
Simulink® Control Design™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Control Design™ User's Guide
© COPYRIGHT 2004–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
June 2004 Online only New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.2 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.0.1 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Online only Revised for Version 2.2 (Release 2007b)
March 2008 Online only Revised for Version 2.3 (Release 2008a)
October 2008 Online only Revised for Version 2.4 (Release 2008b)
March 2009 Online only Revised for Version 2.5 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 3.5 (Release 2012a)
September 2012 Online only Revised for Version 3.6 (Release 2012b)
March 2013 Online only Revised for Version 3.7 (Release 2013a)
September 2013 Online only Revised for Version 3.8 (Release 2013b)
March 2014 Online only Revised for Version 4.0 (Release 2014a)
October 2014 Online only Revised for Version 4.1 (Release 2014b)
March 2015 Online only Revised for Version 4.2 (Release 2015a)
September 2015 Online only Revised for Version 4.2.1 (Release 2015b)
March 2016 Online only Revised for Version 4.3 (Release 2016a)
September 2016 Online only Revised for Version 4.4 (Release 2016b)
March 2017 Online only Revised for Version 4.5 (Release 2017a)
September 2017 Online only Revised for Version 5.0 (Release 2017b)
March 2018 Online only Revised for Version 5.1 (Release 2018a)
September 2018 Online only Revised for Version 5.2 (Release 2018b)
March 2019 Online only Revised for Version 5.3 (Release 2019a)
September 2019 Online only Revised for Version 5.4 (Release 2019b)
March 2020 Online only Revised for Version 5.5 (Release 2020a)
September 2020 Online only Revised for Version 5.6 (Release 2020b)
March 2021 Online only Revised for Version 5.7 (Release 2021a)
September 2021 Online only Revised for Version 6.0 (Release 2021b)
March 2022 Online only Revised for Version 6.1 (Release 2022a)
September 2022 Online only Revised for Version 6.2 (Release 2022b)
March 2023 Online only Revised for Version 7.0 (Release 2023a)

Steady-State Operating Points
1

About Operating Points . 1-2
What Is an Operating Point? . 1-2
What Is a Steady-State Operating Point? . 1-2
Simulink Model States Included in Operating Point Object 1-3

Compute Steady-State Operating Points . 1-5
Steady-State Operating Point Search (Trimming) 1-5
Steady-State Operating Point from Simulation Snapshot 1-5
Which Model States Must Be at Steady State? . 1-6
Choose Operating Point Search Tools . 1-6

View and Modify Operating Points . 1-8
View and Modify Operating Point in Steady State Manager 1-8
View and Modify Operating Point in Model Linearizer 1-8
View and Modify Operating Point at the Command Line 1-10

Compute Steady-State Operating Points from Specifications 1-12

Compute Operating Points from Specifications at the Command Line . . 1-14

Compute Operating Points from Specifications Using Steady State
Manager . 1-19

Open Steady State Manager . 1-19
Define Operating Point Specifications . 1-20
Trim Model . 1-23
Validate Operating Point . 1-25
Trim Model for Different Specifications . 1-27
Extract Operating Point from Report . 1-28
Export Operating Point Data . 1-28

Compute Operating Points from Specifications Using Model Linearizer
. 1-30

Open Model Linearizer . 1-30
Define Operating Point Specifications . 1-31
Trim Model . 1-34
Constrain State Derivatives . 1-36

Validate Operating Point Against Specifications 1-38
Validate Operating Point in Steady State Manager 1-38
Validate Operating Point in Model Linearizer . 1-42
Validate Operating Point at the Command Line . 1-42

v

Contents

Initialize Steady-State Operating Point Search Using Simulation
Snapshot . 1-45

Initialize Operating Point Search Using Steady State Manager 1-45
Initialize Operating Point Search Using Model Linearizer 1-47
Initialize Operating Point Search at the Command Line 1-50

Change Operating Point Search Optimization Settings 1-52
Interactively Change Optimization Settings . 1-52
Programmatically Change Optimization Settings 1-53

Import and Export Specifications for Operating Point Search 1-54
Import and Export Specification Using Steady State Manager 1-54
Import and Export Specification Using Model Linearizer 1-56

Compute Operating Points Using Custom Constraints and Objective
Functions . 1-59

Batch Compute Steady-State Operating Points for Multiple Specifications
. 1-70

Batch Compute Steady-State Operating Points for Parameter Variation
. 1-74

Which Parameters Can Be Sampled? . 1-74
Vary Single Parameter . 1-74
Multidimensional Parameter Grids . 1-75
Vary Multiple Parameters . 1-76
Batch Trim Model for Parameter Variations . 1-77
Batch Trim Model at Known States Derived from Parameter Values 1-79

Batch Compute Steady-State Operating Points Reusing Generated
MATLAB Code . 1-82

Find Operating Points at Simulation Snapshots . 1-85
Compute Operating Points at Simulation Snapshots Using Steady State

Manager . 1-85
Compute Operating Points at Simulation Snapshots Using Model Linearizer

. 1-86
Find Operating Points at Simulation Snapshots at Command Line 1-88

Compute Operating Point Snapshots at Triggered Events 1-90

Simulate Simulink Model at Specific Operating Point 1-95
Set Model Operating Point Using Steady State Manager 1-95
Set Model Operating Point Using Model Linearizer 1-96

Handle Blocks with Internal State Representation 1-98
Operating Point Object Excludes Blocks with Internal States 1-98
Configure Blocks with Internal States for Steady-State Operating Point

Search . 1-99

Synchronize Simulink Model Changes with Operating Point Specifications
. 1-100

Synchronize Model Changes Using Steady State Manager 1-100
Synchronize Model Changes Using Model Linearizer 1-102
Synchronize Model Changes at the Command Line 1-103

vi Contents

Find Steady-State Operating Points for Simscape Models 1-106
Projection-Based Trim Optimizers . 1-106

Steady-State Simulation with Projection-Based Trim Optimizer 1-108

Generate MATLAB Code for Operating Point Configuration 1-112
Generate MATLAB Code from Steady State Manager 1-112
Generate MATLAB Code from Model Linearizer 1-113

Linearization
2

Linearize Nonlinear Models . 2-3
What Is Linearization? . 2-3
Applications of Linearization . 2-4
Linearization in Simulink Control Design . 2-4
Model Requirements for Exact Linearization . 2-5
Operating Point Impact on Linearization . 2-5

Choose Linearization Tools . 2-7
Choosing Simulink Control Design Linearization Tools 2-7
Choosing Exact Linearization Versus Frequency Response Estimation 2-7
Linearization Using Simulink Control Design Versus Simulink 2-8

Specify Portion of Model to Linearize . 2-10
Analysis Points . 2-10
Opening Feedback Loops . 2-14
Ways to Specify Portion of Model to Linearize . 2-15

Specify Portion of Model to Linearize in Simulink Model 2-17
Specify Analysis Points . 2-17
Select Bus Elements as Analysis Points . 2-18

Specify Portion of Model to Linearize in Model Linearizer 2-22
Specify Analysis Points . 2-22
Edit Analysis Points . 2-25
Edit Simulink Model Analysis Points . 2-27

Specify Portion of Model to Linearize at Command Line 2-29
Specify Analysis Points . 2-29
Save Analysis Points in Simulink Model . 2-30
Obtain Analysis Points from Simulink Model . 2-30

How the Software Treats Loop Openings . 2-31

Linearize Plant . 2-33
Linearize Plant Using Model Linearizer . 2-33
Linearize Plant at Command Line . 2-36

Mark Signals of Interest for Control System Analysis and Design 2-38
Analysis Points . 2-38
Specify Analysis Points for MATLAB Models . 2-39

vii

Specify Analysis Points for Simulink Models . 2-39
Refer to Analysis Points for Analysis and Tuning 2-42

Compute Open-Loop Response . 2-46
Compute Open-Loop Response Using Model Linearizer 2-48
Compute Open-Loop Response at the Command Line 2-51

Linearize Simulink Model at Model Operating Point 2-54
Linearize Simulink Model Using Model Linearizer 2-54
Linearize Simulink Model at Command Line . 2-57

Visualize Bode Response of Simulink Model During Simulation 2-60

Linearize at Trimmed Operating Point . 2-66

Linearize at Simulation Snapshot . 2-71

Linearize at Triggered Simulation Events . 2-74

Linearize Models with Delays . 2-77

Linearize Models with Model References . 2-82

Visualize Linear System at Multiple Simulation Snapshots 2-85

Visualize Linear System of a Continuous-Time Model Discretized During
Simulation . 2-91

Plot Linear System Characteristics of a Chemical Reactor 2-95

Order States in Linearized Model . 2-102
Specify State Order in Linearized Model Using Model Linearizer 2-102
Specify State Order in Linearized Model at the Command Line 2-105

Validate Linearization in Time Domain . 2-107

Validate Linearization In Frequency Domain Using Model Linearizer 2-110
Linearize Model . 2-110
Estimate Frequency Response of Model . 2-110
Examine estimation results . 2-111

View Linearized Model Equations Using Model Linearizer 2-113

Analyze Results Using Model Linearizer Response Plots 2-115
View System Characteristics on Response Plots 2-115
Generate Additional Response Plots of Linearized System 2-116
Add Linear System to Existing Response Plot . 2-119
Customize Characteristics of Plot in Model Linearizer 2-120
Print Plot to MATLAB Figure in Model Linearizer 2-120

Generate MATLAB Code for Linearization from Model Linearizer 2-122

When to Specify Individual Block Linearization 2-124

viii Contents

Specify Linear System for Block Linearization Using MATLAB Expression
. 2-125

Specify D-Matrix System for Block Linearization Using Function 2-126

Specify Custom Linearizations for Simulink Blocks 2-130

Augment Block Linearization . 2-135

Models with Time Delays . 2-139
Choose Approximate Versus Exact Time Delays 2-139
Specify Exact Representation of Time Delays . 2-139

Linearize Multirate Models . 2-141
Change Sample Time of Linear Model . 2-141
Change Linearization Rate Conversion Method 2-141
Multirate Linearization Algorithm . 2-142

Linearize Models Using Different Rate Conversion Methods 2-147

Change Perturbation Level of Blocks Perturbed During Linearization 2-150

Linearize Blocks with Non-Floating-Point Signals or States 2-152
Override Data Type Using Data Type Conversion Block 2-152
Overriding Data Types Using Fixed Point Tool 2-152

Linearize Event-Based Subsystems (Externally Scheduled Subsystems)
. 2-154

Linearizing Event-Based Subsystems . 2-154
Approaches for Linearizing Event-Based Subsystems 2-154
Approximate Event-Based Subsystems Using Curve Fitting (Lump-Average

Model) . 2-154
Approximate Event-Based Dynamics Using Periodic Function Call

Subsystem . 2-156

Configure Models with Pulse Width Modulation Signals 2-160

Linearize Simscape Networks . 2-162
Find Steady-State Operating Point . 2-162
Specify Analysis Points . 2-162
Linearize Model . 2-162
Troubleshoot Simscape Network Linearizations 2-162

Linearize Sparse Models . 2-166
Linearize Sparse Models at the Command Line 2-168
Linearize Sparse Models Using Model Linearizer 2-168
Limitations . 2-169

Specify Linearization for Model Components Using System Identification
. 2-170

Exact Linearization Algorithm . 2-177
Continuous-Time Models . 2-177
Multirate Models . 2-178
Perturbation of Individual Blocks . 2-181

ix

User-Defined Blocks . 2-182
Look Up Tables . 2-182

Trim and Linearize an Airframe . 2-183

Linearize Pneumatic System at Simulation Snapshots 2-188

Linearize Pulp Paper Process Model . 2-192

Batch Linearization
3

What Is Batch Linearization? . 3-2

Choose Batch Linearization Methods . 3-4
Choose Batch Linearization Tool . 3-5

Batch Linearization Efficiency When You Vary Parameter Values 3-7
Tunable and Nontunable Parameters . 3-7
Controlling Model Recompilation . 3-7

Mark Signals of Interest for Batch Linearization . 3-9
Analysis Points . 3-9
Specify Analysis Points . 3-10
Refer to Analysis Points . 3-12

Batch Linearize Model for Parameter Variations at Single Operating Point
. 3-13

Batch Linearize Model at Multiple Operating Points Derived from
Parameter Variations . 3-16

Batch Linearize Model at Multiple Operating Points Using linearize
Command . 3-19

Vary Parameter Values and Obtain Multiple Transfer Functions 3-21

Vary Operating Points and Obtain Multiple Transfer Functions Using
slLinearizer Interface . 3-28

Analyze Command-Line Batch Linearization Results Using Response Plots
. 3-33

Analyze Batch Linearization Results in Model Linearizer 3-39

Specify Parameter Samples for Batch Linearization 3-43
About Parameter Samples . 3-43
Which Parameters Can Be Sampled? . 3-43
Vary Single Parameter at the Command Line . 3-43
Vary Single Parameter in Graphical Tools . 3-44
Multi-Dimension Parameter Grids . 3-47

x Contents

Vary Multiple Parameters at the Command Line 3-48
Vary Multiple Parameters in Graphical Tools . 3-50

Batch Linearize Model for Parameter Value Variations Using Model
Linearizer . 3-53

More Efficient Batch Linearization Varying Parameters 3-64

Validate Batch Linearization Results . 3-68

Approximate Nonlinear Behavior Using Array of LTI Systems 3-69

LPV Approximation of Boost Converter Model . 3-82

Linearize Engine Speed Model . 3-92

Improve Linear Analysis Performance . 3-96

Troubleshooting Linearization Results
4

Linearization Troubleshooting Overview . 4-2
Troubleshooting Workflow . 4-2
Troubleshoot Linearizations of Models with Special Characteristics 4-3

Check Operating Point . 4-4

Check Analysis Point Placement . 4-5
Check Linearization I/O Points Placement . 4-5
Check Loop Opening Placement . 4-5

Identify and Fix Common Linearization Issues . 4-6
Enable Linearization Advisor . 4-6
Blocks That Are Potentially Problematic for Linearization 4-9
Find Specific Blocks in Linearization Results . 4-10
Linearization Path . 4-11
Troubleshoot Batch Linearizations . 4-13

Troubleshoot Linearization Results in Model Linearizer 4-16

Troubleshoot Linearization Results at Command Line 4-28

Find Blocks in Linearization Results Matching Specific Criteria 4-37
Run Built-In Queries . 4-37
Create and Run Queries . 4-38

Block Linearization Troubleshooting . 4-42
Diagnostic Messages . 4-43
Linearization Summary . 4-44
Block Linearization . 4-45
Block Operating Point . 4-45

xi

Common Problematic Blocks . 4-45

Speed Up Linearization of Complex Models . 4-48
Factors That Impact Linearization Performance 4-48
Blocks with Complex Initialization Functions . 4-48
Disabling the Linearization Advisor in the Model Linearizer 4-48
Batch Linearization of Large Simulink Models . 4-48

Frequency Response Estimation
5

Frequency Response Estimation Basics . 5-2
Frequency Response Models . 5-2
Offline and Online Estimation . 5-3
Basic Estimation Workflow . 5-3
Model Requirements . 5-4

Estimate Frequency Response Using Model Linearizer 5-6

Estimate Frequency Response with Linearization-Based Input Using
Model Linearizer . 5-10

Estimate Frequency Response at the Command Line 5-14

Analyze Estimated Frequency Response . 5-18
View Simulation Results . 5-18
Interpret Frequency Response Estimation Results 5-19
Analyze Simulated Output and FFT at Specific Frequencies 5-21
Annotate Frequency Response Estimation Plots 5-21
Displaying Estimation Results for Multiple-Input Multiple-Output (MIMO)

Systems . 5-22
Result Thinning . 5-23

Estimation Input Signals . 5-25
Offline Estimation . 5-25
Online Estimation . 5-26
Sinestream Signals . 5-26
Chirp Signals . 5-26
PRBS Signals . 5-26
Random Signals . 5-26
Step Signals . 5-27
Arbitrary Signals . 5-27
Superposition Signals . 5-28

Sinestream Input Signals . 5-30
Create Sinestream Signals Using Model Linearizer 5-32
Create Sinestream Signals Using MATLAB Code 5-32
Sinestream Signals for Online Estimation . 5-32

Chirp Input Signals . 5-34
Create Chirp Signals Using Model Linearizer . 5-34
Create Chirp Signals Using MATLAB Code . 5-36

xii Contents

PRBS Input Signals . 5-37
Create PRBS Signals Using Model Linearizer . 5-38
Create PRBS Signals Using MATLAB Code . 5-39
Improve Frequency Response Result at Low Frequencies 5-40

Modify Estimation Input Signals . 5-41
Modify Sinestream Signal Using Model Linearizer 5-41
Modify Sinestream Signal Using MATLAB Code 5-43

Troubleshooting Frequency Response Estimation 5-44
When to Troubleshoot . 5-44
Time Response Not at Steady State . 5-44
FFT Contains Large Harmonics at Frequencies Other than the Input Signal

Frequency . 5-46
Time Response Grows Without Bound . 5-47
Time Response Is Discontinuous or Zero . 5-48
Time Response Is Noisy . 5-50
Time Response Shows Harmonics That Do Not Change Smoothly 5-52

Effects of Time-Varying Source Blocks on Frequency Response Estimation
. 5-54

Set Time-Varying Sources to Constant for Estimation Using Model
Linearizer . 5-54

Set Time-Varying Sources to Constant for Estimation at the Command Line
. 5-59

Disable Noise Sources During Frequency Response Estimation 5-63

Estimate Frequency Response Models with Noise Using Signal Processing
Toolbox . 5-66

Estimate Frequency Response Models with Noise Using System
Identification Toolbox . 5-68

Generate MATLAB Code for Repeated or Batch Frequency Response
Estimation . 5-70

Managing Estimation Speed and Memory . 5-71
Ways to Speed up Frequency Response Estimation 5-71
Speeding Up Estimation Using Parallel Computing 5-72
Managing Memory During Frequency Response Estimation 5-74

Frequency Response Estimation Using Simulation-Based Techniques . . 5-77

Validate Linearization in Frequency Domain at Command Line 5-83

Describing Function Analysis of Nonlinear Simulink Models 5-87

Speed Up Frequency Response Estimation Using Parallel Computing . . 5-92

Frequency Response Estimation for Power Electronics Model Using
Pseudorandom Binary Signal . 5-97

Frequency Response Estimation in Model Linearizer Using Pseudorandom
Binary Sequence . 5-104

xiii

Frequency Response Estimation for Permanent Magnet Synchronous
Motor Model . 5-116

Frequency Response Estimation to Measure Input Admittance and Output
Impedance of Boost Converter . 5-127

Online Frequency Response Estimation
6

Online Frequency Response Estimation Basics . 6-2
When Not to Use Online Frequency-Response Estimation 6-2
System Configurations for Online Frequency Response Estimation 6-2
Estimation Workflow . 6-3

Online Estimation Using Plant Modeled in Simulink 6-5
Workflow for Online Estimation in Simulink . 6-5
Step 1. Incorporate Frequency Response Estimator into Model 6-5
Step 2. Configure Start/Stop Signal . 6-6
Step 3. Set Experiment Parameters . 6-7
Step 4. Run Model and Examine Estimated Frequency Response 6-7

Deploy Frequency Response Estimation Algorithm for Real-Time Use . . . 6-9
Workflow . 6-9
Step 1. Create Deployable Simulink Model with Frequency Response

Estimator Block . 6-9
Step 2. Configure Start/Stop Signal . 6-12
Step 3. Set Experiment Parameters . 6-12
Step 4. Run Experiment . 6-13
Access Experiment Parameters After Deployment 6-13

Online Frequency Response Estimation During Simulation 6-15

Collect Frequency Response Experiment Data for Offline Estimation . . 6-18

Online Estimation of Frequency Responses of a Nonlinear Plant 6-22

PID Controller Tuning
7

Introduction to Model-Based PID Tuning in Simulink 7-2
What Plant Does PID Tuner See? . 7-2
PID Tuning Algorithm . 7-3

Open PID Tuner . 7-5
Prerequisites for PID Tuning . 7-5
Opening PID Tuner . 7-5

Analyze Design in PID Tuner . 7-8
Plot System Responses . 7-8

xiv Contents

View Numeric Values of System Characteristics 7-11
Export Plant or Controller to MATLAB Workspace 7-11
Refine the Design . 7-12

Verify the PID Design in Your Simulink Model . 7-13

Tune at a Different Operating Point . 7-14
Known State Values Yield the Desired Operating Conditions 7-14
Model Reaches Desired Operating Conditions at a Finite Time 7-14
You Computed an Operating Point in Model Linearizer 7-15

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection . 7-17

Single-Loop PI Control Model . 7-17
Design Initial PI Controller . 7-17
Adjust Transient Behavior . 7-19
Change PID Tuning Design Focus . 7-21

Design Two-Degree-of-Freedom PID Controllers 7-26
About Two-Degree-of-Freedom PID Controllers . 7-26
Tuning Two-Degree-of-Freedom PID Controllers 7-26
Fixed-Weight Controller Types . 7-27

Tune PID Controller Within Model Reference . 7-30

Specify PI-D and I-PD Controllers . 7-33
Simulate PI-D and I-PD Controllers in Simulink . 7-33
Automatic Tuning of PI-D and I-PD Controllers . 7-35

Design PID Controller from Plant Frequency-Response Data 7-37
Use Frequency Response Based PID Tuner . 7-37
Use frestimate or Model Linearizer . 7-37

Frequency-Response Based Tuning . 7-38
How Frequency Response Based PID Tuner Works 7-38
Open Frequency Response Based PID Tuner . 7-38
Configure Experiment Settings . 7-40
Configure Design Goals . 7-42
Tune and Validate Controller Gains . 7-42

Design PID Controller Using Plant Frequency Response Near Bandwidth
. 7-44

Import Measured Response Data for Plant Estimation 7-52

Interactively Estimate Plant from Measured or Simulated Response Data
. 7-56

System Identification for PID Control . 7-62
Plant Identification . 7-62
Linear Approximation of Nonlinear Systems for PID Control 7-62
Linear Process Models . 7-63
Advanced System Identification Tasks . 7-63

xv

Preprocess Data . 7-65
Ways to Preprocess Data . 7-65
Remove Offset . 7-65
Scale Data . 7-66
Extract Data . 7-66
Filter Data . 7-66
Resample Data . 7-66
Replace Data . 7-67

Input/Output Data for Identification . 7-68
Data Preparation . 7-68
Data Preprocessing . 7-68

Choosing Identified Plant Structure . 7-69
Process Models . 7-69
State-Space Models . 7-72
Existing Plant Models . 7-73
Switching Between Model Structures . 7-74
Estimating Parameter Values . 7-75
Handling Initial Conditions . 7-75

Design Controller for Boost Converter Model Using Frequency Response
Data . 7-77

Design Controller for Power Electronics Model Using Simulated I/O Data
. 7-95

Boost Converter Model . 7-95
Find Model Operating Point . 7-96
Specify Controller Structure . 7-99
Identify Plant Model . 7-99
Tune Controller . 7-104
Validate Controller . 7-107

Design PID Controller Using Simulated I/O Data 7-110

Design PID Controller Using Estimated Frequency Response 7-126

Design Family of PID Controllers for Multiple Operating Points 7-134

Implement Gain-Scheduled PID Controllers . 7-141

Design Controller for Vehicle Platooning . 7-146

Plant Cannot Be Linearized or Linearizes to Zero 7-154
How to Fix It . 7-154

Cannot Find a Good Design in PID Tuner . 7-155
How to Fix It . 7-155

Simulated Response Does Not Match PID Tuner Response 7-156

Cannot Find Acceptable PID Design in Simulated Model 7-158
How to Fix It . 7-158

xvi Contents

Controller Performance Deteriorates When Switching Time Domains 7-159
How to Fix It . 7-159

When Tuning the PID Controller, the D Gain Has a Different Sign from
the I Gain . 7-160

Tune Field-Oriented Controllers Using SYSTUNE 7-161

Islanded Operation of Remote Microgrid Using Droop Controllers with
Multiple Fidelity Levels . 7-176

Frequency Response Based PID Tuner . 7-186
Experiment Settings . 7-186
Design Specifications . 7-188
Automatically Update Block . 7-189
Tune and Cancel . 7-189
Tuning Results . 7-189

PID Autotuning
8

When to Use PID Autotuning . 8-2
PID Autotuning for a Physical Plant . 8-2
PID Autotuning for a Plant Model in Simulink . 8-2
Closed-Loop vs. Open-Loop PID Autotuning . 8-2
When Not to Use PID Autotuning . 8-3

How PID Autotuning Works . 8-5
Autotuning Process . 8-5
Workflow for PID Autotuning . 8-6

PID Autotuning for a Plant Modeled in Simulink . 8-7
Workflow for Autotuning in Simulink . 8-7
Step 1. Incorporate Autotuner into Model . 8-7
Step 2. Configure Start/Stop Signal . 8-9
Step 3. Specify Controller Parameters and Tuning Goals 8-9
Step 4. Set Experiment Parameters . 8-10
Step 5. Run Model and Initiate Tuning Experiment 8-11
Step 6. Stop Experiment and Examine Tuned Gains 8-11
Step 7. Update PID Controller with Tuned Gains 8-11

PID Autotuning in Real Time . 8-13
Workflow . 8-13
Step 1. Create Deployable Simulink Model with PID Autotuner Block . . . 8-13
Step 2. Configure Start/Stop Signal . 8-16
Step 3. Set PID Tuning Parameters . 8-16
Step 4. Set Experiment Parameters . 8-17
Step 5. Tune and Validate . 8-18
Access Autotuning Parameters After Deployment 8-18

Control Real-Time PID Autotuning in Simulink . 8-20
Simulink Model for External-Mode Tuning . 8-20

xvii

Run the Model and Tune the Controller Gains . 8-21
Reduce Memory Footprint When Using External Mode 8-22

Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block
. 8-23

Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block
. 8-29

BLDC Motor Speed Control with Cascade PI Controllers 8-35

Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block
. 8-45

Tune Field-Oriented Controllers for an Asynchronous Machine Using
Closed-Loop PID Autotuner Block . 8-52

Tune Field-Oriented Controllers for a PMSM Using Closed-Loop PID
Autotuner Block . 8-60

Design PID Controllers for Three-Phase Rectifier Using Closed-Loop PID
Autotuner Block . 8-67

PID Autotuning for UAV Quadcopter . 8-73

Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block
. 8-86

Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID
Autotuner Block . 8-96

Classical Control Design
9

Choose a Control Design Approach . 9-2
Design in Simulink . 9-2
Real-Time PID Autotuning . 9-3

Control System Designer Tuning Methods . 9-4
Graphical Tuning Methods . 9-4
Automated Tuning Methods . 9-4
Effective Plant for Tuning . 9-5
Tuning Compensators In Simulink . 9-6
Select a Tuning Method . 9-6

What Blocks Are Tunable? . 9-8

Designing Compensators for Plants with Time Delays 9-9

xviii Contents

Design Compensator Using Automated PID Tuning and Graphical Bode
Design . 9-11

Water Tank Model . 9-11
Design Requirements . 9-12
Open Control System Designer . 9-12
Specify Blocks to Tune . 9-13
Plot Closed-Loop Step Response . 9-16
Tune Compensator Using Automated PID Tuning 9-19
Tune Compensator Using Bode Graphical Tuning 9-21
Fine Tune Controller Using Compensator Editor 9-24
Simulate Closed-Loop System in Simulink . 9-26

Analyze Designs Using Response Plots . 9-28
Analysis Plots . 9-28
Editor Plots . 9-29
Plot Characteristics . 9-30
Plot Tools . 9-31
Design Requirements . 9-32

Compare Performance of Multiple Designs . 9-34

Update Simulink Model and Validate Design . 9-38

Single Loop Feedback/Prefilter Compensator Design 9-39

Cascaded Multiloop Feedback Design . 9-45

Tune Custom Masked Subsystems . 9-54

Tune Simulink Blocks Using Compensator Editor 9-63

Reference Tracking of DC Motor with Parameter Variations 9-68

Regulate Pressure in Drum Boiler . 9-73

Model Computational Delay and Sampling Effects 9-80

Control System Tuning
10

Automated Tuning Overview . 10-3

Choosing an Automated Tuning Approach . 10-4

Automated Tuning Workflow . 10-6

Specify Control Architecture in Control System Tuner 10-7
About Control Architecture . 10-7
Predefined Feedback Architecture . 10-7
Arbitrary Feedback Control Architecture . 10-8
Control System Architecture in Simulink . 10-9

xix

Open Control System Tuner for Tuning Simulink Model 10-10
Command-Line Equivalents . 10-10

Specify Operating Points for Tuning in Control System Tuner 10-11
About Operating Points in Control System Tuner 10-11
Linearize at Simulation Snapshot Times . 10-11
Compute Operating Points at Simulation Snapshot Times 10-12
Compute Steady-State Operating Points . 10-14

Specify Blocks to Tune in Control System Tuner 10-17

View and Change Block Parameterization in Control System Tuner . . . 10-19
View Block Parameterization . 10-19
Fix Parameter Values or Limit Tuning Range . 10-20
Custom Parameterization . 10-21
Block Rate Conversion . 10-22

Setup for Tuning Control System Modeled in MATLAB 10-25

How Tuned Simulink Blocks Are Parameterized 10-26
Blocks With Predefined Parameterization . 10-26
Blocks Without Predefined Parameterization . 10-27
View and Change Block Parameterization . 10-27

Specify Goals for Interactive Tuning . 10-28

Quick Loop Tuning of Feedback Loops in Control System Tuner 10-33

Quick Loop Tuning . 10-41
Purpose . 10-41
Description . 10-41
Feedback Loop Selection . 10-41
Desired Goals . 10-42
Options . 10-43
Algorithms . 10-43

Step Tracking Goal . 10-44
Purpose . 10-44
Description . 10-44
Step Response Selection . 10-45
Desired Response . 10-45
Options . 10-46
Algorithms . 10-47

Step Rejection Goal . 10-49
Purpose . 10-49
Description . 10-49
Step Disturbance Response Selection . 10-50
Desired Response to Step Disturbance . 10-50
Options . 10-51
Algorithms . 10-51

Transient Goal . 10-53
Purpose . 10-53
Description . 10-53

xx Contents

Response Selection . 10-54
Initial Signal Selection . 10-54
Desired Transient Response . 10-55
Options . 10-55
Tips . 10-56
Algorithms . 10-56

LQR/LQG Goal . 10-58
Purpose . 10-58
Description . 10-58
Signal Selection . 10-58
LQG Objective . 10-59
Options . 10-60
Tips . 10-60
Algorithms . 10-60

Gain Goal . 10-62
Purpose . 10-62
Description . 10-62
I/O Transfer Selection . 10-63
Options . 10-63
Algorithms . 10-64

Variance Goal . 10-66
Purpose . 10-66
Description . 10-66
I/O Transfer Selection . 10-66
Options . 10-67
Tips . 10-68
Algorithms . 10-68

Reference Tracking Goal . 10-70
Purpose . 10-70
Description . 10-70
Response Selection . 10-71
Tracking Performance . 10-71
Options . 10-72
Algorithms . 10-73

Overshoot Goal . 10-75
Purpose . 10-75
Description . 10-75
Response Selection . 10-76
Options . 10-76
Algorithms . 10-77

Disturbance Rejection Goal . 10-79
Purpose . 10-79
Description . 10-79
Disturbance Scenario . 10-80
Rejection Performance . 10-81
Options . 10-81
Algorithms . 10-82

xxi

Sensitivity Goal . 10-84
Purpose . 10-84
Description . 10-84
Sensitivity Evaluation . 10-85
Sensitivity Bound . 10-85
Options . 10-85
Algorithms . 10-86

Weighted Gain Goal . 10-88
Purpose . 10-88
Description . 10-88
I/O Transfer Selection . 10-88
Weights . 10-89
Options . 10-89
Algorithms . 10-90

Weighted Variance Goal . 10-91
Purpose . 10-91
Description . 10-91
I/O Transfer Selection . 10-91
Weights . 10-92
Options . 10-92
Tips . 10-93
Algorithms . 10-93

Minimum Loop Gain Goal . 10-95
Purpose . 10-95
Description . 10-95
Open-Loop Response Selection . 10-96
Desired Loop Gain . 10-96
Options . 10-97
Algorithms . 10-98

Maximum Loop Gain Goal . 10-100
Purpose . 10-100
Description . 10-100
Open-Loop Response Selection . 10-101
Desired Loop Gain . 10-101
Options . 10-102
Algorithms . 10-103

Loop Shape Goal . 10-105
Purpose . 10-105
Description . 10-105
Open-Loop Response Selection . 10-106
Desired Loop Shape . 10-107
Options . 10-107
Algorithms . 10-108

Margins Goal . 10-110
Purpose . 10-110
Description . 10-110
Feedback Loop Selection . 10-111
Desired Margins . 10-111
Options . 10-112

xxii Contents

Algorithms . 10-113

Passivity Goal . 10-114
Purpose . 10-114
Description . 10-114
I/O Transfer Selection . 10-115
Options . 10-115
Algorithms . 10-116

Conic Sector Goal . 10-118
Purpose . 10-118
Description . 10-118
I/O Transfer Selection . 10-119
Options . 10-119
Tips . 10-120
Algorithms . 10-121

Weighted Passivity Goal . 10-123
Purpose . 10-123
Description . 10-123
I/O Transfer Selection . 10-124
Weights . 10-124
Options . 10-125
Algorithms . 10-126

Poles Goal . 10-127
Purpose . 10-127
Description . 10-127
Feedback Configuration . 10-128
Pole Location . 10-128
Options . 10-129
Algorithms . 10-129

Controller Poles Goal . 10-131
Purpose . 10-131
Description . 10-131
Constrain Dynamics of Tuned Block . 10-132
Keep Poles Inside the Following Region . 10-132
Algorithms . 10-132

Manage Tuning Goals . 10-134

Generate MATLAB Code from Control System Tuner for Command-Line
Tuning . 10-135

Interpret Numeric Tuning Results . 10-138
Tuning-Goal Scalar Values . 10-138
Tuning Results at the Command Line . 10-138
Tuning Results in Control System Tuner . 10-139
Improve Tuning Results . 10-140

Visualize Tuning Goals . 10-141
Tuning-Goal Plots . 10-141
Difference Between Dashed Line and Shaded Region 10-142
Improve Tuning Results . 10-146

xxiii

Create Response Plots in Control System Tuner 10-147

Examine Tuned Controller Parameters in Control System Tuner 10-152

Compare Performance of Multiple Tuned Controllers 10-154

Create and Configure slTuner Interface to Simulink Model 10-157

Stability Margins in Control System Tuning . 10-161
Gain and Phase Margins . 10-161
Interpret Gain and Phase Margin Plots . 10-161
Simultaneous Gain and Phase Variations . 10-162
Algorithm . 10-163

Tune Control System at the Command Line . 10-166

Speed Up Tuning with Parallel Computing Toolbox Software 10-167

Validate Tuned Control System . 10-168
Extract and Plot System Responses . 10-168
Validate Design in Simulink Model . 10-169

Extract Responses from Tuned MATLAB Model at the Command Line
. 10-171

Gain-Scheduled Controllers
11

Gain Scheduling Basics . 11-2
Gain Scheduling in Simulink . 11-2
Tune Gain Schedules . 11-2

Model Gain-Scheduled Control Systems in Simulink 11-4
Model Scheduled Gains . 11-4
Gain-Scheduled Equivalents for Commonly Used Control Elements 11-6
Custom Gain-Scheduled Control Structures . 11-9
Tunability of Gain Schedules . 11-10

Tune Gain Schedules in Simulink . 11-12
Workflow for Tuning Gain Schedules . 11-12

Plant Models for Gain-Scheduled Controller Tuning 11-14
Obtaining the Family of Linear Models . 11-15
Set Up for Gain Scheduling by Linearizing at Design Points 11-15
Sample System at Simulation Snapshots . 11-18
Sample System at Varying Parameter Values . 11-18
Eliminate Samples at Unneeded Design Points 11-19
LPV Plants in MATLAB . 11-19

Multiple Design Points in slTuner Interface . 11-20
Block Substitution for Plant . 11-20
Multiple Block Substitutions . 11-20

xxiv Contents

Substituting Blocks that Depend on the Scheduling Variables 11-21
Resolving Mismatches Between a Block and its Substitution 11-22
Block Substitution for LPV Blocks . 11-23

Parameterize Gain Schedules . 11-24
Basis Function Parameterization . 11-24
Tunable Gain Surfaces . 11-26
Tunable Gain with Two Independent Scheduling Variables 11-27
Tunable Surfaces in Simulink . 11-29
Tunable Surfaces in MATLAB . 11-31

Change Requirements with Operating Condition 11-33
Define Variable Tuning Goal . 11-33
Enforce Tuning Goal at Subset of Design Points 11-35
Exclude Design Points from systune Run . 11-35

Validate Gain-Scheduled Control Systems . 11-36
Examine Tuned Gain Surfaces . 11-36
Visualize Tuning Goals . 11-36
Check Linear Performance . 11-39
Validate Gain Schedules in Nonlinear System . 11-39

Gain-Scheduled Control of a Chemical Reactor 11-41

Tuning of Gain-Scheduled Three-Loop Autopilot 11-55

Trimming and Linearization of the HL-20 Airframe 11-68

Angular Rate Control in the HL-20 Autopilot . 11-75

Attitude Control in the HL-20 Autopilot - SISO Design 11-81

Attitude Control in the HL-20 Autopilot - MIMO Design 11-91

MATLAB Workflow for Tuning the HL-20 Autopilot 11-99

Loop-Shaping Design
12

Structure of Control System for Tuning With looptune 12-2

Set Up Your Control System for Tuning with looptune 12-3
Set Up Your Control System for looptunein MATLAB 12-3
Set Up Your Control System for looptune in Simulink 12-3

Tune MIMO Control System for Specified Bandwidth 12-4

Decoupling Controller for a Distillation Column 12-10

Tuning of a Digital Motion Control System . 12-21

xxv

Control System Tuning Examples
13

Tuning Multiloop Control Systems . 13-2

PID Tuning for Setpoint Tracking vs. Disturbance Rejection 13-11

Time-Domain Specifications . 13-20

Frequency-Domain Specifications . 13-26

Loop Shape and Stability Margin Specifications 13-34

System Dynamics Specifications . 13-39

Configuring Design Requirements . 13-41

Validating Results . 13-42

Tune Control Systems in Simulink . 13-50

Tune a Control System Using Control System Tuner 13-58

Using Parallel Computing to Accelerate Tuning 13-72

Control of a Linear Electric Actuator . 13-76

Control of a Linear Electric Actuator Using Control System Tuner . . . 13-85

Multi-Loop PI Control of a Robotic Arm . 13-110

Control of an Inverted Pendulum on a Cart . 13-125

Digital Control of Power Stage Voltage . 13-132

MIMO Control of Diesel Engine . 13-141

Tuning of a Two-Loop Autopilot . 13-154

Multiloop Control of a Helicopter . 13-169

Fixed-Structure Autopilot for a Passenger Jet 13-176

Fault-Tolerant Control of a Passenger Jet . 13-187

Passive Control of Water Tank Level . 13-196

Tuning for Multiple Values of Plant Parameters 13-206

xxvi Contents

Control System Tuning Applications
14

UAV Inflight Failure Recovery . 14-2

Multiloop Control Design for Buck Converter . 14-20

Adaptive Control
15

Extremum Seeking Control . 15-2
Time Domain . 15-2
Static Optimization . 15-3
Dynamic System Optimization . 15-6
ESC Design Guidelines . 15-7

Extremum Seeking Control for Reference Model Tracking of Uncertain
Systems . 15-8

Anti-Lock Braking Using Extremum Seeking Control 15-15

Adaptive Cruise Control Using Extremum Seeking Control 15-21

Model Reference Adaptive Control . 15-28
Reference Model . 15-28
Disturbance and Uncertainty Model . 15-28
Direct MRAC . 15-29
Indirect MRAC . 15-31
Learning Modification . 15-33

Model Reference Adaptive Control of Satellite Spin 15-34

Model Reference Adaptive Control of Aircraft Undergoing Wing Rock
. 15-42

Indirect Model Reference Adaptive Control of First-Order System . . . 15-55

Indirect MRAC Control of Mass-Spring-Damper System 15-59

Active Disturbance Rejection Control . 15-67
Controller Structure . 15-67
Specify Controller Parameters . 15-69

Design Active Disturbance Rejection Control for Water-Tank System . 15-71

Design Active Disturbance Rejection Control for Boost Converter 15-79

Design Active Disturbance Rejection Control for BLDC Speed Control
Using PWM . 15-91

xxvii

Constraint Enforcement
16

Constraint Enforcement for Control Design . 16-2
Constraint Enforcement Block . 16-2
Constraint Function Coefficients . 16-2

Barrier Certificate Enforcement for Control Design 16-4
Barrier Certificate Enforcement Block . 16-4
Control Barrier Function . 16-4

Passivity Enforcement for Control Design . 16-6
Passivity Enforcement Block . 16-6
Passivity Functions . 16-6

Enforce Constraints for PID Controllers . 16-8

Learn and Apply Constraints for PID Controllers 16-14

Train Reinforcement Learning Agent with Constraint Enforcement . . 16-22

Train RL Agent for Adaptive Cruise Control with Constraint Enforcement
. 16-33

Train RL Agent for Lane Keeping Assist with Constraint Enforcement
. 16-43

Enforce Barrier Certificate Constraints for PID Controllers 16-51

Enforce Barrier Certificate Constraints for Adaptive Cruise Control . . 16-56

Enforce Barrier Certificate Constraints for Collision-Free Robots 16-62

Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot
System . 16-68

Enforce Passivity Constraints for Quadruple-Tank System 16-74

Enforce Passivity Constraint for Flexible Beam 16-79

Model Verification
17

Monitor Linear System Characteristics in Simulink Models 17-2

Define Linear System for Model Verification Blocks 17-3

Verifiable Linear System Characteristics . 17-4

Verify Model at Default Simulation Snapshot Time 17-5

xxviii Contents

Verify Model at Multiple Simulation Snapshots 17-13

Verify Model Using Simulink Control Design and Simulink Verification
Blocks . 17-20

Verify Frequency-Domain Characteristics of an Aircraft 17-27

Functions
18

Blocks
19

Objects
20

Model Advisor Checks
21

Simulink Control Design Checks . 21-2
Identify time-varying source blocks interfering with frequency response

estimation . 21-2

Apps
22

xxix

Steady-State Operating Points

• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Points” on page 1-5
• “View and Modify Operating Points” on page 1-8
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Compute Operating Points from Specifications at the Command Line” on page 1-14
• “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
• “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30
• “Validate Operating Point Against Specifications” on page 1-38
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45
• “Change Operating Point Search Optimization Settings” on page 1-52
• “Import and Export Specifications for Operating Point Search” on page 1-54
• “Compute Operating Points Using Custom Constraints and Objective Functions” on page 1-59
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
• “Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-74
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-82
• “Find Operating Points at Simulation Snapshots” on page 1-85
• “Compute Operating Point Snapshots at Triggered Events” on page 1-90
• “Simulate Simulink Model at Specific Operating Point” on page 1-95
• “Handle Blocks with Internal State Representation” on page 1-98
• “Synchronize Simulink Model Changes with Operating Point Specifications” on page 1-100
• “Find Steady-State Operating Points for Simscape Models” on page 1-106
• “Steady-State Simulation with Projection-Based Trim Optimizer” on page 1-108
• “Generate MATLAB Code for Operating Point Configuration” on page 1-112

1

About Operating Points

What Is an Operating Point?
An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle angle,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

The following Simulink model has an operating point that consists of two variables:

• A root-level input signal set to 1
• An Integrator block state set to 5

The following table summarizes the signal values for the model at this operating point.

Block Block Input Block Operation Block Output
Integrator 1 Integrate input 5, set by the initial

conditionx0 = 5
Square 5, set by the initial

condition of the
Integrator block

Square input 25

Sum 25 from Square block, 1
from Constant block

Sum inputs 26

Gain 26 Multiply input by 3 78

The following block diagram shows how the model input and the initial state of the Integrator block
propagate through the model during simulation.

If your model initial states and inputs already represent the desired steady-state operating conditions,
you can use this operating point for linearization or control design.

What Is a Steady-State Operating Point?

1 Steady-State Operating Points

1-2

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long as the
pendulum points exactly upward, it remains in equilibrium. However, when the pendulum deviates
slightly from this position, it swings downward and the operating point leaves the region around the
equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

Simulink Model States Included in Operating Point Object
In Simulink Control Design software, an operating point for a Simulink model is represented by an
operating point (operpoint) object. The object stores the tunable model states and their values,
along with other data about the operating point. The states of blocks that have internal
representation, such as Backlash, Memory, and Stateflow® blocks, are excluded.

States that are excluded from the operating point object cannot be used in trimming computations.
These states cannot be captured with operspec or operpoint, or written with initopspec. Such
states are also excluded from operating point displays or computations using Model Linearizer. The
following table summarizes which states are included and which are excluded from the operating
point object.

State Type Included in Operating Point?
Double-precision real-valued states Yes
States whose value is not of type double. For
example, complex-valued states, single-type
states, int8-type states.

No

States from root-level inport blocks with
double-precision real-valued inputs

Yes

Internal state representations that impact
block output, such as states in Backlash,
Memory, or Stateflow blocks.

No (see “Handle Blocks with Internal State
Representation” on page 1-98)

States that belong to a Unit Delay block whose
input is a bus signal

No

 About Operating Points

1-3

See Also
operpoint

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Handle Blocks with Internal State Representation” on page 1-98
• “Compute Steady-State Operating Points” on page 1-5
• “Find Operating Points at Simulation Snapshots” on page 1-85

1 Steady-State Operating Points

1-4

Compute Steady-State Operating Points
An operating point of a dynamic system specifies the initial states and root-level input signals of the
model at a particular time. For more information on operating points, see “About Operating Points” on
page 1-2.

To find steady-state operating points you can use optimization-based searching or simulation
snapshots.

Steady-State Operating Point Search (Trimming)
You can compute a steady-state operating point (or equilibrium operating point) using numerical
optimization methods to meet your specifications. The resulting operating point consists of the
equilibrium state values and corresponding model input levels. A successful operating point search
finds an operating point very close to a true steady-state solution.

Use an optimization-based search when you have knowledge about the operating point states and the
corresponding model input and output signal levels. You can use this knowledge to specify initial
guesses or constraints for the following variables at equilibrium:

• Initial state values
• States at equilibrium
• Maximum or minimum bounds on state values, input levels, and output levels
• Known (fixed) state values, input levels, or output levels

Your operating point search might not converge to a steady-state operating point when you
overconstrain the optimization by specifying:

• Initial guesses for steady-state operating point values that are far away from the desired steady-
state operating point.

• Incompatible input, output, or state constraints at equilibrium.

You can control the accuracy of your operating point search by configuring the optimization algorithm
settings.

Steady-State Operating Point from Simulation Snapshot
You can compute a steady-state operating point by simulating your model until it reaches a steady-
state condition. To do so, specify initial conditions for the simulation that are near the desired steady-
state operating point.

Use a simulation snapshot when the time it takes for the simulation to reach steady state is
sufficiently short. The algorithm extracts operating point values once the simulation reaches steady
state.

Simulation-based computations produce poor operating point results when you specify:

• A simulation time that is insufficiently long to drive the model to steady state.
• Initial conditions that do not cause the model to reach true equilibrium.

You can usually combine a simulation snapshot and an optimization-based search to improve your
operating point results. For example, simulate your model until it reaches the neighborhood of steady

 Compute Steady-State Operating Points

1-5

state and use the resulting simulation snapshot to define the initial conditions for an optimization-
based search.

Note If your Simulink model has internal states, do not linearize the model at an operating point you
compute from a simulation snapshot. Instead, try linearizing the model using a simulation snapshot or
at an operating point from optimization-based search. For more information, see “Handle Blocks with
Internal State Representation” on page 1-98.

Which Model States Must Be at Steady State?
When computing a steady-state operating point, not all states are required to be at equilibrium. A
pendulum is an example of a system where it is possible to find an operating point with all states at
steady state. However, for other types of systems, there may not be an operating point where all
states are at equilibrium, and the application does not require that all operating point states be at
equilibrium.

For example, suppose that you build an automobile model for a cruise control application with these
states:

• Vehicle position and velocity
• Fuel and air flow rates into the engine

If your goal is to study the automobile behavior at constant cruising velocity, you need an operating
point with the velocity, air flow rate, and fuel flow rate at steady state. However, the position of the
vehicle is not at steady state because the vehicle is moving at constant velocity. The lack of a steady-
state position variable is fine for the cruise control application because the position does not have
significant impact on the cruise control behavior. In this case, you do not need to overconstrain the
optimization search for an operating point by requiring that all states be at equilibrium.

Similar situations also appear in aerospace systems when analyzing the dynamics of an aircraft under
different maneuvers.

Choose Operating Point Search Tools
Simulink Control Design lets you search for operating points of your Simulink model both
programmatically at the command line and interactively using one of two apps.

Search Tool When to Use
findop • Programmatically compute operating points

• Compute operating points from specifications
• Find operating points at simulation snapshots
• Batch compute operating points for multiple specifications
• Batch compute operating points for parameter variations

1 Steady-State Operating Points

1-6

Search Tool When to Use
Steady State Manager • Interactively compute operating points

• Compute operating points from specifications
• Validate operating point search results against specifications
• Find operating points at simulation snapshots
• Generate MATLAB® code for computing operating points. This

code can be reused for batch computation.
Model Linearizer • Interactively find operating points within a linearization

context
• Compute operating points from specifications
• Find operating points at simulation snapshots

Trimming Using Simulink Control Design Versus Simulink

Simulink provides the trim command for steady-state operating point searches. However, findop in
Simulink Control Design provides several advantages over using trim when performing an
optimization-based operating point search.

 Simulink Control Design
Operating Point Search

Simulink Operating Point
Search

User interface Yes No — Only trim is available.
Multiple optimization
methods

Yes No — Only one optimization
method

Constrain state, input, and
output variables using
upper and lower bounds

Yes No

Specify the output value of
blocks that are not
connected to root model
outports

Yes No

Steady-operating points for
models with discrete states

Yes No

Model reference support Yes No
Simscape™ Multibody™
integration

Yes No

See Also
findop | trim

More About
• “About Operating Points” on page 1-2
• “Handle Blocks with Internal State Representation” on page 1-98
• “Find Operating Points at Simulation Snapshots” on page 1-85
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45

 Compute Steady-State Operating Points

1-7

View and Modify Operating Points
You can view and modify operating point values programmatically at the command line, or
interactively using the Steady State Manager or Model Linearizer.

You can simulate the model at the modified operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

View and Modify Operating Point in Steady State Manager
To view an operating point in the Steady State Manager, in the data browser, in the Operating
Points section, do one of the following:

• Double-click the operating point you want to view.
• Right-click the operating point you want to view, and select Open Selection.

