example shows how to compute a steady-state operating point at specified simulation snapshot
times.

Open the Simulink model.

sys = 'magball’;
open_system(sys)

Reference Ermor
Signal Signal W h
0.05 g—r@“—» 1 1 »in  ou (]
L
Desired
Height Controller Magnetic

Ball Plant

Copyright 2003-2006 The MathWaorks, Inc.

Simulate the model, and create operating points at 1 and 10 time units. The software simulates the
model and computes an operating point at each simulation snapshot time.

op = findop(sys,[1l 10]);
op is a column vector of operating points, with one element for each specified snapshot time.
Display the first operating point.

op(1)

ans =

Operating point for the Model magball.
(Time-Varying Components Evaluated at time t=1)

(1.) magball/Controller/PID Controller/Filter/Cont. Filter/Filter

5.7581e-06

(2.) magball/Controller/PID Controller/Integrator/Continuous/Integrator
14.0071

(3.) magball/Magnetic Ball Plant/Current
7.0036

(4.) magball/Magnetic Ball Plant/dhdt

-6.6961e-08

(5.) magball/Magnetic Ball Plant/height



Find Operating Points at Simulation Snapshots

0.05

Inputs: None

See Also

Apps
Model Linearizer

Functions
findop

More About

. “About Operating Points” on page 1-2

. “Simulate Simulink Model at Specific Operating Point” on page 1-95

. “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45
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Compute Operating Point Snapshots at Triggered Events

This example shows how to generate operating points using triggered simulation snapshots.
Open Model
The model for this example is a speed control system.

Open the model.

mdl = "scdspeedtrigger";
open_system(mdl)

Signal 1

—@—F PID(s) ¥ Throtile Ang. Combustion

Ar changs P Air charge
Referance Staps | Engne Spesd, N e N e
N to rpm
Throtile & Manifold Torque J—®| Teng ]
Induction fo N M P 300p P 1 1
Power Stroke Delay - | 37;
Generate sefiling
Wehicla time events
IE Dyniamics ‘Operating Point
Drag Tarque Snapshot
Spark Advance
Degrees) Copyrigh
pyright 2004-2022
Spark fdvance Thie MathWaorks, Inc.
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The Reference Steps block generates a reference signal that steps through three steady-state speed
conditions: 2500, 3000, and 3500 rpm. In this example, you find operating points at each of these
conditions by taking operating point snapshots.

Configure Settling Time Events

Since the exact time that a system reaches a steady-state condition is not always known, you can
configure your model to detect when a steady-state condition occurs and generate corresponding
trigger events.

For this example, the Generate settling time events subsystem detects when the speed signal near a
steady-state settling point. The block generates a trigger event when the input signal is within a
specified region near the settling point for a minimum amount of time.

For this example, you define regions near the three steady-state speed values. Open the block and
specify the upper and lower bounds for these ranges to be 5 rpm above and below the steady-state
speed values. To do so, set the Settling Time Upper Bounds and Settling Time Lower Bounds
parameters.

Also, specify a minimum settling interval of 5 seconds using the Settling Interval parameter.



Compute Operating Point Snapshots at Triggered Events

Block Parameters: Generate settling time events >
Settling Time Trigger Generator (mask)

Generates trigger events for when a system comes to be within
settling intervals specified in the block mask.

Parameters

Settling Time Upper Bounds
| [2505;3005;3505] IE

Settling Time Lower Bounds
|[2495;2995;3495] IE

Settling Interval (sec.)
5 [E

Cancel Help Apply

Within the Generate settling time events subsystem:

When the input signal is within the specified upper and lower bounds, the Interval Test Dynamic
block outputs a true signal.

The Interval Test Dynamic block output changing from false to true triggers a latching
mechanism to track how long the signal is true.

When the signal is true for a specified interval time, the latching mechanism outputs a true
signal.

When the outputs of the Interval Test Dynamic block and the latching mechanism are both true,
the output trigger signal is set to true.
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ub
Upper Bound
L up
Co——ru Sl ™
—ls o e —CD
When both
signals are
Ib true throw
the trigger
Lower Bound 4

Latch to capture

time instant
I+ P ==}
Compute
. time inside - interval tima
interval

Settling Interval

The trigger signal from the Generate settling time events subsystem connects to a Trigger-Based
Operating Point Snapshot block. You can configure this block to take operating point snapshots on the
rising or falling edge of a trigger signal. For this example, the block uses the rising edge of the
trigger signal.