In the operating point document that opens, you can view the input and state values of the operating
point.

To modify a state or input value in an operating point, in the Value column, click the value you want
to change, and enter the new value. If your operating point was at a steady state, changing any
values in the Steady State Manager can place the operating point into a non-steady-state condition.

View and Modify Operating Point in Model Linearizer
To view an operating point in the Model Linearizer, on the Linear Analysis tab, in the Operating
Points drop-down list, select one of the following:

• Model Initial Condition — The current states and inputs in the model
• An operating point listed under Existing Operating Points (Linear Analysis Workspace) —

These operating points are listed in the data browser in the Linear Analysis Workspace section.
When you find an operating point using trimming or a simulation snapshot, the software adds it to
this list of operating points.

• An operating point listed under Existing Operating Points (MATLAB Workspace) — These
operating points are listed in the data browser in the MATLAB Workspace section.

1 Steady-State Operating Points

1-8

Then, in the Operating Points drop-down list, under View/Edit, click the view or edit option listed
for the operating point.

The dialog box that opens shows the values of the operating point. For the model initial conditions
and operating points found using simulation snapshots, you can view the input and state values. For
operating points found using trimming, you can also view the model outputs that correspond to the
operating point.

 View and Modify Operating Points

1-9

Within Model Linearizer, you cannot edit the values of the model initial condition operating point or
the values of an operating point that you found using trimming.

To edit an operating point that you found using a simulation snapshot, in the Edit dialog box, in the
Value column, select the state or input you want to edit, and enter the new value. If your simulation
snapshot was at a steady state, changing any values in Model Linearizer can place the operating
point into a non-steady-state condition.

View and Modify Operating Point at the Command Line

This example shows how to view and modify the states in a Simulink model using an operating point
object.

Create an operating point object from the Simulink Model.

sys = 'watertank';
open_system(sys)
op = operpoint(sys)

op =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
0
(2.) watertank/Water-Tank System/H
1

Inputs: None

The operating point, op, contains the states and input levels of the model.

Set the value of the first state.

op.States(1).x = 1.26;

View the updated operating point state values.

op.States

ans =
 x

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
1.26
(2.) watertank/Water-Tank System/H
 1

1 Steady-State Operating Points

1-10

You can also modify other operating points in the MATLAB workspace, including operating points
found using trimming or simulation snapshots. If your operating point was at a steady state, changing
any values can place the operating point into a non-steady-state condition.

If you modify your Simulink model after creating an operating point object, use the update function
to update your operating point.

See Also
operspec | update

More About
• “Simulate Simulink Model at Specific Operating Point” on page 1-95

 View and Modify Operating Points

1-11

Compute Steady-State Operating Points from Specifications
You can compute a steady-state operating point of a Simulink model by specifying constraints on the
model states, outputs, and inputs, and finding a model operating condition that satisfies these
constraints. You can trim your model to meet any combination of state, input, or output specifications.
Computing an operating point in this way is called trimming. For more information on steady-state
operating points, see “About Operating Points” on page 1-2.

You can trim your Simulink model:

• In the Steady State Manager. For an example, see “Compute Operating Points from
Specifications Using Steady State Manager” on page 1-19.

• At the command line. For more information, see “Compute Operating Points from Specifications at
the Command Line” on page 1-14.

• In the Model Linearizer. For more information, see “Compute Operating Points from
Specifications Using Model Linearizer” on page 1-30.

For more information on selecting a trimming tool, see “Compute Steady-State Operating Points” on
page 1-5.

For state specifications, you can constrain the values of model states to known values or ranges. You
can also define bounds for the derivatives of states that are not at steady state. Using such
constraints, you can trim derivatives to known nonzero values or specify derivative tolerances for
states that cannot reach steady state. For an example that trims a model for state specifications, see
“Compute Operating Points from Specifications Using Model Linearizer” on page 1-30.

You can constrain the values of any root-level input or output ports to known values or ranges. You
can also add output specifications to signals in your Simulink model. For an example that adds an
output specification in this way, see “Compute Operating Points from Specifications Using Steady
State Manager” on page 1-19.

If your trimming is unsuccessful; that is, if the optimization search was unable to meet all of your
specifications, determine the specifications that could not be met by validating your trimmed
operating point against the original specifications. For more information, see “Validate Operating
Point Against Specifications” on page 1-38.

After trimming your model, you can:

• Linearize your model at the resulting operating point. For more information, see “Linearize at
Trimmed Operating Point” on page 2-66.

• Simulate your model at the resulting operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also
Functions
findop | findopOptions

Apps
Steady State Manager | Model Linearizer

1 Steady-State Operating Points

1-12

More About
• “Compute Operating Points from Specifications at the Command Line” on page 1-14
• “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
• “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30

 Compute Steady-State Operating Points from Specifications

1-13

Compute Operating Points from Specifications at the
Command Line

You can compute a steady-state operating point of a Simulink® model by specifying constraints on
the model states, outputs, and inputs, and by finding a model operating condition that satisfies these
constraints. For more information on steady-state operating points, see “About Operating Points” on
page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

To find an operating point for your Simulink model, you can programmatically trim your model using
the findop, as shown in this example.

Alternatively, you can trim your model in the:

• Steady State Manager. For more information, see “Compute Operating Points from
Specifications Using Steady State Manager” on page 1-19.

• Model Linearizer. For more information, see “Compute Operating Points from Specifications
Using Model Linearizer” on page 1-30.

In this example, you compute an operating point to meet output specifications. Using a similar
approach, you can define state or input specifications. Also, you can define a combination of state,
output, and input specifications; that is, you do not have to use, for example, only state specifications.

For more information on trimming your model to meet specifications, see “Compute Steady-State
Operating Points from Specifications” on page 1-12.

Open Simulink Model

Open the Simulink model.

mdl = 'scdspeed';
open_system(mdl)

Define Operating Point Specifications

Create a default operating point specification for the model.

opspec = operspec(mdl)

1 Steady-State Operating Points

1-14

opspec =

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 0.543 false true -Inf Inf -Inf Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 209.48 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) scdspeed/Throttle perturbation
 0 false -Inf Inf

Outputs: None

Since there are no root-level outputs in the model, the default operating point specification object has
no output specifications.

For this example, specify a known steady-state engine speed. To do so, add an output specification at
the output of the rad/s to rpm block.

opspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

Specify a known value of 2000 rpm for the output constraint.

opspec.Outputs(1).Known = 1;
opspec.Outputs(1).y = 2000;

View the updated operating point specification.

opspec

opspec =

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

 Compute Operating Points from Specifications at the Command Line

1-15

 0.543 false true -Inf Inf -Inf Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 209.48 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) scdspeed/Throttle perturbation
 0 false -Inf Inf

Outputs:

 y Known Min Max
_____ _____ _____ _____

(1.) scdspeed/rad//s to rpm
2000 true -Inf Inf

Trim Model

Find an operating point that meets these specifications.

op1 = findop(mdl,opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 -Inf 0.54363 Inf 0 2.6649e-13 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 -Inf 209.4395 Inf 0 -8.4758e-12 0

Inputs:

 Min u Max
_________ _________ _________

(1.) scdspeed/Throttle perturbation
 -Inf 0.0038183 Inf

Outputs:

Min y Max

1 Steady-State Operating Points

1-16

____ ____ ____

(1.) scdspeed/rad//s to rpm
2000 2000 2000

The operating point search report shows that the specifications were met successfully, and that both
states are at steady state as expected (dx = 0).

You can also specify bounds for outputs during trimming. For example, suppose that you know that
there is a steady-state condition between 1900 and 2100 rpm. To trim the speed to this range, modify
the operating point specifications.

opspec.Outputs(1).Min = 1900;
opspec.Outputs(1).Max = 2100;

In this case, since you do not know the output value, specify the output as unknown. You can also
provide an initial guess for the output value.

opspec.Outputs(1).Known = 0;
opspec.Outputs(1).y = 2050;

Find an operating point that meets these specifications.

op2 = findop(mdl,opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 -Inf 0.5436 Inf 0 2.9879e-13 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 -Inf 209.4799 Inf 0 -9.8968e-13 0

Inputs:

 Min u Max
_________ _________ _________

(1.) scdspeed/Throttle perturbation
 -Inf 0.0050021 Inf

Outputs:

 Min y Max
_________ _________ _________

 Compute Operating Points from Specifications at the Command Line

1-17

(1.) scdspeed/rad//s to rpm
 1900 2000.3853 2100

The operating point search report shows that the specifications were met successfully.

After trimming your model, you can:

• Linearize your model at the resulting operating point. For more information, see “Linearize at
Trimmed Operating Point” on page 2-66.

• Simulate your model at the resulting operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also
findop | addoutputspec | operspec

More About
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
• “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30

1 Steady-State Operating Points

1-18

Compute Operating Points from Specifications Using Steady
State Manager

You can compute a steady-state operating point of a Simulink model by specifying constraints on the
model states, outputs, and inputs, and by finding a model operating condition that satisfies these
constraints. For more information on steady-state operating points, see “About Operating Points” on
page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

To find an operating point for your Simulink model, you can interactively trim your model using the
Steady State Manager, as shown in this example.

Alternatively, you can trim your model:

• At the command line. For more information, see “Compute Operating Points from Specifications at
the Command Line” on page 1-14.

• In the Model Linearizer. For more information, see “Compute Operating Points from
Specifications Using Model Linearizer” on page 1-30.

In this example, you compute an operating point to meet output specifications. Using a similar
approach, you can define state or input specifications. Also, you can define a combination of state,
output, and input specifications; that is, you do not have to use, for example, only state specifications.

For more information on trimming your model to meet specifications, see “Compute Steady-State
Operating Points from Specifications” on page 1-12.

Open Steady State Manager
Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

 Compute Operating Points from Specifications Using Steady State Manager

1-19

Define Operating Point Specifications
To create an operating point specification, in Steady State Manager, on the Steady State tab, click
Trim Specification.

In the data browser, in the Specifications section, the software adds a default operating point
specification, spec1. Also, the Specification tab opens along with a corresponding spec1 document.

1 Steady-State Operating Points

1-20

In the spec1 document, in the navigation tree, select the type of specification that you want to add.
For this example, you want to find a steady-state operating point at which the engine speed is fixed at
2000 rpm using an output specification. Therefore, click Outputs.

Since the model does not have any root-level output ports or defined trim outputs constraints, the
operating point specification does not have any outputs. To add an output to the operating point
specification, on the Specification tab, click Add Outputs.

 Compute Operating Points from Specifications Using Steady State Manager

1-21

In the Add Output Specifications dialog box, specify the signals to which you want to add an output
specification. To add a signal to the list, in the Simulink model window, click the output signal of the
rad/s to rpm block. Doing so adds the signal to the Add Output Specifications dialog box.

Click Add Signal(s).

The software adds this signal to spec1 as an output specification. To view and edit the specification,
in the spec1 document, click Outputs.

1 Steady-State Operating Points

1-22

The selected signal is listed in the output specification table under the name of its source block.

Tip To go to the block in your model that is associated with a given state, input, or output
specification, in the specification table, click the block name.

Specify a known speed value. In the spec1 document, in the Known column, select the
corresponding row, and in the Value column set the known value to 2000.

Trim Model
To compute the operating point that meets this output specification, on the Specification tab, click

Trim .

 Compute Operating Points from Specifications Using Steady State Manager

1-23

The software trims the model and generates an operating point search report. The report, report1,
is added to the data browser, in the Reports section. Also, the Report tab opens along with a
corresponding report1 document.

For this example, you use default trimming options. To specify different options, such as the
optimization method or a custom cost function, on the Specification tab, click Trim Options.

1 Steady-State Operating Points

1-24

To check whether the optimization search converged to a solution that meets the specifications, in the
report1 document, click Optimization Status.

The optimization status shows that the optimization algorithm terminated successfully, finding an
operating point that meets the specifications.

The Maximum Error plot and the Max Error column show the maximum constraint violation for
each iteration. The Block column shows the block to which the maximum constraint violation applies.

Validate Operating Point
For this example, the optimization search converged to an operating point that met the specification.
When the operating point search report indicates that the search was unsuccessful, you can validate
your operating point against the specifications. To do so, in the report1 document, in the navigation
tree, select the specifications that you want to check. For this example, click Outputs.

 Compute Operating Points from Specifications Using Steady State Manager

1-25

In the specification table, known values are highlighted in gray, and constraint violations are
highlighted in red. For this example, there are no constraint violations.

You can also verify whether the operating point is at steady state. For example, in the report1
document, click States.

1 Steady-State Operating Points

1-26

The Actual dx column shows the rates of change of the state values at the operating point. Since
these values are near zero, the states are not changing, showing that the operating point is in a
steady state.

For more information on validating operating points, see “Validate Operating Point Against
Specifications” on page 1-38.

Trim Model for Different Specifications
You can also specify bounds for your specification rather than known values. For example, suppose
that you know that there is a steady-state condition in the range from 1900 to 2100 rpm. To find this
operating point, first create another specification by copying and editing previous specification. In the
data browser, right-click spec1, and select Copy.

The software adds spec2 to the data browser. To open the specification document for editing, double-
click this new specification.

In the spec2 document, click Outputs. Then, in the specification table:

• In the Value column, specify an initial guess for the value, if you have one.
• In the Known column, clear the entry for the output specification.
• In the Minimum and Maximum columns, specify the lower and upper constraint bounds,

respectively.

On the Specification tab, click Trim . The software trims the model and opens the operating
point search report in the report2 document.

Click Outputs.

 Compute Operating Points from Specifications Using Steady State Manager

1-27

As shown in the Actual Value column, the trimmed output value is within the specified bounds.

Extract Operating Point from Report
The operating point search report is read-only and contains information about both the specifications
and the trimmed operating point. You can extract either a specification or operating point object from
a search report. For example, on the Report tab for report2, click Extract > Operating Point.

The software extracts the trimmed operating point, op1, from the report, adding it to the data
browser, in the Operating Points section.

Export Operating Point Data
Once you have computed an operating point that meets your specifications, you can export the model
to the MATLAB workspace and set the initial conditions of your model to the values in the operating
point. To do so, on the Operating Point tab, click Export or Set Initial Conditions, respectively.

1 Steady-State Operating Points

1-28

For more information on setting your model initial conditions and simulating your model at a specific
operating point, see “Simulate Simulink Model at Specific Operating Point” on page 1-95.

See Also
Steady State Manager

More About
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Compute Operating Points from Specifications at the Command Line” on page 1-14
• “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30

 Compute Operating Points from Specifications Using Steady State Manager

1-29

Compute Operating Points from Specifications Using Model
Linearizer

You can compute a steady-state operating point of a Simulink model by specifying constraints on the
model states, outputs, and inputs, and finding a model operating condition that satisfies these
constraints. For more information on steady-state operating points, see “About Operating Points” on
page 1-2 and “Compute Steady-State Operating Points” on page 1-5.

To find an operating point for your Simulink model, you can interactively trim your model using
Model Linearizer, as shown in this example.

Alternatively, you can trim your model:

• In Steady State Manager. For more information, see “Compute Operating Points from
Specifications Using Steady State Manager” on page 1-19.

• At the command line. For more information, see “Compute Operating Points from Specifications at
the Command Line” on page 1-14.

In this example, you compute an operating point to meet state specifications. Using a similar
approach, you can define output or input specifications. Also, you can define a combination of state,
output, and input specifications; that is, you do not have to use, for example, only state specifications.

For more information on trimming your model to meet specifications, see “Compute Steady-State
Operating Points from Specifications” on page 1-12.

Open Model Linearizer
Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

1 Steady-State Operating Points

1-30

Define Operating Point Specifications
In Model Linearizer, on the Linear Analysis tab, in the Operating Point drop-down list, select
Trim Model.

In the Trim the model dialog box, on the Specifications tab, you can define specifications for model
states, inputs, and outputs. For this example, click the States tab.

 Compute Operating Points from Specifications Using Model Linearizer

1-31

By default, on the States tab, the app specifies both model states to be at equilibrium, as shown by
the check marks in the Steady State column. Both states are also specified as unknown values; that
is, their steady-state values are calculated during trimming, with an initial guess specified in the
Value column.

Change the second state, the engine angular velocity, to be a known value. In the Known column,
select the corresponding row and, in the Value column, set the value to 180.

1 Steady-State Operating Points

1-32

You can also specify bounds for model states during trimming. For this example, constrain the first
state to be between 0.5 and 0.7. To do so, enter these values in the Minimum and Maximum
columns, respectively.

 Compute Operating Points from Specifications Using Model Linearizer

1-33

Trim Model
To compute an operating point that meets these specifications, click Start trimming.

The software uses an optimization search to find the operating point that meets your specifications.

1 Steady-State Operating Points

1-34

The Trim progress viewer shows the optimization progress and that the optimization algorithm
terminated successfully. The (Maximum Error) column shows the maximum constraint violation at
each iteration. The Block column shows the block to which the constraint violation applies.

The trimmed operating point, op_trim1, appears in the Linear Analysis Workspace.

To evaluate whether the resulting operating point values meet the specifications, in the Linear
Analysis Workspace, double-click op_trim1.

In the Edit dialog box, on the State tab, the Actual Value for the first state falls within the Desired
Value bounds, and the actual angular velocity is 180, as specified.

The Actual dx column shows the rates of change of the state values at the operating point. Since
these values are near zero the states are not changing, showing that the operating point is in a steady
state.

 Compute Operating Points from Specifications Using Model Linearizer

1-35

Constrain State Derivatives
When you trim your model to meet state specifications, you can also constrain the derivatives of
states that are not at steady state. Using such constraints, you can trim derivatives to known nonzero
values or specify derivative tolerances for states that cannot reach steady state.

For example, suppose you want to find the operating condition at which the engine angular velocity is
180 rad/s and the angular acceleration is 50 rad/s2. To do so, first open the Trim the model dialog
box. In the Model Linearizer, in the Operating Point drop-down list, select Trim Model.

In the Steady State column, clear the selection in the corresponding row. Then, in the dx Minimum
and dx Maximum columns, set both state derivative bounds to 50.

To compute the operating point, click Start trimming.

In the Linear Analysis Workspace, double-click op_trim2.

In the Edit dialog box, in the second row, the Actual dx column matches the Desired dx column.
Therefore, the operating point meets the specified state derivative constraints.

1 Steady-State Operating Points

1-36

After trimming your model, you can:

• Linearize your model at the resulting operating point. For more information, see “Linearize at
Trimmed Operating Point” on page 2-66.

• Simulate your model at the resulting operating point. For more information, see “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also
Model Linearizer

More About
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Compute Operating Points from Specifications at the Command Line” on page 1-14
• “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19

 Compute Operating Points from Specifications Using Model Linearizer

1-37

Validate Operating Point Against Specifications
When you compute an operating point based on input, output, or state specifications, the Simulink
Control Design software indicates whether the specifications were successfully met during the
trimming process. If the trimming was unsuccessful, to determine the specifications that could not be
met, you must validate your trimmed operating point against the original specifications.

Validate Operating Point in Steady State Manager
When you compute an operating point using Steady State Manager, the software creates an
operating point report object and highlights any operating point values that violate the constraints in
the specification.

For example, consider the scdairframeTRIM model. Open the model and set the speed and
incidence angle parameters.

sys = 'scdairframeTRIM';
open_system(sys)

alpha_ini = -0.21;
v_ini = 933;

To open Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

Create a trim specification for the model. On the Steady State tab, click Trim Specification.

In the spec1 document, specify which states are known and which are at steady state.

To trim the model, on the Specification tab, click Trim . The software generates an operating
point report and, in the corresponding report1 document, highlights any constraint violations in red.

1 Steady-State Operating Points

1-38

The optimization search could not find an operating point that satisfies the specifications. As
highlighted in Steady State Manager, the three states specified to be at steady state are not. The
highlighted state values violate the specified constraints by more than the tolerance value specified
on the Report tab, in the Validation Tolerance field. For steady-state conditions, the dx Minimum
and dx Maximum constraints are both zero; that is, the rate of change for each state is zero. In the
trimmed operating point, the Actual dx values violate these constraints.

 Validate Operating Point Against Specifications

1-39

For this model, specifying the second position state to be at steady state overconstrains the system,
making a steady-state solution impossible.

To remove this steady-state constraint, update the specification. In the spec1 document, in the
Steady State column, clear the corresponding row.

On the Specification tab, click Trim . The software trims the model and opens a corresponding
Report tab. The resulting report shows that there are no constraint violations.

1 Steady-State Operating Points

1-40

You can also validate an existing operating point against a set of specifications. For example, to check
if the model initial conditions satisfy the requirements in spec1, first create an operating point based
on the model initial conditions. On the Steady State tab, click Operating Point. The software
creates an operating point and opens a corresponding op1 document.

To validate this operating point against the specifications in spec1, on the Operating Point tab,
under Validate Against, select spec1.

The software creates an operating point report and opens a corresponding report3 document.

The model initial conditions do not satisfy the operating point specifications, as shown by the
highlighted constraint violations.

 Validate Operating Point Against Specifications

1-41

Validate Operating Point in Model Linearizer
When you compute an operating point using Model Linearizer, the software does not highlight
constraint violations. Instead, you must inspect the operating point report information for any
violations.

If you trim the model from the preceding Steady State Manager example using the same initial
specifications in Model Linearizer, the software creates an operating point in the data browser, in
the Linear Analysis Workspace.

To check whether the operating point satisfies the specified constraints, in the Linear Analysis
Workspace, double-click the operating point.

In the Edit dialog box, the thee constraint violations are highlighted in red.

Validate Operating Point at the Command Line

When you compute an operating point at the command line, the findop function outputs an
operating point report to the Command Window by default. You can also return the operating point
report as an output argument. For more information, see findop. To validate your operating point
against the specifications, you must check whether the operating point values satisfy the constraints.

For example, open the scdairframeTRIM model and set the model parameters.

1 Steady-State Operating Points

1-42

sys = 'scdairframeTRIM';
open_system(sys)

alpha_ini = -0.21;
v_ini = 933;

Create an operating point specification object, and specify which states are known and which are at
steady state.

opspec = operspec(sys);
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;1];
opspec.States(3).Known = [1;1];
opspec.States(3).SteadyState = [0;1];
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;

Trim the model.

op = findop(sys,opspec);

 Operating point search report:

opreport =
 Operating point search report for the Model scdairframeTRIM.
 (Time-Varying Components Evaluated at time t=0)

Could not find a solution that satisfies all constraints. Relax the constraints to find a feasible solution.
States:

 Min x Max dxMin dx dxMax
__________ __________ __________ __________ __________ __________

(1.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Position
 0 0 0 -Inf 912.5028 Inf
-3047.9999 -3047.9999 -3047.9999 0 -194.4931 0
(2.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/Theta
 0 0 0 -Inf 0 Inf
(3.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/U,w
 912.5028 912.5028 912.5028 -Inf 25.3477 Inf
-194.4931 -194.4931 -194.4931 0 273.1028 0
(4.) scdairframeTRIM/Airframe Model/EOM/ Equations of Motion (Body Axes)/q
 -Inf 0 Inf 0 31.1548 0

Inputs:

Min u Max
____ ____ ____

(1.) scdairframeTRIM/delta
-Inf 0 Inf

Outputs:

 Min y Max

 Validate Operating Point Against Specifications

1-43

________ ________ ________

(1.) scdairframeTRIM/alpha
 -Inf -0.21 Inf
(2.) scdairframeTRIM/V
 -Inf 933 Inf
(3.) scdairframeTRIM/q
 -Inf 0 Inf
(4.) scdairframeTRIM/az
 -Inf 263.2928 Inf
(5.) scdairframeTRIM/gamma
 -Inf 0.21 Inf

In the operating point search report, the dx values for the specified steady states have zero
constraints, as indicated by the 0 value in parentheses. The optimization search did not find a steady-
state operating point, since all three of these states violate the constraints.

See Also
Functions
findop | findopOptions

Apps
Steady State Manager | Model Linearizer

More About
• “Compute Operating Points from Specifications at the Command Line” on page 1-14
• “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
• “Compute Operating Points from Specifications Using Model Linearizer” on page 1-30

1 Steady-State Operating Points

1-44

Initialize Steady-State Operating Point Search Using
Simulation Snapshot

If you know the approximate time when the model reaches the neighborhood of a steady-state
operating point, you can use simulation to get state values to use as the initial conditions for
numerical optimization.

Initialize Operating Point Search Using Steady State Manager
You can initialize operating point searches with a simulation snapshot when computing operating
points using the Steady State Manager.

1 Open the Simulink model.

sys = 'watertank';
open_system(sys)

2 To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click
Steady State Manager.

3 In the Steady State Manager, on the Steady State tab, click Snapshots.
4 In the Create Snapshot Operating Point dialog box, enter 10 in the Simulation snapshot times

field to extract the operating point at this simulation time.

5
To take a snapshot of the system at the specified time, click .

The snapshot, op1, appears in the data browser, in the Operating Points section and contains
all of the system state values at the specified time.

 Initialize Steady-State Operating Point Search Using Simulation Snapshot

1-45

6 On the Steady State tab, click Trim Specification.
7 To Initialize the operating point states with the simulation snapshot values, on the Specification

tab, click Initialize From , and select op1.

In the spec1 document, the displayed state values update to reflect the imported values.

8 To find the optimized operating point using the states at t = 10 as the initial values, on the

Specification tab, click Trim . The software trims the model and generates an operating
point search report.

9 In the report1 document, the Actual dx values are at or near zero, showing that the operating
point is at a steady state.

1 Steady-State Operating Points

1-46

Initialize Operating Point Search Using Model Linearizer
You can initialize operating point searches with a simulation snapshot when computing operating
points using the Model Linearizer.

1 Open the Simulink model.

sys = ('watertank');
open_system(sys)

2 In the Simulink model window, in the Apps gallery, click Model Linearizer.
3 In Model Linearizer, in the Operating Point drop-down list, click Take Simulation

Snapshot.
4 In the Enter snapshot times to linearize dialog box, enter 10 in the Simulation snapshot times

field to extract the operating point at this simulation time.

 Initialize Steady-State Operating Point Search Using Simulation Snapshot

1-47

5 To take a snapshot of the system at the specified time, click Take Snapshots.

The snapshot, op_snapshot1, appears in the data browser, in the Linear Analysis Workspace
section and contains all the system state values at the specified time.

6 On the Linear Analysis tab, in the Operating Point drop-down list, click Trim Model.
7 To Initialize the operating point states with the simulation snapshot values, in the Trim the model

dialog box, click Import.
8 In the Import initial values and specifications dialog box, select op_snapshot1, and click

Import.

In the Trim the model dialog box, the displayed state values update to reflect the imported
values.

1 Steady-State Operating Points

1-48

9 To find the optimized operating point using the states at t = 10 as the initial values, click Start
trimming.

10 To evaluate whether the resulting operating point values meet the specifications, in the data
browser, in the Linear Analysis Workspace section, double-click op_trim1.

 Initialize Steady-State Operating Point Search Using Simulation Snapshot

1-49

The Actual dx values are at or near zero, showing that the operating point is at a steady state.

Initialize Operating Point Search at the Command Line

You can initialize operating point searches with a simulation snapshot when computing operating
points using the findop function.

Open the Simulink model.

sys = 'watertank';
load_system(sys)

Simulate the model until it reaches a steady state, and extract an operating point snapshot. For this
example, use ten time units.

opsim = findop(sys,10);

Create an operating point specification object. By default, all model states are specified to be at
steady state.

opspec = operspec(sys);

Configure initial values for operating point search using the snapshot data.

opspec = initopspec(opspec,opsim);

Find the steady-state operating point that meets these specifications.

[op,opreport] = findop(sys,opspec);

 Operating point search report:

opreport =
 Operating point search report for the Model watertank.
 (Time-Varying Components Evaluated at time t=10)

1 Steady-State Operating Points

1-50

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 -Inf 1.2649 Inf 0 0 0
(2.) watertank/Water-Tank System/H
 0 10 Inf 0 -1.0991e-14 0

Inputs: None

Outputs: None

The time derivative of each state, dx, is effectively zero. This value of the state derivative indicates
that the operating point is at steady state.

See Also
initopspec

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Change Operating Point Search Optimization Settings” on page 1-52
• “Compute Steady-State Operating Points” on page 1-5

 Initialize Steady-State Operating Point Search Using Simulation Snapshot

1-51

Change Operating Point Search Optimization Settings

This example shows how to control the accuracy of your operating point search by configuring the
optimization algorithm. Typically, you adjust the optimization settings based on the operating point
search report, which is automatically created after each search.

You can change your optimization settings when computing operating points interactively using the
Steady State Manager or Model Linearizer, or programmatically using the findop function.

Interactively Change Optimization Settings
You can configure the optimization settings for interactively computing operating points using the
Steady State Manager or Model Linearizer using the same trimming options dialog box interface.

• In Steady State Manager, on the Specification tab, click Trim Options. Then, in the Trim
Options dialog box, specify your optimization settings.

• In Model Linearizer, on the Linear Analysis tab, in the Operating Point drop-down list, click
Trim Model. Then, in the Trim the model dialog box, on the Options tab, specify your
optimization settings.

You can specify the Optimization Method and corresponding optimization options such as the
options shown in the following table.

1 Steady-State Operating Points

1-52

Optimization Status Option to Change Comment
Optimization ends before
completing (too few iterations)

Maximum iterations Increase the number of iterations.

State derivative or error in output
constraint is too large

Function tolerance or Constraint
tolerance (depending on selected
algorithm)

Decrease the tolerance value.

You can also specify custom cost and constraint functions for optimization using the Custom
Optimization Functions parameters. For more information, see “Compute Operating Points Using
Custom Constraints and Objective Functions” on page 1-59.

Programmatically Change Optimization Settings
To configure the optimization settings for computing operating points using the findop function,
create a findopOptions option set. For example, create an option set and specify a nonlinear least-
squares optimization method.

options = findopOptions('OptimizerType','lsqnonlin');

To specify options for each optimization method, set the OptimizationOptions parameter of the
options set to a corresponding structure created using the optimset function.

To specify custom cost and constraint functions for optimization, create an operspec object and
specify the CustomObjFcn, CustomConstrFcn, and CustomMappingFcn properties. For more
information, see “Compute Operating Points Using Custom Constraints and Objective Functions” on
page 1-59.

See Also
Functions
findop | findopOptions | operspec

Apps
Steady State Manager | Model Linearizer

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Compute Steady-State Operating Points” on page 1-5
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-

82

 Change Operating Point Search Optimization Settings

1-53

Import and Export Specifications for Operating Point Search
When you modify an operating point specification in the Steady State Manager or Model
Linearizer, you can export the specification to the MATLAB workspace. Exported specifications are
saved as operating point specification objects (see operspec). Exporting specifications can be useful
when you expect to perform multiple trimming operations using the same or a similar set of
specifications. Also, you can export interactively edited operating point specifications when you want
to use the findop command to perform multiple trimming operations with a single compilation of the
model. (See “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-
70.)

You can also import saved operating point specifications to the Steady State Manager or Model
Linearizer and use them to interactively compute trimmed operating points. Importing a
specification can be useful when you want to trim a model to a specification that is similar to one you
previously saved. In that case, you can import the specification and interactively change it. You can
then export the modified specification or compute a trimmed operating point from it.

For more information about operating point specifications, see the operspec and findop reference
pages.

Import and Export Specification Using Steady State Manager
To import an operating point specification into the Steady State Manager, on the Steady State tab,
click Import.

In the Import Operating Point dialog box, select whether you want to import the specification from
the MATLAB workspace or from a MAT-file. Then, in the table, in the Import column, select the
specification that you want to import.

1 Steady-State Operating Points

1-54

Click Import.

To export an operating point specification from the Steady State Manager, on either the Steady
State tab or the Specification tab, click Export.

In the Export Operating Point dialog box, in the Export column, select the specification that you want
to export. When you click Export from the Specification tab, the corresponding specification is
preselected in the dialog box.

Then, in the Export as column, specify the name of the workspace variable to which you want to save
the specification.

 Import and Export Specifications for Operating Point Search

1-55

Click Export.

Import and Export Specification Using Model Linearizer
To import or export an operating point specification using the Model Linearizer, on the Linear
Analysis tab, in the Operating Point drop-down list, select Trim Model.

To import a specification, in the Trim the model dialog box, click Import.

1 Steady-State Operating Points

1-56

Then, in the Import initial values and specification dialog box, select whether you want to import the
specification from the MATLAB workspace or the Linear Analysis Workspace. Then, in the table,
click the specification that you want to import.

Click Import.

To export a specification, in the Trim the model dialog box, click Export.

Then, in the Export Specification dialog box, select whether you want to export the specification to
the MATLAB workspace or the Linear Analysis Workspace. Then, in the Variable Name field,
specify the name of the workspace variable to which you want to save the specification.

Click Import.

See Also
Functions
findop | operspec

Apps
Steady State Manager | Model Linearizer

 Import and Export Specifications for Operating Point Search

1-57

More About
• “View and Modify Operating Points” on page 1-8
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70

1 Steady-State Operating Points

1-58

Compute Operating Points Using Custom Constraints and
Objective Functions

Typically, when computing a steady-state operating point for a Simulink® model using an
optimization-based search, you specify known fixed values or bounds to constrain your model states,
inputs, or outputs. However, some systems or applications require additional flexibility in defining the
optimization search parameters.

For such systems, you can specify custom constraints, an additional optimization objective function,
or both. When the software computes a steady-state operating point, it applies these custom
constraints and objective function in addition to the standard state, input, and output specifications.

You can specify custom equality and inequality constraints as algebraic combinations of model states,
inputs, and outputs. These constraints let you limit the operating point search space by specifying
known relationships between inputs, outputs, and states. For example, you can specify that one model
state is the sum of two other states.

You can also specify a custom scalar objective function as an algebraic combination of model states,
inputs, and outputs. Using the objective function you can optimize the steady-state operating point
based on your application requirements. For example, suppose that your model has multiple potential
equilibrium points. You can specify an objective function to find the steady-state point with the
minimum input energy.

For complex models, you can specify a custom mapping function that selects a subset of the model
inputs, outputs, and states to pass to the custom cost and constraint functions.

You can specify custom optimization functions when trimming your model:

• At the command line: Create an operating point specification using operspec, and specify the
custom functions using the CustomConstrFcn, CustomCostFcn, and CustomMappingFcn
properties of the specification.

• Using the Steady State Manager: On the Specification tab, click Trim Options. In the Trim
Options dialog box, in the Custom Optimization Functions section, specify the function names.

• Using the Model Linearizer: On the Linear Analysis tab, in the Operating Point drop-down
list, click Trim Model. In the Trim the model dialog box, on the Options tab, in the Custom
Optimization Functions section, specify the function names.

 Compute Operating Points Using Custom Constraints and Objective Functions

1-59

The following example shows how to create custom optimization functions and how to trim a model at
the command line using these custom functions.

Simulink Model

For this example, use a model of three tanks connected with each other by orifices.

mdl = 'scdTanks';
open_system(mdl)

1 Steady-State Operating Points

1-60

The flow between Tank1 and Tank2 is desired. The flow between Tank2 and Tank3 is undesired
unavoidable leakage.

At the expected steady state of this system:

• Tank1 and Tank2 have the same pressure.
• Tank2 and Tank3 have an almost constant pressure difference of 1 that compensates a load.

Due to the weak connectivity between Tank1 and Tank2, it is difficult to trim the model such that the
pressures in Tank1 and Tank2 are equal.

Trim Model Without Customizations

Create a default operating point specification for the model. The specification configures all three
tank pressures as free states that must be at steady state in the trimmed operating point.

opspec = operspec(mdl);

Create an option set for trimming the model, suppressing the Command Window display of the
operating point search report. The specific trimming options depend on your application. For this
example, use nonlinear least squares optimization.

opt = findopOptions('OptimizerType','lsqnonlin');
opt.DisplayReport = 'off';

Trim the model, and view the trimmed tank pressures.

 Compute Operating Points Using Custom Constraints and Objective Functions

1-61

[op0,rpt0] = findop(mdl,opspec,opt);
op0.States

ans =

 x

(1.) scdTanks/Inertia
 0
(2.) scdTanks/Tank1
 9
(3.) scdTanks/Tank2
9.5
(4.) scdTanks/Tank3
10.5

The trimmed pressures in Tank1 and Tank2 do not match. Thus, the default operating point
specification fails to find an operating point that meets the expected steady-state requirements. If you
reduce the constraint tolerance, opt.OptimizationOptions.TolCon, you cannot achieve a
feasible steady-state solution due to the leakage between Tank2 and Tank3.

Add Custom Constraints

To specify custom constraints, define a function in the current working folder or on the MATLAB path
with input arguments:

• x - Operating point specification states, specified as a vector.
• u - Operating point specification inputs, specified as a vector.
• y - Operating point specification outputs, specified as a vector.

and output arguments:

• c_ineq - Inequality constraints which must satisfy c_ineq <= 0 during trimming, returned as a
vector.

• c_eq - Equality constraints which must satisfy c_eq = 0 during trimming, returned as a vector.

Each element of c_ineq and c_eq specifies a single constraint. Define the specific constraints for
your application as algebraic combinations of the states, inputs, and outputs. If there are no custom
equality or inequality constraints, return the corresponding output argument as [].

For this example, to satisfy the conditions of the expected steady state, define the following custom
constraint function.

function [c_ineq,c_eq] = myConstraints(x,u,y)
 c_ineq = [];
 c_eq = [x(2)-x(3); % Tank1 pressure - Tank2 pressure
 x(3)-x(4)+1]; % Tank2 pressure - Tank3 pressure + 1
end

The first entry of c_eq constrains the pressures of Tank1 and Tank2 to be the same value. The second
equality constraint defines the pressure drop between Tank2 and Tank3.

1 Steady-State Operating Points

1-62

Add the custom constraint function to the operating point specification.

opspec.CustomConstrFcn = @myConstraints;

Trim the model using the revised operating point specification that contains the custom constraints,
and view the trimmed state values.

[op1,rpt1] = findop(mdl,opspec,opt);
op1.States

ans =

 x

(1.) scdTanks/Inertia
 0
(2.) scdTanks/Tank1
9.3333
(3.) scdTanks/Tank2
9.3333
(4.) scdTanks/Tank3
10.3333

Trimming the model with the custom constraint function produces an operating point with equal
pressures in the first and second tanks, as expected. Also, as expected, there is a pressure differential
of 1 between the third and second tanks.

To examine the final values of the specified constraints, you can check the CustomEqualityConstr
and CustomInequalityConstr properties of the operating point search report.

rpt1.CustomEqualityConstr

ans =

 1.0e-06 *

 -0.0001
 -0.1540

The near-zero values indicate that the equality constraints are satisfied.

Add Custom Objective Function

To specify a custom objective function, define a function with the same input arguments as the
custom constraint function (x, u, and y), and output argument F. F is an objective function value to be
minimized during trimming, returned as a scalar.

Define the objective function for your application as an algebraic combination of the states, inputs,
and outputs.

For this example, assume that you want to keep the pressure in Tank3 in the range [16,20]. However,
this condition is not always feasible. Therefore, rather than impose hard constraints, add an objective
function to incur a penalty if the pressures are not in the [16,20] range. To do so, define the following
custom objective function.

 Compute Operating Points Using Custom Constraints and Objective Functions

1-63

function F = myObjective(x,u,y)
 F = max(x(4)-20, 0) + max(16-x(4), 0);
end

Add the custom objective function to the operating point specification object.

opspec.CustomObjFcn = @myObjective;

Trim the operating point using both the custom constraints and the custom objective function, and
view the trimmed state values.

[op2,rpt2] = findop(mdl,opspec,opt);
op2.States

ans =

x
__

(1.) scdTanks/Inertia
0
(2.) scdTanks/Tank1
15
(3.) scdTanks/Tank2
15
(4.) scdTanks/Tank3
16

In the trimmed operating point, the pressure in Tank3 is within the [16,20] range specified in the
custom objective function.

To view the final value of the scalar objective function, check the CustomObj property of the
operating point search report.

rpt2.CustomObj

ans =

 0

Add Custom Mapping

For complex models, you can define a custom mapping that selects a subset of the model states,
inputs, and outputs to pass to the custom constraint and objective functions. Doing so simplifies the
constraint and objective functions by eliminating unneeded states, inputs, and outputs.

To specify a custom mapping, define a function with your operating point specification, opspec, as an
input argument, and output arguments:

• indx - Indices of mapped states
• indu - Indices of mapped inputs
• indy - Indices of mapped outputs

1 Steady-State Operating Points

1-64

To obtain state, input, and output indices based on block paths and state names use getStateIndex,
getInputIndex, and getOutputIndex. Using these commands is robust to future model changes,
such as the addition of model states. Alternatively, you can manually specify the indices. For more
information on the format of indx, indu, and indy, see getStateIndex, getInputIndex, and
getOutputIndex.

If there are no states, inputs, or outputs used by the custom constraint and objective functions, return
the corresponding output argument as [].

For this example, create a mapping that includes only the pressure states for the three tanks. To do
so, define the following custom mapping function.

function [indx,indu,indy] = myMapping(opspec)
 indx = [getStateIndex(opspec,'scdTanks/Tank1');
 getStateIndex(opspec,'scdTanks/Tank2');
 getStateIndex(opspec,'scdTanks/Tank3')];
 indu = [];
 indy = [];
end

Add the custom mapping to the operating point specification.

opspec.CustomMappingFcn = @myMapping;

When you use a custom mapping function, the indices for the states, inputs, and outputs in your
custom constraint and objective functions must be relative to the order specified in the mapping
function. Update the custom constraint and objective functions with the new mapping.

function [c_ineq,c_eq] = myConstraintsMap(x,u,y)
 c_ineq = [];
 c_eq = [x(1)-x(2); % Tank1 pressure - Tank2 pressure
 x(2)-x(3)+1]; % Tank2 pressure - Tank3 pressure + 1
end

function F = myObjectiveMap(x,u,y)
 F = max(x(3)-20, 0) + max(16-x(3), 0);
end

Here, x, u, and y are vectors of mapped states, inputs, and outputs, respectively. These vectors
contain the mapped values specified in indx, indu, and indy, respectively.

Add the updated custom functions to the operating point specification.

opspec.CustomConstrFcn = @myConstraintsMap;
opspec.CustomObjFcn = @myObjectiveMap;

Trim the model using the custom mapping, and view the trimmed states, which match the previous
results in op2.

[op3,rpt3] = findop(mdl,opspec,opt);
op3.States

 Compute Operating Points Using Custom Constraints and Objective Functions

1-65

ans =

x
__

(1.) scdTanks/Inertia
0
(2.) scdTanks/Tank1
15
(3.) scdTanks/Tank2
15
(4.) scdTanks/Tank3
16

Add Analytic Gradients to Custom Functions

For faster or more reliable computations, you can add analytic gradients to your custom constraint
and objective functions. Adding gradients can reduce the number of function calls during
optimization and potentially improve the accuracy of the optimization result. If you specify gradients,
you must specify them for both the custom constraint and objective functions. (Gradients for custom
trimming are not supported for Simscape™ models.)

To define the gradient of a given constraint or objective function, take the derivative of the function
with respect to a given state, input, or output. For example, if the objective function is

F = (u(1)+3)^2 + y(1)^2

then the gradient of F with respect to u(1) is

G = 2*(u(1)+3)

To add gradients to your custom constraint function, specify the following additional output
arguments:

• G_ineq - Gradient array for the inequality constraints
• G_eq - Gradient array for the equality constraints

Each column of G_ineq and G_eq contains the gradients for one constraint, and the order of the
columns matches the order of the rows in the corresponding constraint vector. The number of rows in
both G_ineq and G_eq is equal to the total number of states, inputs, and outputs in x, u, and y. Each
column contains gradients with respect to the states in x, followed by the inputs in u, then the
outputs in y.

For this example, add gradients to the constraint function that uses the custom mapping. You do not
have to specify a custom mapping when using gradients. However, defining gradients is simpler when
using mapped subsets of states, inputs, and outputs.

function [c_ineq,c_eq,G_ineq,G_eq] = myConstraintsGrad(x,u,y)
 c_ineq = [];
 c_eq = [x(1)-x(2); % Tank1 pressure - Tank2 pressure
 x(2)-x(3)+1]; % Tank2 pressure - Tank3 pressure + 1

 G_ineq = [];
 G_eq = [1 0;
 -1 1;

1 Steady-State Operating Points

1-66

 0 -1];
end

In this function, row i of G_eq contains gradients with respect to state x(i).

Similarly, to add gradients to your custom objective function, specify an additional output argument
G, which contains the gradients of F. G is returned as a column vector with the same format as the
columns of G_ineq and G_eq.

function [F,G] = myObjectiveGrad(x,u,y)
 F = max(x(3)-20, 0) + max(16-x(3), 0);

 if x(3) >= 20
 G = [0 0 1]';
 elseif x(3) <= 16
 G = [0 0 -1]';
 else
 G = [0 0 0]';
 end
end

Because the objective function in this example is piecewise differentiable, the value of G depends on
the value of the pressure in Tank3.

Add the updated custom functions to the operating point specification.

opspec.CustomConstrFcn = @myConstraintsGrad;
opspec.CustomObjFcn = @myObjectiveGrad;

To enable gradients in the optimization algorithm, enable the Jacobian optimization option.

opt.OptimizationOptions.Jacobian = 'on';

To use analytic Jacobians when trimming models using Steady State Manager or the Model
Linearizer, select the Enable analytic Jacobian trimming option.

 Compute Operating Points Using Custom Constraints and Objective Functions

1-67

Trim the model using the custom functions with gradients, and view the trimmed states.

[op4,rpt4] = findop(mdl,opspec,opt);
op4.States

ans =

x
__

(1.) scdTanks/Inertia
0
(2.) scdTanks/Tank1
15
(3.) scdTanks/Tank2
15
(4.) scdTanks/Tank3
16

The optimization result is the same as the result for the nongradient solution.

To see if the gradients improve the optimization efficiency, view the operating point search reports.
For example, compare the number function evaluations for the solution:

• Without gradients:

rpt3.OptimizationOutput.funcCount

ans =

1 Steady-State Operating Points

1-68

 25

• With gradients:

rpt4.OptimizationOutput.funcCount

ans =

 5

For this example, adding the analytical gradients decreases the number of function calls during
optimization.

See Also
findop | operspec | getStateIndex | getInputIndex | getOutputIndex

More About
• “Compute Steady-State Operating Points” on page 1-5

 Compute Operating Points Using Custom Constraints and Objective Functions

1-69

Batch Compute Steady-State Operating Points for Multiple
Specifications

This example shows how to find operating points for multiple operating point specifications using the
findop command. You can batch linearize the model using the operating points and study the change
in model behavior.

Each time you call findop, the software compiles the Simulink model. To find operating points for
multiple specifications, you can give findop an array of operating point specifications, instead of
repeatedly calling findop within a for loop. The software uses a single model compilation to compute
the multiple operating points, which is efficient, especially for models that are expensive to recompile
repeatedly.

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Create an array of default operating point specification objects.

opspec = operspec(sys,3);

To find steady-state operating points at which the output of the rad/s to rpm block is fixed, add a
known output specification to each operating point specification object.

opspec = addoutputspec(opspec,[sys '/rad//s to rpm'],1);
for i = 1:3
 opspec(i).Outputs(1).Known = true;
end

Specify different known output values for each operating point specification.

opspec(1).Outputs(1).y = 1500;
opspec(2).Outputs(1).y = 2000;
opspec(3).Outputs(1).y = 2500;

1 Steady-State Operating Points

1-70

Alternatively, you can configure operating point specifications using the Model Linearizer and
export the specifications to the MATLAB workspace. For more information, see “Import and Export
Specifications for Operating Point Search” on page 1-54.

Find the operating points that meet each of the three output specifications. findop computes all the
operating points using a single model compilation.

ops = findop(sys,opspec);

 Operating point search report 1:

opreport =

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
__________ __________ __________ __________ __________ __________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 -Inf 0.59562 Inf 0 3.4112e-09 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 -Inf 157.0796 Inf 0 -5.572e-07 0

Inputs:

 Min u Max
_______ _______ _______

(1.) scdspeed/Throttle perturbation
 -Inf -1.6086 Inf

Outputs:

Min y Max
____ ____ ____

(1.) scdspeed/rad//s to rpm
1500 1500 1500

 Operating point search report 2:

opreport =

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Batch Compute Steady-State Operating Points for Multiple Specifications

1-71

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 -Inf 0.54363 Inf 0 2.6649e-13 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 -Inf 209.4395 Inf 0 -8.4758e-12 0

Inputs:

 Min u Max
_________ _________ _________

(1.) scdspeed/Throttle perturbation
 -Inf 0.0038183 Inf

Outputs:

Min y Max
____ ____ ____

(1.) scdspeed/rad//s to rpm
2000 2000 2000

 Operating point search report 3:

opreport =

 Operating point search report for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 -Inf 0.51066 Inf 0 1.3297e-08 0
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 -Inf 261.7994 Inf 0 -7.8334e-08 0

Inputs:

 Min u Max
______ ______ ______

(1.) scdspeed/Throttle perturbation
 -Inf 1.4971 Inf

Outputs:

Min y Max
____ ____ ____

1 Steady-State Operating Points

1-72

(1.) scdspeed/rad//s to rpm
2500 2500 2500

ops is a vector of operating points for the scdspeed model that correspond to the specifications in
opspec. The output value for each operating point matches the known value specified in the
corresponding operating point specification.

See Also
findop | operspec

More About
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-

82
• “Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-74
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28

 Batch Compute Steady-State Operating Points for Multiple Specifications

1-73

Batch Compute Steady-State Operating Points for Parameter
Variation

Block parameters configure a Simulink model in several ways. For example, you can use block
parameters to specify various coefficients or controller sample times. You can also use a discrete
parameter, like the control input to a Multiport Switch block, to control the data path within a model.
Varying the value of a parameter helps you understand its impact on the model behavior. Also, you
can vary the parameters of a plant model in a control system to study the robustness of the controller
to plant variations.

When trimming a model using findop, you can specify a set of parameter values for which to trim
the model. The full set of values is called a parameter grid or parameter samples. findop computes
an operating point for each value combination in the parameter grid. You can vary multiple
parameters, thus extending the parameter grid dimension.

Which Parameters Can Be Sampled?
You can vary any model parameter with a value given by a variable in the model workspace, the
MATLAB workspace, or a data dictionary. In cases where the varying parameters are all tunable,
findop requires only one model compilation to find operating points for varying parameter values.
This efficiency is especially advantageous for models that are expensive to compile repeatedly.

Vary Single Parameter
To vary the value of a single parameter for batch trimming with findop, specify the parameter grid
as a structure having two fields. The Name field contains the name of the workspace variable that
specifies the parameter. The Value field contains a vector of values for that parameter to take during
trimming.

For example, the Watertank model has three parameters defined as MATLAB workspace variables,
a, b, and A. The following commands specify a parameter grid for the single parameter for A.

param.Name = 'A';
param.Value = Avals;

Here, Avals is an array specifying the sample values for A.

The following table lists some common ways of specifying parameter samples.

Parameter Sample-Space Type How to Specify the Parameter Samples
Linearly varying param.Value =

linspace(A_min,A_max,num_samples)
Logarithmically varying param.Value =

logspace(A_min,A_max,num_samples)
Random param.Value = rand(1,num_samples)
Custom param.Value = custom_vector

If the variable used by the model is not a scalar variable, specify the parameter name as an
expression that resolves to a numeric scalar value. For example, suppose that Kpid is a vector of PID

1 Steady-State Operating Points

1-74

gains. The first entry in that vector, Kpid, is used as a gain value in a block in your model. Use the
following commands to vary that gain using the values given in a vector Kpvals:

param.Name = 'Kpid(1)';
param.Value = Kpvals;

After you create the structure param, pass it to findop as the param input argument.

Multidimensional Parameter Grids
When you vary more than one parameter at a time, you generate parameter grids of higher
dimension. For example, varying two parameters yields a parameter matrix, and varying three
parameters yields a 3-D parameter grid. Consider the following parameter grid used for batch
trimming:

Here, you vary the values of three parameters, a, b, and c. The samples form a 3-by-4-by-5 grid. op is
an array with same dimensions that contains corresponding trimmed operating point objects.

 Batch Compute Steady-State Operating Points for Parameter Variation

1-75

Vary Multiple Parameters
To vary the value of multiple parameters for batch trimming with findop, specify parameter samples
as a structure array. The structure has an entry for each parameter whose value you vary. The
structure for each parameter is the same as described in “Vary Single Parameter” on page 1-74. You
can specify the Value field for a parameter as an array of any dimension. However, the size of the
Value field must match for all parameters. Corresponding array entries for all the parameters, also
referred to as a parameter grid points, must map to a specified parameter combination. When the
software trims the model, it computes an operating point for each grid point.

Specify Full Grid

Suppose that your model has two parameters whose values you want to vary, a and b:

a = a1, a2
b = b1, b2

You want to trim the model for every combination of a and b, also referred to as a full grid:

(a1, b1), (a1, b2)
(a2, b1), (a2, b2)

Create a rectangular parameter grid using ndgrid.

a1 = 1;
a2 = 2;
a = [a1 a2];

b1 = 3;
b2 = 4;
b = [b1 b2];

[A,B] = ndgrid(a,b)

>> A

A =

 1 1
 2 2

>> B

B =

 3 4
 3 4

Create the structure array, params, that specifies the parameter grid.

params(1).Name = 'a';
params(1).Value = A;

params(2).Name = 'b';
params(2).Value = B;

In general, to specify a full grid for N parameters, use ndgrid to obtain N grid arrays.

1 Steady-State Operating Points

1-76

[P1,...,PN] = ndgrid(p1,...,pN);

Here, p1,...,pN are the parameter sample vectors.

Create a 1 x N structure array.

params(1).Name = 'p1';
params(1).Value = P1;
...
params(N).Name = 'pN';
params(N).Value = PN;

Specify Subset of Full Grid

If your model is complex or you vary the value of many parameters, trimming the model for the full
grid can become expensive. In this case, you can specify a subset of the full grid using a table-like
approach. Using the example in “Specify Full Grid” on page 1-76, suppose that you want to trim the
model for the following combinations of a and b:

(a1, b1), (a1, b2)

Create the structure array, params, that specifies this parameter grid.

A = [a1 a1];
params(1).Name = 'a';
params(1).Value = A;

B = [b1 b2];
params(2).Name = 'b';
params(2).Value = B;

Batch Trim Model for Parameter Variations

This example shows how to obtain multiple operating points for a model by varying parameter values.
You can study the controller robustness to plant variations by batch linearizing the model using the
trimmed operating points.

Open the Simulink model.

sys = 'watertank';
open_system(sys)

 Batch Compute Steady-State Operating Points for Parameter Variation

1-77

Vary parameters A and b within 10% of their nominal values. Specify three values for A and four
values for b, creating a 3-by-4 value grid for each parameter.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each parameter.

params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the model, which specifies that both model states
are unknown and must be at steady state in the trimmed operating point.

opspec = operspec(sys)

opspec =

 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 0 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

By default, findop displays an operating point search report in the Command Window for each
trimming operation. To suppress the report display, create a trimming option set and turn off the
operating point search report display.

opt = findopOptions('DisplayReport','off');

Trim the model using the specified operating point specification, parameter grid, and option set.

[op,opreport] = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination. The software uses only one model
compilation. op is a 3-by-4 array of operating point objects that correspond to the specified
parameter grid points.

View the operating point in the first row and first column of op.

op(1,1)

1 Steady-State Operating Points

1-78

ans =

 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
1.4055
(2.) watertank/Water-Tank System/H
 10

Inputs: None

Batch Trim Model at Known States Derived from Parameter Values

This example shows how to batch trim a model when the specified parameter variations affect the
known states for trimming.

In the “Batch Trim Model for Parameter Variations” on page 1-77 example, the model is trimmed to
meet a single operating point specification that contains unknown states. In other cases, the model
states are known for trimming, but depend on the values of the varying parameters. In this case, you
cannot batch trim the model using a single operating point specification. You must create a separate
specification for each parameter value grid point.

Open the Simulink model.

sys = 'scdairframeTRIM';
open_system(sys)

In this model, the aerodynamic forces and moments depend on the speed, , and incidence, .

Vary the and parameters, and create a 6-by-4 parameter grid.

 Batch Compute Steady-State Operating Points for Parameter Variation

1-79

nA = 6; % number of alpha values
nV = 4; % number of V values
alphaRange = linspace(-20,20,nA)*pi/180;
vRange = linspace(700,1400,nV);
[alphaGrid,vGrid] = ndgrid(alphaRange,vRange);

Since some known state values for trimming depend on the values of and , you must create a
separate operating point specification object for each parameter combination.

for i = 1:nA
 for j = 1:nV
 % Set parameter values in model.
 alpha_ini = alphaGrid(i,j);
 v_ini = vGrid(i,j);

 % Create default specifications based on the specified parameters.
 opspec(i,j) = operspec(sys);

 % Specify which states are known and which states are at steady state.
 opspec(i,j).States(1).Known = [1;1];
 opspec(i,j).States(1).SteadyState = [0;0];

 opspec(i,j).States(3).Known = [1;1];
 opspec(i,j).States(3).SteadyState = [0;1];

 opspec(i,j).States(2).Known = 1;
 opspec(i,j).States(2).SteadyState = 0;

 opspec(i,j).States(4).Known = 0;
 opspec(i,j).States(4).SteadyState = 1;
 end
end

Create a parameter structure for batch trimming. Specify a name and value grid for each parameter.

params(1).Name = 'alpha_ini';
params(1).Value = alphaGrid;
params(2).Name = 'v_ini';
params(2).Value = vGrid;

Trim the model using the specified parameter grid and operating point specifications. When you
specify an array of operating point specifications and varying parameter values, the dimensions of the
specification array must match the parameter grid dimensions.

opt = findopOptions('DisplayReport','off');
op = findop(sys,opspec,params,opt);

findop trims the model for each parameter combination. op is a 6-by-4 array of operating point
objects that correspond to the specified parameter grid points.

See Also
findop | operspec | linearize

More About
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70

1 Steady-State Operating Points

1-80

• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-
82

• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28

 Batch Compute Steady-State Operating Points for Parameter Variation

1-81

Batch Compute Steady-State Operating Points Reusing
Generated MATLAB Code

This example shows how to batch-compute steady-state operating points for a model using generated
MATLAB code. You can either simulate or linearize your model at these operating points and study
the change in model behavior.

If you are new to writing scripts, interactively configure your operating points search using the
Steady State Manager or Model Linearizer.

Before generating code for batch trimming, first compute an operating point to meet an instance of
your specifications. For more information on computing operating points in:

• Steady State Manager, see “Compute Operating Points from Specifications Using Steady State
Manager” on page 1-19.

• Model Linearizer, see “Compute Operating Points from Specifications Using Model Linearizer”
on page 1-30.

After computing an operating point, generate a MATLAB script. To do so in the:

• In Steady State Manager, on the Specification tab, click Trim , and select Script.
• In Linear Analysis, in the Trim the model dialog box, click Generate MATLAB Script.

For more information on generating scripts, see “Generate MATLAB Code for Operating Point
Configuration” on page 1-112.

The generated script opens in the MATLAB Editor window. You can then modify the script to trim the
model at multiple operating points.

This example demonstrates batch trimming using the magball Simulink model.

1 Open the model.

open_system('magball')
2 To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click

Steady State Manager.
3 On the Steady State tab, click Trim Specification.
4 In the spec1 document, in the Known column, select the magball/Magnetic Ball Plant/height

state.

1 Steady-State Operating Points

1-82

5 Generate the trimming MATLAB code. On the Specification tab, click Trim , and select
Script.

6 In the MATLAB Editor window, modify the script to trim the model at multiple operating points.

a Remove unneeded comments from the generated script.
b Define the height variable, height, with values at which to compute operating points.

 Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code

1-83

c Add a for loop around the operating point search code to compute a steady-state operating
point for each height value. Within the loop, before calling findop, update the reference
ball height, specified by the Desired Height block.

Your script should look similar to the following code.
%% Specify the model name
model = 'magball';

%% Create the operating point specification object.
opspec = operspec(model);

%% Set the constraints on the states in the model.
% State (5) - magball/Magnetic Ball Plant/height
% - Default model initial conditions are used to initialize optimization.
opspec.States(5).Known = true;

%% Create the options
opt = findopOptions('DisplayReport','iter');

%% Specify ball heights at which to compute operating points
height = [0.05;0.1;0.15];

%% Loop over height values to find the corresponding operating points
for i = 1:length(height)
 % Set the ball height in the specification.
 opspec.States(5).x = height(i);

 % Update the model ball haight reference parameter.
 set_param('magball/Desired Height','Value',num2str(height(i)))

 % Trim the model
 [op(i),opreport(i)] = findop(model,opspec,opt);
end

After running this script, op contains operating points corresponding to each of the specified
height values.

See Also
Apps
Steady State Manager | Model Linearizer

Functions
findop

More About
• “Generate MATLAB Code for Operating Point Configuration” on page 1-112
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
• “Batch Compute Steady-State Operating Points for Parameter Variation” on page 1-74

1 Steady-State Operating Points

1-84

Find Operating Points at Simulation Snapshots

You can find a steady-state operating point using a model simulation. The resulting operating point
consists of the state values and model input levels at a specified simulation snapshot time.

To use simulation-based operating point computation, first configure your model initial conditions
such that the model converges to an equilibrium point. You can then simulate your model and create
operating points interactively using Steady State Manager or Model Linearizer. You can also find
snapshots programmatically at the MATLAB command line using the findop function.

To find operating points using snapshots, the software simulates the model and creates an operating
point at each simulation snapshot time. Each operating point contains the input and states values of
the model at the corresponding snapshot time.

To verify that the operating point is at steady state, initialize your model with the operating point
values, simulate the model, and check if key signals and states are at equilibrium. For more
information on initializing your model with an operating point, see “Simulate Simulink Model at
Specific Operating Point” on page 1-95.

Note If your Simulink model has internal states, do not linearize the model at an operating point you
compute from a simulation snapshot. Instead, try linearizing the model using a simulation snapshot or
at an operating point from optimization-based search. For more information, see “Handle Blocks with
Internal State Representation” on page 1-98.

Compute Operating Points at Simulation Snapshots Using Steady
State Manager

You can find an operating point at specified simulation snapshot times using the Steady State
Manager.

Open the Simulink model.

sys = 'magball';
open_system(sys)

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

To specify the simulation snapshot time, in the Steady State Manager, on the Steady State tab,
click Snapshots.

 Find Operating Points at Simulation Snapshots

1-85

Specify simulation times at which to take snapshots. For this example, take snapshots at 1 and 10
time units. In the Create Snapshot Operating Point dialog box, in the Simulation snapshot times
field, enter [1 10].

To take the snapshots, click .

An array of operating points, op1, appears in the data browser, in the Operating Points section. This
array contains two operating points, one for each specified snapshot time.

The software also opens a corresponding op1 document where you can view the operating points.

To select which operating point to view, use the Select Operating Point drop-down list.

Compute Operating Points at Simulation Snapshots Using Model
Linearizer
You can find an operating point at specified simulation snapshot times using the Model Linearizer.

Open the Simulink model.

sys = 'magball';
open_system(sys)

1 Steady-State Operating Points

1-86

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

To specify the simulation snapshot time, in the Model Linearizer, on the Linear Analysis tab, in the
Operating Point drop-down list, select Take Simulation Snapshot.

Take simulation snapshots at 1 and 10 time units. In the Enter snapshot times to linearize dialog box,
in the Simulation snapshot times field, enter [1 10].

To take the snapshots, click Take Snapshots.

An array of operating points, op_snapshot1, appears in the data browser, in the Linear Analysis
Workspace section. This array contains two operating points, one for each specified snapshot time.

To view the operating points, in the Linear Analysis Workspace, double-click op_snapshot1. You
can select which operating point to view using the Select Operating Point drop-down list.

 Find Operating Points at Simulation Snapshots

1-87

Find Operating Points at Simulation Snapshots at Command Line

This example shows how to compute a steady-state operating point at specified simulation snapshot
times.

Open the Simulink model.

sys = 'magball';
open_system(sys)

Simulate the model, and create operating points at 1 and 10 time units. The software simulates the
model and computes an operating point at each simulation snapshot time.

op = findop(sys,[1 10]);

op is a column vector of operating points, with one element for each specified snapshot time.

Display the first operating point.

op(1)

ans =

 Operating point for the Model magball.
 (Time-Varying Components Evaluated at time t=1)

States:

 x

(1.) magball/Controller/PID Controller/Filter/Cont. Filter/Filter
5.7581e-06
(2.) magball/Controller/PID Controller/Integrator/Continuous/Integrator
 14.0071
(3.) magball/Magnetic Ball Plant/Current
 7.0036
(4.) magball/Magnetic Ball Plant/dhdt
-6.6961e-08
(5.) magball/Magnetic Ball Plant/height

1 Steady-State Operating Points

1-88

 0.05

Inputs: None

See Also
Apps
Model Linearizer

Functions
findop

More About
• “About Operating Points” on page 1-2
• “Simulate Simulink Model at Specific Operating Point” on page 1-95
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45

 Find Operating Points at Simulation Snapshots

1-89

Compute Operating Point Snapshots at Triggered Events

This example shows how to generate operating points using triggered simulation snapshots.

Open Model

The model for this example is a speed control system.

Open the model.

mdl = "scdspeedtrigger";
open_system(mdl)

The Reference Steps block generates a reference signal that steps through three steady-state speed
conditions: 2500, 3000, and 3500 rpm. In this example, you find operating points at each of these
conditions by taking operating point snapshots.

Configure Settling Time Events

Since the exact time that a system reaches a steady-state condition is not always known, you can
configure your model to detect when a steady-state condition occurs and generate corresponding
trigger events.

For this example, the Generate settling time events subsystem detects when the speed signal near a
steady-state settling point. The block generates a trigger event when the input signal is within a
specified region near the settling point for a minimum amount of time.

For this example, you define regions near the three steady-state speed values. Open the block and
specify the upper and lower bounds for these ranges to be 5 rpm above and below the steady-state
speed values. To do so, set the Settling Time Upper Bounds and Settling Time Lower Bounds
parameters.

Also, specify a minimum settling interval of 5 seconds using the Settling Interval parameter.

1 Steady-State Operating Points

1-90

Within the Generate settling time events subsystem:

• When the input signal is within the specified upper and lower bounds, the Interval Test Dynamic
block outputs a true signal.

• The Interval Test Dynamic block output changing from false to true triggers a latching
mechanism to track how long the signal is true.

• When the signal is true for a specified interval time, the latching mechanism outputs a true
signal.

• When the outputs of the Interval Test Dynamic block and the latching mechanism are both true,
the output trigger signal is set to true.

 Compute Operating Point Snapshots at Triggered Events

1-91

The trigger signal from the Generate settling time events subsystem connects to a Trigger-Based
Operating Point Snapshot block. You can configure this block to take operating point snapshots on the
rising or falling edge of a trigger signal. For this example, the block uses the rising edge of the
trigger signal.

Find Operating Points

To compute the operating points, use the findop function to simulate the model for 60 seconds. This
function returns a vector of four operating points: one for each triggered snapshot time and one at a
simulation time of 60 seconds.

op = findop(mdl,60);

The first operating point is near the 2500 rpm (261.8 rad/s) settling condition.

op(1)

ans =

 Operating point for the Model scdspeedtrigger.
 (Time-Varying Components Evaluated at time t=10.63)

States:

 x

(1.) scdspeedtrigger/PID Controller/Filter/Cont. Filter/Filter
 0
(2.) scdspeedtrigger/PID Controller/Integrator/Continuous/Integrator
10.4701

1 Steady-State Operating Points

1-92

(3.) scdspeedtrigger/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
0.51066
(4.) scdspeedtrigger/Vehicle Dynamics/w = T//J w0 = 209 rad//s
261.7988

Inputs: None

The second operating point is near the 3000 rpm (314.16 rad/s) settling condition.

op(2)

ans =

 Operating point for the Model scdspeedtrigger.
 (Time-Varying Components Evaluated at time t=28.3703)

States:

 x

(1.) scdspeedtrigger/PID Controller/Filter/Cont. Filter/Filter
 0
(2.) scdspeedtrigger/PID Controller/Integrator/Continuous/Integrator
11.9151
(3.) scdspeedtrigger/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
0.49012
(4.) scdspeedtrigger/Vehicle Dynamics/w = T//J w0 = 209 rad//s
314.1596

Inputs: None

The third operating point is near the 3500 rpm (366.52 rad/s) settling condition.

op(3)

ans =

 Operating point for the Model scdspeedtrigger.
 (Time-Varying Components Evaluated at time t=48.2688)

States:

 x

(1.) scdspeedtrigger/PID Controller/Filter/Cont. Filter/Filter
 0
(2.) scdspeedtrigger/PID Controller/Integrator/Continuous/Integrator
13.3488
(3.) scdspeedtrigger/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
0.47835
(4.) scdspeedtrigger/Vehicle Dynamics/w = T//J w0 = 209 rad//s

 Compute Operating Point Snapshots at Triggered Events

1-93

366.52

Inputs: None

For an example that linearizes the speed control model at these operating points, see “Linearize at
Triggered Simulation Events” on page 2-74.

bdclose(mdl)

See Also
Functions
findop

Blocks
Trigger-Based Operating Point Snapshot

More About
• “Linearize at Simulation Snapshot” on page 2-71
• “Find Operating Points at Simulation Snapshots” on page 1-85
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45

1 Steady-State Operating Points

1-94

Simulate Simulink Model at Specific Operating Point

This example shows how to initialize a model at a specific operating point for simulation. For more
information on computing operating points, see “Compute Steady-State Operating Points” on page 1-
5 and “Find Operating Points at Simulation Snapshots” on page 1-85

To simulate your model at your computed operating point, you must set the model initial conditions to
match the states and inputs in the operating point.

If you already have an operating point, op, in your MATLAB or model workspace, you can set the
initial conditions in the Configuration Parameters dialog box, in the Data Import/Export pane. To do
so:

• Set the Input parameter to getinputstruct(op).
• Set the Initial state parameter to getstatestruct(op).

You can also set the model initial conditions programmatically. For more information, see
getstatestruct and getinputstruct.

Alternatively, if you computed your operating point using the Steady State Manager or Model
Linearizer, you can interactively set the model initial conditions form within these tools.

Once you have set your model initial condition, simulate your model at the specified operating point.

Set Model Operating Point Using Steady State Manager
In the Steady State Manager, in the data browser, in the Operating Point section, right-click the
operating point at which you want to simulate the model, and select Open Selection.

If you computed multiple operating points using a simulation snapshot, in the operating point
document, select an operating point from the Select Operating Point drop-down list.

 Simulate Simulink Model at Specific Operating Point

1-95

On the Operating Point tab, click Set Initial Conditions.

The software sets the initial conditions of the model to match the inputs and states in the selected
operating point.

Similarly, using the Steady State Manager, you can also set the model initial conditions based on an
operating point specification or an operating point search report.

Set Model Operating Point Using Model Linearizer
In the Model Linearizer, in the data browser, in the Linear Analysis Workspace, double-click the
computed operating point or simulation snapshot.

If you computed multiple operating points using a simulation snapshot, select an operating point from
the Select Operating Point drop-down list.

1 Steady-State Operating Points

1-96

In the Edit dialog box, click Initialize model.

In the Initialize Model dialog box, specify a Variable Name for the operating point object.
Alternatively, you can use the default variable name.

To export the operating point to the MATLAB workspace and set the model initial condition to this
operating point, click OK.

Tip If you want to store this operating point with the model, export the operating point to the Model
Workspace instead.

See Also

Related Examples
• “Compute Steady-State Operating Points” on page 1-5
• “Find Operating Points at Simulation Snapshots” on page 1-85

 Simulate Simulink Model at Specific Operating Point

1-97

Handle Blocks with Internal State Representation

Operating Point Object Excludes Blocks with Internal States
The operating point object used for linearization and control design does not include Simulink blocks
with internal state representation, such as the following:

• Memory blocks
• Transport Delay and Variable Transport Delay blocks
• Disabled If Action Subsystem and Switch Case Action Subsystem blocks
• Backlash blocks
• MATLAB Function blocks with persistent data
• Rate Transition blocks
• Stateflow blocks
• S-Function blocks with states not registered as Continuous or Double Value Discrete

For example, if you compute a steady-state operating point for the following Simulink model, the
resulting operating point object does not include the Backlash block states because these states have
an internal representation. If you use this operating point object to initialize a Simulink model, the
initial conditions of the Backlash blocks might be incompatible with the operating point.

As an example, you can compute an operating point for model myModel from a simulation snapshot at
10 seconds and then linearize the model at this operating point. In this case, the linearize function
initializes the model state with the operating point before linearizing the model.

op = findop('myModel',10);
linsys = linearize('myModel',io,op);

If myModel contains a one or more blocks with an internal state representation, op does not contain
the internal states. Therefore, linsys might not be an accurate linear representation of the model.

Instead of finding an operating point at the simulation snapshot, you can simulate the model to the
snapshot time and linearize the model at the snapshot itself.

linsys = linearize('myModel',io,10);

This approach avoids initializing the model with an operating point that is missing state information.

1 Steady-State Operating Points

1-98

Configure Blocks with Internal States for Steady-State Operating
Point Search
Blocks with internal states can cause problems for steady-state operating point search (trimming).
Where there is no direct feedthrough, the input to the block at the current time does not determine
the output of the block at the current time.

To fix this issue for Memory, Transport Delay, or Variable Transport Delay blocks, select the Direct
feedthrough of input during linearization block parameter before searching for an operating
point or linearizing a model at a steady state. This setting makes such blocks behave as if they have a
gain of one during an operating point search.

For example, the following model includes a Transport Delay block. In this case, you cannot find a
steady-state operating point using optimization because the output of the Transport Delay is always
zero. Since the reference signal is 1, the input to the Plant block must be nonzero to get the plant
block to have an output of 1 and be at steady state.

Select the Direct feedthrough of input during linearization option in the Block Parameters
dialog box before searching for an operating point. This setting allows the PID Controller block to
pass a nonzero value to the Plant block.

You can also set direct feedthrough options at the command line.

Block Command to Specify Direct Feedthrough
Memory set_param(blockname,'LinearizeMemory','on')
Transport Delay or Variable Transport
Delay

set_param(blockname,'TransDelayFeedthrough','on')

For other blocks with internal states, determine whether the output of the block impacts the state
derivatives or desired output levels before computing operating points. If the block impacts these
derivatives or output levels, consider replacing it using a configurable subsystem.

See Also

More About
• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Points” on page 1-5

 Handle Blocks with Internal State Representation

1-99

Synchronize Simulink Model Changes with Operating Point
Specifications

Modifying your Simulink model can change, add, or remove states, inputs, or outputs, which changes
the operating point. You can synchronize existing operating point specification objects to reflect the
changes in your model.

Synchronize Model Changes Using Steady State Manager
If you change your Simulink model while the Steady State Manager is open, you must synchronize
the operating point specifications in the Steady State Manager to reflect the changes in the model.

Open the Simulink model.

sys = ('scdspeedctrl');
open_system(sys)

To open the Steady State Manager, in the Simulink model window, in the Apps gallery, click Steady
State Manager.

To create an operating specification based on the current model configuration, in the Steady State
Manager, on the Steady State tab, click Trim Specification.

In the spec1 document, the Reference Filter block has one state.

In the Simulink model window, double-click the Reference Filter block. Change the Numerator of the
transfer function to 100, and change the Denominator to [1 20 100].

1 Steady-State Operating Points

1-100

Click OK.

This change increases the order of the filter, adding a state to the Simulink model.

To update the operating point specifications to reflect the model changes, in the Steady State
Manager, on the Specification tab, click Sync from Model.

The software updates the specifications. The Reference Filter block now has two states.

To find the operating point that meets these specifications, on the Specification tab, click Trim .

 Synchronize Simulink Model Changes with Operating Point Specifications

1-101

Synchronize Model Changes Using Model Linearizer
If you change your Simulink model while the Model Linearizer is open, you must synchronize the
operating point specifications in the Model Linearizer to reflect the changes in the model.

Open the Simulink model.

sys = ('scdspeedctrl');
open_system(sys)

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

In the Model Linearizer, in the Operating Points drop-down list, select Trim Model.

In the Trim the model dialog box, the Reference Filter block contains one state.

In the Simulink model window, double-click the Reference Filter block. Change the Numerator of the
transfer function to 100, and change the Denominator to [1 20 100].

Click OK.

This change increases the order of the filter, adding a state to the Simulink model.

To update the operating point specifications to reflect the model changes, in the Trim the model
dialog box, click Sync with Model.

The software updates the specifications. The Reference Filter block now has two states.

1 Steady-State Operating Points

1-102

To find the operating point that meets these specifications, click Start trimming.

Synchronize Model Changes at the Command Line

This example shows how to update an existing operating point specification object with changes in
the Simulink® model.

Open the model.

sys = 'scdspeedctrl';
open_system(sys)

Create an operating point specification object based on the current model configuration.

 Synchronize Simulink Model Changes with Operating Point Specifications

1-103

opspec = operspec(sys)

opspec =

 Operating point specification for the Model scdspeedctrl.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeedctrl/External Disturbance/Transfer Fcn
 0 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
(2.) scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter
 0 false true -Inf Inf -Inf Inf
(3.) scdspeedctrl/PID Controller/Integrator/Continuous/Integrator
 8.9768 false true -Inf Inf -Inf Inf
(4.) scdspeedctrl/Reference Filter/State Space
 200 false true -Inf Inf -Inf Inf
(5.) scdspeedctrl/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 0.54363 false true -Inf Inf -Inf Inf
(6.) scdspeedctrl/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 209.4395 false true -Inf Inf -Inf Inf

Inputs: None

Outputs: None

Change the transfer function of the Reference Filter block. Set the Numerator parameter to 100 and
the Denominator parameter to [1 20 100].

set_param('scdspeedctrl/Reference Filter','N',"100");
set_param('scdspeedctrl/Reference Filter','D',"[1 20 100]");

Since the model parameters have changed, trying to find an operating point that meets the
specifications in opspec using the following command generates an error.

op = findop(sys,opspec);

Update the operating point specification object to reflect the changes in the model.

opspec = update(opspec);

Find an operating point that meets the updated specifications.

op = findop(sys,opspec);

 Operating point search report:

opreport =

1 Steady-State Operating Points

1-104

 Operating point search report for the Model scdspeedctrl.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeedctrl/External Disturbance/Transfer Fcn
 -Inf 0 Inf 0 0 0
 -Inf 0 Inf 0 0 0
(2.) scdspeedctrl/PID Controller/Filter/Cont. Filter/Filter
 -Inf 0 Inf 0 0 0
(3.) scdspeedctrl/PID Controller/Integrator/Continuous/Integrator
 -Inf 8.9768 Inf 0 -4.5077e-14 0
(4.) scdspeedctrl/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 -Inf 0.54363 Inf 0 2.9365e-15 0
(5.) scdspeedctrl/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 -Inf 209.4395 Inf 0 -1.5226e-13 0
(6.) scdspeedctrl/Reference Filter/State Space
 -Inf 0 Inf 0 0 0
 -Inf 20 Inf 0 0 0

Inputs: None

Outputs: None

After you update the operating point specification object, the optimization algorithm successfully
finds the operating point.

See Also
update

More About
• “Simulate Simulink Model at Specific Operating Point” on page 1-95

 Synchronize Simulink Model Changes with Operating Point Specifications

1-105

Find Steady-State Operating Points for Simscape Models
You can find operating points for models with Simscape components using Simulink Control Design
software. In particular, you can find steady-state operating points using one of the following methods:

• Optimization-based trimming — Specify constraints on model inputs, outputs, or states, and
compute a steady-state operating point that satisfies these constraints. For more information,
“Compute Steady-State Operating Points” on page 1-5.

By default, you can define operating point specifications for any Simulink and Simscape states in
your model, and any root-level input and output ports of your model. You can also define additional
output specifications on Simulink signals. To apply output specifications to a Simscape physical
signal, first convert the signal using a PS-Simulink Converter block.

• Simulation snapshot — Specify model initial conditions near an expected equilibrium point, and
simulate the model until it reaches steady state. You can then create an operating point based on
the steady-state signals and states in the model. For more information, see “Find Operating Points
at Simulation Snapshots” on page 1-85.

Projection-Based Trim Optimizers
To produce better trimming results for Simscape models, you can use projection-based trim
optimizers. These optimizers enforce the consistency of the model initial condition at each evaluation
of the objective function or nonlinear constraint function. Using projection-based trim optimizers
requires Optimization Toolbox™ software.

You can use these projection-based optimizers when trimming models from the command line and in
the Model Linearizer.

To specify the optimizer type at the command line, create a findopOptions option set, and specify
the Optimizer option as one of the following:

• 'lsqnonlin-proj' — Nonlinear least squares with projection
• 'graddescent-proj' — Gradient descent with projection

When using gradient descent with projection at the command line, you can specify whether the
algorithm enforces the model initial conditions using hard or soft constraints by specifying the
ConstraintType option in findopOptions.

To specify the optimizer type in the:

• Steady State Manager, open the Trim Options dialog box. On the Specification tab, click Trim
Options.

• Model Linearizer, first open the Trim the model dialog box. On the Linear Analysis tab, in the
Operating Point drop-down list, select Trim Model. Then, select the Options tab.

In the Optimization Method drop-down list, select an optimizer.

1 Steady-State Operating Points

1-106

When you use gradient descent with projection in Steady State Manager or Model Linearizer, the
algorithm enforces the model initial conditions using hard constraints.

For an example that uses projection-based trim optimization, see “Steady-State Simulation with
Projection-Based Trim Optimizer” on page 1-108.

See Also
Apps
Steady State Manager | Model Linearizer

Functions
findop | findopOptions | operspec

Blocks
PS-Simulink Converter

 Find Steady-State Operating Points for Simscape Models

1-107

Steady-State Simulation with Projection-Based Trim Optimizer

This example shows how to find a steady-state operating point for a Simscape™ Multibody™ model
using the findop function with a projection-based optimizer.

Projection-based optimizers enforce the consistency of the model initial conditions at each evaluation
of the objective function or nonlinear constraint function, which can improve trimming results for
Simscape models. Using projection-based trim optimizers requires Optimization Toolbox™ software.

Open Model

The model for this example is a backhoe system modeled in Simscape Multibody.

Open the Simulink® model.

mdl = 'scdbackhoeTRIM';
open_system(mdl)

Define Operating Point Specifications

To define operating point specifications, first create a specification object. The input, output, and
state values in ops match the model initial conditions.

opspec = operspec(mdl);

Specify that the model outputs are known values for trimming.

opspec.Outputs(1).Known = true(10,1);

Specify known values for the angles in the backhoe system.

1 Steady-State Operating Points

1-108

opspec.Outputs(1).y(1) = 0; % Bucket angle
opspec.Outputs(1).y(3) = 50; % Upper angle
opspec.Outputs(1).y(5) = -50; % Lower angle
opspec.Outputs(1).y(7) = 0; % Base angle
opspec.Outputs(1).y(9) = -45; % Support angle

For the corresponding angular velocities, the known values are zero, which match the model initial
conditions in opspec.

Trim Model

Create an option set for trimming and specify the optimizer type using the OptimizerType option.
For this example use the projection-based gradient-descent solver. To view an iterative update of the
trimming progress in the Command Window, set the DisplayReport option to 'iter'.

opt = findopOptions('OptimizerType','graddescent-proj',...
 'DisplayReport','iter');

Specify the maximum number of function evaluations for optimization.

opt.OptimizationOptions.MaxFunEvals = 20000;

Find the steady-state operating point that meets the specifications in opspec. This operation takes
several minutes.

op = findop(mdl,opspec,opt);

Optimizing to solve for all desired dx/dt=0, x(k+1)-x(k)=0, and y=ydes.

(Maximum Error) Block

(4.50000e+01) scdbackhoeTRIM/Out1
(3.54437e+00) scdbackhoeTRIM/Out1
(2.29759e-01) scdbackhoeTRIM/Out1
(3.85010e-02) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Right/Revolute Joint Arm
(9.32098e-03) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Right/Revolute Joint Arm
(7.25765e-04) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Left/Revolute Joint Arm
(6.61775e-04) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Left/Revolute Joint Arm
(8.93523e-05) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Left/Revolute Joint Arm
(1.41237e-05) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Left/Revolute Joint Arm
(9.73271e-06) scdbackhoeTRIM/Plant/Cylinder Base to Mounting Plate
(1.01808e-06) scdbackhoeTRIM/Plant/Mounting Assembly/Mounting Base and Support Arms/Support Arm Right/Revolute Joint Arm
(1.04810e-06) scdbackhoeTRIM/Plant/Cylinder Base to Mounting Plate
(1.04810e-06) scdbackhoeTRIM/Plant/Cylinder Base to Mounting Plate

Operating point specifications were successfully met.

Simulate Model

Configure the model to use the computed operating point op as the model initial condition.

set_param(mdl,'LoadExternalInput','on')
set_param(mdl,'ExternalInput','getinputstruct(op)')
set_param(mdl,'LoadInitialState','on')
set_param(mdl,'InitialState','getstatestruct(op)')

Simulate the model.

 Steady-State Simulation with Projection-Based Trim Optimizer

1-109

sim(mdl);

View the joint angle trajectories.

open_system([mdl, '/Joint Angle Trajectories'])

1 Steady-State Operating Points

1-110

The simulation results show that the five angles are trimmed to their expected values. The trajectory
can deviate slightly over time due to numerical noise and instability. You can stabilize the angles
using feedback controllers.

See Also
Functions
findop | findopOptions | operspec

More About
• “About Operating Points” on page 1-2

 Steady-State Simulation with Projection-Based Trim Optimizer

1-111

Generate MATLAB Code for Operating Point Configuration
This topic shows how to generate MATLAB code for operating point configuration using the Steady
State Manager or Model Linearizer. You can generate MATLAB code to programmatically
reproduce a result that you obtained interactively.

You can also modify the script to compute multiple operating points with systematic variations in
operating point specifications (batch computing). For more information, see “Batch Compute Steady-
State Operating Points Reusing Generated MATLAB Code” on page 1-82.

Generate MATLAB Code from Steady State Manager
When computing operating points using the Steady State Manager, you can generate a MATLAB
script or a live script for configuring operating point specifications and computing an operating point.
To do so:

1 To create a specification, in the Steady State Manager, on the Steady State tab, click Trim
Specification.

2 In the corresponding specification document, configure the operating point state, input, and
output specifications. For an example, see “Compute Operating Points from Specifications Using
Steady State Manager” on page 1-19.

3 To specify optimization search settings, on the Specification tab, click Trim Options. For more
information, see “Change Operating Point Search Optimization Settings” on page 1-52.

4 To generate code that creates an operating point using your specifications and search options,
click Trim , and select a code generation option.

1 Steady-State Operating Points

1-112

You can generate one of the following scripts:

• Live script — Click Live Script.
• MATLAB script — Click Script.

The generated script opens in the MATLAB Editor.

Generate MATLAB Code from Model Linearizer
When computing operating points using the Model Linearizer, you can generate a MATLAB script
for configuring operating point specifications and computing an operating point. To do so:

1 In the Model Linearizer, on the Linear Analysis tab, in the Operating Points drop-down list,
click Trim Model.

2 In the Trim the model dialog box, on the Specifications tab, configure the operating point state,
input, and output specifications. For an example, see “Compute Operating Points from
Specifications Using Model Linearizer” on page 1-30.

3 In the Options tab, specify search optimization settings. For more information, see “Change
Operating Point Search Optimization Settings” on page 1-52.

4 To generate code that creates an operating point using your specifications and search options,
click Generate MATLAB Script.

The generated code opens in the MATLAB Editor.

See Also
Functions
findop | operspec

Apps
Steady State Manager | Model Linearizer

More About
• “Compute Steady-State Operating Points” on page 1-5
• “Compute Steady-State Operating Points” on page 1-5

 Generate MATLAB Code for Operating Point Configuration

1-113

• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-82

1 Steady-State Operating Points

1-114

Linearization

• “Linearize Nonlinear Models” on page 2-3
• “Choose Linearization Tools” on page 2-7
• “Specify Portion of Model to Linearize” on page 2-10
• “Specify Portion of Model to Linearize in Simulink Model” on page 2-17
• “Specify Portion of Model to Linearize in Model Linearizer” on page 2-22
• “Specify Portion of Model to Linearize at Command Line” on page 2-29
• “How the Software Treats Loop Openings” on page 2-31
• “Linearize Plant” on page 2-33
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-38
• “Compute Open-Loop Response” on page 2-46
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Linearize at Trimmed Operating Point” on page 2-66
• “Linearize at Simulation Snapshot” on page 2-71
• “Linearize at Triggered Simulation Events” on page 2-74
• “Linearize Models with Delays” on page 2-77
• “Linearize Models with Model References” on page 2-82
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-91
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95
• “Order States in Linearized Model” on page 2-102
• “Validate Linearization in Time Domain” on page 2-107
• “Validate Linearization In Frequency Domain Using Model Linearizer” on page 2-110
• “View Linearized Model Equations Using Model Linearizer” on page 2-113
• “Analyze Results Using Model Linearizer Response Plots” on page 2-115
• “Generate MATLAB Code for Linearization from Model Linearizer” on page 2-122
• “When to Specify Individual Block Linearization” on page 2-124
• “Specify Linear System for Block Linearization Using MATLAB Expression” on page 2-125
• “Specify D-Matrix System for Block Linearization Using Function” on page 2-126
• “Specify Custom Linearizations for Simulink Blocks” on page 2-130
• “Augment Block Linearization” on page 2-135
• “Models with Time Delays” on page 2-139
• “Linearize Multirate Models” on page 2-141
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147

2

• “Change Perturbation Level of Blocks Perturbed During Linearization” on page 2-150
• “Linearize Blocks with Non-Floating-Point Signals or States” on page 2-152
• “Linearize Event-Based Subsystems (Externally Scheduled Subsystems)” on page 2-154
• “Configure Models with Pulse Width Modulation Signals” on page 2-160
• “Linearize Simscape Networks” on page 2-162
• “Linearize Sparse Models” on page 2-166
• “Specify Linearization for Model Components Using System Identification” on page 2-170
• “Exact Linearization Algorithm” on page 2-177
• “Trim and Linearize an Airframe” on page 2-183
• “Linearize Pneumatic System at Simulation Snapshots” on page 2-188
• “Linearize Pulp Paper Process Model” on page 2-192

2 Linearization

2-2

Linearize Nonlinear Models

What Is Linearization?
Linearization is a linear approximation of a nonlinear system that is valid in a small region around an
operating point.

For example, suppose that the nonlinear function is y = x2. Linearizing this nonlinear function about
the operating point x = 1, y = 1 results in a linear function y = 2x− 1.

Near the operating point, y = 2x− 1 is a good approximation to y = x2. Away from the operating
point, the approximation is poor.

The next figure shows a possible region of good approximation for the linearization of y = x2. The
actual region of validity depends on the nonlinear model.

Extending the concept of linearization to dynamic systems, you can write continuous-time nonlinear
differential equations in this form:

ẋ(t) = f x(t), u(t), t
y(t) = g x(t), u(t), t .

In these equations, x(t) represents the system states, u(t) represents the inputs to the system, and y(t)
represents the outputs of the system.

 Linearize Nonlinear Models

2-3

A linearized model of this system is valid in a small region around the operating point t=t0, x(t0)=x0,
u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0.

To represent the linearized model, define new variables centered about the operating point:

δx(t) = x(t) − x0
δu(t) = u(t) − u0
δy(t) = y(t) − y0

The linearized model in terms of δx, δu, and δy is valid when the values of these variables are small:

δẋ(t) = Aδx(t) + Bδu(t)
δy(t) = Cδx(t) + Dδu(t)

Applications of Linearization
Linearization is useful in model analysis and control design applications.

Exact linearization of the specified nonlinear Simulink model produces linear state-space, transfer-
function, or zero-pole-gain equations that you can use to:

• Plot the Bode response of the Simulink model.
• Evaluate loop stability margins by computing open-loop response.
• Analyze and compare plant response near different operating points.
• Design linear controller

Classical control system analysis and design methodologies require linear, time-invariant models.
Simulink Control Design automatically linearizes the plant when you tune your compensator. See
“Choose a Control Design Approach” on page 9-2.

• Analyze closed-loop stability.
• Measure the size of resonances in frequency response by computing closed-loop linear model for

control system.
• Generate controllers with reduced sensitivity to parameter variations and modeling errors.

Linearization in Simulink Control Design
You can use Simulink Control Design software to linearize continuous-time, discrete-time, or
multirate Simulink models. The resulting linear time-invariant model is in state-space form.

By default, Simulink Control Design linearizes models using a block-by-block approach. This block-by-
block approach individually linearizes each block in your Simulink model and combines the results to
produce the linearization of the specified system.

You can also linearize your system using full-model numerical perturbation, where the software
computes the linearization of the full model by perturbing the values of the root-level inputs and
states. For each input and state, the software perturbs the model by a small amount and computes a
linear model based on the model response to these perturbations. You can perturb the model using
either forward differences or central differences.

The block-by-block linearization approach has several advantages to full-model numerical
perturbation:

2 Linearization

2-4

• Most Simulink blocks have a preprogrammed linearization that provides an exact linearization of
the block.

• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model simulation.
• Structurally nonminimal states are automatically removed.
• You can specify linearizations that include uncertainty (requires Robust Control Toolbox™

software).
• You can obtain detailed diagnostic information.
• When linearizing multirate models, you can use different rate conversion methods. Full-model

numerical perturbation can only use zero-order-hold rate conversion.

Model Requirements for Exact Linearization
Exact linearization supports most Simulink blocks.

However, Simulink blocks with strong discontinuities or event-based dynamics linearize (correctly) to
zero or large (infinite) gain. Models that include event-based or discontinuous behavior require
special handling by Simulink Control Design software. Such event-based or discontinuous behavior
can come from blocks such as:

• Blocks from Discontinuities library
• Stateflow charts
• Triggered subsystems
• Pulse width modulation (PWM) signals

For most applications, the states in your Simulink model should be at steady state. Otherwise, your
linear model is only valid over a small time interval.

Operating Point Impact on Linearization
Choosing the right operating point for linearization is critical for obtaining an accurate linear model.
The linear model is an approximation of the nonlinear model that is valid only near the operating
point at which you linearize the model.

Although you specify which Simulink blocks to linearize, all blocks in the model affect the operating
point.

A nonlinear model can have two very different linear approximations when you linearize about
different operating points.

The linearization result for this model is shown next, with the initial condition for the integration x0 =
0.

 Linearize Nonlinear Models

2-5

This table summarizes the different linearization results for two different operating points.

Operating Point Linearization Result
Initial Condition = 5, State x1 = 5 30/s
Initial Condition = 0, State x1 = 0 0

You can linearize your Simulink model at three different types of operating points:

• Trimmed operating point — “Linearize at Trimmed Operating Point” on page 2-66
• Simulation snapshot — “Linearize at Simulation Snapshot” on page 2-71
• Triggered simulation event — “Linearize at Triggered Simulation Events” on page 2-74

See Also

More About
• “Exact Linearization Algorithm” on page 2-177
• “Linearize Plant” on page 2-33
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Compute Open-Loop Response” on page 2-46
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• Trimming and Linearization Part 1: What is Linearization?
• Trimming and Linearization Part 2: The Practical Side of Linearization

2 Linearization

2-6

https://www.mathworks.com/videos/trimming-and-linearization-part-1-what-is-linearization--1543918523971.html
https://www.mathworks.com/videos/trimming-and-linearization-part-2-the-practical-side-of-linearization-1544004777920.html

Choose Linearization Tools

Choosing Simulink Control Design Linearization Tools
Simulink Control Design software lets you perform linear analysis of nonlinear models using a user
interface, functions, or blocks.

Linearization Tool When to Use
Model Linearizer • Interactively explore Simulink model linearization

under different operating conditions.
• Diagnose linearization problems.
• Batch linearize for varying model parameter

values.
• Automatically generate MATLAB code for batch

linearization.
linearize • Linearize a Simulink model for command-line

analysis of poles and zeros, plot responses, and
control design.

• Batch linearize for varying model parameter values
and operating points.

slLinearizer Batch linearize for varying model parameter values,
operating points, and I/O sets.

Linear Analysis Plots blocks on page 2-60 • Visualize linear characteristics of your Simulink
model during simulation.

• View bounds on linear characteristics of your
Simulink model on plots.

• Optionally, check that the linear characteristics of
your Simulink model satisfy specified bounds.

Note Linear Analysis Plots blocks do not support code
generation. You can only use these blocks in Normal
simulation mode.

Choosing Exact Linearization Versus Frequency Response Estimation
In most cases, to obtain a linear approximation of a Simulink model, you should use exact
linearization instead of frequency response estimation.

Exact linearization:

• Is faster because it does not require simulation of the Simulink model.
• Returns a parametric state-space model.

Frequency response estimation returns frequency response data. To create a transfer function or a
state-space model from the resulting frequency response data, you must fit a model to the data
using System Identification Toolbox™ software.

 Choose Linearization Tools

2-7

Use frequency response estimation:

• To validate exact linearization accuracy. For more information, see “Validate Linearization In
Frequency Domain Using Model Linearizer” on page 2-110.

• When your Simulink model contains discontinuities or non-periodic event-based dynamics.
• To study the impact of amplitude size on frequency response. For more information, see

“Describing Function Analysis of Nonlinear Simulink Models” on page 5-87.

Linearization Using Simulink Control Design Versus Simulink
How is Simulink linmod different from Simulink Control Design functionality for linearizing
nonlinear models?

Although both Simulink Control Design and Simulink linmod perform block-by-block linearization,
Simulink Control Design functionality is enhanced by a more flexible user interface and Control
System Toolbox™ numerical algorithms.

 Simulink Control Design
Linearization

Simulink Linearization

Graphical-user interface Yes. See “Linearize Simulink Model at
Model Operating Point” on page 2-54.

No

Flexibility in defining which
portion of the model to
linearize

Yes. Lets you specify linearization I/O
points at any level of a Simulink model,
either graphically or programmatically
without having to modify your model.
See “Linearize at Trimmed Operating
Point” on page 2-66.

No. Only root-level linearization I/O
points, which is equivalent to
linearizing the entire model.

Requires that you add and configure
additional Linearization Point blocks.

Open-loop analysis Yes. Lets you open feedback loops
without deleting feedback signals in
the model. See “Compute Open-Loop
Response” on page 2-46.

Yes, but requires that you delete
feedback signals in your model to open
the loop

Control linear model state
ordering

Yes. See “Order States in Linearized
Model” on page 2-102.

No

Control linearization of
individual blocks

Yes. Lets you specify custom
linearization behavior for both blocks
and subsystems. See “When to Specify
Individual Block Linearization” on page
2-124.

No

Linearization diagnostics Yes. Identifies problematic blocks and
lets you examine the linearization
value of each block. See “Linearization
Troubleshooting Overview” on page 4-
2.

No

Block detection and reduction Yes. Block reduction detects blocks
that do not contribute to the overall
linearization yielding a minimal
realization.

No

2 Linearization

2-8

 Simulink Control Design
Linearization

Simulink Linearization

Control of rate conversion
algorithm for multirate
models

Yes No

See Also

More About
• “Linearize Nonlinear Models” on page 2-3

 Choose Linearization Tools

2-9

Specify Portion of Model to Linearize

To linearize a subsystem, loop, or block in your model, you use analysis points. Each analysis point
that you define in the model can serve one or more of the following purposes:

• Input — The software injects an additive input signal at an analysis point, for example, to model a
disturbance at the plant input.

• Output — The software measures the signal value at a point, for example, to study the impact of a
disturbance on the plant output.

• Loop Opening — The software interprets a break in the signal flow at a point, for example, to
study the open-loop response at the plant input.

To compute a linear model for a portion of your system, specify a linearization input point and output
point on the input and output signal to the portion of the model you want to linearize. To compute an
open-loop response, specify loop openings to break the signal flow. You can also compute MIMO
linear models by defining multiple input and output points.

Analysis Points
You can specify the following types of linear analysis points using Simulink Control Design software.
These analysis points are pure annotations and do not impact model simulation.

Analysis Point Description
Input perturbation Specifies an additive input to a signal.

To define a transfer function for a linearized system, you can use an input
perturbation with an output measurement or open-loop output.

For example, to compute the response G/(1+GK) in the example system, specify
an input perturbation du and an output measurement y as shown.

2 Linearization

2-10

Analysis Point Description
Output
measurement

Takes a measurement at a signal.

To define a transfer function for a linearized system, you can use an output
measurement with an input perturbation or an open-loop input.

For example, to compute the response -K/(1+KG) in the example system, specify
an output measurement point u and an input perturbation dy as shown.

Loop break Specifies a loop opening.

Use a loop break to compute open-loop transfer function around a loop.
Typically, you use loop breaks when you have nested loops or want to ignore the
effect of some loops.

In the example system, the loop break stops the signal flow at u. As a result, the
transfer function from the input perturbation de to the output measurement y is
0.

 Specify Portion of Model to Linearize

2-11

Analysis Point Description
Open-loop input Specifies a loop break followed by an input perturbation.

To linearize a plant or controller, you can use an open-loop input with an output
measurement or an open-loop output.

For example, to linearize the plant in the example system, add an open-loop
input before G and an output measurement y after G, as shown. The open-loop
input breaks the signal flow at u, and adds an input perturbation du.