Find Operating Points

To compute the operating points, use the findop function to simulate the model for 60 seconds. This
function returns a vector of four operating points: one for each triggered snapshot time and one at a
simulation time of 60 seconds.

op = findop(mdl,60);
The first operating point is near the 2500 rpm (261.8 rad/s) settling condition.

op(1)
ans =

Operating point for the Model scdspeedtrigger.
(Time-Varying Components Evaluated at time t=10.63)

States
X
(1.) scdspeedtrigger/PID Controller/Filter/Cont. Filter/Filter
0
(2.) scdspeedtrigger/PID Controller/Integrator/Continuous/Integrator
10.4701
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(3.) scdspeedtrigger/Throttle & Manifold/Intake Manifold/p0® = 0.543 bar
0.51066

(4.) scdspeedtrigger/Vehicle Dynamics/w = T//J w0 = 209 rad//s

261.7988

Inputs: None

The second operating point is near the 3000 rpm (314.16 rad/s) settling condition.
op(2)

ans =

Operating point for the Model scdspeedtrigger.
(Time-Varying Components Evaluated at time t=28.3703)

States:

___; ______

(1.) scdspeedtrigger/PID Controller/Filter/Cont. Filter/Filter

(2.? scdspeedtrigger/PID Controller/Integrator/Continuous/Integrator
%%:?1§idspeedtrigger/Throttle & Manifold/Intake Manifold/p@® = 0.543 bar
?4f?oiidspeedtrigger/Vehicle Dynamics/w = T//3 w0 = 209 rad//s

314.1596

Inputs: None

The third operating point is near the 3500 rpm (366.52 rad/s) settling condition.
op(3)

ans =
Operating point for the Model scdspeedtrigger.
(Time-Varying Components Evaluated at time t=48.2688)

States:

(1.) scdspeedtrigger/PID Controller/Filter/Cont. Filter/Filter

(2.? scdspeedtrigger/PID Controller/Integrator/Continuous/Integrator
%g:?4§§dspeedtrigger/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
?4%;8§§dspeedtrigger/Vehicle Dynamics/w = T//J w0 = 209 rad//s
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366.52

Inputs: None

For an example that linearizes the speed control model at these operating points, see “Linearize at
Triggered Simulation Events” on page 2-74.

bdclose(mdl)

See Also

Functions
findop

Blocks
Trigger-Based Operating Point Snapshot

More About

. “Linearize at Simulation Snapshot” on page 2-71
. “Find Operating Points at Simulation Snapshots” on page 1-85
. “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45
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Simulate Simulink Model at Specific Operating Point

This example shows how to initialize a model at a specific operating point for simulation. For more
information on computing operating points, see “Compute Steady-State Operating Points” on page 1-
5 and “Find Operating Points at Simulation Snapshots” on page 1-85

To simulate your model at your computed operating point, you must set the model initial conditions to
match the states and inputs in the operating point.

If you already have an operating point, op, in your MATLAB or model workspace, you can set the
initial conditions in the Configuration Parameters dialog box, in the Data Import/Export pane. To do
So:

* Set the Input parameter to getinputstruct(op).
* Set the Initial state parameter to getstatestruct(op).

You can also set the model initial conditions programmatically. For more information, see
getstatestruct and getinputstruct.

Alternatively, if you computed your operating point using the Steady State Manager or Model
Linearizer, you can interactively set the model initial conditions form within these tools.

Once you have set your model initial condition, simulate your model at the specified operating point.

Set Model Operating Point Using Steady State Manager

In the Steady State Manager, in the data browser, in the Operating Point section, right-click the
operating point at which you want to simulate the model, and select Open Selection.

If you computed multiple operating points using a simulation snapshot, in the operating point
document, select an operating point from the Select Operating Point drop-down list.

op2
* |33 States Select Operating Point | {1,1), Time="1
e Inputs {(1,1), Time=1

State Value
(2,1), Time =10
"WﬂtEl’tﬂl’lkFPlD ClIlllul.ll|:.'|u||u:.'u|uu.l|u..0 tinuous!lmegrator
T T

State - 1 0.59626

w watertank/Water-Tank System/H

State - 1 3.9035

\
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On the Operating Point tab, click Set Initial Conditions.

4\ Steady State Manager - watertank

OFPERATING P

S ¥ & &

Sync from  Initialize =~ Validate Set Initial
Model From =  Against ¥ | Conditions

UPDATE OP VALIDATH EXPORT
Specifications J

speci

b iy States S

» Inpuis

The software sets the initial conditions of the model to match the inputs and states in the selected
operating point.

Similarly, using the Steady State Manager, you can also set the model initial conditions based on an
operating point specification or an operating point search report.