Open-loop output Specifies an output measurement followed by a loop break.

To linearize a plant or controller, you can use an open-loop output with an input
perturbation or an open-loop input.

For example, to compute the response -K in the example system, add an open-
loop output after K and an input perturbation dy after G, as shown. The open-
loop output breaks the signal flow and adds an output measurement u.

2 Linearization

2-12

Analysis Point Description
Loop transfer
function

Specifies an output measurement before a loop break followed by an input
perturbation.

To compute the open-loop transfer function around a loop, use a loop transfer
analysis point.

For example, to compute -KG in the example system, specify the loop transfer
analysis point as shown. The software adds an output measurement u breaks the
signal flow, and adds an input perturbation du.

Sensitivity function Specifies an input perturbation followed by an output measurement.

The sensitivity function measures how sensitive a signal is to an added
disturbance. Sensitivity is a closed-loop measure. Feedback reduces the
sensitivity in the frequency band where the open-loop gain is greater than 1.

For example, to compute the sensitivity at the plant input of the example
system, add a sensitivity function analysis point as shown. The software adds an
input perturbation du followed by an output measurement u. The closed-loop
transfer function from du to u is 1/(1+KG).

 Specify Portion of Model to Linearize

2-13

Analysis Point Description
Complementary
sensitivity function

Specifies an output measurement followed by an input perturbation.

The complementary sensitivity function at a point is the transfer function from
an additive disturbance at the point to a measurement at the same point. In
contrast to the sensitivity function, the disturbance is added after the
measurement. Use this analysis point to compute the closed-loop transfer
function around the loop.

For example, to compute the closed-loop transfer function for the example
system, add a complementary sensitivity function analysis point as shown. The
software adds an output measurement u followed by and input perturbation du.
The closed-loop transfer function from du to u is -KG/(1+KG).

Opening Feedback Loops
If your model contains one or more feedback loops, you can choose to linearize an open-loop or a
closed-loop system.

To remove the effects of a feedback loop, using analysis points lets you insert a loop opening without
manually breaking the signal line. Manually removing the feedback signal from a nonlinear model
changes the model operating point and produces a different linearized model. For more information,
see “How the Software Treats Loop Openings” on page 2-31.

Proper placement of the loop opening is important for obtaining the linear model that you want. To
understand the difference between open-loop and closed-loop analysis, consider the following single-
loop control system.

Suppose that you want to linearize the plant P about an equilibrium operating point of the model.

2 Linearization

2-14

To linearize only the plant, you open the loop at the output of block P. If you do not open the loop, the
linearized model between U and Y includes the effect of the feedback loop.

Loop open at Y? Transfer Function from U to Y
Yes P s
No P(s)

1 + P(s)C(s)

The loop opening does not have to be in the same location as the linearization input or output point.
For example, the following system has a loop opening after the gain on the outer feedback loop,
which removes the effect of this loop from the linearization. As a result, only the blue blocks are on
the linearization path.

In this example, if you place a loop opening at the same location as the linearization output point, the
effect of the inner loop is also removed from the linearization result.

Ways to Specify Portion of Model to Linearize
There are several ways to define the portion of the model you want to linearize using linear analysis
points. Each method has its own advantages and depends on which linearization tool you use. For
more information on choosing linearization tools, see “Choose Linearization Tools” on page 2-7.

Specify portion
of model...

Use this method if... For more Information, see...

In Simulink model You want to save the analysis points
directly in the model or graphically
display the analysis points within the
model.

“Specify Portion of Model to Linearize
in Simulink Model” on page 2-17

Using Model
Linearizer

You want to linearize your model
interactively using the Model
Linearizer without changing the
Simulink model. Using this method you
can specify multiple open-loop or closed-
loop transfer functions for your model.

“Specify Portion of Model to Linearize
in Model Linearizer” on page 2-22

At command line
using linio
command

You want to linearize your model using
the linearize command. Using linio
does not change the Simulink model.

“Specify Portion of Model to Linearize
at Command Line” on page 2-29

 Specify Portion of Model to Linearize

2-15

Specify portion
of model...

Use this method if... For more Information, see...

Using
slLinearizer
interface

You want to obtain multiple open-loop or
closed-loop transfer functions from the
linearized system without recompiling
the model. Using this method does not
change the Simulink model.

“Mark Signals of Interest for Batch
Linearization” on page 3-9

Using slTuner
interface

You want to obtain multiple open-loop or
closed-loop transfer functions from a
tuned control system without
recompiling the model. Using this
method does not change the Simulink
model.

“Mark Signals of Interest for Control
System Analysis and Design” on page
2-38

As a specific block
or subsystem

You want to linearize a specific block or
subsystem without defining analysis
points for all the block inputs and
outputs. Using this method does not
change the Simulink model.

“Linearize Plant” on page 2-33

See Also
linio | linearize | slLinearizer | slTuner

More About
• “Choose Linearization Tools” on page 2-7
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Compute Open-Loop Response” on page 2-46

2 Linearization

2-16

Specify Portion of Model to Linearize in Simulink Model
To specify the portion of the model to linearize, you can define and save linear analysis points directly
in your Simulink model. Analysis points represent linearization inputs, outputs, and loop openings for
your model.

Alternatively, to specify analysis points without changing your model, you can define analysis points:

• In the Model Linearizer. For more information, see “Specify Portion of Model to Linearize in
Model Linearizer” on page 2-22.

• At the command line. For more information, see “Specify Portion of Model to Linearize at
Command Line” on page 2-29.

Specify Analysis Points
To specify analysis points directly in your Simulink model, first open the Linearization tab. To do so,
in the Apps gallery, click Linearization Manager.

To specify an analysis point:

1 In the model, click the signal you want to define as an analysis point.
2 On the Linearization tab, in the Insert Analysis Points gallery, select the type of analysis point

you want to define.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes a measurement at a signal.
• Loop Break — Specifies a loop opening.
• Open-Loop Input — Specifies a loop break followed by an input perturbation.
• Open-Loop Output — Specifies an output measurement followed by a loop break.
• Loop Transfer — Specifies an output measurement before a loop break followed by an input

perturbation.
• Sensitivity — Specifies an input perturbation followed by an output measurement.
• Complementary Sensitivity — Specifies an output measurement followed by an input

perturbation.

For more information on the different types of analysis points, see “Specify Portion of Model to
Linearize” on page 2-10.

When you specify analysis points, the software adds annotations to your model indicating the
linear analysis point type.

3 Repeat steps 1 and 2 for all signals you want to define as analysis points.

For each linear analysis point that you specify, the software adds an annotation to your model
indicating the analysis point type.

 Specify Portion of Model to Linearize in Simulink Model

2-17

Select Bus Elements as Analysis Points

This example shows how to select individual elements in a bus signal as analysis points.

1 Open Simulink model.

sys = 'scdbusselection';
openExample(sys)

2 Specify a bus signal as a linear analysis point.

First, open the Linearization tab. In the Simulink model window, in the Apps gallery, click
Linearization Manager.

2 Linearization

2-18

In the model, click a bus signal, such as the OUTPUTBUS signal. On the Linearization tab, click
Select Bus Element.

In the Select Linearization Points in the Bus dialog box, in the Signals in the Bus section,
expand the limits bus, and select upper_saturation_limit. limits is a nested bus within
the OUTPUTBUS signal.

To add the selected signal to the Analysis I/Os section, click Add. By default, the signal is
configured as an Input Perturbation analysis point.

 Specify Portion of Model to Linearize in Simulink Model

2-19

You can change the analysis point type using the Configuration drop-down list. For example, to
specify a linearization output point, select Output Measurement.

3 To add additional analysis points from within the same bus signal, repeat step 2.

To remove an analysis point, select the signal in the Linearization Inputs/Outputs section, and
click Delete.

Once you have defined all of the required analysis points for that bus, click OK.
4 To specify analysis points for another bus signal, repeat steps 2 and 3.
5 To view linear analysis point indicators in the Simulink model, on the Linearization tab, in the

Insert Analysis Points gallery, select Linearization Indicators.

The software adds graphical annotations to the bus signals indicating the type of analysis points
specified. For example, if you specify a linearization input in the COUNTERBUS signal and a
linearization output in the OUTPUTBUS signal, the software adds the corresponding annotations
to the signals.

2 Linearization

2-20

You can specify different analysis point types for multiple elements in the same bus. In this case,
the software adds the annotation to the signal.

See Also

More About
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Compute Open-Loop Response” on page 2-46

 Specify Portion of Model to Linearize in Simulink Model

2-21

Specify Portion of Model to Linearize in Model Linearizer
To specify the portion of your Simulink model to linearize, you can define linear analysis points using
Model Linearizer. Analysis points represent linearization inputs, outputs, and loop openings for your
model. Using this method, you can specify multiple sets of analysis points without changing your
model.

Alternatively, you can define analysis points:

• Programmatically at the command line. For more information, see “Specify Portion of Model to
Linearize at Command Line” on page 2-29.

• Directly in your Simulink model. Use this method to save your analysis points in the model. For
more information, see “Specify Portion of Model to Linearize in Simulink Model” on page 2-17.

Specify Analysis Points

In the Model Linearizer, you specify analysis points using linearization I/O sets. You can specify one
or more linearization I/O sets, without introducing changes to the model.

To create a linearization I/O set:

1 On the Linear Analysis tab, in the Analysis I/Os drop-down list, select Create New
Linearization I/Os.

2 Linearization

2-22

1 In your Simulink model, select one or more signals that you want to define as analysis points.

The selected signals appear in the Create linearization I/O set dialog box.

2 In the box displaying currently selected signals, click the signal you want to add. To select
multiple signals, hold Ctrl and click each signal you want to add.

To add a signal from within a bus signal, expand the bus and select the signal. For example,
select the data signal within the COUNTERBUS signal.

 Specify Portion of Model to Linearize in Model Linearizer

2-23

3 To add the signal to list of Analysis I/Os, click Add.

4 In the Configuration drop-down list for the signal, select the type of analysis point you want to
define:

•
 Input Perturbation — Specifies an additive input to a signal.

•
 Output Measurement — Takes a measurement at a signal.

•
 Loop Break — Specifies a loop opening.

•
 Open-Loop Input — Specifies a loop break followed by an input perturbation.

•
 Open-Loop Output — Specifies an output measurement followed by a loop break.

•
 Loop Transfer — Specifies an output measurement before a loop break followed by an

input perturbation.
•

 Sensitivity — Specifies an input perturbation followed by an output measurement.

2 Linearization

2-24

•
 Complementary Sensitivity — Specifies an output measurement followed by an input

perturbation.

For more information on the different types of analysis points, see “Specify Portion of Model to
Linearize” on page 2-10.

5 Repeat steps 1–4 for any other signals you want to define as analysis points.

Tip To highlight the source block of an analysis point in the Simulink model, in the Analysis I/Os
list, select the analysis point, and click Highlight.

6 In the Variable name box, enter a name for the I/O set.
7 Click OK.

The software adds the linearization I/O set to the Linear Analysis Workspace.

The software also adds the linearization I/O set to the Analysis I/Os drop-down list and automatically
selects it.

Edit Analysis Points

You can interactively edit a linearization I/O set stored in the Model Linearizer using the Edit dialog
box. To open the Edit dialog box, in the Linear Analysis Workspace, double-click the I/O set you
want to edit.

Alternatively, you can open the Edit dialog box for the current selected linearization I/O set in the
Analysis I/Os drop-down list. To do so, in the drop-down list, under View/Edit, click Edit.

 Specify Portion of Model to Linearize in Model Linearizer

2-25

In the Edit dialog box, you can add or remove analysis points, change the type for existing analysis
points, or enable or disable analysis points. Once you have finished editing the I/O set, save your
changes by closing the dialog box.

Tip To highlight the location in the Simulink model of any signal in the current list of analysis I/O
points, select the I/O point in the list, and click Highlight.

Add Analysis Point to I/O Set

To add an analysis point to the linearization I/O set:

1 In your Simulink model, select one or more signals that you want to add to the linearization I/O
set.

The selected signals appear in the Edit dialog box..
2 In the box displaying currently selected signals, click the signal you want to add. To select

multiple signals, hold Ctrl, and click each signal you want to add.
3 To add the signal to list of Analysis I/Os, click Add.
4 In the Configuration drop-down list for the signal, select the type of analysis point you want to

define. For example, if you want the signal to be an open-loop linearization output point, select
Open-loop Output.

2 Linearization

2-26

Remove Analysis Point from I/O Set

To remove an analysis point from the linearization I/O set, in the Analysis I/Os section, click the
signal you want to remove, and click Delete.

Change Analysis Point Type

To change the linear analysis point type for a signal, in the Analysis I/Os section, in the
Configuration drop-down list for the signal, select the analysis point type. For example, if you want
the signal to be a linearization output point, select Output Measurement.

Enable or Disable Analysis Points

To modify an existing linearization I/O set without removing analysis points, you can disable one or
more analysis points. To do so, in the Analysis I/Os section, under Active, clear the corresponding
check box.

When you linearize your model using the linearization I/O set, the software ignores any disabled
analysis points.

To enable a disabled analysis point, select the corresponding check box.

Edit Simulink Model Analysis Points

You can modify analysis points stored in your Simulink model using Model Linearizer. To do so, on
the Linear Analysis tab, in the Analysis I/Os drop-down list, select Model I/Os, and then, in same
drop-down list, select Edit Model I/Os.

 Specify Portion of Model to Linearize in Model Linearizer

2-27

In the Edit model I/Os dialog box, you can:

• Change the type for an analysis point using the corresponding Configuration drop-down list.
• Delete an analysis point from the model. To do so, click the signal you want to remove, and click

Delete.
• Enable or disable an analysis point using the corresponding Active check box. When you disable

an analysis point, in the Simulink model, the software removes the annotation from the
corresponding signal.

Note If you close the Model Linearizer, any analysis points that you disabled in this manner are
deleted from the Simulink model. To keep the analysis points in the model, reenable them before
closing the Model Linearizer.

For information on adding analysis points to the model, see “Specify Portion of Model to Linearize in
Simulink Model” on page 2-17.

See Also
Model Linearizer

More About
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Compute Open-Loop Response” on page 2-46

2 Linearization

2-28

Specify Portion of Model to Linearize at Command Line
To specify the portion of your Simulink model to linearize, you can define linear analysis points at the
command line using the linio, setlinio, and getlinio functions. Analysis points represent
linearization inputs, outputs, and loop openings for your model. Using this method, you can specify
multiple sets of analysis points without changing your model.

Alternatively, you can define analysis points:

• In the Model Linearizer. For more information, see “Specify Portion of Model to Linearize in
Model Linearizer” on page 2-22.

• Directly in your Simulink model. Use this method to save your analysis points in the model. For
more information, see “Specify Portion of Model to Linearize in Simulink Model” on page 2-17.

Specify Analysis Points
To specify analysis points at the command line, create linearization I/O objects using the linio
function. To create an analysis point at the output port of a block in your model, use the following
syntax:

io = linio(block,port,type);

where

• block is the full block path of the block, specified as a character vector.
• port is the output port number.
• type is the analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model to Linearize” on page 2-
10.

After creating an analysis point, you can change its type using dot notation. For example, to change
an analysis point to be an open-loop output, use:

io.Type = 'openoutput';

You can also specify analysis points on bus elements in your model. For an example, see linio.

To specify multiple analysis points, create a vector of linearization I/O objects. For example, create a
set of analysis points that includes an input perturbation, an output measurement, and a loop
opening.

 Specify Portion of Model to Linearize at Command Line

2-29

io(1) = linio(block1,port1,'input');
io(2) = linio(block2,port2,'output');
io(3) = linio(block3,port3,'loopbreak');

To linearize your model using the specified analysis points, use the linearize function.

Save Analysis Points in Simulink Model
You can save your specified analysis points in your Simulink model using the setlinio function.

setlinio(mdl,io);

Here, mdl is a character vector specifying the name of a model in the current working folder or on
the MATLAB path, and io is a vector of linearization I/O objects.

The analysis points in io overwrite any existing analysis points saved in the model.

Alternatively, you can specify analysis points directly in your model. For more information, see
“Specify Portion of Model to Linearize in Simulink Model” on page 2-17.

Obtain Analysis Points from Simulink Model
To linearize your model with the linearize function using the analysis points saved in the model,
you must first extract the analysis points using the getlinio function.

io = getlinio(mdl);

Here, mdl is a character vector specifying the name of a model in the current working folder or on
the MATLAB path.

See Also
linearize | linio | getlinio | setlinio

More About
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Compute Open-Loop Response” on page 2-46

2 Linearization

2-30

How the Software Treats Loop Openings
Simulink Control Design software linearizes models using a block-by-block approach. The software
individually linearizes each block in your Simulink model and produces the linearization of the overall
system by combining the individual block linearizations. For more information, see “Exact
Linearization Algorithm” on page 2-177.

To obtain an open-loop transfer function from a model, you specify a loop opening. Loop openings
affect only how the software recombines the individual linearized blocks. In other words, the software
ignores loop openings when determining the input signal levels for each block, which affects how
nonlinear blocks are linearized.

For example, in the following model, to compute the response from e2 to y2 without the effects of the
outer loop, you open the outer loop by placing a loop opening analysis point at y1.

Here, k1, k2, g1, and g2 are nonlinear blocks.

The software linearizes each individual block at the specified operating point, creating the linearized
blocks K1, K2, G1, and G2. At this stage, the software does not break the signal flow at y1. Therefore,
the block linearizations include the effects of the inner-loop and outer-loop feedback signals.

To compute the transfer function from e2 to y2, the software enforces the loop opening at y1, injects
an input signal at e2, and measures the output at y2.

Here, K1, K2, G1, and G2 are the linearized blocks.

The resulting linearized transfer function is (I+G2K2)-1G2K2.

See Also
linearize | addOpening | getIOTransfer | getLoopTransfer | getSensitivity |
getCompSensitivity

 How the Software Treats Loop Openings

2-31

More About
• “Specify Portion of Model to Linearize” on page 2-10
• “Mark Signals of Interest for Batch Linearization” on page 3-9
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-38
• “Compute Open-Loop Response” on page 2-46

2 Linearization

2-32

Linearize Plant
You can linearize a block or subsystem in your Simulink model without defining separate analysis
points for the block inputs and outputs. The software isolates the selected block from the rest of the
model and computes a linear model of the block from the block inputs to the block outputs.

Linearizing a block in this way is equivalent to specifying open-loop input and open-loop output
analysis points at the block inputs and outputs, respectively. For more information on specifying
analysis points in your model, see “Specify Portion of Model to Linearize” on page 2-10.

Linearize Plant Using Model Linearizer
This example shows how to linearize a plant subsystem in a Simulink model using Model Linearizer.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

For this model, the Water-Tank System block contains all the nonlinear dynamics. To linearize the
block, use Model Linearizer.

To open Model Linearizer with the inputs and outputs of the block selected as the linearization I/O
set, first open the Linearization tab. To do so, in the Simulink model window, in the Apps gallery,
click Linearization Manager.

In the model, click the Water-Tank System block. Then, on the Linearization tab, click Linearize
Block.

In Model Linearizer, on the Linear Analysis tab, in the Analysis I/Os drop-down list, the software
sets the I/O set for linearization to Block: Water-Tank System.

 Linearize Plant

2-33

Alternatively, if Model Linearizer is already open for your system, in the Simulink model window,
click the Water-Tank System block. Then, in Model Linearizer, in the Analysis I/Os drop-down list,
select Linearize the Currently Selected Block.

Tip When the specified linearization I/O set is a block, you can highlight the block in the model by
selecting the view option from the Analysis I/Os drop-down list. For example, to highlight the Water-
Tank System block, select View Water-Tank System.

For this example, use the model operating point for linearization. The model operating point consists
of the initial state values and input signals stored in the model. In Model Linearizer, on the Linear
Analysis tab, in the Operating Point drop-down list, leave Model Initial Condition selected.
For information on linearizing models at different operating points, see “Linearize at Trimmed
Operating Point” on page 2-66 and “Linearize at Simulation Snapshot” on page 2-71.

To linearize the specified block and generate a Bode plot for the resulting linear model, click

 Bode.

The software adds the linearized model, linsys1, to the Linear Analysis Workspace and generates
a Bode plot for the model.

2 Linearization

2-34

For more information on analyzing linear models, see “Analyze Results Using Model Linearizer
Response Plots” on page 2-115.

You can also export the linearized model to the MATLAB workspace. To do so, in the data browser, in
the Linear Analysis Workspace right-click linsys1 and select Export to MATLAB Workspace.

 Linearize Plant

2-35

Linearize Plant at Command Line

This example shows how to linearize a plant subsystem in a Simulink® model using the linearize
command.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

For this system, the Water-Tank System block contains all the nonlinear dynamics. To linearize this
subsystem, first specify its block path.

blockpath = 'watertank/Water-Tank System';

Then, linearize the plant subsystem at the model operating point.

linsys1 = linearize(mdl,blockpath);

The model operating point consists of the initial state values and input signals stored in the model.
For information on linearizing models at different operating points, see “Linearize at Trimmed
Operating Point” on page 2-66 and “Linearize at Simulation Snapshot” on page 2-71.

You can then analyze the response of the linearized model. For example, plot its Bode response.

2 Linearization

2-36

bode(linsys1)

For more information on analyzing linear models, see “Linear Analysis”.

See Also
Model Linearizer | linearize

More About
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Compute Open-Loop Response” on page 2-46
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60

 Linearize Plant

2-37

Mark Signals of Interest for Control System Analysis and
Design

Analysis Points
Whether you model your control system in MATLAB or Simulink, use analysis points to mark points of
interest in the model. Analysis points allow you to access internal signals, perform open-loop analysis,
or specify requirements for controller tuning. In the block diagram representation, an analysis point
can be thought of as an access port to a signal flowing from one block to another. In Simulink,
analysis points are attached to the outports of Simulink blocks. For example, in the following model,
the reference signal, r, and the control signal, u, are analysis points that originate from the outputs
of the setpoint and C blocks respectively.

Each analysis point can serve one or more of the following purposes:

• Input — The software injects an additive input signal at an analysis point, for example, to model a
disturbance at the plant input.

• Output — The software measures the signal value at a point, for example, to study the impact of a
disturbance on the plant output.

• Loop Opening — The software inserts a break in the signal flow at a point, for example, to study
the open-loop response at the plant input.

You can apply these purposes concurrently. For example, to compute the open-loop response from u
to y, you can treat u as both a loop opening and an input. When you use an analysis point for more
than one purpose, the software applies the purposes in this sequence: output measurement, then loop
opening, then input.

Using analysis points, you can extract open-loop and closed-loop responses from a control system
model. For example, suppose T represents the closed-loop system in the model above, and u and y
are marked as analysis points. T can be either a generalized state-space model or an slLinearizer

2 Linearization

2-38

or slTuner interface to a Simulink model. You can plot the closed-loop response to a step
disturbance at the plant input with the following commands:

Tuy = getIOTransfer(T,'u','y');
stepplot(Tuy)

Analysis points are also useful to specify design requirements when tuning control systems with the
systune command. For example, you can create a requirement that attenuates disturbances at the
plant input by a factor of 10 (20 dB) or more.

Req = TuningGoal.Rejection('u',10);

Specify Analysis Points for MATLAB Models
Consider an LTI model of the following block diagram.

G = tf(10,[1 3 10]);
C = pid(0.2,1.5);
T = feedback(G*C,1);

With this model, you can obtain the closed-loop response from r to y. However, you cannot analyze
the open-loop response at the plant input or simulate the rejection of a step disturbance at the plant
input. To enable such analysis, mark the signal u as an analysis point by inserting an
AnalysisPoint block between the plant and controller.

AP = AnalysisPoint('u');
T = feedback(G*AP*C,1);
T.OutputName = 'y';

The plant input, u, is now available for analysis.

In creating the model T, you manually created the analysis point block AP and explicitly included it in
the feedback loop. When you combine models using the connect command, you can instruct the
software to insert analysis points automatically at the locations you specify. For more information, see
connect.

Specify Analysis Points for Simulink Models
In Simulink, you can mark analysis points either explicitly in the block diagram, or programmatically
using the addPoint command for slLinearizer or slTuner interfaces.

To specify analysis points directly in your Simulink model, first open the Linearization tab. To do so,
in the Apps gallery, click Linearization Manager.

To specify an analysis point:

 Mark Signals of Interest for Control System Analysis and Design

2-39

1 In the model, click the signal you want to define as an analysis point.
2 On the Linearization tab, in the Insert Analysis Points gallery, select the type of analysis point

you want to define.

When you specify analysis points, the software adds annotations to your model indicating the
linear analysis point type.

3 Repeat steps 1 and 2 for all signals you want to define as analysis points.

You can select any of the following closed-loop analysis point types, which are equivalent within an
slLinearizer or slTuner interface; that is, they are treated the same way by analysis functions,
such as getIOTransfer, and tuning goals, such as TuningGoal.StepTracking.

• Input Perturbation
• Output Measurement
• Sensitivity
• Complementary Sensitivity

If you want to introduce a permanent loop opening at a signal as well, select one of the following
open-loop analysis point types:

• Open-Loop Input
• Open-Loop Output
• Loop Transfer
• Loop Break

When you define a signal as an open-loop point, analysis functions such as getIOTransfer always
enforce a loop break at that signal during linearization. All open-loop analysis point types are
equivalent within an slLinearizer or slTuner interface. For more information on how the
software treats loop openings during linearization, see “How the Software Treats Loop Openings” on
page 2-31.

When you create an slLinearizer or slTuner interface for a model, any analysis points defined in
the model are automatically added to the interface. If you defined an analysis point using:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent opening.

To mark analysis points programmatically, use the addPoint command. For example, consider the
scdcascade model.

open_system('scdcascade')

2 Linearization

2-40

To mark analysis points, first create an slTuner interface.

ST = slTuner('scdcascade');

To add a signal as an analysis point, use the addPoint command, specifying the source block and
port number for the signal.

addPoint(ST,'scdcascade/C1',1);

If the source block has a single output port, you can omit the port number.

addPoint(ST,'scdcascade/G2');

For convenience, you can also mark analysis points using the:

• Name of the signal.

addPoint(ST,'y2');

• Combined source block path and port number.

addPoint(ST,'scdcascade/C1/1')

• End of the full source block path when unambiguous.

addPoint(ST,'G1/1')

You can also add permanent openings to an slLinearizer or slTuner interface using the
addOpening command, and specifying signals in the same way as for addPoint. For more
information on how the software treats loop openings during linearization, see “How the Software
Treats Loop Openings” on page 2-31.

addOpening(ST,'y1m');

You can also define analysis points by creating linearization I/O objects using the linio command.

 Mark Signals of Interest for Control System Analysis and Design

2-41

io(1) = linio('scdcascade/C1',1,'input');
io(2) = linio('scdcascade/G1',1,'output');
addPoint(ST,io);

As when you define analysis points directly in your model, if you specify a linearization I/O object
with:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent opening.

When you specify response I/Os in a tool such as Model Linearizer or Control System Tuner, the
software creates analysis points as needed.

Refer to Analysis Points for Analysis and Tuning
Once you have marked analysis points, you can analyze the response at any of these points using the
following analysis functions:

• getIOTransfer — Transfer function for specified inputs and outputs
• getLoopTransfer — Open-loop transfer function from an additive input at a specified point to a

measurement at the same point
• getSensitivity — Sensitivity function at a specified point
• getCompSensitivity — Complementary sensitivity function at a specified point

You can also create tuning goals that constrain the system response at these points. The tools to
perform these operations operate in a similar manner for models created at the command line and
models created in Simulink.

To view the available analysis points, use the getPoints function. You can view the analysis for
models created:

• At the command line:
• In Simulink:

For closed-loop models created at the command line, you can also use the model input and output
names when:

• Computing a closed-loop response.

ioSys = getIOTransfer(T,'u','y');
stepplot(ioSys)

2 Linearization

2-42

• Computing an open-loop response.

loopSys = getLoopTransfer(T,'u',-1);
bodeplot(loopSys)

 Mark Signals of Interest for Control System Analysis and Design

2-43

• Creating tuning goals for systune.

R = TuningGoal.Margins('u',10,60);

Use the same method to refer to analysis points for models created in Simulink. In Simulink models,
for convenience, you can use any unambiguous abbreviation of the analysis point names returned by
getPoints.

ioSys = getIOTransfer(ST,'u1','y1');
sensG2 = getSensitivity(ST,'G2');
R = TuningGoal.Margins('u1',10,60);

Finally, if some analysis points are vector-valued signals or multichannel locations, you can use
indices to select particular entries or channels. For example, suppose u is a two-entry vector in a
closed-loop MIMO model.

G = ss([-1 0.2;0 -2],[1 0;0.3 1],eye(2),0);
C = pid(0.2,0.5);
AP = AnalysisPoint('u',2);
T = feedback(G*AP*C,eye(2));
T.OutputName = 'y';

You can compute the open-loop response of the second channel and measure the impact of a
disturbance on the first channel.

L = getLoopTransfer(T,'u(2)',-1);
stepplot(getIOTransfer(T,'u(1)','y'))

2 Linearization

2-44

When you create tuning goals in Control System Tuner, the software creates analysis points as
needed.

See Also
addPoint | getPoints | slLinearizer | getIOTransfer

 Mark Signals of Interest for Control System Analysis and Design

2-45

Compute Open-Loop Response
The open-loop response of a control system is the combined response of the plant and the controller,
excluding the effect of the feedback loop. For example, the following block diagram shows a single-
loop control system.

If the controller, C(s), and plant, P(s), are linear, the corresponding open-loop transfer function is
C(s)P(s).

To remove the effects of the feedback loop, insert a loop opening analysis point without manually
breaking the signal line. Manually removing the feedback signal from a nonlinear model changes the
model operating point and produces a different linearized model. For more information, see “How the
Software Treats Loop Openings” on page 2-31.

If you do not insert a loop opening, the resulting linear model includes the effects of the feedback
loop.

To specify the loop opening for this example, you can use either of the following analysis points.

2 Linearization

2-46

Analysis
Point

Description To compute C(s)P(s)

 Open-
loop input

Specifies a loop opening
followed by an input
perturbation.

Specify an open-loop input at the input to the controller and
an output measurement at the output of the plant.

 Open-
loop output

Specifies an output
measurement followed
by a loop break.

Specify an open-loop output at the output of the plant and an
input perturbation at the input of the controller.

For some systems, you cannot specify the loop opening at the same location as the linearization input
or output point. For example, to open the outer loop in the following system, a loop opening point is

added to the feedback path using a loop break analysis point . As a result, only the blue blocks are
on the linearization path.

Placing the loop opening at the same location as the input or output signal would also remove the
effect of the inner loop from the linearization result.

You can specify analysis points directly in your Simulink model, in the Model Linearizer, or at the
command line. For more information, about the different types of analysis points and how to define
them, see “Specify Portion of Model to Linearize” on page 2-10.

 Compute Open-Loop Response

2-47

Compute Open-Loop Response Using Model Linearizer
This example shows how to compute a linear model of the combined controller-plant system without
the effects of the feedback signal. You can analyze the resulting linear model using, for example, a
Bode plot.

Open Simulink model.

sys = 'watertank';
open_system(sys)

The Water-Tank System block represents the plant in this control system and contains all of the
system nonlinearities.

In the Simulink model window, specify the portion of the model to linearize. For this example, specify
the loop opening using open-loop output analysis point.

1 Open the Linearization tab. To do so, in the Apps gallery, click Linearization Manager.
2 To specify an analysis point for a signal, click the signal in the model. Then, on the Linearization

tab, in the Insert Analysis Points gallery, select the type of analysis point.

• Configure the input signal of the PID Controller block as an Input Perturbation.
• Configure the output signal of the Water-Tank System block as an Open-loop Output.

Annotations appear in the model indicating which signals are designated as analysis points.

Tip If you do not want to introduce changes to the Simulink model, you can specify the analysis
points in Model Linearizer. For more information, see “Specify Portion of Model to Linearize in
Model Linearizer” on page 2-22.

Open Model Linearizer for the model. In the Simulink model window, in the Apps gallery, click
Model Linearizer.

By default, the analysis points you specified in the model are selected for linearization, as displayed in
the Analysis I/Os drop-down list.

2 Linearization

2-48

To linearize the model using the specified analysis points and generate a Bode plot of the linearized

model, click Bode.

By default, Model Linearizer linearizes the model at the model initial conditions, as shown in the
Operating Point drop-down list. For examples of linearizing a model at a different operating point,
see “Linearize at Trimmed Operating Point” on page 2-66 and “Linearize at Simulation Snapshot” on
page 2-71.

Tip To generate response types other than a Bode plot, click the corresponding button in the plot
gallery.

To view the minimum stability margins for the model, right-click the Bode plot, and select
Characteristics > Minimum Stability Margins.

 Compute Open-Loop Response

2-49

The Bode plot displays the phase margin marker. To show a data tip that contains the phase margin
value, click the marker.

2 Linearization

2-50

For this system, the phase margin is 90 degrees at a crossover frequency of 0.4 rad/s.

Compute Open-Loop Response at the Command Line

This example shows how to compute a linear model of the combined controller-plant system without
the effects of the feedback signal. You can analyze the resulting linear model using, for example, a
Bode plot.

Open Simulink model.

sys = 'watertank';
open_system(sys)

 Compute Open-Loop Response

2-51

Specify the portion of the model to linearize by creating an array of analysis points using the linio
command:

• Open-loop input point at the input of the PID Controller block. This signal originates at the output
of the Sum1 block.

• Output measurement at the output of the Water-Tank System block.

io(1) = linio('watertank/Sum1',1,'openinput');
io(2) = linio('watertank/Water-Tank System',1,'output');

The open-loop input analysis point includes a loop opening, which breaks the signal flow and removes
the effects of the feedback loop.

Linearize the model at the default model operating point using the linearize command.

linsys = linearize(sys,io);

linsys is the linearized open-loop transfer function of the system. You can now analyze the response
by, for example, plotting its frequency response and viewing the gain and phase margins.

margin(linsys)

2 Linearization

2-52

For this system, the gain margin is infinite, and the phase margin is 90 degrees at a crossover
frequency of 0.4 rad/s.

See Also
Model Linearizer | linearize

More About
• “Specify Portion of Model to Linearize” on page 2-10
• “How the Software Treats Loop Openings” on page 2-31
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Linearize Plant” on page 2-33
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60

 Compute Open-Loop Response

2-53

Linearize Simulink Model at Model Operating Point
If you do not specify an operating point when linearizing a Simulink model, the software uses the
operating point specified in the model by default. The model operating point consists of the initial
state and input signal values stored in the model.

For information on linearizing models at different operating points, see “Linearize at Trimmed
Operating Point” on page 2-66 and “Linearize at Simulation Snapshot” on page 2-71.

Linearize Simulink Model Using Model Linearizer
This example shows how to linearize a Simulink model at the operating point specified in the model
using the Model Linearizer.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

The Water-Tank System block represents the plant in this control system and includes all of the
system nonlinearities.

To specify the portion of the model to linearize, first open the Linearization tab. To do so, in the
Simulink window, in the Apps gallery, click Linearization Manager.

To specify an analysis point for a signal, click the signal in the model. Then, on the Linearization tab,
in the Insert Analysis Points gallery, select the type of analysis point.

• Configure the output signal of the PID Controller block as an Input Perturbation.
• Configure the output signal of the Water-Tank System block as an Open-loop Output. An open-

loop output point is an output measurement followed by a loop opening, which removes the effects
of the feedback signal on the linearization without changing the model operating point.

When you add linear analysis points, the software adds markers at their respective locations in the
model. For more information on the different types of analysis points, see “Specify Portion of Model to
Linearize” on page 2-10.

2 Linearization

2-54

For more information on defining analysis points in a Simulink model, see “Specify Portion of Model
to Linearize in Simulink Model” on page 2-17. Alternatively, if you do not want to introduce changes
to the Simulink model, you can define analysis points using the Model Linearizer. For more
information, see “Specify Portion of Model to Linearize in Model Linearizer” on page 2-22.

To open Model Linearizer for the model, in the Simulink model window, in the Apps gallery, click
Model Linearizer.

 Linearize Simulink Model at Model Operating Point

2-55

To use the analysis points you defined in the Simulink model as linearization I/Os, on the Linear
Analysis tab, in the Analysis I/Os drop-down list, leave Model I/Os selected.

For this example, use the model operating point for linearization. In the Operating Point drop-down
list, leave Model Initial Condition selected.

To linearize the system and generate a response plot for analysis, in the Linearize section, click a

response. For this example, to generate a Bode plot for the resulting linear model, click
Bode.

The software adds the linearized model, linsys1, to the Linear Analysis Workspace and generates
a Bode plot for the model. linsys1 is the linear model from the specified input to the specified
output, computed at the default model operating point.

For more information on analyzing linear models, see “Analyze Results Using Model Linearizer
Response Plots” on page 2-115.

You can also export the linearized model to the MATLAB workspace. To do so, in the data browser, in
the Linear Analysis Workspace right-click linsys1 and select Export to MATLAB Workspace.

2 Linearization

2-56

Linearize Simulink Model at Command Line

This example shows how to linearize a Simulink® model at the model operating point using the
linearize command.

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

For this system, the Water-Tank System block contains all the nonlinear dynamics. To specify the
portion of the model to linearize, create an array of linearization I/O objects using the linio
command.

Create an input perturbation analysis point at the output of the PID Controller block.

io(1) = linio('watertank/PID Controller',1,'input');

Create an open-loop output analysis point at the output of the Water-Tank System block. An open-loop
output point is an output measurement followed by a loop opening, which removes the effects of the
feedback signal on the linearization without changing the model operating point.

io(2) = linio('watertank/Water-Tank System',1,'openoutput');

 Linearize Simulink Model at Model Operating Point

2-57

For information on the different types of analysis points, see “Specify Portion of Model to Linearize”
on page 2-10.

Linearize the model at the model operating point using the specified analysis points.

linsys1 = linearize(mdl,io);

linsys1 is the linear model from the specified input to the specified output, computed at the default
model operating point.

You can then analyze the response of the linearized model. For example, plot its Bode response.

bode(linsys1)

For more information on analyzing linear models, see “Linear Analysis”.

See Also
Model Linearizer | linearize

More About
• “Linearize at Trimmed Operating Point” on page 2-66
• “Linearize at Simulation Snapshot” on page 2-71
• “Linearize at Triggered Simulation Events” on page 2-74

2 Linearization

2-58

• “Linearize Plant” on page 2-33
• “Compute Open-Loop Response” on page 2-46
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60

 Linearize Simulink Model at Model Operating Point

2-59

Visualize Bode Response of Simulink Model During Simulation
This example shows how to visualize linear system characteristics of a nonlinear Simulink model
during simulation, computed at the model operating point (simulation snapshot time of 0).

1 Open Simulink model.

For example:

open_system('watertank')
2 Open the Simulink Library Browser. In the Simulink Editor, on the Simulation tab, click Library

Browser.
3 Add a plot block to the Simulink model.

a In the Simulink Control Design library, select Linear Analysis Plots.

b Drag and drop a block, such as the Bode Plot block, into the model window.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

2 Linearization

2-60

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

Tip If your model already contains I/O points, the block automatically detects these points and

displays them. Click at any time to update the Linearization inputs/outputs table with
I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

 Visualize Bode Response of Simulink Model During Simulation

2-61

The Block Parameters dialog expands to display a Click a signal in the model to
select it area.

Tip You can select multiple signals at once in the Simulink model. All selected signals
appear in the Click a signal in the model to select it area.

ii In the Simulink model, click the output signal of the PID Controller block to select it.

The Click a signal in the model to select it area updates to display the selected
signal.

iii
Click to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System block to
select it.

2 Linearization

2-62

The Click a signal in the model to select it area updates to display the selected
signal.

ii
Click to add the signal to the Linearization inputs/outputs table.

iii In the Configuration drop-down list of the Linearization inputs/outputs table, select
Open-loop Output for watertank/Water-Tank System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click the signals in the
Simulink model and select Linear Analysis Points > Input Perturbation and Linear Analysis
Points > Open-loop Output. Linearization I/O annotations appear in the model and the selected
signals appear in the Linearization inputs/outputs table.

6 Save the linear system.

a Select the Logging tab.
b Select the Save data to workspace option, and specify a variable name in the Variable

name field.

The Logging tab now resembles the following figure.

 Visualize Bode Response of Simulink Model During Simulation

2-63

7 Click Show Plot to open an empty plot.

8
Plot the linear system characteristics by clicking in the plot window.

Alternatively, you can simulate the model from the model window.

The software linearizes the portion of the model between the linearization input and output at
the default simulation time of 0, specified in Snapshot times parameter in the Block Parameters
dialog box, and plots the Bode magnitude and phase.

After the simulation completes, the plot window resembles the following figure.

2 Linearization

2-64

The computed linear system is saved as sys in the MATLAB workspace. sys is a structure with time
and values fields. To view the structure, type:

sys

This command returns the following results:

sys =

 time: 0
 values: [1x1 ss]
 blockName: 'watertank/Bode Plot'

• The time field contains the default simulation time at which the linear system is computed.
• The values field is a state-space object which stores the linear system computed at simulation

time of 0. To learn more about the properties of state-space objects, see ss.

(If the Simulink model is configured to save simulation output as a single object, the data structure
sys is a field in the Simulink.SimulationOutput object that contains the logged simulation data.
For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.)

See Also
Bode Plot

More About
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91

 Visualize Bode Response of Simulink Model During Simulation

2-65

Linearize at Trimmed Operating Point

This example shows how to linearize a model at a trimmed steady-state operating point (equilibrium
operating point) using the Model Linearizer.

The operating point is trimmed by specifying constraints on the operating point values, and
performing an optimization search that meets these state and input value specifications.

Code Alternative

Use linearize. For examples and additional information, see the linearize reference page.

1 Open the Simulink model.

sys = 'magball';
open_system(sys)

2 Open the Model Linearizer for the model.

In the Simulink model window, in the Apps gallery, click Model Linearizer.
3 To specify linearization input and output points, open the Linearization tab. To do so, in the

Apps gallery, click Linearization Manager.
4 To specify an analysis point for a signal, click the signal in the model. Then, on the Linearization

tab, in the Insert Analysis Points gallery, select the type of analysis point.

• Configure the output signal of the Controller block as an Input Perturbation.
• Configure the output signal of the Magnetic Ball Plant block as an Open-loop Output.

Annotations appear in the model indicating which signals are designated as analysis points.

Tip Alternatively, if you do not want to introduce changes to the Simulink model, you can specify
the analysis points in the Model Linearizer. For more information, see “Specify Portion of Model
to Linearize in Model Linearizer” on page 2-22.

5 Create a new steady-state operating point at which to linearize the model. In the Model
Linearizer, in the Operating Point drop-down list, select Trim model.

2 Linearization

2-66

In the Trim the model dialog box, the Specifications tab shows the default specifications for
model trimming. By default, all model states are specified to be at equilibrium, indicated by the
check marks in the Steady State column.

6 Specify a steady-state operating point at which the magnetic ball height remains fixed at the
reference signal value, 0.05. In the States tab, select Known for the height state. This selection
tells Model Linearizer to find an operating point at which this state value is fixed.

 Linearize at Trimmed Operating Point

2-67

7 Since the ball height is greater than zero, the current must also be greater than zero. Enter 0 for
the minimum bound of the Current block state.

8 Compute the operating point.

2 Linearization

2-68

Click Start trimming.

A new variable, op_trim1, appears in the Linear Analysis Workspace.

In the Operating Point drop-down list, this operating point is now selected as the operating
point to be used for linearization.

9 Linearize the model at the specified operating point and generate a bode plot of the result. Click

 Bode. The Bode plot of the linearized plant appears, and the linearized plant linsys1
appears in the Linear Analysis Workspace.

 Linearize at Trimmed Operating Point

2-69

Tip Instead of a Bode plot, generate other response types by clicking the corresponding button
in the plot gallery.

Right-click on the plot and select information from the Characteristics menu to examine
characteristics of the linearized response.

See Also

More About
• “Compute Steady-State Operating Points” on page 1-5

2 Linearization

2-70

Linearize at Simulation Snapshot
This example shows how to use the Model Linearizer to linearize a model by simulating the model
and extracting the state and input levels of the system at specified simulation times.

To linearize your model at the command line, use the linearize function.

1 Open the Simulink model.

sys = 'watertank';
open_system(sys)

2 Open the Model Linearizer for the model.

In the Simulink model window, in the Apps gallery, click Model Linearizer.
3 To specify linearization input and output points, open the Linearization tab. To do so, in the

Apps gallery, click Linearization Manager.
4 To specify an analysis point for a signal, click the signal in the model. Then, on the Linearization

tab, in the Insert Analysis Points gallery, select the type of analysis point.

• Configure the output signal of the PID Controller block as an Input Perturbation.
• Configure the output signal of the Water-Tank System block as an Open-loop Output.

5 Create a new simulation-snapshot operating point at which to linearize the model. In the Model
Linearizer, in the Operating Point drop-down list, select Take simulation snapshot.

6 In the Enter snapshot times to linearize dialog box, in the Simulation Snapshot Times field,
enter one or more snapshot times at which to linearize. For this example, enter 10 to extract the
operating point at this simulation time.

Tip To linearize the model at several operating points, specify a vector of simulation times in the
Simulation Snapshot Times field. For example, entering [1 10] results in an array of two
linear models, one linearized at t = 1 and the other at t = 10.

7 Generate the simulation-snapshot operating point. Click Take Snapshots.

 Linearize at Simulation Snapshot

2-71

The operating point op_snapshot1 appears in the Linear Analysis Workspace. In the
Operating Point drop-down list, this operating point is now selected as the operating point to be
used for linearization.

8 Linearize the model at the specified operating point and generate a bode plot of the result.

Click Bode. The Bode plot of the linearized plant appears, and the linearized plant
linsys1 appears in the Linear Analysis Workspace.

9 Double-click linsys1 in the Linear Analysis Workspace to see the state space representation
of the linear model. Right-click on the plot and select information from the Characteristics
menu to examine characteristics of the linearized response.

10 Close Simulink model.

bdclose(sys);

2 Linearization

2-72

See Also

More About
• “Linearize at Triggered Simulation Events” on page 2-74
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95

 Linearize at Simulation Snapshot

2-73

Linearize at Triggered Simulation Events
This example shows how to use linearize a Simulink model at specific events in time. Linearization
events can be trigger-based events or function-call events. Specifically, the model is linearized at the
steady-state operating points 2500, 3000, and 3500 rpm.

1 Open Simulink model.

mdl = 'scdspeedtrigger';
openExample(mdl)

To help identify when the system is at steady state, the Generate settling time events block
generates settling events. This block sends rising edge trigger signals to the Operating Point
Snapshot block when the engine speed settles near 2500, 3000, and 3500 rpm for a minimum of
five seconds.

2 Linearization

2-74

The model includes a Trigger-Based Operating Point Snapshot block. This block linearizes the
model when it receives rising edge trigger signals from the Generate settling time events block.

2 Compute the steady-state operating point at 60 time units.

op = findop(mdl,60);

This function simulates the model for 60 time units, and extracts the operating points at each
simulation event that occurs during this time interval.

3 Define the portion of the model to linearize.

io(1) = linio('scdspeedtrigger/Reference Steps',1,'input');
io(2) = linio('scdspeedtrigger/rad//s to rpm',1,'output');

4 Linearize the model.

linsys = linearize(mdl,op(1:3),io);
5 Compare linearized models at 2500, 3000, and 3500 rpm using Bode plots of the closed-loop

transfer functions.

bode(linsys)

 Linearize at Triggered Simulation Events

2-75

See Also
Functions
findop

Blocks
Trigger-Based Operating Point Snapshot

More About
• “Linearize at Simulation Snapshot” on page 2-71
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95

2 Linearization

2-76

Linearize Models with Delays

This example shows how to linearize a Simulink® model that contains delays.

For more information on manipulating linearized models with delays, see “Specifying Time Delays”
and “Analyzing Control Systems with Delays”.

Linearize Model with Continuous Delays

You can linearize a Simulink model with continuous-time delay blocks such as the Transport Delay,
Variable Transport Delay, and Variable Time Delay using one of the following options.

• Use Padé approximations of the delays to get a rational linear system through linearization. This
option is the default method used by Simulink Control Design™ software.

• Compute a linearization where the delay is exactly represented. Use this option when you need
accurate simulation and frequency responses from a linearized model and when assessing the
accuracy of Padé approximation.

Open the engine speed model used in this example.

model = 'scdspeed';
open_system(model)

The Induction to Power Stroke Delay subsystem contains a Variable Transport Delay block named
dM/dt. Specify the path to this block.

DelayBlock = 'scdspeed/Induction to Power Stroke Delay/dM//dt delay';

To compute a linearization using a first-order approximation, set the order of the Padé approximation
to 1. For the Variable Transport Delay block, Pade Order property to 1.

Alternatively, at the command line, enter the following code.

set_param(DelayBlock,'PadeOrder','1');

Specify the throttle angle as the linearization input and engine speed as the linearization output.

 Linearize Models with Delays

2-77

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');

Linearize the model.

sysOrder1 = linearize(model,io);

To linearize the model using a second-order approximation, set the Padé order to 2.

set_param(DelayBlock,'PadeOrder','2');
sysOrder2 = linearize(model,io);

To compute a linear model with the exact delay representation, create a linearization options object
and enable the UseExactDelayModel option.

opt = linearizeOptions;
opt.UseExactDelayModel = 'on';

Linearize the model using the specified linearization options.

sysExactDiscrete = linearize(model,io,opt);

Compare the Bode response of the Padé approximation models and the exact linearization model.

p = bodeoptions('cstprefs');
p.Grid = 'on';
p.PhaseMatching = 'on';
p.XLimMode = {'Manual'};
p.XLim = {[0.1 1000]};
bode(sysOrder1,sysOrder2,sysExactDiscrete,p);
legend('1st Order','2nd Order','Exact','Location','SouthWest')

2 Linearization

2-78

In the case of a first order approximation, the phase begins to diverge around 50 rad/s and diverges
around 100 rad/s.

Close the Simulink model.

bdclose(model)

Linearize Model with Discrete Delays

When linearizing a model with discrete delay blocks, such as (Integer) Delay and Unit Delay blocks,
use the exact delay option to account for the delays without adding states to the model dynamics.
Explicitly accounting for these delays improves simulation performance for systems with many
discrete delays because there are fewer states in your model.

Open a Simulink model of a discrete system that contains a Delay block with 20 delay states.

model = 'scdintegerdelay';
open_system(model)

 Linearize Models with Delays

2-79

By default the linearization includes all of the states folded into the linear model. Set the linearization
input and output signals and linearize the model.

io(1) = linio('scdintegerdelay/Step',1,'input');
io(2) = linio('scdintegerdelay/Discrete Filter',1,'output');
sysDefault = linearize(model,io);

View the model size. It has 21 states (1 - Discrete Filter, 20 - Integer Delay).

size(sysDefault)

State-space model with 1 outputs, 1 inputs, and 21 states.

Linearize the model using exact delay representation.

opt = linearizeOptions;
opt.UseExactDelayModel = 'on';
sysExactDiscrete = linearize(model,io,opt);

View the resulting model size. It has 1 state. The delays are accounted for internally in the linearized
model.

size(sysExactDiscrete)

State-space model with 1 outputs, 1 inputs, and 1 states.

Compare the performance of the models using a step response. The models produce the same
response.

step(sysDefault,sysExactDiscrete)
legend('Default','Exact','Location','SouthEast')

2 Linearization

2-80

Close the Simulink model.

bdclose(model)

See Also
linearize | linearizeOptions

More About
• “Models with Time Delays” on page 2-139

 Linearize Models with Delays

2-81

Linearize Models with Model References

This example shows how to linearize models that include references to other models using a Model
block.

The scdspeed_ctrlloop model is a modified version of the scdspeedctrl model.

topmdl = 'scdspeed_ctrlloop';
open_system(topmdl)

For this example, the engine speed system is implemented in the scdspeed_plantref model. This
model is referenced in the scdspeed_ctrlloop using a Model block.

View the referenced engine speed model.

open_system('scdspeed_plantref')

By default, the Engine Model block is set to accelerator simulation mode, as indicated by the black
triangles at the corners of the Model block. Linearizing the model with this block in accelerator mode

2 Linearization

2-82

numerically perturbs the entire Engine Model block. The accuracy of this linearization is sensitive to
the blocks within the Engine model. In particular, the variable transport delay block is problematic.

To achieve an accurate linearization, set the Model block to normal simulation mode, which enables
the block-by-block linearization of the referenced model.

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal')

The corners of the Engine Model block are now white triangles, indicating that its simulation mode is
set to normal.

Linearize the model between the speed reference signal and the speed output, and plot the resulting
step response.

io(1) = linio('scdspeed_ctrlloop/Speed Reference',1,'input');
io(2) = linio('scdspeed_ctrlloop/Speed Output',1,'output');
sys_normal = linearize(topmdl,io);
step(sys_normal)

 Linearize Models with Model References

2-83

Another benefit of switching the model reference to normal mode simulation is that you can take
advantage of exact delay representations. For more information on linearizing models with delays,
see “Linearize Models with Delays” on page 2-77.

Close the Simulink® model.

bdclose('scdspeed_ctrlloop')

See Also
linearize

More About
• “Linearize Plant” on page 2-33
• “Linearize Models with Delays” on page 2-77

2 Linearization

2-84

Visualize Linear System at Multiple Simulation Snapshots
This example shows how to visualize linear system characteristics of a nonlinear Simulink model at
multiple simulation snapshots.

1 Open Simulink model.

For example:

watertank
2 Open the Simulink Library Browser. In the Simulink Editor, on the Simulation tab, click Library

Browser.
3 Add a plot block to the Simulink model.

a In the Simulink Control Design library, select Linear Analysis Plots.
b Drag and drop a block, such as the Gain and Phase Margin Plot block, into the Simulink

model window.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

Tip If your model already contains I/O points, the block automatically detects these points and

displays them. Click at any time to update the Linearization inputs/outputs table with
I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the model to
select it area.

 Visualize Linear System at Multiple Simulation Snapshots

2-85

ii In the Simulink model, click the output signal of the PID Controller block to select it.

The Click a signal in the model to select it area updates to display the selected
signal.

Tip You can select multiple signals at once in the Simulink model. All selected signals
appear in the Click a signal in the model to select it area.

iii
Click to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System block to
select it.

The Click a signal in the model to select it area updates to display the selected
signal.

2 Linearization

2-86

ii
Click to add the signal to the Linearization inputs/outputs table.

iii In the Configuration drop-down list of the Linearization inputs/outputs table, select
Open-loop Output for watertank/Water-Tank System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click the signals in the
Simulink model and select Linear Analysis Points > Input Perturbation and Linear Analysis
Points > Open-loop Output. Linearization I/O annotations appear in the model and the selected
signals appear in the Linearization inputs/outputs table.

6 Specify simulation snapshot times.

a In the Linearizations tab, verify that Simulation snapshots is selected in Linearize on.
b In the Snapshot times field, type [0 1 5].

 Visualize Linear System at Multiple Simulation Snapshots

2-87

7 Specify a plot type to plot the gain and phase margins. The plot type is Bode by default.

a Select Nichols in Plot type
b Click Show Plot to open an empty Nichols plot.

8 Save the linear system.

a Select the Logging tab.
b Select the Save data to workspace option and specify a variable name in the Variable

name field.

The Logging tab now resembles the following figure.

9
Plot the gain and phase margins by clicking in the plot window.

The software linearizes the portion of the model between the linearization input and output at
the simulation times of 0, 1 and 5 and plots gain and phase margins.

After the simulation completes, the plot window resembles the following figure.

2 Linearization

2-88

Tip Click to view the legend.

The computed linear system is saved as sys in the MATLAB workspace. sys is a structure with time
and values fields. To view the structure, type:

sys

This command returns the following results:

sys =

 time: [3x1 double]
 values: [4-D ss]
 blockName: 'watertank/Gain and Phase Margin Plot'

• The time field contains the simulation times at which the model is linearized.
• The values field is an array of state-space objects which store the linear systems computed at the
specified simulation times.

(If the Simulink model is configured to save simulation output as a single object, the data structure
sys is a field in the Simulink.SimulationOutput object that contains the logged simulation data.
For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.)

See Also
Bode Plot | Gain and Phase Margin Plot | Linear Step Response Plot | Nichols Plot | Pole-Zero Plot |
Singular Value Plot

 Visualize Linear System at Multiple Simulation Snapshots

2-89

More About
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91
• “Linearize at Simulation Snapshot” on page 2-71
• “Linearize at Triggered Simulation Events” on page 2-74

2 Linearization

2-90

Visualize Linear System of a Continuous-Time Model
Discretized During Simulation

This example shows how to discretize a continuous-time model during simulation and plot the model's
discretized linear behavior.

1 Open the Simulink model:

scdcstr

In this model, the Bode Plot block has already been configured with:

• Input point at the coolant temperature input Coolant Temp
• Output point at the residual concentration output CA
• Settings to linearize the model on a rising edge of an external trigger. The trigger signal is

modeled in the Linearization trigger signal block in the model.
• Saving the computed linear system in the MATLAB workspace as LinearReactor.

To view these configurations, double-click the block.

 Visualize Linear System of a Continuous-Time Model Discretized During Simulation

2-91

To learn more about the block parameters, see the block reference pages.
2 Specify the sample time to compute the discrete-time linear system.

a Click adjacent to Algorithm Options.

The option expands to display the linearization algorithm options.

2 Linearization

2-92

b Specify a sample time of 2 in the Linear system sample time field.

To learn more about this option, see the block reference page.
3 Click Show Plot to open an empty Bode plot window.
4

Plot the Bode magnitude and phase by clicking in the plot window.

During simulation, the software:

• Linearizes the model on encountering a rising edge.
• Converts the continuous-time model into a discrete-time linear model with a sample time of 2.

This conversion uses the default Zero-Order Hold method to perform the sample time
conversion.

The software plots the discrete-time linear behavior in the Bode plot window. After the
simulation completes, the plot window resembles the following figure.

The plot shows the Bode magnitude and phase up to the Nyquist frequency, which is computed
using the specified sample time. The vertical line on the plot represents the Nyquist frequency.

 Visualize Linear System of a Continuous-Time Model Discretized During Simulation

2-93

See Also
Bode Plot | Gain and Phase Margin Plot | Linear Step Response Plot | Nichols Plot | Pole-Zero Plot |
Singular Value Plot

More About
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95
• “Linearize at Simulation Snapshot” on page 2-71
• “Linearize at Triggered Simulation Events” on page 2-74

2 Linearization

2-94

Plot Linear System Characteristics of a Chemical Reactor

This example shows how to plot the linearization of a Simulink® model at particular conditions
during simulation. Simulink Control Design™ software provides blocks that you can add to Simulink
models to compute and plot linear systems during simulation. In this example, you compute and plot
a linearized model for a continuously stirred chemical reactor. Specifically, you linearize the reactor
model as it transitions through different operating points.

Chemical Reactor Model

Open the Simulink model of the chemical reactor.

open_system('scdcstr')

The reactor has three inputs and two outputs.

• The FeedCon0, FeedTemp0, and Coolant Temp blocks model the feed concentration, feed
temperature, and coolant temperature inputs, respectively.

• The T and CA ports of the CSTR block model the reactor temperature and residual concentration
outputs, respectively.

This example focuses on the response from coolant temperature, Coolant Temp, to residual
concentration, CA, when the feed concentration and feed temperature are constant.

For more information on modeling reactors, see [1].

 Plot Linear System Characteristics of a Chemical Reactor

2-95

Plot the Reactor Linear Response

The reactor model contains a Bode Plot block from the Simulink Control Design Linear Analysis Plots
library. The block is configured with:

• A linearization input at the coolant temperature Coolant Temp
• A linearization output at the residual concentration CA

The Bode Plot block is configured to perform linearizations on the rising edges of an external trigger
signal. The Linearization trigger signal block computes the trigger signal and produces a rising edge
when the residual concentration satisfies any one of the following conditions.

• At a steady state value of 2
• In a narrow range around 5
• At a steady state value of 9

To view the Bode Plot block configuration, double-click the block.

2 Linearization

2-96

To view the Bode plot for the block during the simulation, you must open the plot window before
simulating the model. To do so, click Show Plot.

Simulate the model.

sim('scdcstr')

 Plot Linear System Characteristics of a Chemical Reactor

2-97

The Bode plot shows the linearized reactor at three operating points corresponding to the trigger
signals generated by the Linearization trigger signal block.

• At 5 sec, the linearization is for a low residual concentration.
• At 38 sec, the linearization is for a high residual concentration.
• At 27 sec, the linearization is as the reactor transitions from a low to high residual concentration.

The linearizations at low and high residual concentrations are similar, but the linearization during the
transition has a significantly different DC gain and phase characteristics. At low frequencies, the
phase differs by 180 degrees, indicating the presence of either an unstable pole or zero.

Log the Reactor Linear Response

You can save the computed linear systems to the model workspace. To do so, use the parameters on
the Logging tab of the block.

For this example, the Bode Plot block is configured to save the computed responses in the MATLAB®
workspace as a LinearReactor structure.

2 Linearization

2-98

LinearReactor

LinearReactor =

 struct with fields:

 time: [3x1 double]
 values: [1x1x3x1 ss]
 blockName: 'scdcstr/Bode Plot'

 Plot Linear System Characteristics of a Chemical Reactor

2-99

In this structure, the values field stores the linear systems as an array of LTI state-space models. For
more information, see “Model Arrays”. The corresponding simulation times for the linearizations are
logged in the time field.

Obtain the computed linear models.

P1 = LinearReactor.values(:,:,1);
P2 = LinearReactor.values(:,:,2);
P3 = LinearReactor.values(:,:,3);

The Bode plot of the linear system at a time of 27 seconds, when the reactor transitions from low to
high residual concentration, indicates that the system could be unstable. To confirm this result,
displaying the linear systems in zero-pole-gain format.

zpk(P1)
zpk(P2)
zpk(P3)

ans =

 From input "Coolant Temp" to output "CSTR/2":
 -0.1028

 (s^2 + 2.215s + 2.415)

Continuous-time zero/pole/gain model.

ans =

 From input "Coolant Temp" to output "CSTR/2":
 -0.07514

 (s+0.7567) (s-0.3484)

Continuous-time zero/pole/gain model.

ans =

 From input "Coolant Temp" to output "CSTR/2":
 -0.020462

 (s+0.8542) (s+0.7528)

Continuous-time zero/pole/gain model.

Close the Simulink model.

bdclose('scdcstr')

2 Linearization

2-100

Reference

[1] Seborg, Dale, Thomas Edgar, and Duncan Mellichamp. Process Dynamics and Control, Second
Edition. John Wiley & Sons, Ltd, 2006.

See Also
Bode Plot | Gain and Phase Margin Plot | Linear Step Response Plot | Nichols Plot | Pole-Zero Plot |
Singular Value Plot

More About
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91

 Plot Linear System Characteristics of a Chemical Reactor

2-101

Order States in Linearized Model

Specify State Order in Linearized Model Using Model Linearizer
This example shows how to control the order of the states in your linearized model. This state order
appears in linearization results.

1 Open and configure the model for linearization by specifying linearization I/Os and an operating
point for linearization. You can perform this step as shown, for example, in “Linearize at Trimmed
Operating Point” on page 2-66. To preconfigure the model at the command line, use the following
commands.

sys = 'magball';
open_system(sys)
sys_io(1) = linio('magball/Controller',1,'input');
sys_io(2) = linio('magball/Magnetic Ball Plant',1,'openoutput');
setlinio(sys,sys_io)
opspec = operspec(sys);
op = findop(sys,opspec);

These commands specify linear analysis points at the input and output of the plant and compute
the steady-state operating point.

2 Open Model Linearizer for the model.

In the Simulink model window, in the Apps gallery, click Model Linearizer.
3 Open the Options for exact linearization dialog box.

On the Linear Analysis tab, click More Options.

2 Linearization

2-102

4 In the dialog box, on the State Ordering tab, select Enable state ordering.
5 Specify the desired state order using the Move Up and Move Down buttons.

Tip If you change the model while Model Linearizer is open, click Sync with Model to update
the list of states.

 Order States in Linearized Model

2-103

Close the dialog box.
6 Enable the linearization result viewer. On the Linear Analysis tab, select Result Viewer.

When this option is selected, the result viewer appears when you linearize the model, enabling
you to view and confirm the state ordering.

Tip If you do not check Result Viewer, or if you close the result viewer, you can open the result
viewer for a previously linearized model. To do so, in the Plots and Results tab, select the linear

model in the Linear Analysis Workspace, and click Result Viewer.
7

Linearize the model. For example, click Bode.

2 Linearization

2-104

A new linearized model, linsys1, appears in the Linear Analysis Workspace. The linearization
result viewer opens, displaying information about that model.

The linear model states appear in the specified order.

Specify State Order in Linearized Model at the Command Line
This example shows how to control the order of the states in your linearized model. This state order
appears in linearization results.

1 Load and configure the model for linearization.

sys = 'magball';
load_system(sys);
sys_io(1)=linio('magball/Controller',1,'input');
sys_io(2)=linio('magball/Magnetic Ball Plant',1,'openoutput');
opspec = operspec(sys);
op = findop(sys,opspec);

These commands specify the plant linearization and compute the steady-state operating point.
2 Linearize the model, and show the linear model states.

linsys = linearize(sys,sys_io);
linsys.StateName

The linear model states are in default order. The linear model includes only the states in the
linearized blocks, and not the states of the full model.

ans =
 'height'
 'Current'
 'dhdt'

3 Define a different state order.

 Order States in Linearized Model

2-105

stateorder = {'magball/Magnetic Ball Plant/height';...
 'magball/Magnetic Ball Plant/dhdt';...
 'magball/Magnetic Ball Plant/Current'};

4 Linearize the model again and show the linear model states.

linsys = linearize(sys,sys_io,'StateOrder',stateorder);
linsys.StateName

The linear model states are now in the specified order.

ans =
 'height'
 'dhdt'
 'Current'

2 Linearization

2-106

Validate Linearization in Time Domain

This example shows how to validate linearization results by comparing the simulated output of the
nonlinear model and the linearized model.

Linearize Simulink® model. For example:

sys = 'watertank';
load_system(sys)
sys_io(1) = linio('watertank/PID Controller',1,'input');
sys_io(2) = linio('watertank/Water-Tank System',1,'openoutput');
opspec = operspec(sys);
op = findop(sys,opspec,findopOptions('DisplayReport','off'));
linsys = linearize(sys,op,sys_io);

If you linearized your model in Model Linearizer, you must export the linear model to the MATLAB®
workspace. To do so in the Linear Analysis Workspace, right-click the model and select Export to
MATLAB Workspace.

For time-domain validation of linearization, use frest.createStep to create a step signal.

input = frest.createStep(...
 'Ts',0.1,...
 'StepTime',1,...
 'StepSize',1e-5,...
 'FinalTime',500);

Simulate the Simulink model using the input signal. simout is the simulated output of the nonlinear
model.

[~,simout] = frestimate(sys,op,sys_io,input);

Simulate the linear model sys, and compare the time-domain responses of the linear and nonlinear
Simulink model. The step response of the nonlinear model and linearized model are close, which
validates that the linearization is accurate.

frest.simCompare(simout,linsys,input)
legend('FRESTIMATE results with Custom input',...
 'Linear simulation of linsys with Custom input',...
 'Location','SouthEast')

 Validate Linearization in Time Domain

2-107

Increase the amplitude of the step signal from 1.0e-5 to 1.

input = frest.createStep(...
 'Ts',0.1,...
 'StepTime',1,...
 'StepSize',1,...
 'FinalTime',500);

Repeat the frequency response estimation with the increased amplitude of the input signal, and
compare this time response plot to the exact linearization results.

[~,simout2] = frestimate(sys,op,sys_io,input);

Using frest.simCompare, compare this time response plot to the exact linearization results. The
step response of linear system you obtained using exact linearization does not match the step
response of the estimated frequency response with large input signal amplitude. The linear model
obtained using exact linearization does not match the full nonlinear model at amplitudes large
enough to deviate from the specified operating point.

frest.simCompare(simout2,linsys,input)
legend('FRESTIMATE results with Custom input',...
 'Linear simulation of linsys with Custom input',...
 'Location','SouthEast')

2 Linearization

2-108

http://slcontrol_ug/#br6xgv8-1

 Validate Linearization in Time Domain

2-109

Validate Linearization In Frequency Domain Using Model
Linearizer

This example shows how to validate linearization results using an estimated linear model.

In this example, you linearize a Simulink model using the I/Os specified in the model. You then
estimate the frequency response of the model using the same operating point (model initial
condition). Finally, you compare the estimated response to the exact linearization result.

Linearize Model
Open the model.

sys = 'scdDCMotor';
open_system(sys)

Open the Model Linearizer app for the model.

In the Simulink model window, in the Apps gallery, click Model Linearizer.

Linearize the model at the default operating point and analysis I/Os, and generate a bode plot of the

result. To do so, click Bode.

The Bode plot of the linearized plant appears, and the linearized plant linsys1 appears in the
Linear Analysis Workspace.

Estimate Frequency Response of Model
For frequency-domain validation of linearization, use a sinestream input signal. By analyzing one
sinusoidal frequency at a time, the software can ignore some of the impact of nonlinear effects.

Input Signal Use When See Also
Sinestream All linearization inputs and outputs

are on continuous signals.
frest.Sinestream

Sinestream with fixed sample time One or more of the linearization
inputs and outputs is on a discrete
signal

frest.createFixedTsSinestre
am

You can create a sinestream signal based on your linearized model. The software uses the linearized
model characteristics to accurately predict the number of sinusoid cycles at each frequency to reach
steady state.

When diagnosing the frequency response estimation, you can use the sinestream signal to determine
whether the time series at each frequency reaches steady state.

Create a sinestream input signal for computing an approximation of the model by frequency response
estimation. On the Estimation tab, in the Input Signal drop-down list, select Sinestream.

Initialize the input signal frequencies and parameters based on the linearized model.

2 Linearization

2-110

In the System drop-down list, select linsys1. Click Initialize frequencies and parameters.

The frequency display in the dialog box is populated with frequency points. The software chooses the
frequencies and input signal parameters automatically based on the dynamics of linsys1.

Set the amplitude of the input signal at all frequency points to 1. In the frequency display, select all
the frequency points.

Enter 1 in the Amplitude field, and click OK. The new input signal in_sine1 appears in the Linear
Analysis Workspace.

Estimate the frequency response and plot its frequency response on the existing Bode plot of the

linearized system response. Click Bode Plot 1.

Examine estimation results
Bode Plot 1 now shows the Bode responses for the estimated model and the linearized model.

 Validate Linearization In Frequency Domain Using Model Linearizer

2-111

The frequency response for the estimated model matches that of the linearized model.

For more information about frequency response estimation, see “Frequency Response Estimation
Basics” on page 5-2.

See Also
Model Linearizer

Related Examples
• “Estimation Input Signals” on page 5-25

2 Linearization

2-112

View Linearized Model Equations Using Model Linearizer
When you linearize a Simulink model using the Model Linearizer, the software generates state-
space equations for the resulting linear model. To view the linearized model equations:

1 In the data browser, in the Linear Analysis Workspace, select the linear model you want to
view.

2

On the Plots and Results tab, click Result Viewer.

In the Linearization result details dialog box, the software displays:

• General information about the linearization, including the operating point and the number of
inputs, outputs, and states.

• State-space matrices for the linearized model.
• Lists of the state, input, and output names. To highlight a state, input, or output in the Simulink

model, click the corresponding name.

To display the system using either zero-pole-gain or transfer function equations, in the Display
linearization result as drop-down list, select a format.

 View Linearized Model Equations Using Model Linearizer

2-113

You can automatically open the Linearization result details dialog box when you linearize your model.
To do so, on the Linear Analysis tab, select Result Viewer before you linearize the model.

See Also
Apps
Model Linearizer

More About
• “Analyze Results Using Model Linearizer Response Plots” on page 2-115

2 Linearization

2-114

Analyze Results Using Model Linearizer Response Plots
Using Model Linearizer, you can analyze time-domain and frequency-domain responses of linearized
models. You can compare the responses of multiple models and view system characteristics such as
stability margins and settling time.

View System Characteristics on Response Plots
To view system characteristics such as stability margins, overshoot, or settling time on a Model
Linearizer response plot, right-click the plot and select Characteristics. Then select the system
characteristic you want to view.

For most characteristics, a data marker appears on the plot. To show a data tip that contains
information about the system characteristic, click the marker.

 Analyze Results Using Model Linearizer Response Plots

2-115

Generate Additional Response Plots of Linearized System
In Model Linearizer, when you have linearized or estimated a system, you can generate additional
response plots of the system as follows:

1 In the Model Linearizer, click the Plots and Results tab. In the Linear Analysis Workspace
or the MATLAB Workspace, select the system you want to plot.

2 Linearization

2-116

2 In the Plots gallery, click the type of plot you want to generate.

Tip To expand the gallery view, click .

Model Linearizer generates a new plot of type you select.

 Analyze Results Using Model Linearizer Response Plots

2-117

Tip To view multiple plots at the same time, in the top-right corner of the plot document, click the
down arrow. Then, select a tiling option under Tile All.

2 Linearization

2-118

Add Linear System to Existing Response Plot
New Linear System

When you compute a new linearization or frequency response estimation, on the Linear Analysis
tab, click the button corresponding to an existing plot to add the new linear system to that plot.

For example, suppose that you have linearized a model at the default operating point for the model,
and have a step plot of the result, Step Plot 1. Suppose further that you have specified a new
operating point at a linearization snapshot time. To linearize at the new operating point and add the

result to Step Plot 1, click Step Plot 1. Model Linearizer computes the new
linearization and adds the step response of the new system, linsys2, to the existing step response
plot.

 Analyze Results Using Model Linearizer Response Plots

2-119

Linear System in Workspace

You can add a linear system from the MATLAB Workspace or the Linear Analysis Workspace to an
existing plot in Model Linearizer.

On the Plots and Results tab, in the Linear Analysis Workspace, select the system you want to
add to an existing plot. Then, in the Plots section of the tab, select the button corresponding to the
existing plot you want to update.

For example, suppose that you have a Bode plot of the response of a linear system, Bode Plot 1.
Suppose further that you have an estimated response in the Linear Analysis Workspace, estsys1.
To add the response of estsys1 to the existing Bode plot, select estsys1 and click Bode Plot 1.

Tip To expand the gallery view, click .

Customize Characteristics of Plot in Model Linearizer
To change the characteristics of an existing plot, such as the title, axis labels, or text styles, double-
click the plot to open the properties editor. Edit plot properties as desired. Plots are updated as you
make changes. When you are finished, click Close.

Print Plot to MATLAB Figure in Model Linearizer
To export a plot from the Model Linearizer to a MATLAB figure window:

2 Linearization

2-120

1 Select the plot you want to export. A tab appears with the same name as the plot.

2
Click the new tab. In the Print section, click Print to Figure.

A MATLAB figure window opens containing the plot.

See Also
Model Linearizer

More About
• “View Linearized Model Equations Using Model Linearizer” on page 2-113
• “Linearize at Trimmed Operating Point” on page 2-66
• “Linearize at Simulation Snapshot” on page 2-71

 Analyze Results Using Model Linearizer Response Plots

2-121

Generate MATLAB Code for Linearization from Model Linearizer
This topic shows how to generate MATLAB code for linearization from the Model Linearizer. You
can generate either a MATLAB script or a MATLAB function. To programmatically reproduce a
linearization result that you obtained interactively, you can use a generated MATLAB script. To
perform multiple linearizations with systematic variations in your linearization configuration, you can
use a generated MATLAB function.

To generate MATLAB code for linearization:

1 In the Model Linearizer, on the Linear Analysis tab, interactively configure the analysis
points, operating points, and parameter variations for linearization.

2 In the Linearize section, expand the gallery by clicking .

3 In the gallery, depending on the type of code you want to create, click:

•
 Script — Generate a MATLAB script that uses your configured analysis points, operating

points, and parameter variations. Select this option when you want to repeat the same
linearization at the MATLAB command line.

•
 Function — Generate a MATLAB function that takes analysis points, operating points,

and parameter variations as input arguments. Select this option when you want to perform
multiple linearizations using different configurations (batch linearization). For more
information on varying operating points and parameter when using the linearize function,
see:

• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-

19

The software creates a MATLAB file that contains the generated code and opens the file in the
MATLAB Editor.

4 In the MATLAB Editor, you can edit and save the file.

See Also
Functions
linearize

Apps
Model Linearizer

2 Linearization

2-122

More About
• “What Is Batch Linearization?” on page 3-2

 Generate MATLAB Code for Linearization from Model Linearizer

2-123

When to Specify Individual Block Linearization
Some Simulink blocks, including those with sharp discontinuities, can produce poor linearization
results. For example, when your model operates in a region away from the point of discontinuity, the
linearization of the block is zero. Typically, you must specify custom linearizations for such blocks.
You can specify the block linearization as:

• A linear model in the form of a D-matrix.
• A Control System Toolbox model object.
• An uncertain state-space object or an uncertain real object (requires Robust Control Toolbox

software).

See Also

More About
• “Specify Linear System for Block Linearization Using MATLAB Expression” on page 2-125
• “Specify D-Matrix System for Block Linearization Using Function” on page 2-126
• “Augment Block Linearization” on page 2-135
• “Change Perturbation Level of Blocks Perturbed During Linearization” on page 2-150
• “Block Linearization Troubleshooting” on page 4-42

2 Linearization

2-124

Specify Linear System for Block Linearization Using MATLAB
Expression

This example shows how to specify the linearization of any block, subsystem, or model reference
without having to replace this block in your Simulink model.

1 Right-click the block in the model, and select Linear Analysis > Specify Selected Block
Linearization.

The Block Linearization Specification dialog box opens.
2 In the Specify block linearization using one of the following list, select MATLAB

Expression.
3 In the text field, enter an expression that specifies the linearization.

For example, specify the linearization as an integrator with a gain of k, G(s) = k/s.

In state-space form, this transfer function corresponds to ss(0,1,k,0).

Click OK.
4 Linearize the model.

See Also

Related Examples
• “Specify D-Matrix System for Block Linearization Using Function” on page 2-126
• “Block Linearization Troubleshooting” on page 4-42

 Specify Linear System for Block Linearization Using MATLAB Expression

2-125

Specify D-Matrix System for Block Linearization Using Function

This example shows how to specify custom linearization for a saturation block using a function.

Open the Simulink® model.

mdl = 'configSatBlockFcn';
open_system(mdl)

In this model, the limits of the saturation block are –satlimit and satlimit.

Define the saturation limit, which is a parameter required by the linearization function of the
Saturation block.

satlimit = 10;

Linearize the model at the model operating point using the linear analysis points defined in the
model. Doing so returns the linearization of the saturation block.

io = getlinio(mdl);
linsys = linearize(mdl,io)

linsys =

 D =
 Constant
 Saturation 0.5

Static gain.

At the model operating point, the input to the saturation block is 10. This value is on the saturation
boundary. At this value, the saturation block linearizes to 1.

Suppose that you want the block to linearize to a transitional value of 0.5 when the input falls on the
saturation boundary. Write a function that defines the saturation block linearization to behave this
way. For this example, use the configuration function in mySaturationLinearizationFcn.m.

function blocklin = mySaturationLinearizationFcn(BlockData)
% This function customizes the linearization of a saturation block. The
% linearization of the block is as follows
% BLOCKLIN = 0 when |U| > saturation limit
% BLOCKLIN = 1 when |U| < saturation limit
% BLOCKLIN = 0.5 when U = saturation limit

% Get the saturation limit specified in the parameters of the block.
satlimit = BlockData.Parameters.Value;

% Compute the linearization based on the input signal level to the block.
if abs(BlockData.Inputs.Values) > satlimit
 blocklin = 0;

2 Linearization

2-126

elseif abs(BlockData.Inputs.Values) < satlimit
 blocklin = 1;
else
 blocklin = 0.5;
end

This configuration function defines the saturation block linearization based on the level of the block
input signal. For input values outside the saturation limits, the block linearizes to zero. Inside the
limits, the block linearizes to 1. For boundary values, the block linearizes to the interpolated value of
0.5. The input to the function, BlockData, is a structure that the software creates automatically when
you configure the linearization of the Saturation block to use the function. The configuration function
reads the saturation limits from that data structure.

The input to the function, BlockData, is a structure that the software creates automatically each
time it linearizes the block. When you specify a block linearization configuration function, the
software automatically passes BlockData to the function. If your configuration function requires
additional parameters, you can configure the block to set those parameters in the
BlockData.Parameters field.

Specify mySaturationLinearizationFcn as the linearization for the Controller block.

1 In the Simulink model, right-click the Saturation block, and select Linear Analysis > Specify
Selected Block Linearization.

2 In the Block Linearization Specification dialog box, select Specify block linearization using
one of the following.

3 In the drop-down list, select Configuration Function.
4 In the text box, enter the function name mySaturationLinearizationFcn.
5 Specify the saturation limit as a parameter for the function. In the Parameter Value column,

enter the variable name satlimit.
6 In the Parameter Name column, enter the corresponding descriptive name SaturationLimit.
7 Click OK.

 Specify D-Matrix System for Block Linearization Using Function

2-127

Alternatively, you can define the configuration function programmatically.

satblk = 'configSatBlockFcn/Saturation';
set_param(satblk,'SCDEnableBlockLinearizationSpecification','on')
rep = struct('Specification','mySaturationLinearizationFcn',...
 'Type','Function',...
 'ParameterNames','SaturationLimit',...
 'ParameterValues','satlimit');
set_param(satblk,'SCDBlockLinearizationSpecification',rep)

Linearize the model again. Now, the linearization uses the custom linearization of the saturation
block.

linsys_cust = linearize(mdl,io)

linsys_cust =

 D =
 Constant
 Saturation 0.5

Static gain.

At the model operating point, the input to the saturation block is 10. Therefore, the block linearizes to
0.5, the linearization value specified in the configuration function.

2 Linearization

2-128

See Also

More About
• “Specify Linear System for Block Linearization Using MATLAB Expression” on page 2-125
• “Block Linearization Troubleshooting” on page 4-42

 Specify D-Matrix System for Block Linearization Using Function

2-129

Specify Custom Linearizations for Simulink Blocks

This example shows how to specify the linearization of a Simulink® block or subsystem.

In Simulink Control Design™ software, linearization provides a linear approximation of a Simulink
model using an exact linearization approach. This linearization is valid in a small region around a
given operating point. This approach works well for most Simulink models. However, in some cases,
you must modify the exact linearization approach to take into account the effects of discontinuities or
approximate the dynamics of derivative or delay action. Many built-in Simulink blocks, such as
Saturation or Dead Zone blocks, provide a Treat as gain when linearizing parameter to control this
behavior. For blocks or subsystems that cannot be linearized, it can be necessary to specify a
linearization. In this example, you specify a custom linearization for a subsystem to approximate the
linearization of a PWM signal.

Linearize a Model with a PWM Generation Subsystem

The scdpwm model contains a Voltage to PWM subsystem that models a PWM signal, which then
enters a plant model.

mdl = 'scdpwm';
open_system(mdl)

When you linearize this model using the standard configuration, the resulting linear model has a gain
of zero.

io = getlinio(mdl);
sys = linearize(mdl,io)

sys =

 D =
 Step
 Plant Model 0

Static gain.

The Voltage to PWM/Compare To Zero block causes this linearization to be zero.

pwmblk = 'scdpwm/Voltage to PWM';
open_system(pwmblk)

2 Linearization

2-130

The linearization is zero because the block represents a pure discontinuous nonlinearity.

u = [-1:0.1:0,0:0.1:1];
y = [zeros(11,1);ones(11,1)];
plot(u,y)
xlabel('Block Input - u')
ylabel('Block Output - y')
ylim([-0.1 1.1])

Specify a Custom Linearization for the PWM Subsystem

With Simulink Control Design software, you can control the linearization of the blocks in a Simulink
model. You can specify the linearization of a block using:

• Matrices
• Linear time invariant models, such as transfer functions or state-space models

 Specify Custom Linearizations for Simulink Blocks

2-131

• Uncertain parameters or state-space models (requires Robust Control toolbox™ software)

In this example, the PWM subsystem contains a time delay

This time delay accounts for the duty cycle frequency of the PWM signal which is 100 Hz. To specify
the delay for the Voltage to PWM subsystem, first select the block. Then, on the Apps tab, click
Linearization Manager.

On the Linearization tab, click Specify Block Linearization. Then, in the Block Linearization
Specification dialog box, perform the following steps.

1 Select the Specify block linearization using one of the following parameter.
2 In the drop-down box, select MATLAB Expression.
3 Specify the linearization using the expression ss(1,'OutputDelay',1/100).

The following code is equivalent to entering the delay into the Block Linearization Specification
dialog box.

set_param(pwmblk,'SCDEnableBlockLinearizationSpecification','on');
rep = struct('Specification','ss(1,''OutputDelay'',1/100)',...
 'Type','Expression',...
 'ParameterNames','',...
 'ParameterValues','');
set_param(pwmblk,'SCDBlockLinearizationSpecification',rep);

Create a continuous-time linear model of the system.

opt = linearizeOptions('SampleTime',0);
sys = linearize(mdl,io,opt);

The linearized model, which includes the specified subsystem linearization, now gives the expected
result.

sys = zpk(sys)

sys =

 From input "Step" to output "Plant Model":
 1
 exp(-0.01*s) * -------------
 (s^2 + s + 1)

Continuous-time zero/pole/gain model.

2 Linearization

2-132

Compare the Linearization and Simulation

You can compare the linearization of the model to an estimated frequency response of the model
using a frest.createStep input signal.

The linearization you specified for the Voltage to PWM subsystem affects only linearization and not
model simulation. Therefore, you do not need to remove the linearization specification before you
estimate the frequency response.

Create an input signal and estimate the frequency response of the model.

instep = frest.createStep('Ts',1/10000,'StepTime',1,...
 'StepSize',1e-1,'FinalTime',15);
[sysf,simoutstep] = frestimate(mdl,io,instep);

Compare the linearized model with the simulation results from the estimated model.

frest.simCompare(simoutstep,sys,instep)
legend('Linearization with PWM Subsystem Specification',...
 'Simulated Step Response','Location','East')

The linearization accurately represents the dynamics of the estimated system.

Other Applications for Custom Linearizations

Block linearization specification is not limited to linear time-invariant models. If you have Robust
Control Toolbox™ software, you can specify uncertain parameters and uncertain state-space (USS)

 Specify Custom Linearizations for Simulink Blocks

2-133

models for blocks in a model. The resulting linearization is then an uncertain model. The example
“Linearization of Simulink Models with Uncertainty” (Robust Control Toolbox) shows how to compute
a linearization with uncertainty.

You can also perform analysis of models with discrete controllers and continuous plant dynamics in
the continuous domain. For more details, see “Model Computational Delay and Sampling Effects” on
page 9-80.

Close the Simulink model.

bdclose(mdl)

See Also
linearize

Related Examples
• “When to Specify Individual Block Linearization” on page 2-124
• “Specify Linearization for Model Components Using System Identification” on page 2-170

2 Linearization

2-134

Augment Block Linearization

This example shows how to augment the linearization of a block with additional time delay dynamics
using a block linearization specification function.

Open the Simulink model.

mdl = 'scdFcnCall';
open_system(mdl)

This model includes a continuous-time plant and a discrete-time controller. The D/A block discretizes
the plant output with a sample time of 0.1 s. The External Scheduler block triggers the controller to
execute with the same period. However, the trigger has an offset of 0.05 s relative to the discretized
plant output. For that reason, the controller does not process a change in the reference signal until
0.05 s after the change occurs. This offset introduces a time delay of 0.05 s into the model.

Linearize the closed-loop model at the model operating point without specifying a linearization for the
Controller block.

io = getlinio(mdl);
sys_nd = linearize(mdl,io);

Check the linearization result by frequency response estimation.

input = frest.Sinestream(sys_nd);
sysest = frestimate(mdl,io,input);
bode(sys_nd,'g',sysest,'r*',{input.Frequency(1),input.Frequency(end)})
legend('Linearization without delay',...
 'Frequency response estimation','Location','southwest')

 Augment Block Linearization

2-135

The exact linearization does not account for the time delay introduced by the controller execution
offset. There is a discrepancy in the results between the linearized model and the estimated model,
especially at higher frequencies.

Create a function to specify the linearization of the Controller block that includes the time delay. For
this example use the linearization specified in scdAddDelayFcn.m.

function sys = scdAddDelayFcn(BlockData)
 sys = BlockData.BlockLinearization*thiran(0.05,0.1);
end

The input to the function, BlockData, is a structure that the software creates automatically each
time it linearizes the block. When you specify a block linearization configuration function, the
software automatically passes BlockData to the function. The field BlockLinearization contains
the current linearization of the block.

This configuration function approximates the time delay as a Thiran filter. The filter indicates a
discrete-time approximation of the fractional time delay of 0.5 sampling periods. (The 0.05 s delay
has a sample time of 0.1 s).

Specify scdAddDelayFcn as the linearization for the Controller block.

1 Right-click the Controller block, and select Linear Analysis > Specify Selected Block
Linearization.

2 In the Block Linearization Specification dialog box, select Specify block linearization using
one of the following.

2 Linearization

2-136

3 In the drop-down list, select Configuration Function.
4 In the text box, enter the function name scdAddDelayFcn. This function has no additional

parameters, so leave the parameter table blank.
5 Click OK.

Alternatively, you can specify the configuration function programmatically using the following code.

block = 'scdFcnCall/Controller';

set_param(block,'SCDEnableBlockLinearizationSpecification','on')
rep = struct('Specification','scdAddDelayFcn',...
 'Type','Function',...
 'ParameterNames','',...
 'ParameterValues','');
set_param(block,'SCDBlockLinearizationSpecification',rep)

Linearize the model using the augmented block linearization.

sys_d = linearize(mdl,io);

Compare the linearization that includes the delay with the estimated frequency response.

bode(sys_d,'b',sys_nd,'g',sysest,'r*',...
 {input.Frequency(1),input.Frequency(end)})
legend('Linearization with delay','Linearization without delay',...
 'Frequency response estimation','Location','southwest')

 Augment Block Linearization

2-137

The linear model obtained using the augmented block linearization now accounts for the time delay.
This linear model more closely matches the real frequency response of the model.

See Also
getlinio | linearize

2 Linearization

2-138

Models with Time Delays

Choose Approximate Versus Exact Time Delays
Simulink Control Design lets you choose whether to linearize models using exact representation or
Pade approximation of continuous time delays. How you treat time delays during linearization
depends on your nonlinear model.

Simulink blocks that model time delays are:

• Transport Delay block
• Variable Time Delay block
• Variable Transport Delay block
• Delay block
• Unit Delay block

By default, linearization uses Pade approximation for representing time delays in your linear model.

Use Pade approximation to represent time delays when:

• Applying more advanced control design techniques to your linear plant, such as LQR or H-infinity
control design.

• Minimizing the time to compute a linear model.

Specify to linearize with exact time delays for:

• Minimizing errors that result from approximating time delays
• PID tuning or loop-shaping control design methods in Simulink Control Design
• Discrete-time models (to avoid introducing additional states to the model)

The software treats discrete-time delays as internal delays in the linearized model. Such delays do
not appear as additional states in the linearized model.

Specify Exact Representation of Time Delays
Before linearizing your model:

• In the Model Linearizer:

1
On the Linear Analysis tab, click More Options.

2 In the Options for exact linearization dialog box, in the Linearization tab, check Return
linear model with exact delay(s).

• At the command line, create a linearizeOptions option set, setting the UseExactDelayModel
to 'on'.

See Also
linearizeOptions

 Models with Time Delays

2-139

More About
• “Time Delays in Linear Systems”
• “Time-Delay Approximation”
• “Linearize Models with Delays” on page 2-77

2 Linearization

2-140

Linearize Multirate Models
You can linearize a Simulink model that contains blocks with different sample times using Simulink
Control Design software. By default, the linearization tools:

• Convert sample times using a zero-order hold conversion method.
• Create a linearized model with a sample time equal to the largest sample time of the blocks on the

linearization path.

You can change either of these behaviors by specifying linearization options, which affects the
linearization result.

Change Sample Time of Linear Model
By default, the software sets the sample time to the least common multiple of the nonzero sample
times in the model. At this rate, down-sampling is exact for all of the rates in the model. If the default
sample time is not appropriate for your application, you can specify a different sample time.

To specify the sample time of the linear model in the Model Linearizer:

1
On the Linear Analysis tab, click More Options.

2 In the Options for exact linearization dialog box, on the Linearization tab, in the Enter sample
time (sec) field, specify the sample time. You can specify any of the following values.

• -1 — Set the sample time to the least common multiple of the nonzero sample times in the
model.

• 0 — Create a continuous-time model.
• Positive scalar — Use the specified value for the sample time.

To specify the sample time of the linear model at the command line, create a linearizeOptions
option set, and set the SampleTime option.

opt = linearizeOptions;
opt.SampleTime = 0.01;

You can then use this option set with linearize or slLinearizer.

Change Linearization Rate Conversion Method
When you linearize models with multiple sample times, such as a discrete controller with a
continuous plant, the software uses a rate conversion algorithm to create a single-rate linear model.
The default rate conversion method is zero-order hold.

To specify the rate conversion method in the Model Linearizer:

1
On the Linear Analysis tab, click More Options.

2 In the Options for exact linearization dialog box, on the Linearization tab, in the Choose rate
conversion method drop-down list, select one of the following rate conversion methods.

 Linearize Multirate Models

2-141

Rate Conversion Method When to Use
Zero-Order Hold You need exact discretization of continuous

dynamics in the time domain for staircase
inputs.

Tustin You need good frequency-domain matching
between a continuous-time system and the
corresponding discretized system, or
between an original system and a resampled
system.

Tustin with Prewarping You need good frequency-domain matching at
a particular frequency between a continuous-
time system and the corresponding
discretized system, or between an original
system and the resampled system.

Upsampling when possible, Zero-
Order Hold otherwise
Upsampling when possible, Tustin
otherwise
Upsampling when possible, Tustin
with Prewarping otherwise

Upsample discrete states when possible to
ensure gain and phase matching of
upsampled dynamics. You can only upsample
when the new sample time is an integer
multiple of the sample time of the original
system. Otherwise, the software uses the
alternate rate conversion method.

3 If you select either of the following rate conversion methods:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

then, in the Enter prewarp frequency field, specify the prewarp frequency.

To specify the rate conversion method at the command line, create a linearizeOptions object, and
set the RateConversionMethod and PreWarpFreq options.

opt = linearizeOptions;
opt.RateConversionMethod = 'prewarp';
opt.PreWarpFreq = 100;

You can then use this options object with linearize or slLinearizer.

Note If you use a rate conversion method other than zero-order hold, the converted states no longer
have the same physical meaning as the original states. As a result, the state names in the resulting
LTI system are '?'.

Multirate Linearization Algorithm

This example demonstrates the algorithm that Simulink® Control Design™ software uses to linearize
a multirate nonlinear Simulink model.

To illustrate the concepts, the example shows the linearization process using Control System
Toolbox™ functions. Then, the same process is repeated using the linearize function.

2 Linearization

2-142

The scdmrate Simulink model contains five blocks with various sample times. All linear systems in
this model are in zero-pole-gain format.

• sysC - Continuous-time linear time-invariant (LTI) system
• Integrator - Continuous-time integrator
• sysTs1 - Discrete-time LTI system with a sample time of 0.01 seconds
• sysTs2 - Discrete-time LTI system with a sample time of 0.025 seconds
• Zero-Order Hold - Block that samples the incoming signal at 0.01 seconds

sysC = zpk(-2,-10,0.1);
Integrator = zpk([],0,1);
sysTs1 = zpk(-0.7463,[0.4251 0.9735],0.2212,0.01);
sysTs2 = zpk([],0.7788,0.2212,0.025);

View the scdmrate model.

open_system('scdmrate')

In this example, you linearize the model between the output of the Constant block and the output of
the sysTs2 block.

Linearize Individual Blocks

The first step of the linearization process is to linearize each block in the model. The linearization for
the Saturation and Zero-Order Hold blocks is a gain of 1. Since the LIT blocks are already linear, they
are unchanged.

View the updated model with the linearized blocks.

open_system('scdmratestep1')

 Linearize Multirate Models

2-143

Perform Rate Conversion

Since the blocks in the model use different sample times, to create a single-rate linearized model for
the system you must first convert the various sample rates to a representative single rate.

The linearize function uses an iterative rate conversion method. The iterations begin with the least
common multiple of the sample times in the model. In this example, the sample times are 0, 0.01, and
0.025 seconds, which yields a least common multiple of 0.05.

The first rate-conversion iteration resamples the combination of blocks with the fastest sample rate at
the next fastest rate. In this example, the first iteration converts the combination of the linearized
continuous-time blocks, sysC and Integrator, to a sample time of 0.01 using a zero-order hold
continuous-to-discrete conversion.

sysC_Ts1 = c2d(sysC*Integrator,0.01);

The blocks sysC and Integrator are now replaced by sysC_Ts1.

open_system('scdmratestep2')

The next iteration converts all the blocks with a sample time of 0.01 to a sample time of 0.025. In this
example, all the blocks with a sample rate of 0.01 form a closed-loop system. Therefore, before
converting their sample rate, the linearization algorithm computes the response of the closed-loop
system.

sysCL = feedback(sysTs1*sysC_Ts1,1);

Next, a zero-order hold method converts the closed-loop system from a sample time of 0.01 seconds
to 0.025 seconds.

sysCL_Ts2 = d2d(sysCL,0.025);

The system sysCL_Ts2 then replaces the feedback loop in the model.

open_system('scdmratestep3')

2 Linearization

2-144

The final iteration resamples the combination of the closed-loop system and the sysTs2 block from a
sample time of 0.025 seconds to 0.05 seconds.

sys1 = d2d(sysCL_Ts2*sysTs2,0.05)

sys1 =

 0.0001057 (z+22.76) (z+0.912) (z-0.9048) (z+0.06495)

 (z-0.01373) (z-0.6065) (z-0.6386) (z-0.8588) (z-0.9754)

Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.

Linearize Model Using Simulink Control Design Functions

The linearize function implements this iterative process for linearizing multirate models.

To linearize the model, first specify the linearization input and output points.

io(1) = linio('scdmrate/Constant',1,'input');
io(2) = linio('scdmrate/sysTs2',1,'openoutput');

Linearize the model and convert the resulting state-space model to zero-pole-gain format.

sys2 = zpk(linearize('scdmrate',io))

sys2 =

 From input "Constant" to output "sysTs2":
 0.0001057 (z+22.76) (z+0.912) (z-0.9048) (z+0.06495)

 (z-0.6065) (z-0.6386) (z-0.8588) (z-0.9754) (z-0.01373)

Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.

This model matches the model computed manually.

bode(sys1,sys2)

 Linearize Multirate Models

2-145

See Also
Apps
Model Linearizer

Functions
linearize | linearizeOptions

More About
• “Continuous-Discrete Conversion Methods”
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147

2 Linearization

2-146

Linearize Models Using Different Rate Conversion Methods

This example shows how to specify the rate conversion method when linearizing a multirate
Simulink® model. The choice of rate conversion methodology can affect the resulting linearized
model. This example illustrates the extraction of a discrete linear time-invariant (LTI) model using
two different rate conversion methods.

The scdmrate Simulink model contains five blocks with various sample times. All linear systems in
this model are in zero-pole-gain format.

• sysC - Continuous-time linear time-invariant (LTI) system
• Integrator - Continuous-time integrator
• sysTs1 - Discrete-time LTI system with a sample time of 0.01 seconds
• sysTs2 - Discrete-time LTI system with a sample time of 0.025 seconds
• Zero-Order Hold - Block that samples the incoming signal at 0.01 seconds

Open the Simulink model.

mdl = 'scdmrate';
open_system(mdl)

In this example, you linearize the model between the output of the sysTs1 block and the output of
the Zero-Order Hold block. To compute an open-loop response, you add a loop opening at the
output of the Zero-Order Hold block.

io(1) = linio('scdmrate/sysTs1',1,'input');
io(2) = linio('scdmrate/Zero-Order Hold',1,'openoutput');

Using these linearization points, the linearization effectively results in the linearization of the model
scdmrate_ol.

open_system('scdmrate_ol')

 Linearize Models Using Different Rate Conversion Methods

2-147

When linearizing a model that contains both continuous and discrete signals, the software first
converts the continuous signals to discrete signals, using a rate conversion method. To specify the
rate conversion method, create a linearizeOptions object and set the RateConversionMethod
property. The default rate conversion method is zero-order hold ('zoh').

opt = linearizeOptions;
opt.RateConversionMethod

ans =

 'zoh'

Linearize the model using the default zero-order hold method. Since the linearization includes the
Zero-Order Hold block, the sample time of the linearization is 0.01 seconds.

syszoh = linearize(mdl,io,opt);

Change the rate conversion method to the Tustin (Bilinear transformation) method and linearize the
model using this method. The sample time of the resulting model is also 0.01 seconds.

opt.RateConversionMethod = 'tustin';
systust = linearize(mdl,io,opt);

You can also create a continuous-time linearized model by specifying the sample time as 0 in the
linearizeOptions object. The rate conversion method creates a single discrete-time linearized
model and then converts the discrete-time model to a continuous-time model.

opt.SampleTime = 0;
sysc = linearize(mdl,io,opt);

The Bode plots for the three linearizations show the effects of the two rate conversion methods. In
this example, the Tustin rate conversion method gives the most accurate representation of the phase
response of the continuous-time system and the zero-order hold gives the best match to the
magnitude response.

p = bodeoptions('cstprefs');
p.YLimMode = {'manual'};
p.YLim = {[-100 0];[-180 -30]};
p.Grid = 'on';
bodeplot(sysc,syszoh,systust,p);
legend('sysc','syszoh','systust','Location','SouthWest');

2 Linearization

2-148

Close the models.

bdclose('scdmrate')
bdclose('scdmrate_ol')

See Also
linearize | linearizeOptions

Related Examples
• “Linearize Multirate Models” on page 2-141

 Linearize Models Using Different Rate Conversion Methods

2-149

Change Perturbation Level of Blocks Perturbed During
Linearization

Blocks that do not have preprogrammed analytic Jacobians linearize using numerical perturbation.
You can modify the size of the state and input signal perturbation levels for your application.