Set Model Operating Point Using Model Linearizer

In the Model Linearizer, in the data browser, in the Linear Analysis Workspace, double-click the
computed operating point or simulation snapshot.

4. Edit: op_snapshot? - [m] X

Operating point originally taken at snapshot time t= 0

States Inputs

State Value
w magballiController/PID Controller/Filter/Cont. Filter/Filter
State - 1 0

vy ...ontroller/PID Controller/Integrator/C ontinuous/integrator

State - 1 14.0071
w magballlMagnetic Ball Plant/Current
State - 1 7.0036

¥ magballlMagnetic Ball Plant/dhdt -

[ Hep | [ Refresh | [ Initiaize Model . |

If you computed multiple operating points using a simulation snapshot, select an operating point from
the Select Operating Point drop-down list.



Simulate Simulink Model at Specific Operating Point

4| Edit: op_snapshot1 — O >

Select operating point [Dperating point originally taken att= 10 A ]

States Inputs

State Value

— mmanhallliT anterallacdDIN T antealladCilacliT ant CileaclCiléa e

In the Edit dialog box, click Initialize model.

|4\ Initialize Model - m} *

Destination workspace
(%) MATLAB 'Workspace

(C) Model Workspace

Variable Name

| op_snapshot2 |

In the Initialize Model dialog box, specify a Variable Name for the operating point object.
Alternatively, you can use the default variable name.

To export the operating point to the MATLAB workspace and set the model initial condition to this
operating point, click OK.

Tip If you want to store this operating point with the model, export the operating point to the Model
Workspace instead.

See Also

Related Examples
. “Compute Steady-State Operating Points” on page 1-5
. “Find Operating Points at Simulation Snapshots” on page 1-85
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Handle Blocks with Internal State Representation
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Operating Point Object Excludes Blocks with Internal States

The operating point object used for linearization and control design does not include Simulink blocks
with internal state representation, such as the following:

* Memory blocks

» Transport Delay and Variable Transport Delay blocks

» Disabled If Action Subsystem and Switch Case Action Subsystem blocks

» Backlash blocks

* MATLAB Function blocks with persistent data

* Rate Transition blocks

» Stateflow blocks

* S-Function blocks with states not registered as Continuous or Double Value Discrete

For example, if you compute a steady-state operating point for the following Simulink model, the
resulting operating point object does not include the Backlash block states because these states have
an internal representation. If you use this operating point object to initialize a Simulink model, the
initial conditions of the Backlash blocks might be incompatible with the operating point.

ﬁ o I — bt—bm

In1

Backlash1 Sguare Zain Scope
1
Constant ’5’ > |:|
Badklash2 Scope2

As an example, you can compute an operating point for model myModel from a simulation snapshot at
10 seconds and then linearize the model at this operating point. In this case, the linearize function
initializes the model state with the operating point before linearizing the model.

op = findop('myModel',10);
linsys = linearize('myModel',io,op);

If myModel contains a one or more blocks with an internal state representation, op does not contain
the internal states. Therefore, 1insys might not be an accurate linear representation of the model.

Instead of finding an operating point at the simulation snapshot, you can simulate the model to the
snapshot time and linearize the model at the snapshot itself.

linsys = linearize('myModel',io,10);

This approach avoids initializing the model with an operating point that is missing state information.
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Configure Blocks with Internal States for Steady-State Operating
Point Search

Blocks with internal states can cause problems for steady-state operating point search (trimming).
Where there is no direct feedthrough, the input to the block at the current time does not determine
the output of the block at the current time.

To fix this issue for Memory, Transport Delay, or Variable Transport Delay blocks, select the Direct
feedthrough of input during linearization block parameter before searching for an operating
point or linearizing a model at a steady state. This setting makes such blocks behave as if they have a
gain of one during an operating point search.

For example, the following model includes a Transport Delay block. In this case, you cannot find a
steady-state operating point using optimization because the output of the Transport Delay is always
zero. Since the reference signal is 1, the input to the Plant block must be nonzero to get the plant
block to have an output of 1 and be at steady state.

T S PIis) > E'%[ y| =10 »| [
5+1
Constant FID Contoller  Tramsport Flant Scope
Celay

Select the Direct feedthrough of input during linearization option in the Block Parameters
dialog box before searching for an operating point. This setting allows the PID Controller block to
pass a nonzero value to the Plant block.

You can also set direct feedthrough options at the command line.

Block

Command to Specify Direct Feedthrough

Memory

set param(blockname, 'LinearizeMemory', 'on')

Transport Delay or Variable Transport set param(blockname, 'TransDelayFeedthrough', 'on"')

Delay

For other blocks with internal states, determine whether the output of the block impacts the state
derivatives or desired output levels before computing operating points. If the block impacts these
derivatives or output levels, consider replacing it using a configurable subsystem.