Change Block Perturbation Level

This example shows how to change the perturbation level to the Magnetic Ball Plant block in the
magball model. Changing the perturbation level changes the linearization results.

For this model, the state and input signal values are double-precision values. The default perturbation
size for the state and input signals in this model is 10−5 1 + x , where x is the operating point value
of the perturbed state or input signal.

Open the model before changing the perturbation level.

open_system('magball')

Change the perturbation level of the states to 10−7 1 + x , where x is the state value.

blockname = 'magball/Magnetic Ball Plant';
set_param(blockname,'StatePerturbationForJacobian','1e-7');

To change the perturbation level of the input signal for this block to 10−3 1 + x , where x is the
input signal value, first obtain the block port handles and get the handle to the input port value.

ph = get_param(blockname,'PortHandles');
p_in = ph.Inport(1);

Then, set the input port perturbation level.

set_param(p_in,'PerturbationForJacobian','1e-3');

To obtain the current perturbation level for block states, use the following code.

statePerturb = get_param(blockname,'StatePerturbationForJacobian');

To obtain the current perturbation level for block input signals, use the following code.

inputPerturb = get_param(p_in,'PerturbationForJacobian');

When the corresponding state or input signal perturbation level is at its default value, both
statePerturb and inputPerturb are 'auto'.

Default Perturbation Levels

The default perturbation size for double-precision states and input signals is 10−5 1 + x , where x is
the operating point value of the perturbed state or input signal. For single-precision states and input
signals, the default perturbation size is 0 . 005 1 + x .

To restore the default perturbation level for block states, use the following code.

set_param(blockname,'StatePerturbationForJacobian','auto');

2 Linearization

2-150

To restore the default perturbation level for block input signals, use the following code.

set_param(p_in,'PerturbationForJacobian','auto');

Perturbation Levels of Integer-Valued Blocks

A custom block that requires integer input ports for indexing might have linearization issues when
the block does not support small perturbations in the input value. To fix the problem, try setting the
perturbation level of such a block to zero, which sets the block linearization to a gain of 1.

See Also
linearize

More About
• “Exact Linearization Algorithm” on page 2-177
• “Block Linearization Troubleshooting” on page 4-42

 Change Perturbation Level of Blocks Perturbed During Linearization

2-151

Linearize Blocks with Non-Floating-Point Signals or States
You can linearize blocks that have non-floating-point signals or states and have no preprogrammed
exact linearization. Without additional configuration, such blocks automatically linearize to zero. For
example, logical operator blocks have Boolean outputs and linearize to 0.

Linearizing blocks that have non-floating-point signals requires converting all signals to either
double-precision or single-precision. This approach only works when your model can run correctly in
full double or single precision.

When you have only a few blocks impacted by the non-floating-point data types, you can use a Data
Type Conversion block to fix this issue.

When you have many nondouble precision signals, you can override all data types with double
precision using the Fixed Point Tool.

Override Data Type Using Data Type Conversion Block
Convert individual signals to double precision before linearizing the model by inserting a Data Type
Conversion block. This approach works well for model that have only a few affected blocks.

After linearizing the model, remove the Data Type Conversion block from your model.

Note Overriding non-floating-point data types is not appropriate when the model relies on these data
types, such as relying on integer data types to perform truncation from floating-point values.

For example, consider the model configured to linearize the Square block at an operating point where
the input is 1. The resulting linearized model should be 2, but the input to the Square block is
Boolean. This signal with a non-floating-point data type results in a linearization of zero.

In this case, inserting a Data Type Conversion block converts the input signal to the Square block to
double precision. Doing so

Overriding Data Types Using Fixed Point Tool
When you linearize a model that contains non-floating-point data types but still runs correctly in full
double or single precision, you can override all data types to be either double-precision or single-
precision using the Fixed Point Tool. Use this approach when you have many non-floating-point
precision signals.

2 Linearization

2-152

After linearizing the model, restore your original settings.

Note Overriding non-floating-point data types is not appropriate when the model relies on these data
types, such as relying on integer data types to perform truncation from floats.

1 Open the Fixed Point Tool. In the Simulink model window, on the Apps tab, in the Apps gallery,
under Code Generation, click Fixed Point Tool.

2 In the Data type override menu, select either Double or Single
3 Restore settings when linearization is complete.

See Also
linearize

More About
• “Change Perturbation Level of Blocks Perturbed During Linearization” on page 2-150
• “Block Linearization Troubleshooting” on page 4-42

 Linearize Blocks with Non-Floating-Point Signals or States

2-153

Linearize Event-Based Subsystems (Externally Scheduled
Subsystems)

Linearizing Event-Based Subsystems
Event-based subsystems (triggered subsystems) and other event-based models require special
handling during linearization.

Executing a triggered subsystem depends on previous signal events, such as zero crossings. However,
because linearization occurs at a specific moment in time, the trigger event never happens.

An example of an event-based subsystem is an internal combustion (IC) engine. When an engine
piston approaches the top of a compression stroke, a spark causes combustion. The timing of the
spark for combustion is dependent on the speed and the position of the engine crankshaft.

In the scdspeed model, triggered subsystems generate events when the pistons reach both the top
and bottom of the compression stroke. Linearization in the presence of such triggered subsystems is
not meaningful.

Approaches for Linearizing Event-Based Subsystems
You can obtain a meaningful linearization of triggered subsystems, while still preserving the
simulation behavior, by recasting the event-based dynamics as one of the following:

• Lumped average model that approximates the event-based behavior over time.
• Periodic function call subsystem, with Normal simulation mode.

In the case of periodic function call subsystems, the subsystem linearizes to the sampling at which
the subsystem is periodically executed.

In many control applications, the controller is implemented as a discrete controller, but the
execution of the controller is driven by an external scheduler. You can use such linearized plant
models when the controller subsystem is a periodic Function-Call Subsystem.

If recasting event-based dynamics does not produce good linearization results, try frequency
response estimation. See “Estimate Frequency Response Using Model Linearizer” on page 5-6.

Note If a triggered subsystem is disabled at the current operating condition and has at least one
direct passthrough I/O pair, then the subsystem will break the linearization path during linearization.
In such a case, specify a block substitution or ensure that the subsystem does not have a passthrough
I/O pair.

Approximate Event-Based Subsystems Using Curve Fitting (Lump-
Average Model)
This example shows how to use curve fitting to approximate event-based dynamics of an engine.

The scdspeed model linearizes to zero because the scdspeed/Throttle & Manifold/Intake
Manifold is an event-triggered subsystem.

2 Linearization

2-154

You can approximate the event-based dynamics of the scdspeed/Throttle & Manifold/Intake
Manifold subsystem by adding the Convert to mass charge block inside the subsystem.

The Convert to mass charge block approximates the relationship between Air Charge, Manifold
Pressure, and Engine Speed as a quadratic polynomial.

AirCharge = p1 × EngineSpeed + p2 × ManifoldPressure + p3 × (M

+ p4 × ManifoldPressure × EngineSpeed + p5

If measured data for internal signals is not available, use simulation data from the original model to
compute the unknown parameters p1, p2, p3, p4, and p5 using a least squares fitting technique.

When you have measured data for internal signals, you can use the Simulink Design Optimization™
software to compute the unknown parameters. See “Engine Speed Model Parameter Estimation”
(Simulink Design Optimization) to learn more about computing model parameters, linearizing this
approximated model, and designing a feedback controlled for the linear model.

The next figure compares the simulations of the original event-based model and the approximated
model. Each of the pulses corresponds to a step change in the engine speed. The size of the step
change is between 1500 and 5500. Thus, you can use the approximated model to accurately simulate
and linearize the engine between 1500 RPM and 5500 RPM.

 Linearize Event-Based Subsystems (Externally Scheduled Subsystems)

2-155

Approximate Event-Based Dynamics Using Periodic Function Call
Subsystem

This example shows how to use periodic function call subsystems to approximate event-based
dynamics for linearization.

Open the Simulink model.

mdl = 'scdPeriodicFcnCall';
open_system(mdl)

2 Linearization

2-156

Linearize the model at the model operating point.

io = getlinio(mdl);
linsys = linearize(mdl,io)

linsys =

 D =
 Desired Wat
 Water-Tank S 0

Static gain.

The linearization is zero because the subsystem is not a periodic function call.

Open the Externally Scheduled Controller block, which is a Function-Call Subsystem block.

Open the function block and configure it.

• Set the Sample time type parameter to periodic.
• Set the Sample time parameter to 0.01, which is the sample time of the controller.

 Linearize Event-Based Subsystems (Externally Scheduled Subsystems)

2-157

Alternatively, you can configure the function block programmatically using the following code.

block = 'scdPeriodicFcnCall/Externally Scheduled Controller/function';
set_param(block,'SampleTimeType','periodic')
set_param(block,'SampleTime','0.01')

Linearize the model.

linsys2 = linearize(mdl,io);
bode(linsys2)

2 Linearization

2-158

The linearization is no longer zero.

See Also

More About
• “Linearize Models with Model References” on page 2-82

 Linearize Event-Based Subsystems (Externally Scheduled Subsystems)

2-159

Configure Models with Pulse Width Modulation Signals
Many industrial applications use pulse width modulation (PWM) signals because such signals are
robust in the presence of noise. When using Simulink Control Design software, subsystems that
contain PWM signals do not linearize well due to discontinuities in the signal.

The following figure shows two PWM signals. The top plot shows a PWM signal with a 20% duty
cycle, which represents a 0.2 V DC signal. The signal is 1 V for 20% of each cycle and 0 V for the
remaining 80% of the cycle. The average signal value is 0.2 V. The bottom plot shows a PWM signal
with an 80% duty cycle, which represents a 0.8 V DC signal.

For an example of such a PWM system, open the scdpwm model. In this model, a constant signal is
converted to a PWM signal using the Voltage to PWM subsystem.

open_system('scdpwm')

In this model, a constant signal is converted to a PWM signal using the Voltage to PWM subsystem.

open_system('scdpwm/Voltage to PWM')

When linearizing a model that contains PWM signals there are two effects that produce poor
linearization results:

2 Linearization

2-160

• The signal level at the operating point is one of the discrete values within the PWM signal, not the
DC signal value. For example, in the scdpwm model, the signal level is either 0 or 1, not 0.8. This
change in operating point affects the linearized model.

• The creation of the PWM signal within the Voltage to PWM subsystem uses the Compare To
Zero block. Such comparator blocks do not linearize well due to their discontinuities.

To linearize a model that contains PWM signals, you must replace the linearization of the blocks or
subsystems that produce the PWM signals. To do so, use one of the following methods:

• Specify the linearization of the PWM blocks using known values. For example, in “Specify Custom
Linearizations for Simulink Blocks” on page 2-130, the linearization of the Voltage to PWM
subsystem is set to a DC gain of 1.

• Specify the linearization of the PWM subsystem using System Identification Toolbox software. For
an example, see “Specify Linearization for Model Components Using System Identification” on
page 2-170.

• Specify the linearization of the PWM subsystem using frequency response estimation. For more
information on frequency response estimation, see “Estimate Frequency Response Using Model
Linearizer” on page 5-6 and “Estimate Frequency Response at the Command Line” on page 5-
14.

See Also
Apps
Model Linearizer

Functions
linearize

 Configure Models with Pulse Width Modulation Signals

2-161

Linearize Simscape Networks
You can linearize models with Simscape components using Simulink Control Design software.
Typically, some states in a Simscape network have dependencies on other states through constraints.

Find Steady-State Operating Point
To find a steady-state operating point at which to linearize a Simscape model, you can use:

• Optimization-based trimming — Specify constraints on model inputs, outputs, or states, and
compute a steady-state operating point that satisfies these constraints.

To produce better trimming results for Simscape models, you can use projection-based trim
optimizers. These optimizers enforce the consistency of the model initial condition at each
evaluation of the objective function or nonlinear constraint function.

• Simulation snapshots — Specify model initial conditions near an expected equilibrium point, and
simulate the model until it reaches steady state.

For more information, see “Find Steady-State Operating Points for Simscape Models” on page 1-106.

Specify Analysis Points
To linearize your model, you must specify the portion of the model you want to linearize using linear
analysis points; that is, linearization inputs and outputs, and loop openings. You can only add analysis
points to Simulink signals.

To add a linearization input or loop opening to the input of a Simscape component, first convert the
Simulink signal using a Simulink-PS Converter block.

To add a linearization output or loop opening to the output of a Simscape component, first convert the
Simscape signal using a PS-Simulink Converter block.

For more information on adding linear analysis points, see “Specify Portion of Model to Linearize” on
page 2-10.

Linearize Model
After you specify a steady-state operating point and linear analysis points, you can linearize your
Simscape model using:

• The Model Linearizer.
• The linearize function.
• An slLinearizer interface.

For general linearization examples, see “Linearize Simulink Model at Model Operating Point” on page
2-54 and “Linearize at Trimmed Operating Point” on page 2-66.

Troubleshoot Simscape Network Linearizations

2 Linearization

2-162

Simscape networks can commonly linearize to zero when a set of the system equation Jacobians are
zero at a given operating condition. Usually, poor initial conditions of the network states cause these
zero linearizations.

Zero Linearization Example

Consider a system where the mass flow rate from a variable orifice is controlling the position of a
piston. The mass flow rate equation of the variable orifice is:

q = CdA 2
μ

p
p2 + pcr

2

0.25

Where:

• q is the mass flow rate.
• Cd is the discharge coefficient.
• A is the area of the variable orifice opening.
• μ is the fluid density.
• p is the pressure drop across the orifice, p = pa - pb.
• pcr is the critical pressure, which is a function of pa and pb.

The control variable for this system is the orifice area, A, which controls the mass flow rate. The
Jacobian of the mass flow rate with respect to the control variable is:

∂q
∂A = Cd

2
μ

p
p2 + pcr

2

0.25

The linearized mass flow rate equation is:

q = Cd
2
μ

p
p2 + pcr

2

0.25
A + ∂q

∂μμ

+ ∂q
∂pcr

∂pcr
∂pa

+ ∂q
∂p pa + ∂q

∂pcr

∂pcr
∂pb

− ∂q∂p pb

 Linearize Simscape Networks

2-163

where · represents a deviation from the nominal variable.

In the linearized equation, if the nominal pressure drop p across the orifice is zero, then A has no
influence on q. That is, if the instantaneous pressure drop across the orifice is zero, the orifice area
has no influence on the mass flow rate. Therefore, you cannot control the piston position using the
orifice area control variable.

To avoid this condition, linearize the model about an operating point where the pressure drop over
the orifice is nonzero (pa ≠ pb).

Troubleshooting Tips

To fix linearization problems caused by poor initial conditions of network states, you can:

1 Linearize the system at a snapshot operating point or trimmed operating point. When possible,
this approach is recommended.

2 Find and modify the problematic states of the operating point. This option can be difficult for
models with many states.

Using the first approach, you can ensure that the model states are consistent via the Simulink and
Simscape simulation engine. Simscape initial conditions are not necessarily in a consistent state. The
Simscape engine places them in a consistent state during simulation and for trimming using the
Simscape trim solvers.

A common workflow is to simulate your model, observe at what time the model satisfies the operating
condition at which you want to linearize, then take a simulation snapshot. Alternatively, you can trim
the model about the condition you are interested in. In either case, the network states are in a
consistent condition, which solves most poor linearization issues.

Using the second approach, you search through the physical network states to find conditions that
can create a zero Jacobian. This approach can require some intuition about the dynamics of the
physical components in your model. As a starting point, search for states that are zero and that
interact directly with nonlinear physical elements, such as the variable orifice in the preceding
example.

To search the physical states, you can use the Linearization Advisor, which collects diagnostic
information during linearization. The Linearization Advisor does not provide diagnostic information
on a component-level basis for Simscape networks. Instead, it groups diagnostic information for
multiple Simscape components together.

1 Linearize your model with the Linearization Advisor enabled, and extract the
LinearizationAdvisor object.

opt = linearizeOptions('StoreAdvisor',true);
[linsys,linop,info] = linearize(mdl,io,op,opt);
advisor = info.Advisor;

2 Create a custom query object, and search the diagnostic information for Simscape blocks.

qSS = linqueryIsBlockType('simscape');
advSS = find(advisor,qSS);

3 To find problematic state values, check the block operating point in each BlockDiagnostic
object.

advSS.BlockDiagnostics(i).OperatingPoint.States

2 Linearization

2-164

Once you find a problematic state, you can change the value of the state in the model operating point,
or create an operating point using operpoint.

You can also search the Linearization Advisor in the Model Linearizer. For more information, see
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37.

See Also
Apps
Model Linearizer

Functions
linearize | slLinearizer

More About
• “Specify Portion of Model to Linearize” on page 2-10
• “Find Steady-State Operating Points for Simscape Models” on page 1-106
• “Linearize Simulink Model at Model Operating Point” on page 2-54

 Linearize Simscape Networks

2-165

Linearize Sparse Models
You can obtain a sparse linear model from a Simulink model that contains a Sparse Second Order or
Descriptor State-Space block. Linearizing such models produces one of the following sparse state-
space objects.

• mechss model when you use a Sparse Second Order block
• sparss model when you use a Descriptor State-Space block and configure the block to linearize

to a sparse model

For more information on sparse models, see “Sparse Model Basics”.

For a command-line linearization example, see “Linearize Simulink Model to a Sparse Second-Order
Model Object”.

The Sparse Second Order block always linearizes to a mechss model. As a result, the overall
linearized model is a second-order sparse model when this block is present.

To linearize a Descriptor State-Space block to a sparse model, select the Linearize to sparse model
block parameter.

2 Linearization

2-166

You can also select this parameter programmatically. Here, blockpath is the path to the Descriptor
State-Space block.

set_param(blockpath,'LinearizeToSparse','on')

The Linearize to sparse model parameter of the Descriptor State-Space block is ignored when you
specify a custom linearization for the block.

 Linearize Sparse Models

2-167

Linearize Sparse Models at the Command Line
You can linearize a model that contains a sparse block at the command line using either the
linearize function or an slLinearizer interface.

To analyze the resulting linearized model in the:

• Time domain, you must specify a time vector or a final simulation time. For example, plot the step
response of linearized sparse model linsys for 10 seconds using 100 sample points.

t = linspace(0,10,1000);
step(sys,t)

• Frequency domain, you must specify a frequency vector. For example, plot the Bode response of
linearized sparse model linsys from 101 to 105 rad/sec using 1000 logarithmically spaced
frequency points.

w = logspace(1,5,1000);
bode(linsys,w)

For more information on analyzing sparse models at the command line, see “Sparse Model Basics”.

Linearize Sparse Models Using Model Linearizer
You can interactively linearize a model that contains a sparse block using the Model Linearizer app.

Each time you plot a time-domain or frequency-domain response of the resulting linearized model,
Model Linearizer prompts you to enter a time or frequency vector for plotting. For example:

• Time domain — Plot response for 10 seconds in 0.01 second increments.

• Frequency domain — Plot response from 10–1 to 103 rad/sec using 100 logarithmically spaced
frequency points.

2 Linearization

2-168

You cannot change the time or frequency vector for an existing sparse model response plot. Instead,
create a new plot for the same sparse model using an updated time or frequency vector.

To view the structure of the linearized sparse model, export the model to the MATLAB workspace and
use the spy and showStateInfo functions.

Limitations
Sparse linearization has the following limitations.

• If you disable block reduction when linearizing a sparse model, the resulting linear model is a
dense ss model object.

• Due to simulation limitations, snapshot linearization might not work when your model contains a
Descriptor State-Space or Sparse Second Order block.

• Sparse linearization is incompatible with block substitutions involving tunable or uncertain
models, such as genss or uss, respectively.

• When analyzing linearized sparse systems, Pole-Zero Map and I/O Pole-Zero Map plots are not
supported.

See Also
Blocks
Sparse Second Order | Descriptor State-Space

Functions
sparss | mechss | linearize | slLinearizer

Apps
Model Linearizer

Related Examples
• “Sparse Model Basics”
• “Linearize Simulink Model to a Sparse Second-Order Model Object”

 Linearize Sparse Models

2-169

Specify Linearization for Model Components Using System
Identification

This example shows how to specify the linearization for a model component that does not linearize
well using a linear model identified using the System Identification Toolbox™. This example requires
Simscape™ Electrical™ software.

Linearize Hard Drive Model

Open the Simulink® model for the hard drive.

model = 'scdpwmharddrive';
open_system(model)

In this model, the hard drive plant is driven by a current source. The current source is implemented
by a circuit that is driven by a pulse width modulation (PWM) signal so that its output can be adjusted
by the duty cycle. For details of the hard drive model, see “Digital Servo Control of a Hard-Disk
Drive”.

PWM-driven circuits usually have high frequency switching components, such as the MOSFET
transistor in this model, whose average behavior is not well defined. Therefore, finding an exact
linearization of this type of circuit is problematic. When you linearize the model from the duty cycle
input to the position error, the result is zero.

The Simscape solver in this model is configured to run in local solver mode. When linearizing the
model, first turn off the local solver.

SimscapeSolver = [model '/PWM driven converter/Solver Configuration'];
set_param(SimscapeSolver,'UseLocalSolver','off')

Linearize the model.

io(1) = linio('scdpwmharddrive/Duty cycle',1,'input');
io(2) = linio('scdpwmharddrive/Hard Disk Model',1,'output');
sys = linearize(model,io)

sys =

 D =
 Duty cycle

2 Linearization

2-170

 position err 0

Static gain.

As expected, the PWM components cause the system to linearize to zero.

Turn the local solver back on for simulation.

set_param(SimscapeSolver,'UseLocalSolver','on')

Find Linear Model for PWM Component

You can estimate the frequency response of the PWM-driven current source and use the result to
identify a linear model.

The current signal has a discrete sample time of 1e-7. Therefore, you need to use a sinestream signal
with a fixed sample time as your estimation input signal. Create a signal that has frequencies
between 2,000 and 200,000 rad/s.

idinput = frest.createFixedTsSinestream(Ts,{2000,200000});
idinput.Amplitude = 0.1;

Define the input and output points for the PWM-driven circuit, and run the frequency response
estimation using the sinestream input signal.

pwm_io(1) = linio('scdpwmharddrive/Duty cycle',1,'input');
pwm_io(2) = linio('scdpwmharddrive/PWM driven converter',1,'openoutput');
sysfrd = frestimate(model,pwm_io,idinput);

To identify a second-order model using the frequency response data, use the System Identification
Toolbox function tfest.

sysid = ss(tfest(idfrd(sysfrd),2));

Compare the identified model to the original frequency response data.

bode(sysid,sysfrd,'r*')

 Specify Linearization for Model Components Using System Identification

2-171

To estimate the frequency response, you used frequencies between 2,000 and 200,000 rad/s. The
identified model has a flat magnitude response for frequencies smaller than 2,000 rad/s. However, the
previous estimation did not include those frequencies.

To verify whether the frequency response is flat for lower frequencies, estimate the response using a
sinestream input signal with frequencies of 20 and 200 rad/s.

lowfreq = [20 200];
inputlow = frest.createFixedTsSinestream(Ts,lowfreq)

The sinestream input signal:

 Frequency : [20 200] (rad/s)
 Amplitude : 1e-05
 SamplesPerPeriod : [3141593 314159]
 NumPeriods : 4
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : 1
 ApplyFilteringInFRESTIMATE (on/off) : on
 SimulationOrder (Sequential/OneAtATime): Sequential

The combination of the fast sample time of 1e-7 seconds (10 MHz sampling frequency) and the lower
frequencies creates high SamplesPerPeriod values for the input signal. In this case, considering

2 Linearization

2-172

that each frequency has four periods, frequency response estimation would log output data with
around 14 million samples.

Since such a high sampling rate is not necessary for analyzing 20 and 200 rad/s frequencies, you can
avoid memory issues by increasing the sample time to 1e-4.

Tslow = 1e-4;
wslow = 2*pi/Tslow;
inputlow = frest.createFixedTsSinestream(Tslow,wslow./round(wslow./lowfreq));
inputlow.Amplitude = 0.1;

To make the model compatible with the smaller sample time, resample the output data point using a
rate transition block as in the modified model.

modellow = 'scdpwmharddrive_lowfreq';
open_system(modellow)

You can estimate a frequency response for the low frequencies using the following command.

sysfrdlow = frestimate(modellow,getlinio(modellow),inputlow);

The frequency response estimation can take several minutes. For this example, load the estimation
results.

load scdpwmharddrive_lowfreqresults

To validate the low-frequency response of the identified model, compare the estimated result with the
identified model.

bode(sysid,sysfrdlow,'r*')

 Specify Linearization for Model Components Using System Identification

2-173

Close the low-frequency model.

bdclose(modellow)

Specify Linearization for PWM Component

To specify the linearization of the PWM-driven component using the validated identified model,
specify the linearization of the PWM-driven converter subsystem.

To do so, first enable block linearization specification for the converter block.

pwmblock = 'scdpwmharddrive/PWM driven converter';
set_param(pwmblock,'SCDEnableBlockLinearizationSpecification','on');

Specify sysid as the block linearization using a MATLAB® expression.

rep = struct('Specification','sysid',...
 'Type','Expression',...
 'ParameterNames','',...
 'ParameterValues','');
set_param(pwmblock,'SCDBlockLinearizationSpecification',rep);

Set the sample time of the duty cycle reference signal to that of the plant.

set_param('scdpwmharddrive/Duty cycle','SampleTime','Ts_plant');

Linearize the model.

2 Linearization

2-174

set_param(SimscapeSolver,'UseLocalSolver','off')
sys = linearize(model,io);
set_param(SimscapeSolver,'UseLocalSolver','on')

You can validate the overall linearization result by estimating the frequency response using the
following commands.

valinput = frest.Sinestream(sys);
valinput = fselect(valinput,3e3,1e5);
valinput.Amplitude = 0.1;
sysval = frestimate(model,io,valinput);

The frequency response estimation can take several minutes. For this example, load the estimation
results.

load scdpwmharddrive_valfreqresults
bodemag(sys,sysval,'r*')

The linearization result is accurate and all the resonances exist in the actual dynamics of the model.

Close the model.

bdclose('scdpwmharddrive')

See Also
frestimate | tfest

 Specify Linearization for Model Components Using System Identification

2-175

More About
• “Configure Models with Pulse Width Modulation Signals” on page 2-160

2 Linearization

2-176

Exact Linearization Algorithm
Simulink Control Design software linearizes models using a block-by-block approach. The software
individually linearizes each block in your Simulink model and produces the linearization of the overall
system by combining the individual block linearizations.

The software determines the input and state levels for each block from the operating point, and
requests the Jacobian for these levels from each block.

For some blocks, the software cannot compute an analytical linearization. For example:

• Some nonlinearities do not have a defined Jacobian.
• Some discrete blocks, such as state charts and triggered subsystems, tend to linearize to zero.
• Some blocks do not implement a Jacobian.
• Custom blocks, such as S-Function blocks and MATLAB Function blocks, do not have analytical

Jacobians.

You can specify a custom linearization for any such blocks for which you know the expected
linearization. If you do not specify a custom linearization, the software finds the linearization by
perturbing the block inputs and states and measuring the response to these perturbations. For more
information, see “Perturbation of Individual Blocks” on page 2-181.

Continuous-Time Models
Simulink Control Design software lets you linearize continuous-time nonlinear systems. The resulting
linearized model is in state-space form.

In continuous time, the state space equations of a nonlinear system are:

ẋ(t) = f x(t), u(t), t
y(t) = g x(t), u(t), t

where x(t) are the system states, u(t) are the input signals, and y(t) are the output signals.

To describe the linearized model, define a new set of variables of the states, inputs, and outputs
centered about the operating point:

δx(t) = x(t) − x0
δu(t) = u(t) − u0
δy(t) = y(t) − y0

The output of the system at the operating point is y(t0)=g(x0,u0,t0)=y0.

The linearized state-space equations in terms of δx(t), δu(t), and δy(t) are:

δẋ(t) = Aδx(t) + Bδu(t)
δy(t) = Cδx(t) + Dδu(t)

where A, B, C, and D are constant coefficient matrices. These matrices are the Jacobians of the
system, evaluated at the operating point:

 Exact Linearization Algorithm

2-177

A = ∂ f
∂x t0, x0, u0

B = ∂ f
∂u t0, x0, u0

C = ∂g
∂x t0, x0, u0

D = ∂g
∂u t0, x0, u0

This linear time-invariant approximation to the nonlinear system is valid in a region around the
operating point at t=t0, x(t0)=x0, and u(t0)=u0. In other words, if the values of the system states, x(t),
and inputs, u(t), are close enough to the operating point, the system behaves approximately linearly.

The transfer function of the linearized model is the ratio of the Laplace transform of δy(t) and the
Laplace transform of δu(t):

Plin(s) = δY(s)
δU(s)

Multirate Models
Simulink Control Design software lets you linearize multirate nonlinear systems. The resulting
linearized model is in state-space form.

Multirate models include states with different sampling rates. In multirate models, the state variables
change values at different times and with different frequencies. Some of the variables might change
continuously.

The general state-space equations of a nonlinear, multirate system are:

ẋ t = f x t , x1 k1 , …, xm km , u t , t
x1(k1 + 1) = f1 x t , x1 k1 , …, xm km , u t , t

⋮ ⋮
xm(km + 1) = f i x t , x1 k1 , …, xm km , u t , t

y t = g x t , x1 k1 , …, xm km , u t , t

2 Linearization

2-178

where k1,..., km are integer values and

tk1
,...,

 Exact Linearization Algorithm

2-179

tkm
are discrete times.

The linearized equations that approximate this nonlinear system as a single-rate discrete model are:

δxk + 1 ≈ Aδxk + Bδuk
δyk ≈ Cδxk + Dδuk

2 Linearization

2-180

The rate of the linearized model is typically the least common multiple of the sample times, which is
usually the slowest sample time.

For more information, see “Linearize Multirate Models” on page 2-141.

Perturbation of Individual Blocks

Simulink Control Design software linearizes blocks that do not have a preprogrammed linearization
using numerical perturbation. The software computes the block linearization by numerically
perturbing the states and inputs of the block about the operating point of the block.

The block perturbation algorithm introduces a small perturbation to the nonlinear block and
measures the response to this perturbation. The default difference between the perturbed value and
the operating point value is 10−5 1 + x , where x is the operating point value. The software uses this
perturbation and the resulting response to compute the linear state-space of this block. For
information on how to change perturbation levels for individual blocks, see “Change Perturbation
Level of Blocks Perturbed During Linearization” on page 2-150.

In general, a continuous-time nonlinear Simulink block in state-space form is given by:

ẋ(t) = f x(t), u(t), t
y(t) = g x(t), u(t), t .

In these equations, x(t) represents the states of the block, u(t) represents the inputs of the block, and
y(t) represents the outputs of the block.

A linearized model of this system is valid in a small region around the operating point t=t0, x(t0)=x0,
u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0.

To describe the linearized block, define a new set of variables of the states, inputs, and outputs
centered about the operating point:

δx(t) = x(t) − x0
δu(t) = u(t) − u0
δy(t) = y(t) − y0

The linearized state-space equations in terms of these new variables are:

δẋ(t) = Aδx(t) + Bδu(t)
δy(t) = Cδx(t) + Dδu(t)

A linear time-invariant approximation to the nonlinear system is valid in a region around the
operating point.

The state-space matrices A, B, C, and D of this linearized model represent the Jacobians of the block.

To compute the state-space matrices during linearization, the software performs these operations:

1 Perturbs the states and inputs, one at a time, and measures the response of the system to this
perturbation by computing δẋ and δy.

2 Computes the state-space matrices using the perturbation and the response.

 Exact Linearization Algorithm

2-181

A(: , i) =
ẋ xp, i− ẋo
xp, i− xo

, B(: , i) =
ẋ up, i− ẋo
up, i− uo

C(: , i) =
y xp, i− yo
xp, i− xo

, D(: , i) =
y up, i− yo
up, i− uo

where

• xp,i is the state vector whose ith component is perturbed from the operating point value.
• xo is the state vector at the operating point.
• up,i is the input vector whose ith component is perturbed from the operating point value.
• uo is the input vector at the operating point.
• ẋ xp, i is the value of ẋ at xp,i, uo.

• ẋ up, i is the value of ẋ at up,i, xo.

• ẋo is the value of ẋ at the operating point.
• y xp, i is the value of y at xp,i, uo.

• y up, i is the value of y at up,i, xo.

• yo is the value of y at the operating point.

User-Defined Blocks
All user defined blocks such as S-Function and MATLAB Function blocks, are compatible with
linearization. These blocks are linearized using numerical perturbation.

User-defined blocks do not linearize when these blocks use non-floating-point precision data types.
For more information, see “Linearize Blocks with Non-Floating-Point Signals or States” on page 2-
152.

Look Up Tables
Regular look up tables are numerically perturbed. Pre-lookup tables have a preprogrammed (exact)
block-by-block linearization.

2 Linearization

2-182

Trim and Linearize an Airframe

This example shows how to trim and linearize an airframe using Simulink® Control Design™
software.

The goal is to find the elevator deflection and the resulting trimmed body rate that generate a given
angle of incidence when the airframe is traveling at a set speed.

Once you find the trim condition, you can compute a linear model for the dynamics of the states
around the trim condition.

Fixed parameters:

• Angle of incidence (Theta)
• Body attitude (U)
• Position

Trimmed steady-state parameters:

• Elevator deflection (w)
• Body rate (q)

Compute Operating Points

Open the model.

mdl = 'scdairframe';
open_system(mdl)

 Trim and Linearize an Airframe

2-183

Create an operating point specification object for the model using the model initial conditions.

opspec = operspec(mdl)

opspec =

 Operating point specification for the Model scdairframe.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdairframe/EOM/ Equations of Motion (Body Axes)/Position
 0 false true -Inf Inf -Inf Inf
-3047.9999 false true -Inf Inf -Inf Inf
(2.) scdairframe/EOM/ Equations of Motion (Body Axes)/Theta
 0 false true -Inf Inf -Inf Inf
(3.) scdairframe/EOM/ Equations of Motion (Body Axes)/U,w
 984 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf

2 Linearization

2-184

(4.) scdairframe/EOM/ Equations of Motion (Body Axes)/q
 0 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) scdairframe/Fin Deflection
 0 false -Inf Inf

Outputs:

 y Known Min Max
_____ _____ _____ _____

(1.) scdairframe/q
 0 false -Inf Inf
(2.) scdairframe/az
 0 false -Inf Inf

Specify which states in the model are:

• Known at the operating point
• At steady state at the operating point

Specify that the Position states are known and not at steady state. For the state values, specified in
opspec.States(1).x, use the default values from the model initial condition.

opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];

Specify that the second state, which corresponds to the angle of incidence Theta, is known but not at
steady state. As with the position states, use the default state value from the model initial condition.

opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;

The third state specification includes the body axis angular rates U and w. Specify that both states are
known at the operating point and that w is at steady state.

opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];

Search for the operating point that meets these specifications.

op = findop(mdl,opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model scdairframe.
 (Time-Varying Components Evaluated at time t=0)

 Trim and Linearize an Airframe

2-185

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) scdairframe/EOM/ Equations of Motion (Body Axes)/Position
 0 0 0 -Inf 984 Inf
-3047.9999 -3047.9999 -3047.9999 -Inf 0 Inf
(2.) scdairframe/EOM/ Equations of Motion (Body Axes)/Theta
 0 0 0 -Inf -0.0097235 Inf
(3.) scdairframe/EOM/ Equations of Motion (Body Axes)/U,w
 984 984 984 -Inf 22.6897 Inf
 0 0 0 0 -1.4367e-11 0
(4.) scdairframe/EOM/ Equations of Motion (Body Axes)/q
 -Inf -0.0097235 Inf 0 1.7215e-16 0

Inputs:

 Min u Max
_________ _________ _________

(1.) scdairframe/Fin Deflection
 -Inf 0.0014161 Inf

Outputs:

 Min y Max
__________ __________ __________

(1.) scdairframe/q
 -Inf -0.0097235 Inf
(2.) scdairframe/az
 -Inf -0.24207 Inf

Linearize Model

To linearize the model at the computed operating point, first specify the linearization input and
output points.

io(1) = linio('scdairframe/Fin Deflection',1,'input');
io(2) = linio('scdairframe/EOM',3,'output');
io(3) = linio('scdairframe/Selector',1,'output');

Linearize the model at the operating point.

sys = linearize(mdl,op,io);

Plot the Bode magnitude response for the linear model.

bodemag(sys)

bdclose('scdairframe')

2 Linearization

2-186

See Also
operspec | findop | linio | linearize

Related Examples
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize at Trimmed Operating Point” on page 2-66

 Trim and Linearize an Airframe

2-187

Linearize Pneumatic System at Simulation Snapshots

This example shows how to linearize a Simulink® model at time-based operating point snapshots.
The example uses a model of the dynamics of filling a cylinder with compressed air.

Pneumatic System Model

Open the Simulink model.

mdl = 'scdpneumaticlin';
open_system(mdl)

Simulate the model.

[t,x,y] = sim(mdl);

In this example, the supply pressure is closed and the system has an initial pressure of 0.2 MPa. The
supply pressure is at 0.7 MPa. In the simulation, the servo valve is opened to 0.5e-4 m. During the
simulation, the pressure increases from the initial pressure of 0.2 MPa and eventually settles at the
supply pressure.

plot(t,y)

2 Linearization

2-188

Take Simulation Snapshots

Compute operating points at multiple simulation times from 0 to 60 seconds in 10-second intervals.
The findop function simulates the model, takes a snapshot of the model conditions at each
simulation time, and computes an operating point for each snapshot.

op = findop(mdl,[0 10 20 30 40 50 60]);

View the operating point for the second snapshot time.

op(2)

ans =

 Operating point for the Model scdpneumaticlin.
 (Time-Varying Components Evaluated at time t=10.7245)

States:

 x

(1.) scdpneumaticlin/Cylinder Pressure Model/dPc//dt
312046.3941
(2.) scdpneumaticlin/Pipe Model/dPp//dt
312509.866

 Linearize Pneumatic System at Simulation Snapshots

2-189

Inputs: None

Linearize Model

To linearize the model, first specify the linearization input and output points. For this example,
linearize the model from servo valve opening x to the output pressure.

io(1) = linio('scdpneumaticlin/x',1,'input');
io(2) = linio('scdpneumaticlin/Cylinder Pressure Model',1,'output');

Linearize the model for all of the computed snapshots. sys is an array of state-space models.

sys = linearize(mdl,op,io);

To see the variability in the linearizations, plot the frequency responses of the resulting linear
systems.

bode(sys)

Close the model.

bdclose(mdl)

See Also
operspec | findop | linio | linearize

2 Linearization

2-190

Related Examples
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page 1-45
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize at Trimmed Operating Point” on page 2-66

 Linearize Pneumatic System at Simulation Snapshots

2-191

Linearize Pulp Paper Process Model

This example shows how to linearize a process model at a steady-state operating point.

Thermo-mechanical pulping (TMP) is a process for producing mechanical pulp for newsprint. In this
example, you use a typical process arrangement for a two-stage TMP operation:

• In the first stage, the primary refiner produces a course pulp from a feed of wood chips and water.
• In the second stage, the secondary refiner further develops the pulp bonding properties so that it

is suitable for paper making.

Each refiner consists of two disks with overlaid grooved surfaces. When in operation, either the two
disks rotate in opposite directions or one disk rotates while the other disk remains stationary.

The disk surfaces physically impact on a three-phase flow of wood fibers, steam, and water that
passes from the center of the refiner disks to their periphery. The physical impact of the disk surfaces
on the wood fibers:

1 Breaks rigid chemical and physical bonds between the fibers
2 Microscopically roughens the surface of individual fibers enabling them to mesh together on the

paper sheet.

The primary objective of controlling the TMP plant is to apply sufficient energy to derive pulp with
good physical properties without incurring excess energy costs or fiber damage due to the imposition
of overly high stresses as fibers pass through the refiners. For practical purposes, this objective
amounts to controlling the ratio of the total electrical energy applied by the two refiners to the dry
mass flow rate of wood fibers, that is, controlling the estimated specific energy applied to the pulp.

A secondary control objective is to control the pulp consistency, that is the ratio of dry mass flow rate
(fibers) to overall mass flow rate (water & fibers), to a value which optimizes a trade-off between
energy consumption and pulp quality.

The TMP process has the following inputs.

• Feed rate of chips (Feed rpm)
• Dilution water flow to each of the refiners (Primary and secondary dilution setpoints)
• Setpoints to two regulatory controllers which control the gap between the rotating disks in each

set of refiners.

The TMP process has the following outputs.

• Primary and secondary refiner consistencies
• Primary and secondary refiner motor loads
• Vibration monitor measurements for the two refiners

Open the scdtmp model, which implements the thermo-mechanical pulping process.

mdl = 'scdtmp';
open_system(mdl)

2 Linearization

2-192

In this example, your goal is to find a linear model of this system at a steady-state operating condition
for the following input setpoint conditions.

• Feed Rate = 30
• Primary Gap = 0.8
• Primary Dilution = 170
• Secondary Gap = 0.5
• Secondary Dilution = 120

Find Operating Points

To find the operating point, first create an operating point specification object using the operspec
function.

opspec = operspec(mdl)

opspec =

 Operating point specification for the Model scdtmp.
 (Time-Varying Components Evaluated at time t=0)

States:

 Linearize Pulp Paper Process Model

2-193

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdtmp/TMP Refining Line/Fiber fill dynamics/Internal
 3.5556 false true -Inf Inf -Inf Inf
(2.) scdtmp/TMP Refining Line/Fiber water fill dynamics/Internal
 6.8283 false true -Inf Inf -Inf Inf
(3.) scdtmp/TMP Refining Line/Primary dilution/Internal
 170 false true -Inf Inf -Inf Inf
(4.) scdtmp/TMP Refining Line/Primary plate gap/Internal
 0.8 false true -Inf Inf -Inf Inf
(5.) scdtmp/TMP Refining Line/Primary refiner motor/LTI System/Internal
 8.5 false true -Inf Inf -Inf Inf
(6.) scdtmp/TMP Refining Line/Primary screw feeder/Internal
 30 false true -Inf Inf -Inf Inf
(7.) scdtmp/TMP Refining Line/Sec refiner motor/LTI System/Internal
 6.7 false true -Inf Inf -Inf Inf
(8.) scdtmp/TMP Refining Line/Secondary dilution/Internal
 0.5 false true -Inf Inf -Inf Inf
(9.) scdtmp/TMP Refining Line/Secondary plate gap/Internal
 0.5 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) scdtmp/Feed rpm
 0 false -Inf Inf
(2.) scdtmp/Pri gap set point
 0 false -Inf Inf
(3.) scdtmp/Pri dil flow set point
 0 false -Inf Inf
(4.) scdtmp/Sec. gap set point
 0 false -Inf Inf
(5.) scdtmp/Sec. dilution set point
 0 false -Inf Inf

Outputs:

 y Known Min Max
_____ _____ _____ _____

(1.) scdtmp/Out1
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf

Specify the feed rate input value and indicate that this value is known.

opspec.Inputs(1).u = 30;
opspec.Inputs(1).Known = 1;

Similarly, specify the known primary gap setpoint.

2 Linearization

2-194

opspec.Inputs(2).u = 0.8;
opspec.Inputs(2).Known = 1;

Specify the known primary dilution setpoint.

opspec.Inputs(3).u = 170;
opspec.Inputs(3).Known = 1;

Specify the known secondary gap setpoint.

opspec.Inputs(4).u = 0.5;
opspec.Inputs(4).Known = 1;

Specify the known secondary dilution setpoint.

opspec.Inputs(5).u = 120;
opspec.Inputs(5).Known = 1;

Trim the model for the given operating point specifications using the findop function.

op = findop(mdl,opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model scdtmp.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
__________ __________ __________ __________ __________ __________

(1.) scdtmp/TMP Refining Line/Fiber fill dynamics/Internal
 -Inf 3.5556 Inf 0 0 0
(2.) scdtmp/TMP Refining Line/Fiber water fill dynamics/Internal
 -Inf 6.8283 Inf 0 0 0
(3.) scdtmp/TMP Refining Line/Primary dilution/Internal
 -Inf 170 Inf 0 0 0
(4.) scdtmp/TMP Refining Line/Primary plate gap/Internal
 -Inf 0.8 Inf 0 0 0
(5.) scdtmp/TMP Refining Line/Primary refiner motor/LTI System/Internal
 -Inf 8.4952 Inf 0 0 0
(6.) scdtmp/TMP Refining Line/Primary screw feeder/Internal
 -Inf 30 Inf 0 0 0
(7.) scdtmp/TMP Refining Line/Sec refiner motor/LTI System/Internal
 -Inf 6.6385 Inf 0 1.7355e-12 0
(8.) scdtmp/TMP Refining Line/Secondary dilution/Internal
 -Inf 120 Inf 0 0 0
(9.) scdtmp/TMP Refining Line/Secondary plate gap/Internal
 -Inf 0.5 Inf 0 0 0

Inputs:

 Linearize Pulp Paper Process Model

2-195

Min u Max
___ ___ ___

(1.) scdtmp/Feed rpm
30 30 30
(2.) scdtmp/Pri gap set point
0.8 0.8 0.8
(3.) scdtmp/Pri dil flow set point
170 170 170
(4.) scdtmp/Sec. gap set point
0.5 0.5 0.5
(5.) scdtmp/Sec. dilution set point
120 120 120

Outputs:

 Min y Max
________ ________ ________

(1.) scdtmp/Out1
 -Inf 0.026027 Inf
 -Inf 0.39991 Inf
 -Inf 0.56757 Inf
 -Inf 8.4952 Inf
 -Inf 0.34914 Inf
 -Inf 6.6385 Inf

Linearize Model

To linearize the model, first define the linearization input and output points.

For this example, use the following input points.

• Feed rate
• Primary gap
• Primary dilution
• Secondary gap
• Secondary dilution

io(1) = linio('scdtmp/Feed rpm',1,'input');
io(2) = linio('scdtmp/Pri gap set point',1,'input');
io(3) = linio('scdtmp/Pri dil flow set point',1,'input');
io(4) = linio('scdtmp/Sec. gap set point',1,'input');
io(5) = linio('scdtmp/Sec. dilution set point',1,'input');

The output of the Mux block contains the six model outputs in the following order.

• Primary vibration
• Primary consistency
• Secondary vibration
• Primary motor load
• Secondary consistency
• Secondary motor load

2 Linearization

2-196

io(6) = linio('scdtmp/Mux',1,'output');

Linearize the model at the computed steady-state operating point.

sys = linearize(mdl,op,io);

You can view the response for the resulting linear system from any input to any output. For example,
plot the Bode response between the primary gap setpoint and the primary consistency.

bode(sys(2,2))

See Also
operspec | findop | linio | linearize

Related Examples
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize at Trimmed Operating Point” on page 2-66

 Linearize Pulp Paper Process Model

2-197

Batch Linearization

• “What Is Batch Linearization?” on page 3-2
• “Choose Batch Linearization Methods” on page 3-4
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Mark Signals of Interest for Batch Linearization” on page 3-9
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Batch Linearize Model at Multiple Operating Points Derived from Parameter Variations”

on page 3-16
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface”

on page 3-28
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33
• “Analyze Batch Linearization Results in Model Linearizer” on page 3-39
• “Specify Parameter Samples for Batch Linearization” on page 3-43
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “More Efficient Batch Linearization Varying Parameters” on page 3-64
• “Validate Batch Linearization Results” on page 3-68
• “Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69
• “LPV Approximation of Boost Converter Model” on page 3-82
• “Linearize Engine Speed Model” on page 3-92
• “Improve Linear Analysis Performance” on page 3-96

3

What Is Batch Linearization?
Batch linearization refers to extracting multiple linearizations from a model for various combinations
of I/Os, operating points, and parameter values. Batch linearization lets you analyze the time-domain,
frequency-domain, and stability characteristics of your Simulink model, or portions of your model,
under varying operating conditions and parameter ranges. You can use the results of batch
linearization to design controllers that are robust against parameter variations, or to design gain-
scheduled controllers for different operating conditions. You can also use batch linearization results
to implement linear parameter varying (LPV) approximations of nonlinear systems using the LPV
System block of Control System Toolbox.

To understand different types of batch linearization, consider the magnetic ball levitation model,
magball. For more information about this model, see “magball Simulink Model”.

You can batch linearize this model by varying any combination of the following:

• I/O sets — Linearize a model using different I/Os to obtain any closed-loop or open-loop transfer
function.

For the magball model, some of the transfer functions that you can extract by specifying different
I/O sets include:

• Magnetic ball plant model, controller model
• Closed-loop transfer function from the Reference Signal to the plant output, h
• Open-loop transfer function for the controller and magnetic ball plant combined; that is, the

transfer function from the Error Signal to h with the feedback loop opened
• Output disturbance rejection model or sensitivity transfer function, obtained at the outport of

Magnetic Ball Plant block
• Operating points — In nonlinear models, the model dynamics vary depending on the operating

conditions. You can linearize a nonlinear model at different operating points to study how model
dynamics vary or to design controllers for different operating conditions.

For an example of model dynamics that vary depending on the operating point, consider a simple
unforced hanging pendulum with angular position and velocity as states. This model has two
equilibrium points, one when the pendulum hangs downward, which is stable, and another when
the pendulum points upward, which is unstable. Linearizing close to the stable operating point
produces a stable model, whereas linearizing this model close to the unstable operating point
produces an unstable model.

For the magball model, which uses the ball height as a state, you can obtain multiple
linearizations for varying initial ball heights.

• Parameters — Parameters configure a Simulink model in several ways. For example, you can use
parameters to specify model coefficients or controller sample times. You can also use a discrete

3 Batch Linearization

3-2

parameter, such as the control input to a Multiport Switch block, to control the data path within a
model. Therefore, varying a parameter can serve a range of purposes, depending on how the
parameter contributes to the model.

For the magball model, you can vary the parameters of the PID Controller block,
Controller/PID Controller. The linearizations obtained by varying these parameters show
how the controller affects the control-system dynamics. Alternatively, you can vary the magnetic
ball plant parameter values to determine the controller robustness to variations in the plant
model. You can also vary the parameters of the input block, Desired Height, and study the
effects of varying input levels on the model response.

If the parameters affect the model operating point, you can batch trim the model using the
parameter samples and then batch linearize the model at the resulting operating points.

See Also
LPV System

More About
• “Choose Batch Linearization Methods” on page 3-4
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28
• “LPV Approximation of Boost Converter Model” on page 3-82

 What Is Batch Linearization?

3-3

Choose Batch Linearization Methods
Simulink Control Design software provides multiple tools and methods for batch linearization. Which
tool and method you choose depends on your application requirements and software preferences. The
following table describes the batch linearization workflows supported by Simulink Control Design
software.

Application Description Operating Point Computation
Options

Linearization Workflow

Your model has more than one
operating condition that does
not depend on any varying
model parameters. Use this
approach when the model
operating conditions depend
only on the model states and
inputs.

• Batch trim your model for
multiple operating point
specifications, using a single
model compilation when
possible. Batch trimming is
not supported in the Model
Linearizer.

• Trim the model separately
for each operating point
specification, which requires
multiple model compilations.
Use this option with the
Model Linearizer.

• Compute operating points at
multiple simulation snapshot
times.

1 Compute operating points.
2 Batch linearize the model at

all operating points.

For an example, see:

• “Batch Linearize Model at
Multiple Operating Points
Using linearize Command”
on page 3-19

Your model has a single
operating condition, and you
want to linearize the model at
this operating point for varying
model parameters. Examples of
such an application include:

• Studying the effect of
component tolerances on
model dynamics.

• Examining controller
robustness to variations in
plant parameters.

• Trim the model for a single
operating point specification.

• Compute an operating point
at a simulation snapshot
time.

1 Compute operating point.
2 Define parameter values for

linearization.
3 Batch linearize the model at

the computed operating
point for the specified
parameter variations.

For an example, see:

• “Batch Linearize Model for
Parameter Value Variations
Using Model Linearizer” on
page 3-53

• “Batch Linearize Model for
Parameter Variations at
Single Operating Point” on
page 3-13

3 Batch Linearization

3-4

Application Description Operating Point Computation
Options

Linearization Workflow

Your model has multiple
operating conditions that
depend on the values of varying
model parameters. Use this
approach when creating linear
time-varying (LTV) models.

• Batch trim your model for
the varying parameter
values, using a single model
compilation when possible.
Batch trimming is not
supported in the Model
Linearizer.

• Trim the model separately
for each parameter value
combination, which requires
multiple model compilations.
Use this option with the
Model Linearizer.

• Compute an operating point
at a simulation snapshot for
each parameter value
combination.

1 Define parameter values for
trimming.

2 Compute operating points
for the specified parameter
value variations.

3 Batch linearize the model at
the computed operating
points using the
corresponding parameter
value combinations.

For an example, see:

• “Batch Linearize Model at
Multiple Operating Points
Derived from Parameter
Variations” on page 3-16

• “LPV Approximation of Boost
Converter Model” on page 3-
82

In addition to varying operating points and model parameters, you can obtain multiple transfer
functions from your system by varying the linearization I/O configuration using an slLinearizer
interface. You can do so for a model with a single operating point and no parameter variation, and
also for any of the batch linearization options in the preceding table. For more information, see “Vary
Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on page 3-28
and “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21.

Choose Batch Linearization Tool
You can perform batch linearization using the Model Linearizer or at the MATLAB command line
using either the linearize function or an slLinearizer interface. Use the following table to
choose a batch linearization tool.

 Choose Batch Linearization Methods

3-5

Reasons to Use Model
Linearizer

Reasons to Use linearize Reasons to Use
slLinearizer

• You are new to Simulink
Control Design software.

• You have experience with the
Model Linearizer.

• You do not want to batch
trim your model, which is not
supported in the Model
Linearizer.

• You are new to Simulink
Control Design or have
experience with Model
Linearizer, and you prefer
to work at the command line
or in a repeatable script.

The workflow for using
linearize closely mirrors
the workflow for linearizing
models using the Model
Linearizer. When you
generate MATLAB code from
the Model Linearizer to
reproduce your session
programmatically, this code
uses linearize. You can
easily modify this code to
batch linearize a model.

• You are extracting
linearizations for a single
transfer function; that is,
only one I/O set.

• You want to obtain multiple
open-loop and closed-loop
transfer functions without
modifying the model or
creating a linearization I/O
set (using linio) for each
transfer function.

• You want to obtain multiple
open-loop and closed-loop
transfer functions without
recompiling the model for
each transfer function.

You can also obtain multiple
open-loop and closed-loop
transfer functions using
linearize or the Model
Linearizer. However, the
software recompiles the
model each time you change
the I/O set.

See Also

More About
• “What Is Batch Linearization?” on page 3-2
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28

3 Batch Linearization

3-6

Batch Linearization Efficiency When You Vary Parameter Values
You can use the Simulink Control Design linearization tools to efficiently batch linearize a model at
varying model parameter values. If all the model parameters you vary are tunable, the linearization
tools use a single model compilation to compute linearizations for all parameter grid points.

Tunable and Nontunable Parameters
The term tunable parameters refers to parameters whose values you can change during model
simulation without recompiling the model. In general, only parameters that represent mathematical
variables are tunable. Common tunable parameters include the Gain parameter of the Gain block, PID
gains of the PID Controller block, and Numerator and Denominator coefficients of the Transfer Fcn
block.

In contrast, when you vary the value of nontunable parameters, the linearization tools compile the
model for each parameter grid point. This repeated compilation makes batch linearization slower.
Parameters that specify the appearance or structure of a block, such as the number of inputs of a
Sum block, are not tunable. Parameters that specify when a block is evaluated, such as a block's
sample time or priority, are also not tunable.

Controlling Model Recompilation
By default, the linearization tools compute all linearizations with a single compilation whenever it is
possible to do so, i.e., whenever all parameters are tunable. If the software detects nontunable
parameters specified for variation, it issues a warning and recompiles the model for each parameter-
grid point. You can change this default behavior at the command line using the AreParamsTunable

option of linearizeOptions. In the Model Linearizer, click More Options and use the
Recompile the model when parameter values are varied for linearization option. The following
table describes how these options affect the recompilation behavior.

 All varying parameters
are tunable

Some varying
parameters are not
tunable

• Command line: AreParamsTunable = true
(default)

• Model Linearizer: Recompile the model
when parameter values are varied for
linearization is unchecked (default)

Linearizations are
computed for all
parameter-grid points
with a single
compilation.

Model is recompiled for
each parameter-grid
point. Software issues a
warning.

• Command line: AreParamsTunable = false
• Model Linearizer: Recompile the model

when parameter values are varied for
linearization is checked

Model is recompiled for
each parameter-grid
point.

Model is recompiled for
each parameter-grid
point. Warning is
suppressed.

Suppose that you are performing batch linearization by varying the values of tunable parameters and
notice that the software is recompiling the model more than necessary. To ensure that linearizations
are computed with a single compilation whenever possible, make sure that:

• At the command line, the AreParamsTunable option is set to true.

 Batch Linearization Efficiency When You Vary Parameter Values

3-7

• In Model Linearizer, Recompile the model when parameter values are varied for
linearization is unchecked.

See Also
slLinearizer | linearize | linearizeOptions

More About
• “Set Block Parameter Values”
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
• “Specify Parameter Samples for Batch Linearization” on page 3-43

3 Batch Linearization

3-8

Mark Signals of Interest for Batch Linearization
When batch linearizing a model using an slLinearizer interface, you can mark signals of interest
using analysis points. You can then analyze the response of your system at any of these points using
functions such as getIOTransfer and getLoopTransfer.

Alternatively, if you are batch linearizing your model using the:

• Model Linearizer, specify analysis points as shown in “Specify Portion of Model to Linearize in
Model Linearizer” on page 2-22.

• linearize command, specify analysis points using linio.

For more information on selecting a batch linearization tool, see “Choose Batch Linearization
Methods” on page 3-4.

Analysis Points
Analysis points identify locations within a Simulink model that are relevant for linear analysis. Each
analysis point is associated with a signal that originates from the outport of a Simulink block. For
example, in the following model, the reference signal r and the control signal u are analysis points
that originate from the outputs of the setpoint and C blocks respectively.

Each analysis point can serve one or more of the following purposes:

• Input — The software injects an additive input signal at an analysis point, for example, to model a
disturbance at the plant input.

• Output — The software measures the signal value at a point, for example, to study the impact of a
disturbance on the plant output.

• Loop Opening — The software interprets a break in the signal flow at a point, for example, to
study the open-loop response at the plant input.

When you use an analysis point for more than one purpose, the software applies the purposes in this
sequence: output measurement, then loop opening, then input.

 Mark Signals of Interest for Batch Linearization

3-9

Using analysis points, you can extract open-loop and closed-loop responses from a Simulink model.
You can also specify requirements for control system tuning using analysis points. For more
information, see “Mark Signals of Interest for Control System Analysis and Design” on page 2-38.

Specify Analysis Points
You can mark analysis points either explicitly in the Simulink model, or programmatically using the
addPoint command for an slLinearizer interface.

Mark Analysis Points in Simulink Model

To specify analysis points directly in your Simulink model, first open the Linearization tab. To do so,
in the Apps gallery, click Linearization Manager.

To specify an analysis point:

1 In the model, click the signal you want to define as an analysis point.
2 On the Linearization tab, in the Insert Analysis Points gallery, select the type of analysis point

you want to define.

When you specify analysis points, the software adds annotations to your model indicating the
linear analysis point type.

3 Repeat steps 1 and 2 for all signals you want to define as analysis points.

You can select any of the following closed-loop analysis point types, which are equivalent within an
slLinearizer interface.

• Input Perturbation
• Output Measurement
• Sensitivity
• Complementary Sensitivity

If you want to introduce a permanent loop opening at a signal as well, select one of the following
open-loop analysis point types:

• Open-Loop Input
• Open-Loop Output
• Loop Transfer
• Loop Break

When you define a signal as an open-loop point, analysis functions such as getIOTransfer always
enforce a loop break at that signal during linearization. All open-loop analysis point types are
equivalent within an slLinearizer interface. For more information on how the software treats loop
openings during linearization, see “How the Software Treats Loop Openings” on page 2-31.

When you create an slLinearizer interface for a model, any analysis points defined in the model
are automatically added to the interface. If you defined an analysis point using:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent opening.

3 Batch Linearization

3-10

Mark Analysis Points Programmatically

To mark analysis points programmatically, use the addPoint command. For example, consider the
scdcascade model.

open_system('scdcascade')

To mark analysis points, first create an slLinearizer interface.

sllin = slLinearizer('scdcascade');

To add a signal as an analysis point, use the addPoint command, specifying the source block and
port number for the signal.

addPoint(sllin,'scdcascade/C1',1);

If the source block has a single output port, you can omit the port number.

addPoint(sllin,'scdcascade/G2');

For convenience, you can also mark analysis points using the:

• Name of the signal.

addPoint(sllin,'y2');
• Combined source block path and port number.

addPoint(sllin,'scdcascade/C1/1')
• End of the full source block path when unambiguous.

addPoint(sllin,'G1/1')

You can also add permanent openings to an slLinearizer interface using the addOpening
command, and specifying signals in the same way as for addPoint. For more information on how the
software treats loop openings during linearization, see “How the Software Treats Loop Openings” on
page 2-31.

addOpening(sllin,'y1m');

You can also define analysis points by creating linearization I/O objects using the linio command.

 Mark Signals of Interest for Batch Linearization

3-11

io(1) = linio('scdcascade/C1',1,'input');
io(2) = linio('scdcascade/G1',1,'output');
addPoint(sllin,io);

As when you define analysis points directly in your model, if you specify a linearization I/O object
with:

• A closed-loop type, the signal is added as an analysis point only.
• An open-loop type, the signal is added as both an analysis point and a permanent opening.

Refer to Analysis Points
Once you have marked analysis points in an slLinearizer interface, you can analyze the response
at any of these points using the following analysis functions:

• getIOTransfer — Transfer function for specified inputs and outputs
• getLoopTransfer — Open-loop transfer function from an additive input at a specified point to a

measurement at the same point
• getSensitivity — Sensitivity function at a specified point
• getCompSensitivity — Complementary sensitivity function at a specified point

To view the available analysis points in an slLinearizer interface, use the getPoints command.

getPoints(sllin)

ans =

 3x1 cell array

 {'scdcascade/C1/1[u1]'}
 {'scdcascade/G2/1[y2]'}
 {'scdcascade/G1/1[y1]'}

To use an analysis point with an analysis function, you can specify an unambiguous abbreviation of
the analysis point name returned by getPoints. For example, compute the transfer function from u1
to y1, and find the sensitivity to a disturbance at the output of block G2.

ioSys = getIOTransfer(sllin,'u1','y1');
sensG2 = getSensitivity(sllin,'G2');

See Also
addPoint | getPoints | slLinearizer | addOpening

More About
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-38

3 Batch Linearization

3-12

Batch Linearize Model for Parameter Variations at Single
Operating Point

In this example, you vary model parameters and linearize a model at its nominal operating conditions
using the linearize command.

You can batch linearize a model for parameter variations at a single operating point to study:

• Plant dynamics for varying component tolerances.
• Controller robustness to variations in plant parameters.
• Transient responses for varying controller gains.

The scdcascade model contains two cascaded feedback control loops. Each loop includes a PI
controller. The plant models, G1 and G2, are LTI models.

For this model, the model operating point represents the nominal operating conditions of the system.
Therefore, you do not have to trim the model before linearization. If your application includes
parameter variations that affect the operating point of the model, you must first batch trim the model
for the parameter variations. Then, you can linearize the model at the trimmed operating points. For
more information, see “Batch Linearize Model at Multiple Operating Points Derived from Parameter
Variations” on page 3-16.

To examine the effects of varying the outer-loop controller gains, linearize the model at the nominal
operating point for each combination of gain values.

Open the model.

sys = 'scdcascade';
open_system(sys)

Define linearization input and output points for computing the closed-loop input/output response of
the system.

io(1) = linio('scdcascade/setpoint',1,'input');
io(2) = linio('scdcascade/Sum',1,'output');

 Batch Linearize Model for Parameter Variations at Single Operating Point

3-13

io(1), the signal originating at the outport of the setpoint block, is the reference input. io(2),
the signal originating at the outport of the Sum block, is the system output.

To extract multiple open-loop and closed-loop transfer functions from the same model, batch linearize
the system using an slLinearizer interface. For more information, see “Vary Parameter Values and
Obtain Multiple Transfer Functions” on page 3-21.

Vary the outer-loop controller gains, Kp1 and Ki1, within 20% of their nominal values.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);
[Kp1_grid,Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

Create a parameter structure with fields Name and Value. Name indicates which the variable to vary
in the model workspace, the MATLAB® workspace, or a data dictionary.

params(1).Name = 'Kp1';
params(1).Value = Kp1_grid;
params(2).Name = 'Ki1';
params(2).Value = Ki1_grid;

params is a 6-by-4 parameter value grid, where each grid point corresponds to a unique combination
of Kp1 and Ki1 values.

Obtain the closed-loop transfer function from the reference input to the plant output for the specified
parameter values. If you do not specify an operating point, linearize uses the current model
operating point.

G = linearize(sys,io,params);

G is a 6-by-4 array of linearized models. Each entry in the array contains a linearization for the
corresponding parameter combination in params. For example, G(:,:,2,3) corresponds to the
linearization obtained by setting the values of the Kp1 and Ki1 parameters to Kp1_grid(2,3) and
Ki1_grid(2,3), respectively. The set of parameter values corresponding to each entry in the model
array G is stored in the SamplingGrid property of G. For example, examine the corresponding
parameter values for linearization G(:,:,2,3):

G(:,:,2,3).SamplingGrid

ans =

 struct with fields:

 Kp1: 0.1386
 Ki1: 0.0448

To study the effects of the varying gain values, analyze the linearized models in G. For example,
examine the step responses for all Kp2 values and the third Ki1 value.

stepplot(G(:,:,:,3))

3 Batch Linearization

3-14

See Also
linearize | linio | ndgrid

More About
• “watertank Simulink Model”
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Specify Parameter Samples for Batch Linearization” on page 3-43
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “LPV Approximation of Boost Converter Model” on page 3-82

 Batch Linearize Model for Parameter Variations at Single Operating Point

3-15

Batch Linearize Model at Multiple Operating Points Derived
from Parameter Variations

If your application includes parameter variations that affect the operating point of the model, you
must batch trim the model for the parameter variations before linearization. Use this batch
linearization approach when computing linear models for linear parameter-varying systems.

For more information on batch trimming models for parameter variations, see “Batch Compute
Steady-State Operating Points for Parameter Variation” on page 1-74.

Open the Simulink model.

sys = 'watertank';
open_system(sys)

Vary parameters A and b within 10% of their nominal values. Specify three values for A and four
values for b, creating a 3-by-4 value grid for each parameter.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each parameter.

params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the mode that specifies that both model states are
unknown and must be at steady state in the trimmed operating point.

opspec = operspec(sys);

Trim the model using the specified operating point specification, parameter grid, and option set.
Suppress the display of the operating point search report.

opt = findopOptions('DisplayReport','off');
[op,opreport] = findop(sys,opspec,params,opt);

3 Batch Linearization

3-16

findop trims the model for each parameter combination using only one model compilation. op is a 3-
by-4 array of operating point objects that correspond to the specified parameter grid points.

To compute the closed-loop input/output transfer function for the model, define the linearization input
and output points as the reference input and model output, respectively.

io(1) = linio('watertank/Desired Water Level',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

To extract multiple open-loop and closed-loop transfer functions from the same model, batch linearize
the system using an slLinearizer interface. For more information, see “Vary Parameter Values and
Obtain Multiple Transfer Functions” on page 3-21.

Batch linearize the model at the trimmed operating points using the specified I/O points and
parameter variations.

G = linearize(sys,op,io,params);

G is a 3-by-4 array of linearized models. Each entry in the array contains a linearization for the
corresponding parameter combination in params. For example, G(:,:,2,3) corresponds to the
linearization obtained by setting the values of the A and b parameters to A_grid(2,3) and
b_grid(2,3), respectively. The set of parameter values corresponding to each entry in the model
array G is stored in the SamplingGrid property of G. For example, examine the corresponding
parameter values for linearization G(:,:,2,3):

G(:,:,2,3).SamplingGrid

ans =

 struct with fields:

 A: 20
 b: 5.1667

When batch linearizing for parameter variations, you can obtain the linearization offsets that
correspond to the linearization operating points. To do so, set the StoreOffsets linearization
option.

opt = linearizeOptions('StoreOffsets',true);

Linearize the model using the specified parameter grid, and return the linearization offsets in the
info structure.

[G,~,info] = linearize('watertank',io,params,opt);

You can then use the offsets to configure an LPV System block. To do so, you must first convert the
offsets to the required format. For an example, see “LPV Approximation of Boost Converter Model” on
page 3-82.

offsets = getOffsetsForLPV(info);

See Also
linearize | linio | findop | ndgrid

 Batch Linearize Model at Multiple Operating Points Derived from Parameter Variations

3-17

More About
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Specify Parameter Samples for Batch Linearization” on page 3-43
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “LPV Approximation of Boost Converter Model” on page 3-82

3 Batch Linearization

3-18

Batch Linearize Model at Multiple Operating Points Using
linearize Command

This example shows how to use the linearize command to batch linearize a model at varying
operating points.

Obtain the plant transfer function, modeled by the Water-Tank System block, for the watertank
model. You can analyze the batch linearization results to study the operating point effects on the
model behavior.

Open the model.

open_system('watertank')

Specify the linearization I/Os.

ios(1) = linio('watertank/PID Controller',1,'input');
ios(2) = linio('watertank/Water-Tank System',1,'openoutput');

ios(2) specifies an open-loop output point; the loop opening eliminates the effects of feedback.

You can linearize the model using trimmed operating points, the model initial condition, or simulation
snapshot times. For this example, linearize the model at specified simulation snapshot times.

ops_tsnapshot = [1,20];

Obtain the transfer function for the Water-Tank System block, linearizing the model at the specified
operating points.

T = linearize('watertank',ios,ops_tsnapshot);

T is a 2 x 1 array of linearized continuous-time state-space models. The software computes the
T(:,:,1) model by linearizing watertank at ops_tsnapshot(1), and T(:,:,2) by linearizing
watertank at ops_tsnapshot(2).

Use Control System Toolbox analysis commands to examine the properties of the linearized models in
T. For example, examine the step response of the plant at both snapshot times.

stepplot(T)

 Batch Linearize Model at Multiple Operating Points Using linearize Command

3-19

See Also
linearize | findop | linio | stepplot

More About
• “watertank Simulink Model”
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33

3 Batch Linearization

3-20

Vary Parameter Values and Obtain Multiple Transfer Functions

This example shows how to use the slLinearizer interface to batch linearize a Simulink® model.
You vary model parameter values and obtain multiple open-loop and closed-loop transfer functions
from the model.

You can perform the same analysis using the linearize function. However, when you want to obtain
multiple open-loop and closed-loop transfer functions, especially for models that are expensive to
compile repeatedly, slLinearizer can be more efficient.

Since the parameter variations in this example do not affect the operating point of the model, you
batch linearize the model at a single operating point. If your application uses parameter variations
that affect the model operating point, first trim the model for each parameter value combination. For
an example that uses the linearize function, see “Batch Linearize Model at Multiple Operating
Points Derived from Parameter Variations” on page 3-16.

Create slLinearizer Interface for Model

The scdcascade model used for this example contains a pair of cascaded feedback control loops.
Each loop includes a PI controller. The plant models, G1 (outer loop) and G2 (inner loop), are LTI
models.

Use the slLinearizer interface to analyze the inner-loop and outer-loop dynamics.

Open the model.

mdl = 'scdcascade';
open_system(mdl)

Use the slLinearizer function to create the interface.

sllin = slLinearizer(mdl)

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-21

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The Command Window display shows information about the slLinearizer interface. In this
interface, no parameters to vary are yet specified, so the Paramaeters property is empty.

Vary Inner-Loop Controller Gains

For inner-loop analysis, vary the gains of the inner-loop PI controller block, C2. Vary the proportional
gain (Kp2) and integral gain (Ki2) in the 15% range.

Kp2_range = linspace(Kp2*0.85,Kp2*1.15,6);
Ki2_range = linspace(Ki2*0.85,Ki2*1.15,4);
[Kp2_grid, Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;
params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

Kp2_range and Ki2_range specify the sample values for Kp2 and Ki2. To obtain a transfer function
for each combination of Kp2 and Ki2, use ndgrid and create a 6 x 4 parameter grid with grid arrays
Kp2_grid and Ki2_grid. Configure the Parameters property of sllin with the structure params.
This structure specifies the parameters to be varied and their grid arrays.

Analyze Closed-Loop Transfer Function for the Inner Loop

The overall closed-loop transfer function for the inner loop is equal to the transfer function from u1 to
y2. To eliminate the effects of the outer loop, you can break the loop at e1, y1m, or y1. For this
example, break the loop at e1.

Add u1 and y2 as analysis points, and e1 as a permanent opening of sllin.

addPoint(sllin,{'y2','u1'});
addOpening(sllin,'e1');

Obtain the transfer function from u1 to y2.

r2yi = getIOTransfer(sllin,'u1','y2');

r2yi, a 6 x 4 state-space model array, contains the transfer function for each specified parameter
combination. The software uses the model initial conditions as the linearization operating point.

Because e1 is a permanent opening of sllin, r2yi does not include the effects of the outer loop.

Plot the step response for r2yi.

stepplot(r2yi);

3 Batch Linearization

3-22

The step response for all models varies in the 10% range and the settling time is less than 1.5
seconds.

Analyze Inner-Loop Transfer Function at the Plant Output

Obtain the inner-loop transfer function at y2, with the outer loop open at e1.

Li = getLoopTransfer(sllin,'y2',-1);

Because the software assumes positive feedback by default and scdcascade uses negative feedback,
specify the feedback sign using the third input argument. Now, . The getLoopTransfer
command returns an array of state-space (ss) models, one for each entry in the parameter grid. The
SamplingGrid property of Li matches the parameter values with the corresponding ss model.

Plot the bode response for .

bodeplot(Li)

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-23

The magnitude plot for all the models varies in the 3-dB range. The phase plot shows the most
variation, approximately 20°, in the [1 10] rad/s interval.

Vary Outer-Loop Controller Gains

For outer-loop analysis, vary the gains of the outer-loop PI controller block, C1. Vary the proportional
gain (Kp1) and integral gain (Ki1) in the 20% range.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);
[Kp1_grid, Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

params(1).Name = 'Kp1';
params(1).Value = Kp1_grid;
params(2).Name = 'Ki1';
params(2).Value = Ki1_grid;

sllin.Parameters = params;

Similar to the workflow for configuring the parameter grid for inner-loop analysis, create the
structure, params, that specifies a 6 x 4 parameter grid. Reconfigure sllin.Parameters to use the
new parameter grid. sllin now uses the default values for Kp2 and Ki2.

Analyze Closed-Loop Transfer Function from Reference to Plant Output

Remove e1 from the list of permanent openings for sllin before proceeding with outer-loop
analysis.

3 Batch Linearization

3-24

removeOpening(sllin,'e1');

To obtain the closed-loop transfer function from the reference signal, r, to the plant output, y1m, add
r and y1m as analysis points to sllin.

addPoint(sllin,{'r','y1m'});

Obtain the transfer function from r to y1m.

r2yo = getIOTransfer(sllin,'r','y1m');

Plot the step response for r2yo.

stepplot(r2yo)

The step response is underdamped for all the models.

Analyze Outer-Loop Sensitivity at Plant Output

To obtain the outer-loop sensitivity at the plant output, add y1 as an analysis point to sllin.

addPoint(sllin,'y1');

Obtain the outer-loop sensitivity at y1.

So = getSensitivity(sllin,'y1');

Plot the step response of So.

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-25

stepplot(So)

The plot indicates that it takes approximately 15 seconds to reject a step disturbance at the plant
output, y1.

Obtain Linearization Offsets

When batch linearizing for parameter variations, you can obtain the linearization offsets that
correspond to the linearization operating points. To do so, set the StoreOffsets linearization option
in the slLinearizer interface.

sllin.Options.StoreOffsets = true;

When you call a linearization function using sllin, you can return linearization offsets in the info
structure.

[r2yi,info] = getIOTransfer(sllin,'u1','y2');

You can then use the offsets to configure an LPV System block. To do so, you must first convert the
offsets to the required format. For an example that uses the linearize command, see “LPV
Approximation of Boost Converter Model” on page 3-82.

offsets = getOffsetsForLPV(info);

Close the model.

3 Batch Linearization

3-26

bdclose(mdl)

See Also
slLinearizer | addPoint | addOpening | getIOTransfer | getLoopTransfer |
getSensitivity | getCompSensitivity | linearize

More About
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Specify Parameter Samples for Batch Linearization” on page 3-43
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53

 Vary Parameter Values and Obtain Multiple Transfer Functions

3-27

Vary Operating Points and Obtain Multiple Transfer Functions
Using slLinearizer Interface

This example shows how to use the slLinearizer interface to batch linearize a Simulink® model.
You linearize a model at multiple operating points and obtain multiple open-loop and closed-loop
transfer functions from the model.

You can perform the same analysis using the linearize command. However, when you want to
obtain multiple open-loop and closed-loop transfer functions, especially for models that are expensive
to compile repeatedly, slLinearizer can be more efficient.

Create slLinearizer Interface for Model

Open the model.

mdl = 'watertank';
open_system(mdl)

Use the slLinearizer command to create the interface.

sllin = slLinearizer(mdl)

slLinearizer linearization interface for "watertank":

No analysis points. Use the addPoint command to add new points.
No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The command-window display shows information about the slLinearizer interface. In this
interface, the OperatingPoints property display shows that no operating point is specified.

3 Batch Linearization

3-28

Specify Multiple Operating Points for Linearization

You can linearize the model using trimmed operating points, the model initial condition, or simulation
snapshot times. For this example, use trim points that you obtain for varying water-level reference
heights.

opspec = operspec(mdl);
opspec.States(2).Known = 1;
opts = findopOptions('DisplayReport','off');

h = [10 15 20];

for ct = 1:numel(h)
 opspec.States(2).x = h(ct);
 Href = h(ct);
 ops(ct) = findop(mdl,opspec,opts);
end

sllin.OperatingPoints = ops;

Here, h specifies the different water-levels. ops is a 1 x 3 array of operating point objects. Each entry
of ops is the model operating point at the corresponding water level. Configure the
OperatingPoints property of sllin with ops. Now, when you obtain transfer functions from
sllin using the getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity functions, the software returns a linearization for each specified operating
point.

Each trim point is only valid for the corresponding reference height, represented by the Href
parameter of the Desired Water Level block. So, configure sllin to vary this parameter accordingly.

param.Name = 'Href';
param.Value = h;

sllin.Parameters = param;

Analyze Plant Transfer Function

In the watertank model, the Water-Tank System block represents the plant. To obtain the plant
transfer function, add the input and output signals of the Water-Tank System block as analysis points
of sllin.

addPoint(sllin,{'watertank/PID Controller','watertank/Water-Tank System'})
sllin

slLinearizer linearization interface for "watertank":

2 Analysis points:

Point 1:
- Block: watertank/PID Controller
- Port: 1
Point 2:
- Block: watertank/Water-Tank System
- Port: 1

No permanent openings. Use the addOpening command to add new permanent openings.

 Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface

3-29

Properties with dot notation get/set access:
 Parameters : [1x1 struct], 1 parameters with sampling grid of size 1x3
 "Href", varying between 10 and 20.
 OperatingPoints : [1x3 opcond.OperatingPoint]
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The first analysis point, which originates at the outport of the PID Controller block, is the input to the
Water-Tank System block. The second analysis point is the output of the Water-Tank System block.

Obtain the plant transfer function from the input of the Water-Tank System block to the block output.
To eliminate the effects of the feedback loop, specify the block output as a temporary loop opening.

G = getIOTransfer(sllin,'PID','Tank','Tank');

In the call to getIOTransfer, 'PID', a portion of the block name 'watertank/PID
Controller', specifies the first analysis point as the transfer function input. Similarly, 'Tank', a
portion of the block name 'watertank/Water-Tank System', refers to the second analysis point.
This analysis point is specified as the transfer function output (third input argument) and a temporary
loop opening (fourth input argument).

The output, G, is a 1 x 3 array of continuous-time state-space models.

Plot the step response for G.

stepplot(G);

The step response of the plant models varies significantly at the different operating points.

3 Batch Linearization

3-30

Analyze Closed-Loop Transfer Function

The closed-loop transfer function is equal to the transfer function from the reference input,
originating at the Desired Water Level block, to the plant output.

Add the reference input signal as an analysis point of sllin.

addPoint(sllin,'watertank/Desired Water Level');

Obtain the closed-loop transfer function.

T = getIOTransfer(sllin,'Desired','Tank');

The output, T, is a 1 x 3 array of continuous-time state-space models.

Plot the step response for T.

stepplot(T);

Although the step response of the plant transfer function varies significantly at the three trimmed
operating points, the controller brings the closed-loop responses much closer together at all three
operating points.

Analyze Sensitivity at Plant Output

S = getSensitivity(sllin,'Tank');

 Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface

3-31

The software injects a disturbance signal and measures the output at the plant output. S is a 1 x 3
array of continuous-time state-space models.

Plot the step response for S.

stepplot(S);

The plot indicates that both models can reject a step disturbance at the plant output within 40
seconds.

See Also
slLinearizer | addPoint | addOpening | getIOTransfer | getLoopTransfer |
getSensitivity | getCompSensitivity | linearize

More About
• “watertank Simulink Model”
• “Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33

3 Batch Linearization

3-32

Analyze Command-Line Batch Linearization Results Using
Response Plots

This example shows how to plot and analyze the step response for batch linearization results obtained
at the command line. The term batch linearization results refers to the ss model array returned by
the slLinearizer interface or linearize function. This array contains linearizations for varying
parameter values, operating points, or both, such as illustrated in “Batch Linearize Model for
Parameter Variations at Single Operating Point” on page 3-13 and “Vary Operating Points and Obtain
Multiple Transfer Functions Using slLinearizer Interface” on page 3-28. You can use the techniques
illustrated in this example to analyze the frequency response, stability, or sensitivity for batch
linearization results.

Batch Linearize Model

For this example, batch linearize the watertank Simulink® model. The following code linearize the
model for four simulation snapshot times, t = [0 1 2 3]. At each snapshot time, the model
parameters, A and b, are varied. The sample values for A are [10 20 30], and the sample values for
b are [4 6]. The slLinearizer interface includes analysis points at the reference signal and plant
output.

Open the model.

mdl = "watertank"

mdl =
"watertank"

load_system(mdl)

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl,...
 [mdl + "/Desired Water Level",mdl + "/Water-Tank System"]);

Specify the parameter grid.

[A_grid,b_grid] = ndgrid([10,20,30],[4 6]);
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Set the parameters in the slLinearizer interface.

sllin.Parameters = params;

Set the operating point snapshot times in the slLinearizer interface.

sllin.OperatingPoints = [0,1,2,3];

Obtain the linearized model from the reference signal to the plant output.

linsys = getIOTransfer(sllin,...
 "Desired Water Level","Water-Tank System");

 Analyze Command-Line Batch Linearization Results Using Response Plots

3-33

Plot Step Responses of the Linearized Models

To plot the step responses of the linearized models, use the stepplot function.

stepplot(linsys)

The step plot shows the responses of every model in the array. This plot shows the range of step
responses of the system in the operating ranges covered by the parameter grid and snapshot times.

To view the parameters associated with a particular response, click the response on the plot.

3 Batch Linearization

3-34

A data tip appears on the plot, providing information about the selected response and the related
model. The last lines of the data tip show the parameter combination and simulation snapshot time
that yielded this response. For example, in this previous plot, the selected response corresponds to
the model obtained by setting A to 30 and b to 4. The software linearized the model after simulating
the model for three time units.

View Step Response for Subset of Results

Suppose you want to view the responses for models linearized at a specific simulation snapshot time,
such as two time units. Right-click the plot and select Array Selector. The Model Selector for LTI
Arrays dialog box opens.

 Analyze Command-Line Batch Linearization Results Using Response Plots

3-35

The Selection Criterion Setup panel contains three columns, one for each model array dimension of
linsys. The first column corresponds to the simulation snapshot time. The third entry of this column
corresponds to the simulation snapshot time of two time units, because the snapshot time array was
[0,1,2,3]. Select only this entry in the first column.

Click OK. The plot displays the responses for only the models linearized at two time units.

3 Batch Linearization

3-36

Plot Step Response for Specific Parameter Combination and Snapshot Time

Suppose you want to examine only the step response for the model obtained by linearizing the
watertank model at t = 3, for A = 10 and b = 4. To do so, you can use the SamplingGrid
property of linsys, which is specified as a structure. When you perform batch linearization, the
software populates SamplingGrid with information regarding the variable values used to obtain the
model. The variable values include each parameter that you vary and the simulation snapshot times
at which you linearize the model. For example:

linsys(:,:,1).SamplingGrid

ans = struct with fields:
 Time: 0
 A: 10
 b: 4

Here, linsys(:,:,1) refers to the first model in linsys. This model was obtained at simulation
time t = 0, for A = 10 and b = 4.

Use array indexing to extract from linsys the model obtained by linearizing the watertank model at
t = 3, for A = 10 and b = 4.

sg = linsys.SamplingGrid;
sys = linsys(:,:,...
 sg.A == 10 & sg.b == 4 & sg.Time == 3);

 Analyze Command-Line Batch Linearization Results Using Response Plots

3-37

The structure sg contains the sampling grid for all the models in linsys. The expression sg.A ==
10 & sg.b == 4 & sg.Time == 3 returns a logical array. Each entry of this array contains the
logical evaluation of the expression for corresponding entries in sg.A, sg.B, and sg.Time. sys is a
model array that contains all the linsys models that satisfy the expression.

View the step response for sys.

stepplot(sys)

See Also

Related Examples
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on

page 3-28
• “Analyze Batch Linearization Results in Model Linearizer” on page 3-39
• “Validate Batch Linearization Results” on page 3-68

3 Batch Linearization

3-38

Analyze Batch Linearization Results in Model Linearizer
This example shows how to use response plots to analyze batch linearization results in Model
Linearizer. The term batch linearization results refers to linearizations for varying parameter values,
such as illustrated in “Batch Linearize Model for Parameter Value Variations Using Model Linearizer”
on page 3-53. You can use the techniques illustrated in this example to analyze the frequency
response, stability, and other system characteristics for batch linearization results.

View Parameters of a Response

For this example, suppose that you have batch linearized a model as described in “Batch Linearize
Model for Parameter Value Variations Using Model Linearizer” on page 3-53. You have generated a
step response plot of an array of linear models computed for a 2-D parameter grid, with variations of
outer-loop controller gains Ki1 and Kp1.

When you perform batch linearization, Model Linearizer generates a plot showing the responses of
all linear models resulting from the linearization. You choose the response plot type, such as Step,
Bode, or Nyquist, when you linearize. You can create additional plots at any time as described in
“Analyze Results Using Model Linearizer Response Plots” on page 2-115.

To view the parameters associated with a particular response, click the response on the plot.

 Analyze Batch Linearization Results in Model Linearizer

3-39

A data tip appears on the plot, providing information about the selected response and the related
model. The last lines of the data tip show the parameter combination that yielded this response. For
example, in this plot, the selected response corresponds to the model obtained by setting Kp1 to
0.22875 and Ki1 to 0.021.

View Step Response of Subset of Results

Suppose you want to view the responses for only the models linearized at a specific Ki1 value, the
middle value Ki1 = 0.0410. Right-click the plot and select Array Selector.

In the Model Selector for LTI Arrays dialog box, the Selection Criterion Setup section contains two
columns, one for each model array dimension of linsys1. Model Linearizer flattens the 2-D
parameter grid into a one-dimensional array, so that variations in both Kp1 and Ki1 are represented
along the indices shown in column 1. To determine which entries in this array correspond to Ki1 =
0.0410, examine the Parameter Variations table.

3 Batch Linearization

3-40

The Ki1 = 0.0410 values are at locations 2, 5, 8, 11, 14, and 17.

In the Model Selector for LTI Arrays dialog box, enter [2 5 8 11 14 17] in the field below column
1. The selection in the column changes to reflect this subset of the array.

Click OK. The step plot displays responses only for the models with Ki1 = 0.0410.

 Analyze Batch Linearization Results in Model Linearizer

3-41

Export Array to MATLAB Workspace

You can export the model array to the MATLAB workspace to perform further analysis or control
design. To do so, in the Model Linearizer, in the Linear Analysis Workspace, right click the model
array and select Export to MATLAB Workspace.

You can then use Control System Toolbox control design tools, such as the Linear System Analyzer
app, to analyze linearization results. Or, use Control System Toolbox control design tools, such as
pidtune or Control System Designer, to design controllers for the linearized systems.

See Also

More About
• “What Is Batch Linearization?” on page 3-2
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53

3 Batch Linearization

3-42

Specify Parameter Samples for Batch Linearization

About Parameter Samples
Block parameters configure a Simulink model in several ways. For example, you can use block
parameters to specify various coefficients or controller sample times. You can also use a discrete
parameter, like the control input to a Multiport Switch block, to control the data path within a model.
Varying the value of a parameter helps you understand its impact on the model behavior.

When using any of the Simulink Control Design linearization tools (or tuning with slTuner or Control
System Tuner) you can specify a set of block parameter values at which to linearize the model. The
full set of values is called a parameter grid or parameter samples. The tools batch-linearize the
model, computing a linearization for each value in the parameter grid. You can vary multiple
parameters, thus extending the parameter grid dimension. When using the command-line
linearization tools, the linearize command or the slLinearizer or slTuner interfaces, you
specify the parameter samples using a structure with fields Name and Value. In the Model
Linearizer or Control System Tuner, you use the graphical interface to specify parameter samples.

Which Parameters Can Be Sampled?
You can vary any model parameter whose value is given by a variable in the model workspace, the
MATLAB workspace, or a data dictionary. In cases where the varying parameters are all tunable, the
linearization tools require only one model compilation to compute transfer functions for varying
parameter values. This efficiency is especially advantageous for models that are expensive to compile
repeatedly.

For more information, see “Batch Linearization Efficiency When You Vary Parameter Values” on page
3-7.

Vary Single Parameter at the Command Line
To vary the value of a single parameter for batch linearization with linearize, slLinearizer, or
slTuner, specify the parameter grid as a structure having two fields. The Name field contains the
name of the workspace variable that specifies the parameter. The Value field contains a vector of
values for that parameter to take during linearization.

For example, the Watertank model has three parameters defined as MATLAB workspace variables,
a, b, and A. The following commands specify a parameter grid for the single parameter for A.

param.Name = 'A';
param.Value = Avals;

Here, Avals is an array specifying the sample values for A.

The following table lists some common ways of specifying parameter samples.

Parameter Sample-Space Type How to Specify the Parameter Samples
Linearly varying param.Value =

linspace(A_min,A_max,num_samples)

 Specify Parameter Samples for Batch Linearization

3-43

Parameter Sample-Space Type How to Specify the Parameter Samples
Logarithmically varying param.Value =

logspace(A_min,A_max,num_samples)
Random param.Value = rand(1,num_samples)
Custom param.Value = custom_vector

If the variable used by the model is not a scalar variable, specify the parameter name as an
expression that resolves to a numeric scalar value. For example, suppose that Kpid is a vector of PID
gains. The first entry in that vector, Kpid, is used as a gain value in a block in your model. Use the
following commands to vary that gain using the values given in a vector Kpvals:

param.Name = 'Kpid(1)';
param.Value = Kpvals;

After you create the structure param:

• Pass it to linearize as the param input argument.
• Pass it to slLinearizer as the param input argument, when creating an slLinearizer

interface.
• Set the Parameters property of an existing slLinearizer interface to param.

Vary Single Parameter in Graphical Tools
To specify variations of a single parameter for batch linearization in Model Linearizer, on the
Linear Analysis tab, in the Parameter Variations drop-down list, click Select parameters to
vary. (In Control System Tuner, the Parameter Variations drop-down list is on the Control
System tab.)

Click Manage Parameters. In the Select model variables dialog box, check the parameter to
vary. The table lists all variables in the MATLAB workspace and the model workspace that are used in
the model, whether tunable or not.

3 Batch Linearization

3-44

Note If the parameter is not a scalar variable, click Specify expression indexing if necessary and
enter an expression that resolves to a numeric scalar value. For example, if A is a vector, enter A(3)
to specify the third entry in A. If A is a structure and the scalar parameter you want to vary is the
Value field of that structure, enter A.Value. The indexed variable appears in the variable list.

Click OK. The selected variable appears in the Parameter Variations table. Use the table to
specify parameter values manually, or generate values automatically.

Manually Specify Parameter Values

To specify the values manually, add rows to the table by clicking Insert Row and selecting either
Insert Row Above or Insert Row Below. Then, edit the values in the table as needed.

 Specify Parameter Samples for Batch Linearization

3-45

When you return to the Linear Analysis tab and linearize the model, Model Linearizer linearizes at
all parameter values listed in the Parameter Variations table.

Note In Control System Tuner, when you are finished specifying your parameter variations, you must
apply the changes before continuing with tuning. To do so, in the Parameter Variations tab, click

 Apply. Control System Tuner applies the specified parameter variations, relinearizes your model,
and updates all existing plots.

Automatically Generate Parameter Values

To generate values automatically, click Generate Values. In the Generate Parameter Values
dialog box, in the Values column, enter an expression for the parameter values you want for the
variable. For example, enter an expression such as linspace(A_min,A_max,num_samples), or
[10:2:30].

3 Batch Linearization

3-46

Click Overwrite to replace the values in the Parameter Variations table with the generated
values.

When you return to the Linear Analysis tab and linearize the model, Model Linearizer computes a
linearization for each of these parameter values.

Note In Control System Tuner, when you are finished specifying your parameter variations, you must
apply the changes before continuing with tuning. To do so, in the Parameter Variations tab, click

 Apply. Control System Tuner applies the specified parameter variations, relinearizes your model,
and updates all existing plots.

Multi-Dimension Parameter Grids
When you vary more than one parameter at a time, you generate parameter grids of higher
dimension. For example, varying two parameters yields a parameter matrix, and varying three
parameters yields a 3-D parameter grid. Consider the following parameter grid:

 Specify Parameter Samples for Batch Linearization

3-47

Here, you vary the values of three parameters, a, b, and c. The samples form a 3-by-4-by-5 grid. When
batch linearizing your model, the ss model array, sys, is the batch result. Similarly, when batch
trimming your model, you get an array of operating point objects.

Vary Multiple Parameters at the Command Line
To vary the value of multiple parameters for batch linearization with linearize, slLinearizer, or
slTuner, specify parameter samples as a structure array. The structure has an entry for each
parameter whose value you vary. The structure for each parameter is the same as described in “Vary
Single Parameter at the Command Line” on page 3-43. You can specify the Value field for a
parameter to be an array of any dimension. However, the size of the Value field must match for all
parameters. Corresponding array entries for all the parameters, also referred to as a parameter grid
point, must map to a desired parameter combination. When the software linearizes the model, it
computes a linearization — an ss model — for each grid point. The software populates the
SamplingGrid property of each linearized model with information about the parameter grid point
that the model corresponds to.

Specify Full Grid

Suppose that your model has two parameters whose values you want to vary, a and b:

a = a1, a2
b = b1, b2

You want to linearize the model for every combination of a and b, also referred to as a full grid:

3 Batch Linearization

3-48

(a1, b1), (a1, b2)
(a2, b1), (a2, b2)

Create a rectangular parameter grid using ndgrid.

a1 = 1;
a2 = 2;
a = [a1 a2];

b1 = 3;
b2 = 4;
b = [b1 b2];

[A,B] = ndgrid(a,b)

>> A

A =

 1 1
 2 2

>> B

B =

 3 4
 3 4

Create the structure array, params, that specifies the parameter grid.

params(1).Name = 'a';
params(1).Value = A;

params(2).Name = 'b';
params(2).Value = B;

In general, to specify a full grid for N parameters, use ndgrid to obtain N grid arrays.

[P1,...,PN] = ndgrid(p1,...,pN);

Here, p1,...,pN are the parameter sample vectors.

Create a 1 x N structure array.

params(1).Name = 'p1';
params(1).Value = P1;
...
params(N).Name = 'pN';
params(N).Value = PN;

Specify Subset of Full Grid

If your model is complex or you vary the value of many parameters, linearizing the model for the full
grid can become expensive. In this case, you can specify a subset of the full grid using a table-like
approach. Using the example in “Specify Full Grid” on page 3-48, suppose you want to linearize the
model for the following combinations of a and b:

 Specify Parameter Samples for Batch Linearization

3-49

(a1, b1), (a1, b2)

Create the structure array, params, that specifies this parameter grid.

A = [a1 a1];
params(1).Name = 'a';
params(1).Value = A;

B = [b1 b2];
params(2).Name = 'b';
params(2).Value = B;

Vary Multiple Parameters in Graphical Tools
To vary the value of multiple parameters for batch linearization in Model Linearizer or Control
System Tuner, open the Select model variables dialog box, as described in “Vary Single Parameter in
Graphical Tools” on page 3-44. In the dialog box, check all variables you want to vary.

Note If a parameter you want to vary is not a scalar variable, click Specify expression indexing if
necessary and enter an expression that resolves to a scalar value. For example, if A is a vector, enter
A(3) to specify the third entry in A. If A is a structure and the scalar parameter you want to vary is
the Value field of that structure, enter A.Value. The indexed variable appears in the variable list.

Click OK. The selected variables appear in the Parameter Variations table. Each column in the
table corresponds to one selected variable. Each row in the table represents one full set of parameter
values at which to linearize the model. When you linearize, Model Linearizer computes as many
linear models as there are rows in the table. Use the table to specify combinations of parameter
values manually, or generate value combinations automatically.

3 Batch Linearization

3-50

Manually Specify Parameter Values

To specify the values manually, add rows to the table by clicking Insert Row and selecting either
Insert Row Above or Insert Row Below. Then, edit the values in the table as needed. For
example, the following table specifies linearization at four parameter-value pairs: (Ki2,Kp2) =
(3.5,1), (3.5,2), (5,1), and (5,2).

When you return to the Linear Analysis tab and linearize the model, Model Linearizer computes a
linearization for each of these parameter-value pairs.

Note In Control System Tuner, when you are finished specifying your parameter variations, you must
apply the changes before continuing with tuning. To do so, in the Parameter Variations tab, click

 Apply. Control System Tuner applies the specified parameter variations, relinearizes your model,
and updates all existing plots.

Automatically Generate Parameter Values

To generate values automatically, click Generate Values. In the Generate Parameter Values
dialog box, in the Values column, enter an expression for the parameter values you want for each
variable, such as linspace(A_min,A_max,num_samples), or [10:2:30]. For example, the
following entry generates parameter-value pairs for all possible combinations of Kp1 =
[0.1,0.15,0.2,0.25,0.3] and Kp2 = [0.03,0.04,0.05].

 Specify Parameter Samples for Batch Linearization

3-51

Click Overwrite to replace the values in the Parameter Variations table with the generated
values.

When you return to the Linear Analysis tab and linearize the model, Model Linearizer computes a
linearization for each of these parameter-value pairs.

Note In Control System Tuner, when you are finished specifying your parameter variations, you must
apply the changes before continuing with tuning. To do so, in the Parameter Variations tab, click

 Apply. Control System Tuner applies the specified parameter variations, relinearizes your model,
and updates all existing plots.

See Also
ndgrid | linspace | logspace | rand | slLinearizer | slTuner | linearize

More About
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13
• “Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21

3 Batch Linearization

3-52

Batch Linearize Model for Parameter Value Variations Using
Model Linearizer

This example shows how to use the Model Linearizer to batch linearize a Simulink model. You vary
model parameter values and obtain multiple open-loop and closed-loop transfer functions from the
model.

The scdcascade model used for this example contains a pair of cascaded feedback control loops.
Each loop includes a PI controller. The plant models, G1 (outer loop) and G2 (inner loop), are LTI
models. In this example, you use Model Linearizer to vary the PI controller parameters and analyze
the inner-loop and outer-loop dynamics.

Open Model Linearizer for the Model

At the MATLAB command line, open the Simulink model.

mdl = 'scdcascade';
open_system(mdl)

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

 Batch Linearize Model for Parameter Value Variations Using Model Linearizer

3-53

Vary the Inner-Loop Controller Gains

To analyze the behavior of the inner loop, very the gains of the inner-loop PI controller, C2. As you can
see by inspecting the controller block, the proportional gain is the variable Kp2, and the integral gain
is Ki2. Examine the performance of the inner loop for two different values of each of these gains.