See Also

More About
. “About Operating Points” on page 1-2
. “Compute Steady-State Operating Points” on page 1-5
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Synchronize Simulink Model Changes with Operating Point
Specifications

Modifying your Simulink model can change, add, or remove states, inputs, or outputs, which changes
the operating point. You can synchronize existing operating point specification objects to reflect the
changes in your model.

Synchronize Model Changes Using Steady State Manager

If you change your Simulink model while the Steady State Manager is open, you must synchronize
the operating point specifications in the Steady State Manager to reflect the changes in the model.

Open the Simulink model.

sys = ('scdspeedctrl');
open_system(sys)

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

To create an operating specification based on the current model configuration, in the Steady State
Manager, on the Steady State tab, click Trim Specification.

In the specl document, the Reference Filter block has one state.

spect
¥ Ly States State Value Known | ¥/ Steady... | Minimum Maximum | dx Minimum | dx Maxim...
z lOnEtL:zts w scdspeedctrl/External Disturbance/Transfer Fcn
State - 1 0 rd -Inf Inf -Inf Inf
State - 2 0 v -Inf Inf -Inf Inf
w scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter
State - 1 0 v -Inf Inf -Inf Inf
v scdspeedctrl/PID Controller/integrator/Continucus/Integrator
| State - 1 | 8.9768 | | v -Inf Inf -Inf Inf
I v scdspeedctrl/Reference Filter/State Space
State - 1 200 v -Inf Inf -Inf Inf
ifold/p0 = 0.543 bar
State - 1 0.54363 v -Inf Inf -Inf Inf
w scdspeedctri/Mehicle Dynamics/w = TilJ w = 209 radlls
State - 1 209.4395 7 -Inf Inf -Inf Inf
L. o
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In the Simulink model window, double-click the Reference Filter block. Change the Numerator of the
transfer function to 100, and change the Denominator to [1 20 100].
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Click OK.
This change increases the order of the filter, adding a state to the Simulink model.

To update the operating point specifications to reflect the model changes, in the Steady State
Manager, on the Specification tab, click Sync from Model.

4\ Steady State Manager - scdspeedctrl

SPECIFICATION

07 Add Qutputs ’) E‘

&

Syne fram Trim Set Initial  Export
Model & Trim Options - Conditions
UPDATE OPTIONS TRIM EXPORT
* Specifications spec
spect
b iy States
e Inputs
»o Outputs
L pan

The software updates the specifications. The Reference Filter block now has two states.

spec
» Ly States State Value Known | (¢ Steady... | Minimum Maximum | dx Minimum | dx Maxim...
¢ Inputs
P v scdspeedctrl/External Disturbance/Transfer Fen
0 Outputs
State - 1 0 i -Inf Inf -Inf Inf
State - 2 0 v -Inf Inf -Inf Inf

w scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter

State - 1 0 v -Inf Inf -Inf Int

¥ scdspeedctrl/PID Controller/integrator/Continuous/Integrator

State - 1 8.9768 v -Inf Inf -Inf Int

v scdspeedctrliThrottle & Manifold/Intake Manifold/p0 = 0.543 bar
State - 1 0.54363 7 -Inf Inf -Inf Int

v scdspeedctrliVehicle Dynamicsiw = T/lJ w0 = 209 radils

| State - 1 | 209 4395 | | 2 -Inf Inf -Inf Inf
v scdspeedctrl/iReference Filter/State Space
State - 1 0 v -Inf Inf -Inf Inf

State - 2 20 L4 -Inf Inf -Inf Inf

_\_

To find the operating point that meets these specifications, on the Specification tab, click Trim LD .
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Synchronize Model Changes Using Model Linearizer

If you change your Simulink model while the Model Linearizer is open, you must synchronize the
operating point specifications in the Model Linearizer to reflect the changes in the model.

Open the Simulink model.

sys = ('scdspeedctrl');
open_system(sys)

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

In the Model Linearizer, in the Operating Points drop-down list, select Trim Model.

4 Trim the model - [m} >

Specifications Options

States Inputs Cutputs

State Value [ |Kno... Stea... | Minimum Maximum | dx Mini... | dx Maxi...
w scdspeedctrl/External Disturbance/Transfer Fcn

State - 1 0 ] -Inf Inf -Inf Inf

State - 2 0 O -Inf Inf -Inf Inf
w scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter

State - 1 0 O -Inf Inf -Inf Inf
w scdspeedctrl/PID Controller/integrator/Continuous/Integrator

State - 1 8.9768 ] -Inf Inf -Inf Inf

1 1 I 1)
w scdspeedctrl/Reference Filter/State Space

State - 1 200 O -Inf Inf -Inf Inf

I"y scdspeedctrl/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

State - 1 054363 O -Inf Inf -Inf Inf -
| syncwith Model | | Import.. | | Export. |
| Help | | Start Timming | | Generate MATLAB Script |

In the Trim the model dialog box, the Reference Filter block contains one state.

In the Simulink model window, double-click the Reference Filter block. Change the Numerator of the
transfer function to 100, and change the Denominator to [1 20 100].

Click OK.
This change increases the order of the filter, adding a state to the Simulink model.

To update the operating point specifications to reflect the model changes, in the Trim the model
dialog bog, click Sync with Model.

The software updates the specifications. The Reference Filter block now has two states.



Synchronize Simulink Model Changes with Operating Point Specifications

[4] Trim the model - [m] X

Specifications Options

States Inputs Outputs
State - 2 0 O -Inf Inf -Inf Inf -
w scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter
State - 1 0 O -Inf Inf -Inf Inf

w scdspeedctrl/PID Controller/Integrator/Continuous/Integrator

State - 1 89768 (] -Inf Inf -Inf Inf

w scdspeedctrliThrottle & Manifold/Intake Manifold/p0 = 0.543 bar

State - 1 0.54363 O -Inf Inf -Inf Inf
w scdspeedctri/Vehicle Dynamicsiw = T//J w0 = 209 radils

State - 1 205.4395 ] -Inf Inf -Inf Inf

w scdspeedctrl/Reference Filter/State Space
State - 1 0 O -Inf Inf -Inf Inf

State - 2 20 (] -Inf Inf -Inf Inf

[ Sync with Model ][ Import._ ][ Export. ]

[ start Timming | [ Generate MATLAB Script |

To find the operating point that meets these specifications, click Start trimming.

Synchronize Model Changes at the Command Line

This example shows how to update an existing operating point specification object with changes in
the Simulink® model.

Open the model.

sys = 'scdspeedctrl';
open_system(sys)

+$ 10 o 1
ot o —P@—D PID{s) " | Throttle Ang. Cambustion

Speed Air chargs (A ch -
Rnfpe Feference Fler FID Gontroller 4 a_rge - External Disturbance
o | Engina Speed, N Axr Charge #| Ar Charge
»
S —— bl N
Throttle & Manifold Torque | Teng I
Induction to N . :~ @w t
P pu
‘ower Stroke Delay
radis
to
cad Vahicle pm
Dynamics Ot
Drag Torque

Copyright 2004-2021 The Math\Works, Inc.

Create an operating point specification object based on the current model configuration.

1-103



1 Steady-State Operating Points

opspec operspec(sys)

opspec

Operating point specification for the Model scdspeedctrl.
(Time-Varying Components Evaluated at time t=0)

X Known SteadyState Min Max dxMin dxMax

(1.) scdspeedctrl/External Disturbance/Transfer Fcn

0 false true -Inf Inf -Inf Inf
0 false true -Inf Inf -Inf Inf
(2.) scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter
0 false true -Inf Inf -Inf Inf
(3.) scdspeedctrl/PID Controller/Integrator/Continuous/Integrator
8.9768 false true -Inf Inf -Inf Inf
(4.) scdspeedctrl/Reference Filter/State Space
200 false true -Inf Inf -Inf Inf
(5.) scdspeedctrl/Throttle & Manifold/Intake Manifold/p0@ = 0.543 bar
0.54363 false true -Inf Inf -Inf Inf
(6.) scdspeedctrl/Vehicle Dynamics/w = T//J w0 = 209 rad//s
209.4395 false true -Inf Inf -Inf Inf

Inputs: None

Change the transfer function of the Reference Filter block. Set the Numerator parameter to 100 and
the Denominator parameter to [1 20 100].

set param('scdspeedctrl/Reference Filter','N',"100");
set param('scdspeedctrl/Reference Filter','D',"[1 20 100]");

Since the model parameters have changed, trying to find an operating point that meets the
specifications in opspec using the following command generates an error.

op = findop(sys,opspec);

Update the operating point specification object to reflect the changes in the model.
opspec = update(opspec);

Find an operating point that meets the updated specifications.

op = findop(sys,opspec);

Operating point search report:

opreport =
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Operating point search report for the Model scdspeedctrl.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

Min X Max dxMin dx dxMax

(1.) scdspeedctrl/External Disturbance/Transfer Fcn

-Inf 0 Inf 0 0 0

-Inf 0 Inf 0 0 0
(2.) scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter

-Inf 0 Inf 0 0 0
(3.) scdspeedctrl/PID Controller/Integrator/Continuous/Integrator

-Inf 8.9768 Inf 0 -4.5077e-14 0
(4.) scdspeedctrl/Throttle & Manifold/Intake Manifold/p0® = 0.543 bar

-Inf 0.54363 Inf 0 2.9365e-15 0
(5.) scdspeedctrl/Vehicle Dynamics/w = T//J w0 = 209 rad//s

-Inf 209.4395 Inf 0 -1.5226e-13 0
(6.) scdspeedctrl/Reference Filter/State Space

-Inf 0 Inf 0 0 0

-Inf 20 Inf 0 0 0

Inputs: None

After you update the operating point specification object, the optimization algorithm successfully
finds the operating point.

See Also
update

More About
. “Simulate Simulink Model at Specific Operating Point” on page 1-95
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Find Steady-State Operating Points for Simscape Models
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You can find operating points for models with Simscape components using Simulink Control Design
software. In particular, you can find steady-state operating points using one of the following methods:

* Optimization-based trimming — Specify constraints on model inputs, outputs, or states, and
compute a steady-state operating point that satisfies these constraints. For more information,
“Compute Steady-State Operating Points” on page 1-5.

By default, you can define operating point specifications for any Simulink and Simscape states in
your model, and any root-level input and output ports of your model. You can also define additional
output specifications on Simulink signals. To apply output specifications to a Simscape physical
signal, first convert the signal using a PS-Simulink Converter block.

* Simulation snapshot — Specify model initial conditions near an expected equilibrium point, and
simulate the model until it reaches steady state. You can then create an operating point based on
the steady-state signals and states in the model. For more information, see “Find Operating Points
at Simulation Snapshots” on page 1-85.

Projection-Based Trim Optimizers

To produce better trimming results for Simscape models, you can use projection-based trim
optimizers. These optimizers enforce the consistency of the model initial condition at each evaluation
of the objective function or nonlinear constraint function. Using projection-based trim optimizers
requires Optimization Toolbox™ software.

You can use these projection-based optimizers when trimming models from the command line and in
the Model Linearizer.

To specify the optimizer type at the command line, create a findopOptions option set, and specify
the Optimizer option as one of the following:

* 'lsgnonlin-proj' — Nonlinear least squares with projection

* 'graddescent-proj' — Gradient descent with projection

When using gradient descent with projection at the command line, you can specify whether the
algorithm enforces the model initial conditions using hard or soft constraints by specifying the
ConstraintType option in findopOptions.

To specify the optimizer type in the:

* Steady State Manager, open the Trim Options dialog box. On the Specification tab, click Trim
Options.

* Model Linearizer, first open the Trim the model dialog box. On the Linear Analysis tab, in the
Operating Point drop-down list, select Trim Model. Then, select the Options tab.

In the Optimization Method drop-down list, select an optimizer.
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Optimization Method:

Optimization Method: Gradient descent with elimination 1[\ Algorithm: [Active-Set A
ing

Gradient descent with elimination

COptimization Options Gradient descent

Maximum change: Gradient descent with projection l evals: | zum}|

o Simplex search .
Minimum change: ations: | 4DO|

Monlinear least squares

Function folerance: | Monlinear least squares with projection I EIRILEE: | 1e-08 |
Constraint tolerance: 1e-06 | [ Enable analytic Jacobian

Display resulis [Iteratii}ns v |

When you use gradient descent with projection in Steady State Manager or Model Linearizer, the
algorithm enforces the model initial conditions using hard constraints.

For an example that uses projection-based trim optimization, see “Steady-State Simulation with
Projection-Based Trim Optimizer” on page 1-108.

See Also

Apps
Steady State Manager | Model Linearizer

Functions
findop | findopOptions | operspec

Blocks
PS-Simulink Converter
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Steady-State Simulation with Projection-Based Trim Optimizer

This example shows how to find a steady-state operating point for a Simscape™ Multibody™ model
using the findop function with a projection-based optimizer.

Projection-based optimizers enforce the consistency of the model initial conditions at each evaluation
of the objective function or nonlinear constraint function, which can improve trimming results for
Simscape models. Using projection-based trim optimizers requires Optimization Toolbox™ software.

Open Model
The model for this example is a backhoe system modeled in Simscape Multibody.

Open the Simulink® model.

mdl = 'scdbackhoeTRIM';
open_system(mdl)

buckstAngle
Bus >
upperfngle o
L lowarfingle o
= basefngle
Sk supportAngls »
sA -
airit Joint Angle
Angles Trajectaries.

>0

Plant

Copyright 2017-2023 The MathWaorks, Inc

Define Operating Point Specifications

To define operating point specifications, first create a specification object. The input, output, and
state values in ops match the model initial conditions.

opspec = operspec(mdl);
Specify that the model outputs are known values for trimming.
opspec.Outputs(l).Known = true(10,1);

Specify known values for the angles in the backhoe system.
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Steady-State Simulation with Projection-Based Trim Optimizer

opspec.Outputs(1l).y(1l) = 0; % Bucket angle
opspec.Outputs(l).y(3) = 50; % Upper angle
opspec.Outputs(l).y(5) = -50; % Lower angle
opspec.Outputs(l).y(7) = 0; % Base angle
opspec.Outputs(l).y(9) = -45; % Support angle

For the corresponding angular velocities, the known values are zero, which match the model initial
conditions in opspec.

Trim Model

Create an option set for trimming and specify the optimizer type using the OptimizerType option.
For this example use the projection-based gradient-descent solver. To view an iterative update of the
trimming progress in the Command Window, set the DisplayReport option to 'iter'.

opt = findopOptions('OptimizerType', 'graddescent-proj',...
'DisplayReport', 'iter');

Specify the maximum number of function evaluations for optimization.
opt.OptimizationOptions.MaxFunEvals = 20000;

Find the steady-state operating point that meets the specifications in opspec. This operation takes
several minutes.

op = findop(mdl, opspec,opt);
Optimizing to solve for all desired dx/dt=0, x(k+1)-x(k)=0, and y=ydes.

(Maximum Error) Block

Operating point specifications were successfully met.

Simulate Model

Configure the model to use the computed operating point op as the model initial condition.

set param(mdl, 'LoadExternalInput','on')

set param(mdl, 'ExternalInput', 'getinputstruct(op)"')
set param(mdl, 'LoadInitialState', 'on')

set param(mdl, 'InitialState', 'getstatestruct(op)")

Simulate the model.
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(4.50000e+01) scdbackhoeTRIM/Outl

(3.54437e+00) scdbackhoeTRIM/Outl

(2.29759e-01) scdbackhoeTRIM/Outl

(3.85010e-02) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(9.32098e-03) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(7.25765e-04) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(6.61775e-04) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(8.93523e-05) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(1.41237e-05) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(9.73271e-06) scdbackhoeTRIM/Plant/Cylinder Base to Mounting Plate

(1.01808e-06) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support
(1.04810e-06) scdbackhoeTRIM/Plant/Cylinder Base to Mounting Plate

(1.04810e-06) scdbackhoeTRIM/Plant/Cylinder Base to Mounting Plate
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Arm
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sim(mdl);
View the joint angle trajectories.

open_system([mdl, '/Joint Angle Trajectories'])

[ = =] A

File Tools View Simulation Help u
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The simulation results show that the five angles are trimmed to their expected values. The trajectory

can deviate slightly over time due to numerical noise and instability. You can stabilize the angles
using feedback controllers.

See Also

Functions
findop | findopOptions | operspec

More About
. “About Operating Points” on page 1-2
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Generate MATLAB Code for Operating Point Configuration

This topic shows how to generate MATLAB code for operating point configuration using the Steady
State Manager or Model Linearizer. You can generate MATLAB code to programmatically
reproduce a result that you obtained interactively.

You can also modify the script to compute multiple operating points with systematic variations in
operating point specifications (batch computing). For more information, see “Batch Compute Steady-
State Operating Points Reusing Generated MATLAB Code” on page 1-82.

Generate MATLAB Code from Steady State Manager

When computing operating points using the Steady State Manager, you can generate a MATLAB
script or a live script for configuring operating point specifications and computing an operating point.
To do so:

1 To create a specification, in the Steady State Manager, on the Steady State tab, click Trim
Specification.

2 In the corresponding specification document, configure the operating point state, input, and
output specifications. For an example, see “Compute Operating Points from Specifications Using
Steady State Manager” on page 1-19.

3 To specify optimization search settings, on the Specification tab, click Trim Options. For more
information, see “Change Operating Point Search Optimization Settings” on page 1-52.

4 To generate code that creates an operating point using your specifications and search options,
click Trim /=], and select a code generation option.

4\ Stea dy State Manager - watertank

SPECIFICATION

@ ¥ 0/ Add Qutputs ’) J:El |£|>

Sync from  nitialize Tam | Setlnitial Export
Model From » @ Trim Opticns - Conditions
UPDATE OPSPEC OPTIOMS Find Operating Point
Specifications op1
spect ~._  Trim
P iy Sta Find operating point that satisfies specifications Value Known
x Inp
Generate MATLAB Code ) §ontroller/Integrator/Cor
» 3 Ou
= Live Script 6949
L™ | Generate MATLAB Live Script code for specification
I 7 ? telr-Tank SystemiH
Script I 0796
Reports I_—I Generate MATLAE code for specification
report

o \
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You can generate one of the following scripts:

* Live script — Click Live Script.
* MATLAB script — Click Script.

The generated script opens in the MATLAB Editor.

Generate MATLAB Code from Model Linearizer

When computing operating points using the Model Linearizer, you can generate a MATLAB script
for configuring operating point specifications and computing an operating point. To do so:

1 In the Model Linearizer, on the Linear Analysis tab, in the Operating Points drop-down list,
click Trim Model.

2 In the Trim the model dialog box, on the Specifications tab, configure the operating point state,
input, and output specifications. For an example, see “Compute Operating Points from
Specifications Using Model Linearizer” on page 1-30.

3 In the Options tab, specify search optimization settings. For more information, see “Change
Operating Point Search Optimization Settings” on page 1-52.

4 To generate code that creates an operating point using your specifications and search options,
click Generate MATLAB Script.

it
-Inf Inf Inf
| Syncwith Model | | Import.. | | Export. |
| Start Trimming | Generate MATLAB Script |

The generated code opens in the MATLAB Editor.

See Also

Functions
findop | operspec

Apps
Steady State Manager | Model Linearizer

More About

. “Compute Steady-State Operating Points” on page 1-5
. “Compute Steady-State Operating Points” on page 1-5
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. “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-82
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“Linearize Nonlinear Models” on page 2-3
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Linearize Nonlinear Models

Linearize Nonlinear Models

What Is Linearization?

Linearization is a linear approximation of a nonlinear system that is valid in a small region around an
operating point.

For example, suppose that the nonlinear function is y = x2. Linearizing this nonlinear function about
the operating point x = 1, y = 1 results in a linear function y = 2x — 1.

Near the operating point, y = 2x — 1 is a good approximation to y = x2. Away from the operating
point, the approximation is poor.

The next figure shows a possible region of good approximation for the linearization of y = x2. The
actual region of validity depends on the nonlinear model.
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Extending the concept of linearization to dynamic systems, you can write continuous-time nonlinear
differential equations in this form:

x(t) = f(x(®), u(t), t)
y(t) = g(x(t), u(t), t).

In these equations, x(t) represents the system states, u(t) represents the inputs to the system, and y(t)
represents the outputs of the system.
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A linearized model of this system is valid in a small region around the operating point t=t;, x(t;)=xo,
u(ty)=uo, and y(te)=g(xo,Ug,te)=Yo.

To represent the linearized model, define new variables centered about the operating point:
ox(t) = x(t) — xg
ou(t) = u(t) — ug
6y(t) = y(t) = yo

The linearized model in terms of 6x, 6u, and 6y is valid when the values of these variables are small:

ox(t) = Abx(t) + Bbu(t)
6y(t) = Cbx(t) + Dbu(t)

Applications of Linearization
Linearization is useful in model analysis and control design applications.

Exact linearization of the specified nonlinear Simulink model produces linear state-space, transfer-
function, or zero-pole-gain equations that you can use to:

* Plot the Bode response of the Simulink model.

» Evaluate loop stability margins by computing open-loop response.

* Analyze and compare plant response near different operating points.
* Design linear controller

Classical control system analysis and design methodologies require linear, time-invariant models.
Simulink Control Design automatically linearizes the plant when you tune your compensator. See
“Choose a Control Design Approach” on page 9-2.

* Analyze closed-loop stability.

* Measure the size of resonances in frequency response by computing closed-loop linear model for
control system.

* Generate controllers with reduced sensitivity to parameter variations and modeling errors.

Linearization in Simulink Control Design

You can use Simulink Control Design software to linearize continuous-time, discrete-time, or
multirate Simulink models. The resulting linear time-invariant model is in state-space form.

By default, Simulink Control Design linearizes models using a block-by-block approach. This block-by-
block approach individually linearizes each block in your Simulink model and combines the results to
produce the linearization of the specified system.

You can also linearize your system using full-model numerical perturbation, where the software
computes the linearization of the full model by perturbing the values of the root-level inputs and
states. For each input and state, the software perturbs the model by a small amount and computes a
linear model based on the model response to these perturbations. You can perturb the model using
either forward differences or central differences.

The block-by-block linearization approach has seve