In the Parameter Variations drop-down list, click Select parameters to vary.

3 Batch Linearization

3-54

The Parameter Variations tab opens. click Manage Parameters.

In the Select model variables dialog box, check the parameters to vary, Ki2 and Kp2.

Click OK.

The selected variables appear in the Parameter Variations table. Each column in the table
corresponds to one of the selected variables. Each row in the table represents one (Ki2,Kp2) pair at
which to linearize the model. These parameter-value combinations are called parameter samples.
When you linearize, Model Linearizer computes as many linear models as there are parameter
samples, or rows in the table.

 Batch Linearize Model for Parameter Value Variations Using Model Linearizer

3-55

Specify the parameter samples at which to linearize the model. For this example, specify four
(Ki2,Kp2) pairs, (Ki2,Kp2) = (3.5,1), (3.5,2), (5,1), and (5,2). Enter these values in the table
manually. To do so, select a row in the table. Then, select Insert Row > Insert Row Below twice.

Edit the values in the table as shown to specify the four (Ki2,Kp2) pairs.

Tip For more details about specifying parameter values, see “Specify Parameter Samples for Batch
Linearization” on page 3-43

Analyze the Inner Loop Closed-Loop Response

To analyze the inner-loop performance, extract a transfer function from the inner-loop input u1 to the
inner-plant output y2, computed with the outer loop open. To specify this I/O for linearization, in the
Linear Analysis tab, in the Analysis I/Os drop-down list, select Create New Linearization
I/Os.

3 Batch Linearization

3-56

Specify the I/O set by creating:

• An input perturbation point at u1
• An output measurement point at y2
• A loop break at e1

Name the I/O set by typing InnerLoop in the Variable name field of the Create linearization I/O set
dialog box. The configuration of the dialog box is as shown.

 Batch Linearize Model for Parameter Value Variations Using Model Linearizer

3-57

Tip For more information about specifying linearization I/Os, see “Specify Portion of Model to
Linearize” on page 2-10.

Click OK.

Now that you have specified the parameter variations and the analysis I/O set for the inner loop,

linearize the model and examine a step response plot. Click Step.

Model Linearizer linearizes the model at each of the parameter samples you specified in the
Parameter Variations table. A new variable, linsys1, appears in the Linear Analysis Workspace
section of the Data Browser. This variable is an array of state-space (ss) models, one for each
(Ki2,Kp2) pair. The plot shows the step responses of all the entries in linsys1. This plot gives you
a sense of the range of step responses of the system in the operating ranges covered by the
parameter grid.

Vary the Outer-Loop Controller Gains

Examine the overall performance of the cascaded control system for varying values of the outer-loop
controller, C1. To do so, vary the coefficients Ki1 and Kp1, while keeping Ki2 and Kp2 fixed at the
values specified in the model.

3 Batch Linearization

3-58

In the Parameter Variations tab, click Manage Parameters. Clear the Ki2 and Kp2
checkboxes, and check Ki1 and Kp1. Click OK.

Use Model Linearizer to generate parameter values automatically. Click Generate Values. In
the Values column of the Starting Values table, enter an expression specifying the possible values
for each parameter. For example, vary Kp1 and Ki1 by ± 50% of their nominal values, by entering
expressions as shown.

 Batch Linearize Model for Parameter Value Variations Using Model Linearizer

3-59

The All Combinations gridding method generates a complete parameter grid of (Kp1,Ki1) pairs,
to compute a linearization at all possible combinations of the specified values. To replace all values in
the Parameter Variations table with the generated values, elect Overwrite previous values and
click OK.

3 Batch Linearization

3-60

Because you want to examine the overall closed-loop transfer function of the system, create a new
linearization I/O set. In the Linear Analysis tab, in the Analysis I/Os drop-down list, select Create
New Linearization I/Os. Configure r as an input perturbation point, and the system output y1m
as an output measurement. Click OK.

Linearize the model with the parameter variations and examine the step response of the resulting

models. Click Step to linearize and generate a new plot for the new model array, linsys2.

 Batch Linearize Model for Parameter Value Variations Using Model Linearizer

3-61

The step plot shows the responses of every model in the array. This plot gives you a sense of the
range of step responses of the system in the operating ranges covered by the parameter grid.

Note Although the new plot reflects the new set of parameter variations, Step Plot 1 and linsys1
are unchanged. That plot and array still reflect the linearizations obtained with the inner-loop
parameter variations.

Further Analysis of Batch Linearization Results

The results of both batch linearizations, linsys1 and linsys2, are arrays of state-space (ss)
models. Use these arrays for further analysis in any of several ways:

• Create additional analysis plots, such as Bode plots or impulse response plots, as described in
“Analyze Results Using Model Linearizer Response Plots” on page 2-115.

• Examine individual responses in analysis plots as described in “Analyze Batch Linearization
Results in Model Linearizer” on page 3-39.

• Export the model arrays to the MATLAB workspace by right-clicking linsys1 or linsys2 in the
Linear Analysis Workspace and selecting Export to MATLAB Workspace.

3 Batch Linearization

3-62

You can then use Control System Toolbox control design tools, such as the Linear System Analyzer
app, to analyze linearization results. Or, use Control System Toolbox control design tools, such as
pidtune or Control System Designer, to design controllers for the linearized systems.

Also see “Validate Batch Linearization Results” on page 3-68 for information about validating
linearization results in the MATLAB workspace.

See Also

More About
• “Validate Batch Linearization Results” on page 3-68
• “Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
• “Specify Parameter Samples for Batch Linearization” on page 3-43
• “Analyze Batch Linearization Results in Model Linearizer” on page 3-39
• “Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13

 Batch Linearize Model for Parameter Value Variations Using Model Linearizer

3-63

More Efficient Batch Linearization Varying Parameters

This example shows how to speed up the batch linearization of a model when a set of model
parameters are varied.

To decrease the linearization time for such a model, you can pass the varying parameter values to the
linearize function. linearize avoids recompiling the model when the varied parameters are
tunable parameters. The best improvements in the overall linearization time are for models with large
model update times.

Plant Model

In this example, you linearize a lightweight airplane model. For more information on this model, see
“Lightweight Airplane Design” (Aerospace Blockset). Using this model requires Aerospace Blockset™
software.

Open the model.

mdl = 'scdskyhogg';
open_system(mdl)

Extract the linearization inputs and outputs from the model.

io = getlinio(mdl);

Extract the initial operating point of the model.

op = operpoint(mdl);

Linearize Model By Calling linearize Multiple Times

For this example, you vary the gains of the altitude and pitch controllers in the autopilot system by
+/- 10%.

Open the auto pilot subsystem.

open_system('scdskyhogg/Vehicle System Model/Avionics/Autopilot')

3 Batch Linearization

3-64

Initialize the gains of the controllers to vary with MATLAB® workspace variables k1 and k2.

blks = {'scdskyhogg/Vehicle System Model/Avionics/Autopilot/Alt Controller';...
 'scdskyhogg/Vehicle System Model/Avionics/Autopilot/Theta Controller'};
set_param(blks{1},'Gain','0.0337283240400683*k1')
set_param(blks{2},'Gain','-261.8699347622*k2')

Specify the varying values for k1 and k2.

ct = 1:20;
k1val = 1+(ct-10)/100;
k2val = 1+(ct-10)/100;

Linearize the model for the specified values of k1 and k2 by calling the linearize function 20
times.

t = cputime;
for i=1:20
 k1 = k1val(i);
 k2 = k2val(i);
 sys_forloop(:,:,i) = linearize(mdl,op,io);
end

View the total time in seconds to compute the 20 linearizations.

dt_for = cputime - t

dt_for =

 108.5312

A factor that impacts this time is the total time it takes to compile and evaluate block masks and
resolve workspace parameters. To identify bottlenecks in your model compilation, use the MATLAB
Profiler.

Linearize Model By Passing Parameter Values to linearize

Instead of calling linearize separately for each combination of parameter values, you can pass the
parameter values to linearize in a single function call.

 More Efficient Batch Linearization Varying Parameters

3-65

Define the parameter values in a structure by specifying the name of the MATLAB workspace
variables and the value arrays.

params(1).Name = 'k1';
params(1).Value = k1val;
params(2).Name = 'k2';
params(2).Value = k2val;

Linearize the model.

t = cputime;
sys_params = linearize(mdl,op,io,params);

View the total time to compute the 20 linearizations with one call to the linearize function. In this
case, the software compiles the model once when varying the specified parameters.

dt_params = cputime - t

dt_params =

 20.2188

Compare Results

In this example, the varying parameters do not impact the operating point of the Simulink model. The
linearizations using both approaches are equivalent.

bode(sys_forloop(:,:,1),sys_params(:,:,1))
legend('Linearization in FOR loop','Linearization using parameter structure')

3 Batch Linearization

3-66

Calculate the resulting time improvement ratio.

ratio = dt_for/dt_params

ratio =

 5.3679

Close the model.

bdclose(mdl)

See Also
linearize | slLinearizer | fastRestartForLinearAnalysis

Related Examples
• “What Is Batch Linearization?” on page 3-2
• “Choose Batch Linearization Methods” on page 3-4
• “Improve Linear Analysis Performance” on page 3-96

 More Efficient Batch Linearization Varying Parameters

3-67

Validate Batch Linearization Results
When you batch linearize a model, the software returns a model array containing the linearized
models. There are two ways to validate a linearized model, but both methods have some
computational overhead. This overhead can make validating each model in the batch linearization
results infeasible. Therefore, it can be cost effective to validate either a single model or a subset of
the batch linearization results. You can use linear analysis plots and commands to determine the
validation candidates. For information regarding the tools that you can use for such analysis, see
“Linear Analysis”.

You can validate a linearization using the following approaches:

• Obtain a frequency response estimation of the nonlinear model, and compare its response to that
of the linearized model. For an example, see “Validate Linearization In Frequency Domain Using
Model Linearizer” on page 2-110.

• Simulate the nonlinear model and compare its time-domain response to that of the linearized
model. For an example, see “Validate Linearization in Time Domain” on page 2-107.

See Also
linearize | slLinearizer

Related Examples
• “Analyze Batch Linearization Results in Model Linearizer” on page 3-39
• “Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33

3 Batch Linearization

3-68

Approximate Nonlinear Behavior Using Array of LTI Systems

This example shows how to approximate the nonlinear behavior of a system as an array of
interconnected LTI models.

The example describes linear approximation of pitch axis dynamics of an airframe over a range of
operating conditions. The resulting array of linear systems is used to create a linear parameter
varying (LPV) representation of the dynamics. The LPV model serves as an approximation of the
nonlinear pitch dynamics.

Linear Parameter Varying Models

In many situations you must approximate the nonlinear dynamics of a system using simpler linear
systems. A single linear system provides a reasonable model for behavior limited to a small
neighborhood around an operating point of the nonlinear system. When you must approximate the
nonlinear behavior over a range of operating conditions, you can use an array of linear models that
are interconnected by suitable interpolation rules. Such a model is called an LPV model.

To generate an LPV model, the nonlinear model is trimmed and linearized over a grid of operating
points. For this purpose, the operating space is parameterized by a small number of scheduling
parameters. These parameters are often a subset of the inputs, states, and output variables of the
nonlinear system. Important considerations in the creation of LPV models are the identification of a
scheduling parameter set and the selection of a range of parameter values at which to linearize the
model.

To illustrate this approach, this example approximates the pitch dynamics of an airframe.

Airframe Pitch Dynamics

Consider a three-degree-of-freedom model of the pitch axis dynamics of an airframe. The states are
the Earth coordinates , the body coordinates , the pitch angle , and the pitch rate

. The following figure summarizes the relationship between the inertial and body frames, the
flight path angle , the incidence angle , and the pitch angle .

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-69

The airframe dynamics are nonlinear and the aerodynamic forces and moments depend on speed
and incidence . The scdairframeTRIM model describes these dynamics.

open_system('scdairframeTRIM')

Batch Linearization Across the Flight Envelope

Use the speed and the incidence angle as scheduling parameters; that is, trim the airframe
model over a grid of and values. These values are two of the five outputs of the
scdairframeTRIM model.

Assume that the incidence varies between -20 and 20 degrees and that the speed varies between
700 and 1400 m/s. Use a 15-by-12 grid of linearly spaced pairs for scheduling.

nA = 15; % number of alpha values
nV = 12; % number of V values
alphaRange = linspace(-20,20,nA)*pi/180;

3 Batch Linearization

3-70

VRange = linspace(700,1400,nV);
[alpha,V] = ndgrid(alphaRange,VRange);

For each flight condition , linearize the airframe dynamics at trim (zero normal acceleration and
pitching moment). Doing so requires computing the elevator deflection and pitch rate that result
in steady and .

For each flight condition, you:

• Specify the trim condition using the operspec function.
• Compute the trim values of and using the findop function.
• Linearize the airframe dynamics for the resulting operating point using the linearize function.

The body coordinates, , are known states for trimming. Therefore, you must provide appropriate
values for them, which you can specify explicitly. However, in this example, let the model derive these
known values based on each pair. For each flight condition , update the values in the
model and create an operating point specification. Repeat these steps for all 180 flight conditions.

clear op report
for ct = 1:nA*nV
 alpha_ini = alpha(ct); % Incidence [rad]
 v_ini = V(ct); % Speed [m/s]

 % Specify trim condition
 opspec(ct) = operspec('scdairframeTRIM');

 % Xe,Ze: known, not steady.
 opspec(ct).States(1).Known = [1;1];
 opspec(ct).States(1).SteadyState = [0;0];

 % u,w: known, w steady
 opspec(ct).States(3).Known = [1 1];
 opspec(ct).States(3).SteadyState = [0 1];

 % theta: known, not steady
 opspec(ct).States(2).Known = 1;
 opspec(ct).States(2).SteadyState = 0;

 % q: unknown, steady
 opspec(ct).States(4).Known = 0;
 opspec(ct).States(4).SteadyState = 1;

end
opspec = reshape(opspec,[nA nV]);

Trim the model for all of the operating point specifications.

opt = findopOptions('DisplayReport','off', 'OptimizerType','lsqnonlin');
opt.OptimizationOptions.Algorithm = 'trust-region-reflective';
[op,report] = findop('scdairframeTRIM',opspec,opt);

The op array contains the operating points found by findop that will be used for linearization. The
report array contains a record of input, output, and state values at each point.

To linearize the model, first specify linearization input and output points.

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-71

io = [linio('scdairframeTRIM/delta',1,'in'); % delta
 linio('scdairframeTRIM/Airframe Model',1,'out'); % alpha
 linio('scdairframeTRIM/Airframe Model',2,'out'); % V
 linio('scdairframeTRIM/Airframe Model',3,'out'); % q
 linio('scdairframeTRIM/Airframe Model',4,'out'); % az
 linio('scdairframeTRIM/Airframe Model',5,'out')]; % gamma

Linearize the model for each of the trim conditions. Store linearization offset information in the info
structure.

linOpt = linearizeOptions('StoreOffsets',true);
[G,~,info] = linearize('scdairframeTRIM',op,io,linOpt);
G = reshape(G,[nA nV]);
G.u = 'delta';
G.y = {'alpha','V','q','az','gamma'};
G.SamplingGrid = struct('alpha',alpha,'V',V);

G is a 15-by-12 array of linearized plant models at the 180 flight conditions . The plant dynamics
vary substantially across the flight envelope, including scheduling locations where the local dynamics
are unstable.

bodemag(G(3:5,:,:,:))
title('Variations in airframe dynamics')

3 Batch Linearization

3-72

LPV System Block

The LPV System block facilitates simulation of linear parameter varying systems. The block requires
the state-space system array G that you generated using batch linearization. You also augment this
information with the input, output, state, and state derivative offsets from the info structure.

Extract the offset information.

offsets = getOffsetsForLPV(info);
xOffset = offsets.x;
yOffset = offsets.y;
uOffset = offsets.u;
dxOffset = offsets.dx;

LPV Model Simulation

The scdairframeLPV model, which contains an LPV System block that uses the linear system array
G and the corresponding offsets.

This model uses an input signal based on a desired trajectory of the airframe. This signal u and
corresponding time vector t are saved in the scdairframeLPVsimdata.mat file, which is loaded by
the model. Specify the initial conditions for simulation.

alpha_ini = 0;
v_ini = 700;
x0 = [0; 700; 0; 0];

Open and simulate the model.

open_system('scdairframeLPV')
sim('scdairframeLPV')

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-73

3 Batch Linearization

3-74

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-75

The simulation shows good emulation of the airframe response by the LPV system. For this simulation
you specified a fine gridding of the scheduling space leading to a large number (180) of linear
models. Large array sizes can increase implementation costs. However, the advantage of LPV
representations is that you can adjust the scheduling grid, and hence the number of linear systems in
the array, based on:

• The scheduling subspace spanned by the anticipated trajectory
• The level of accuracy desired in an application

The former information helps reduce the range for the scheduling variables. The latter helps pick an
optimal resolution (spacing) of samples in the scheduling space.

Plot the actual trajectory of scheduling variables in the previous simulation against the backdrop of
the gridded scheduling space. The outputs were logged using their corresponding scopes
(contained inside the Compare Responses block of scdairframeLPV).

Stable = false(nA,nV);
for ct = 1:nA*nV
 Stable(ct) = isstable(G(:,:,ct));
end
alpha_trajectory = Alpha_V_Data.signals(1).values(:,1);
V_trajectory = Alpha_V_Data.signals(2).values(:,1);

plot(alpha(Stable)*180/pi,V(Stable),'g.',...
 alpha(~Stable)*180/pi,V(~Stable),'k.',...

3 Batch Linearization

3-76

 alpha_trajectory,V_trajectory,'r.')
title('Trajectory of scheduling variables')
xlabel('\alpha')
ylabel('V')
legend('Stable locations','Unstable locations','Actual trajectory')

The trajectory traced during simulation is shown in red. It traverses both the stable and unstable
regions of the scheduling space.

Suppose that you want to implement this model on target hardware for input profiles similar to the
one used for the previous simulation, while using the least amount of memory. The simulation
suggests that the trajectory stays mainly in the 890 to 1200 m/s range of velocities and -15 to 12
degree range of incidence angle. Find the indices in the scheduling space that correspond to this
operating region.

I1 = find(alphaRange>=-15*pi/180 & alphaRange<=12*pi/180);
I2 = find(VRange>=890 & VRange<=1200);

To reduce the number of flight conditions, you can also increase the spacing between the sampling
points. For example, extract the indices for every third sample along the dimension and every
second sample along the dimension.

I1 = I1(1:2:end);
I2 = I2(1:3:end);

Extract the subset of the LTI system array.

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-77

Gr = G(:,:,I1,I2);
size(Gr)

5x2 array of state-space models.
Each model has 5 outputs, 1 inputs, and 4 states.

The new sampling grid, Gr, has a more economical size of 5-by-2. Simulate the reduced model and
check its fidelity in reproducing the original behavior.

Configure the LPV System block to use the reduced model and corresponding offsets.

lpvblk = 'scdairframeLPV/LPV System';
set_param(lpvblk,...
 'sys','Gr',...
 'uOffset','uOffset(:,:,I1,I2)',...
 'yOffset','yOffset(:,:,I1,I2)',...
 'xOffset','xOffset(:,:,I1,I2)',...
 'dxOffset','dxOffset(:,:,I1,I2)')
sim('scdairframeLPV')

3 Batch Linearization

3-78

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-79

3 Batch Linearization

3-80

There is no significant reduction in overlap between the response of the original model and its LPV
proxy.

The LPV model can serve as a proxy for the original system in situations where faster simulations are
required. The linear systems used by the LPV model can also be obtained using system identification
techniques (with additional care required to maintain state consistency across the array). The LPV
model can provide a good surrogate for initializing Simulink® Design Optimization™ problems and
performing fast hardware-in-loop simulations.

bdclose('scdairframeLPV')
bdclose('scdairframeTRIM')

See Also
LPV System | linearize

Related Examples
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “LPV Approximation of Boost Converter Model” on page 3-82

 Approximate Nonlinear Behavior Using Array of LTI Systems

3-81

LPV Approximation of Boost Converter Model

This example shows how to obtain a linear parameter varying (LPV) approximation of a Simscape™
Electrical™ model of a boost converter. The LPV representation allows quick analysis of average
behavior at various operating conditions.

Boost Converter Model

A Boost Converter circuit converts a DC voltage to another DC voltage by controlled chopping or
switching of the source voltage. The request for a certain load voltage is translated into a
corresponding requirement for the transistor duty cycle. The duty cycle modulation is typically
several orders of magnitude slower than the switching frequency, which produces an average voltage
with relatively small ripples, as shown in the following figure.

In practice, there are also disturbances in the source voltage and the resistive load affecting
the actual load voltage .

Open the Simulink® model.

mdl = 'BoostConverterExampleModel';
open_system(mdl)

3 Batch Linearization

3-82

The circuit in the model is characterized by high-frequency switching. The model uses a sample time
of 25 ns. The Boost Converter block used in the model is a variant subsystem that implements two
different versions of the converter dynamics. The model takes the duty cycle value as its only input
and produces three outputs: inductor current, load current, and load voltage.

Due to the high-frequency switching and short sample time, the model simulates slowly.

Batch Trimming and Linearization

In many applications, the average voltage delivered in response to a certain duty cycle profile is of
interest. Such behavior is studied at time scales several decades larger than the fundamental sample
time of the circuit. These average models for the circuit are derived by analytical considerations
based on averaging of power dynamics over certain time periods. The
BoostConverterExampleModel model implements such an average model of the circuit as its first
variant, called AVG Voltage Model. This variant typically executes faster than the Low Level Model
variant.

The average model is not a linear system. It shows nonlinear dependence on the duty cycle and the
load variations. To produce faster simulation and to help with voltage stabilizing controller design,
you can linearize the model at various duty cycle and load values.

For this example, use the snapshot-based trimming and linearization. The scheduling parameters are
the duty cycle d and resistive load R. You trim and linearize the model for several values of the
scheduling parameters.

 LPV Approximation of Boost Converter Model

3-83

For this example, select a span of 10-60% for the duty cycle variation and a span of 4-15 ohms for the
load variation. Select five values in these ranges for each scheduling variable and linearization
obtained at all possible combinations of their values.

nD = 5;
nR = 5;
dspace = linspace(0.1,0.6,nD); % Values of d in 10%-60% range
Rspace = linspace(4,15,nR); % Values of Rin 4-15 Ohms range
[dgrid,Rgrid] = ndgrid(dspace,Rspace); % All combinations of d and R values

Create a parameter structure array for the scheduling parameters.

params(1).Name = 'd';
params(1).Value = dgrid;
params(2).Name = 'R';
params(2).Value = Rgrid;

Specify the number of model inputs, outputs, and states.

ny = 3;
nu = 1;
nx = 2;
ArraySize = size(dgrid);

A simulation of the model under various conditions shows that the model outputs settle down to their
steady-state values before 0.01 s. Therefore, use t = 0.01s as the snapshot time.

Compute equilibrium operating points at the snapshot time using the findop function. This operation
takes several minutes to finish.

op = findop(mdl,0.01,params);

To linearize the model, first obtain the linearization input and output points from the model.

io = getlinio(mdl);

Configure the linearization options to store linearization offsets.

opt = linearizeOptions('StoreOffsets', true);

Linearize the model at the operating points in array op.

[linsys,~,info] = linearize(mdl,op,io,params,opt);

Extract offsets from the linearization results.

offsets = getOffsetsForLPV(info);
yoff = offsets.y;
xoff = offsets.x;
uoff = offsets.u;

Plot the linear system array.

bodemag(linsys)
grid on

3 Batch Linearization

3-84

LPV Simulation

linsys is an array of 25 linear state-space models, each with 1 input, 3 outputs, and 2 states. The
models are discrete-time with a sample time of 25 ns. The bode plot shows significant variation in
dynamics over the grid of scheduling parameters.

You can configure an LPV System block using the linear system array and the accompanying offset
data (uoff, yoff, and xoff). The resulting LPV model serves as a linear system array approximation
of the average dynamics. The BoostConverterLPVModel model uses such an LPV approximation.

lpvmdl = 'BoostConverterLPVModel';
open_system(lpvmdl)

For simulating the model, use an input profile for the duty cycle that roughly covers its scheduling
range. Also, vary the resistive load to simulate load disturbances.

Generate the duty cycle profile din.

 LPV Approximation of Boost Converter Model

3-85

t = linspace(0,.05,1e3)';
din = 0.25*sin(2*pi*t*100)+0.25;
din(500:end) = din(500:end)+.1;

Generate the resistive load profile rin.

rin = linspace(4,12,length(t))';
rin(500:end) = rin(500:end)+3;
rin(100:200) = 6.6;

Plot the scheduling parameter profiles.

yyaxis left
plot(t,din)
xlabel('Time (s)')
ylabel('Duty Cycle')
yyaxis right
plot(t,rin)
ylabel('Resistive Load (Ohm)')
title('Scheduling Parameter Profiles for Simulation')

The code for generating the above signals has been added to the model PreLoadFcn callback for
independent loading and execution. To override these settings and try your own, overwrite this data
in the MATLAB® workspace.

Simulate the LPV model and view the resulting output.

3 Batch Linearization

3-86

sim(lpvmdl,'StopTime','0.004');
open_system('BoostConverterLPVModel/Outputs')

The LPV model simulates significantly faster than the original BoostConverterExampleModel
model.

To compare these simulation results with the original boost converter model simulation, use the
BoostConverterResponseComparison model. This model uses the Boost Converter block
configured to use the high-fidelity Low Level Model variant. It also contains the LPV System block.
You can view the responses for both systems in the model scopes.

linsysd = c2d(linsys,Ts*1e4);
mdl = 'BoostConverterResponseComparison';
open_system(mdl)

 LPV Approximation of Boost Converter Model

3-87

Simulate the model. The simulation runs quite slowly due to the fast switching dynamics in high-
fidelity model. Uncomment the following code to simulate the model.

% sim(mdl);

The following figures show example simulation results for the inductor current, load current, and load
voltage.

3 Batch Linearization

3-88

 LPV Approximation of Boost Converter Model

3-89

3 Batch Linearization

3-90

While the LPV model consumes less memory and simulates significantly faster than the high-fidelity
model, it is able to emulate the average behavior of the boost converter.

See Also
LPV System | linearize

Related Examples
• “Batch Linearize Model at Multiple Operating Points Using linearize Command” on page 3-19
• “Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69

 LPV Approximation of Boost Converter Model

3-91

Linearize Engine Speed Model

This example shows how to linearize an engine speed model for multiple output conditions.

Engine Speed Model

Open the model.

mdl = 'scdspeed';
open_system(mdl)

For this example, you find linear models from the spark advance and throttle angle inputs to the
output engine speed. You do so for three speed conditions: 2000, 3000, and 4000 rpm.

Find Operating Points

Create an array of three operating point specifications.

opspec = operspec(mdl,[3 1]);

Since the Simulink® model does not have any root-level inports, opspec does not contain any output
specifications. You can add output specifications for a given signal in your model using the
addoutputspec function.

Add an output specification to the output of the rad/s to rpm block.

opspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

For each specification, indicate that the output value is known and specify the output value. Set the
known speed values to 2000, 3000, and 4000 rpm.

opspec(1).Outputs.Known = 1;
opspec(1).Outputs.y = 2000;
opspec(2).Outputs.Known = 1;
opspec(2).Outputs.y = 3000;
opspec(3).Outputs.Known = 1;
opspec(3).Outputs.y = 4000;

View the specifications object for the third operating condition.

3 Batch Linearization

3-92

opspec(3)

ans =

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 0.543 false true -Inf Inf -Inf Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 209.48 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) scdspeed/Throttle perturbation
 0 false -Inf Inf

Outputs:

 y Known Min Max
_____ _____ _____ _____

(1.) scdspeed/rad//s to rpm
4000 true -Inf Inf

Search for operating points that meet these specifications using the findop function.

opt = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,opt);

View the resulting operating point for the third operating condition.

op(3)

ans =

 Operating point for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

 x

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
0.4731
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

 Linearize Engine Speed Model

3-93

418.879

Inputs:

 u

(1.) scdspeed/Throttle perturbation
5.8292

Linearize Model

To linearize the model, first specify the linearization input points at the outputs of the throttle and
Spark Advance blocks.

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/Spark Advance',1,'input');

Next, specify the linearization output point at the output of the rad/s to rpm block.

io(3) = linio('scdspeed/rad//s to rpm',1,'output');

Linearize the model for each of the operating conditions.

sys = linearize(mdl,op,io);

Plot the Bode magnitude response for the resulting linear models.

bodemag(sys)

3 Batch Linearization

3-94

Close the model.

bdclose(mdl)

See Also
operspec | findop | linio | linearize

Related Examples
• “Compute Steady-State Operating Points from Specifications” on page 1-12
• “Specify Portion of Model to Linearize” on page 2-10
• “Linearize at Trimmed Operating Point” on page 2-66
• “What Is Batch Linearization?” on page 3-2

 Linearize Engine Speed Model

3-95

Improve Linear Analysis Performance

This example shows how to use the fastRestartForLinearAnalysis function to speed up
multiple calls to compiling functions in Simulink® Control Design™ software such as findop and
linearize.

Run Linear Analysis Commands in a Loop

In this example, you trim and linearize a closed-loop engine speed control model. You vary the PI
control parameters and observe how the closed-loop behavior changes at steady state. Since
linearize and findop are called in a loop, the model compiles 2*N + 1 times including the first
call to operspec.

Open the engine speed control model and obtain the linear analysis points from the model.

mdl = 'scdspeedctrl';
open_system(mdl)
io = getlinio(mdl);
fopt = findopOptions('DisplayReport','off');

Configure the PI controller to use the base workspace variables kp and ki.

blk = [mdl,'/PID Controller'];
set_param(blk,'P','kp');
set_param(blk,'I','ki');

Create a grid of parameter values to vary.

vp = 0.0005:0.0005:0.003;
vi = 0.0025:0.0005:0.005;
[KP,KI] = ndgrid(vp,vi);
N = numel(KP);
sz = size(KP);

Initialize the base workspace variables.

kp = KP(1);
ki = KI(1);

Run the loop and record execution time.

3 Batch Linearization

3-96

t = cputime;
ops = operspec(mdl);
for i = N:-1:1
 kp = KP(i);
 ki = KI(i);
 % Trim the model.
 op = findop(mdl,ops,fopt);
 [j,k] = ind2sub(sz,i);
 % Linearize the model.
 sysLoop(:,:,j,k) = linearize(mdl,io,op);
end

Calculate the elapsed time.

timeElapsedLoop = cputime - t;

Run Linear Analysis Commands in Batch

Rather than loop over the parameters, findop and linearize can accept a batch parameter
variation structure directly to reduce the number of times the model compiles. In this case, the model
compiles three times with calls to operspec, findop, and linearize.

Run and record execution time.

t = cputime;
ops = operspec(mdl);

Create the batch parameter structure.

params(1).Name = 'kp';
params(1).Value = KP ;
params(2).Name = 'ki';
params(2).Value = KI ;

Trim the model across the parameter set.

op = findop(mdl,ops,params,fopt);

Linearize the model across the parameter and operating point set.

sysBatch = linearize(mdl,io,op,params);

Calculate the elapsed time.

timeElapsedBatch = cputime - t;

Run Linear Analysis Functions in Loop with Fast Restart

The fastRestartForLinearAnalysis function configures the model to minimize compilations
even when compiling functions are run inside a loop. The model compiles with calls to operspec,
findop, and linearize in a loop.

Run the loop and record execution time with fast restart for linear analysis enabled.

t = cputime;

Enable fast restart for linear analysis. Provide linear analysis points to minimize compilations
between calls to findop and linearize.

 Improve Linear Analysis Performance

3-97

fastRestartForLinearAnalysis(mdl,'on','AnalysisPoints',io);

Trim and linearize the model in a loop.

ops = operspec(mdl);
for i = N:-1:1
 kp = KP(i);
 ki = KI(i);
 % Trim the model.
 op = findop(mdl,ops,fopt);
 [j,k] = ind2sub(sz,i);
 % Linearize the model.
 sysFastRestartLoop(:,:,j,k) = linearize(mdl,io,op);
end

Turn off fast restart for linear analysis, which uncompiles the model.

fastRestartForLinearAnalysis(mdl,'off');

Calculate the elapsed time.

timeElapsedFastRestartLoop = cputime - t;

Run Linear Analysis Functions in Batch with Fast Restart

You can further improve performance by enabling fast restart for linear analysis and executing the
batch linearize and findop functions. In this case, the model compiles once with calls to
operspec, findop, and linearize.

Run and record execution time with fast restart for linear analysis on.

t = cputime;

Enable fast restart for linear analysis. Provide linear analysis points to minimize compilations
between calls to findop and linearize.

fastRestartForLinearAnalysis(mdl,'on','AnalysisPoints',io)

Create the batch parameter structure.

params(1).Name = 'kp';
params(1).Value = KP ;
params(2).Name = 'ki';
params(2).Value = KI ;

Trim the model across the parameter set.

ops = operspec(mdl);
op = findop(mdl,ops,params,fopt);

Linearize the model across the parameter and operating point set.

sysFastRestartBatch = linearize(mdl,io,op,params);

Disable fast restart for linear analysis, which uncompiles the model.

fastRestartForLinearAnalysis(mdl,'off');

Calculate the elapsed time.

3 Batch Linearization

3-98

timeElapsedFastRestartBatch = cputime - t;

Compare the Results

Compare the linearization results of the four methods. The bode plot below shows that each method
returns the same results.

compareIdx = 1:N;
bode(...
 sysLoop(:,:,compareIdx), ...
 sysBatch(:,:,compareIdx), ...
 sysFastRestartLoop(:,:,compareIdx), ...
 sysFastRestartBatch(:,:,compareIdx));
legend(...
 'Loop Linearization', ...
 'Batch Linearization', ...
 'Loop Linearization with Fast Restart', ...
 'Batch Linearization with Fast Restart')

Compile the elapsed time and speed-up ratio for each method in a table. You can obtain significant
performance gains using batch trimming and linearization as well as
fastRestartForLinearAnalysis.

Method = ["Loop","Batch","Fast Restart Loop","Fast Restart Batch"]';
TimeElapsed = [timeElapsedLoop timeElapsedBatch ...
 timeElapsedFastRestartLoop timeElapsedFastRestartBatch]';
SpeedUpFactor = TimeElapsed(1)./TimeElapsed;
TimeElapsedTable = table(Method,TimeElapsed,SpeedUpFactor)

 Improve Linear Analysis Performance

3-99

TimeElapsedTable =

 4x3 table

 Method TimeElapsed SpeedUpFactor
 ____________________ ___________ _____________

 "Loop" 103 1
 "Batch" 24.562 4.1934
 "Fast Restart Loop" 23.719 4.3426
 "Fast Restart Batch" 26.188 3.9332

Close the Simulink model.

bdclose(mdl)

See Also
linearize | findop | getlinio | operspec

3 Batch Linearization

3-100

Troubleshooting Linearization Results

• “Linearization Troubleshooting Overview” on page 4-2
• “Check Operating Point” on page 4-4
• “Check Analysis Point Placement” on page 4-5
• “Identify and Fix Common Linearization Issues” on page 4-6
• “Troubleshoot Linearization Results in Model Linearizer” on page 4-16
• “Troubleshoot Linearization Results at Command Line” on page 4-28
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
• “Block Linearization Troubleshooting” on page 4-42
• “Speed Up Linearization of Complex Models” on page 4-48

4

Linearization Troubleshooting Overview
If you do not get expected results when you linearize your Simulink model, you can diagnose and fix
potential linearization issues using Simulink Control Design troubleshooting tools. The definition of
an expected linearization result depends on your specific application.

Troubleshooting Workflow
To determine whether a linearization is successful and find potential linearization issues, first check
the equations and response plots of the linearized model.

Result to Check Signs of Successful
Linearization

Signs of Unsuccessful
Linearization

More Information

Linear analysis
plots

Time-domain and frequency-
domain response plot
characteristics, such as rise time
and bandwidth respectively,
capture the expected dynamics of
your system.

Response plot characteristics
do not capture the dynamics of
your system. For example:

• Bode plot gain is too large
or too small.

• Pole-zero plot contains
unexpected poles or zeros.

“Analyze Results
Using Model
Linearizer Response
Plots” on page 2-115.

Linear model
equations

• State-space matrices have
expected number of states,
inputs, and outputs. The
linearized model can have
fewer states than your
Simulink model because,
often, the path between
linearization input and output
points does not reach all the
model states.

• Poles and zeros are in correct
locations.

• Zero linearization (D = 0)
• Infinite linearization (D =

Inf)

“View Linearized
Model Equations
Using Model
Linearizer” on page 2-
113

If the response plots or model equations of the linearized system do not capture the expected
dynamics of your system, check the:

• Operating point at which you linearized the model. For more information, see “Check Operating
Point” on page 4-4.

• Analysis point placement in your model. For more information, see “Check Analysis Point
Placement” on page 4-5.

Once you verify that the model operating point and analysis points are correct, if your model still
does not linearize as expected, you can troubleshoot the linearization results using the Linearization
Advisor. The Linearization Advisor is a troubleshooting tool that allows you to identify blocks in your
model that are potentially problematic for linearization. For more information, see “Identify and Fix
Common Linearization Issues” on page 4-6.

Once you have identified potentially problematic blocks, you can then troubleshoot the linearizations
of the individual blocks using the Linearization Advisor. For more information, see “Block
Linearization Troubleshooting” on page 4-42.

4 Troubleshooting Linearization Results

4-2

Troubleshoot Linearizations of Models with Special Characteristics
Some Simulink models and blocks do not linearize well or require special considerations during
linearization.

Model Characteristic Linearization Considerations More Information
Large models For some large complex models, you can

systematically linearize specific model
components. You can then check if these
components linearize as expected.

“Specify Portion of Model to
Linearize” on page 2-10

Models with delays The method with which you represent time
delays in your model can affect linearization
results. For example, if a Bode plot shows
insufficient lag in phase, the cause can be
the Padé approximation of the model time
delays.

• “Models with Time
Delays” on page 2-139

• “Linearize Models with
Delays” on page 2-77

Multirate models Incorrect sample time and rate conversion
methods can cause poor linearization results
in multirate models.

“Linearize Multirate
Models” on page 2-141

Models with PWM
signals

Models with pulse width modulation signals
do not linearize well due to their
discontinuities and high-frequency switching
components. Consider specifying a custom
linearization for such blocks.

“Configure Models with
Pulse Width Modulation
Signals” on page 2-160

Models with Model
Reference blocks

Linearization is not fully compatible with
model reference blocks running in
accelerator simulation mode. Configure
these subsystems to run in normal mode
during linearization.

“Linearize Models with
Model References” on page
2-82

Simscape networks Simscape networks commonly linearize to
zero when a set of the system equation
Jacobians are zero at a given operating
condition.

“Linearize Simscape
Networks” on page 2-162

See Also
Apps
Model Linearizer

More About
• “Identify and Fix Common Linearization Issues” on page 4-6
• “Block Linearization Troubleshooting” on page 4-42

 Linearization Troubleshooting Overview

4-3

Check Operating Point
To diagnose whether you used the correct operating point for linearization, simulate the model at the
operating point you used for linearization.

The linearization operating point is incorrect when the critical signals in the model:

• Have unexpected values.
• Are not at steady state.

To fix the problem, compute a steady-state operating point, and repeat the linearization at this
operating point. For more information, see “Compute Steady-State Operating Points” on page 1-5 and
“Simulate Simulink Model at Specific Operating Point” on page 1-95.

See Also

More About
• “About Operating Points” on page 1-2
• “View and Modify Operating Points” on page 1-8

4 Troubleshooting Linearization Results

4-4

Check Analysis Point Placement
Incorrect placement of analysis points, including linearization I/Os and loop openings, can result in
blocks being inappropriately included in or excluded from the linearization result linearization.

Check Linearization I/O Points Placement
After linearizing the model, check the block linearization values to determine which blocks are
included in the linearization.

Blocks can be missing from the linearization path for different reasons.

Incorrect placement linearization I/O points can result in inappropriately excluded blocks from
linearization. To fix the problem, specify correct linearization I/O points and repeat the linearization.
For more information, see “Specify Portion of Model to Linearize” on page 2-10.

Blocks that linearize to zero (and other blocks on the same path) are excluded from linearization. To
fix this problem, troubleshoot linearization of individual blocks, as described in “Block Linearization
Troubleshooting” on page 4-42.

Check Loop Opening Placement
Incorrect loop opening placement causes unwanted feedback signals in the linearized model.

To fix the problem, check the individual block linearization values to identify which blocks are
included in the linearization. If undesired blocks are included, place the loop opening on a different
signal and repeat the linearization.

See Also

More About
• “Block Linearization Troubleshooting” on page 4-42
• “Opening Feedback Loops” on page 2-14
• “How the Software Treats Loop Openings” on page 2-31

 Check Analysis Point Placement

4-5

Identify and Fix Common Linearization Issues
If your linearization results are not as expected, you can identify common linearization issues using
the Linearization Advisor. The Linearization Advisor collects diagnostic information regarding
individual block linearizations. Using this information, you can:

• View linearization details and operating points for each linearized block in your model.
• Identify potentially problematic blocks that cause common linearization issues.
• Determine which blocks are on and off the linearization path and which blocks contribute to the

model linearization result.
• Search linearization results for blocks that meet specified criteria.

Enable Linearization Advisor
Since collecting diagnostic information adds linearization overhead, the Linearization Advisor is
disabled by default. To collect diagnostic information, you must enable the Linearization Advisor
before you linearize your model.

To enable the Linearization Advisor, in the Model Linearizer, on the Linear Analysis tab, select
Linearization Advisor.

When you select this option and linearize your model, the software opens an Advisor tab for
troubleshooting your linearization results.

4 Troubleshooting Linearization Results

4-6

Tip To make viewing the diagnostic information easier, you can minimize the data browser.

On the Advisor tab, you can gain insight into your model linearization by querying the diagnostic
information. To do so, use the built-in queries in the Queries section, or create custom queries in the
Manage Queries section.

When you run a query, the navigation tree lists the linearized blocks in your model that match the
query search criteria. The tree structure reflects the model hierarchy.

 Identify and Fix Common Linearization Issues

4-7

To view a table of all blocks that match the search criteria, in the navigation tree, click the top-level
model name. You can also view all blocks in a subsystem that satisfy the query by clicking the
subsystem name. Each entry in the table summarizes the linearization diagnostics for a single block.

To view detailed diagnostic information for a block in a table, in the corresponding row, click Block
Info. You can troubleshoot the block linearization using the detailed diagnostic information. For more
information, see “Block Linearization Troubleshooting” on page 4-42.

For an example of interactive troubleshooting using the Linearization Advisor, see “Troubleshoot
Linearization Results in Model Linearizer” on page 4-16.

Tip If you close the Advisor tab for a given linearization, you can reopen it from the Plots and
Results tab.

In the Linear Analysis Workspace, select the linearized model you want to troubleshoot. Then, click
View Advisor. This option is only available if you enabled the Linearization Advisor before linearizing
the model.

4 Troubleshooting Linearization Results

4-8

You can also create a LinearizationAdvisor object when you linearize models at the command
line. You can then troubleshoot the linearization results using the advise and find functions. For an
example, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

Blocks That Are Potentially Problematic for Linearization

As a starting point for troubleshooting, the Linearization Advisor searches the linearization diagnostic
information for blocks that can cause common linearization issues. These potentially problematic
blocks are on the linearization path and satisfy at least one of the following criteria.

Criteria Description
Blocks with linearization diagnostic messages Diagnostic messages indicate blocks with

configurations or linearizations that correspond
to common linearization problems.

Blocks that linearize to zero Blocks with zero linearizations do not contribute
to the linearization result and can remove other
blocks from the linearization result.

Blocks with substituted linearizations Errors in defining substitute linearizations can be
difficult to diagnose.

For more information on the linearization path, see “Linearization Path” on page 4-11.

In the Model Linearizer, the diagnostic information for these blocks is listed on the Advisor tab
when the tab first opens. Also, to access this diagnostic information at any time, in the Queries
section, click Linearization Advice.

You can troubleshoot the linearizations of these blocks using the Linearization Advisor. For more
information on troubleshooting block linearizations using diagnostic information, see “Block
Linearization Troubleshooting” on page 4-42.

At the command line, the advise function returns diagnostic information for these blocks.

 Identify and Fix Common Linearization Issues

4-9

Blocks with Linearization Diagnostic Messages

Linearization diagnostic messages indicate blocks with properties or linearizations that correspond to
common linearization problems. Fixing linearization issues identified in diagnostic messages is a good
first step when troubleshooting your linearization.

Some block configurations that can generate diagnostic messages include:

• Blocks with non-floating-point input or output signals and no predefined exact linearization. Such
blocks linearize to zero and generate diagnostic messages.

• Discontinuous blocks linearized at an operating point near a discontinuity. If such blocks are not
treated as a gain during linearization, the software can generate diagnostic messages regarding
their linearization.

• Blocks with least one input/output pair that linearizes to zero which causes a zero input/output
pair in the overall model linearization.

• Blocks that do not support linearization because they do not have a predefined exact linearization
and do not support numerical perturbation.

Some diagnostic messages propose solutions to their corresponding linearization issues. For example,
when an input signal is outside the saturation limits of a Saturation block, the diagnostic message
proposes treating the block as a gain during linearization.

Blocks That Linearize to Zero

A common cause of linearization issues is a block that unexpectedly linearizes to a gain of zero. To
diagnose the cause of a zero block linearization, you can consider:

• Any corresponding diagnostic messages. These messages can highlight common causes of zero
linearizations and propose potential solutions.

• The block operating point; that is the values of the block states and inputs at the model operating
point used for linearization. For example, if the input to a saturation block is outside the block
saturation limits, and the block is not configured to linearize as a gain, the block linearizes to zero.

• The block parameters. For example, if a block is configured to use non-floating-point inputs or
states and is linearized using numerical perturbation, it linearizes to zero.

A zero block linearization does not necessarily indicate a linearization problem; that is, you may
expect a block to linearize to zero under the expected operating conditions of the model. For
example, if a Trigonometric Fcn block is configured as a sin function and the input value is π/2 at the
model operating point, then the block linearizes to zero.

Blocks with Substituted Linearizations

Errors in defining a custom block linearization can be difficult to diagnose. After fixing issues related
to diagnostic messages and zero linearizations, if your model still does not linearize as expected,
verify that any substituted block linearizations in your model are correct.

For more information on specifying substitute block linearizations, see “When to Specify Individual
Block Linearization” on page 2-124.

Find Specific Blocks in Linearization Results
If your model still does not linearize as you expect after fixing linearization issues related to
potentially problematic blocks, you can query the Linearization Advisor for additional block

4 Troubleshooting Linearization Results

4-10

diagnostic information. You can gain insight into your model linearization using this information. For
example, you can investigate:

• Blocks that are linearized using numerical perturbation.
• Sampling rates of block linearizations in multirate models by finding blocks with a specified

sample time.
• Blocks that have delays that can cause linearization issues.
• Blocks that are not on the linearization path.

For more information, see “Find Blocks in Linearization Results Matching Specific Criteria” on page
4-37.

Linearization Path
The linearization path is the graphical connection in the Simulink model from the linearization inputs
to the linearization outputs. A block is on the linearization path if at least one linearization input is
connected to at least one linearization output through that block. For more information on specifying
linearization inputs and outputs, see “Specify Portion of Model to Linearize” on page 2-10.

When a block is on the linearization path, its linearization can contribute to the overall model
linearization. Blocks that linearize to zero do not contribute to the model linearization and can
prevent branches of the linearization path from contributing to the model linearization.

Blocks that are not on the linearization path can still affect the linearization of other blocks, and
therefore the model linearization, by modifying the operating points or parameters of the other
blocks. For example, consider the following Product block that is on the linearization path
(highlighted in blue):

The constant block is not on the linearization path. However, the value of the constant affects the
operating point of the Product block, which in turn affects the linearization from the first input of the
Product block to the output.

Highlight Linearization Path

To visualize the linearization path and view blocks that contribute to the model linearization, you can
highlight the linearization path in the Simulink model using the Linearization Advisor. A block is on
the linearization path if there is a signal path from at least one linearization input to at least one
linearization output that passes through the block.

After you linearize your model with the Linearization Advisor enabled, to highlight the linearization
path, in the Model Linearizer, on the Advisor tab, click Highlight Linearization Path.

 Identify and Fix Common Linearization Issues

4-11

The software highlights the linearization path in the model, showing which blocks are on the path and
which blocks contribute to the model linearization. Blocks highlighted in:

• Blue are on the linearization path and numerically influence the model linearization.
• Red are on the linearization path, but have no influence on the model linearization due to at least

one block on the linearization path that is linearized to zero.
• Gray are not on the linearization path and do not contribute to the model linearization.

4 Troubleshooting Linearization Results

4-12

To turn off the highlighting, close the Linearization path dialog box.

You can also highlight the linearization path from the command line using the highlight function.

Troubleshoot Batch Linearizations
If you linearize your model at multiple operating points, you can troubleshoot each resulting linear
model using Linearization Advisor.

After batch linearizing the model, on the Advisor tab, in the Select Operating Point drop-down list,
select the operating point for which you want to troubleshoot the linearization.

If you batch linearized your model using:

• Parameter variation, the linearization summary shows the parameter values that correspond to
the selected operating point.

 Identify and Fix Common Linearization Issues

4-13

• Multiple simulation snapshot times, the linearization summary shows the time at which the model
was linearized.

• Multiple trimmed operating points, the linearization summary does not show additional
information about the operating point. To view details about the operating points, on the Linear
Analysis tab, in the Operating Point drop-down list, select the operating point array used for
linearization. In the same drop-down list, select Edit.

Then, in the Edit dialog box, in the Select Operating Point drop-down list, select an operating
point. The location of the operating point in this drop-down list corresponds to the location in the
drop-down list on the Advisor tab.

See Also
Apps
Model Linearizer

Functions
advise

4 Troubleshooting Linearization Results

4-14

More About
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
• “Troubleshoot Linearization Results in Model Linearizer” on page 4-16
• “Troubleshoot Linearization Results at Command Line” on page 4-28

 Identify and Fix Common Linearization Issues

4-15

Troubleshoot Linearization Results in Model Linearizer

This example shows how to use the Linearization Advisor to debug the linearization of a pendulum
model in the Model Linearizer.

Setup Model

Open the Simulink® model.

mdl = 'scdpendulum';
open_system(mdl)

The initial condition for the pendulum angle is 90 degrees counterclockwise from the upright
unstable equilibrium of 0 degrees. The initial condition for the pendulum angular velocity is 0 deg/s.
The nominal torque to maintain this state is –49.05 N m. This configuration is saved as the model
initial condition.

Open Model Linearizer and Linearize Model

To open Model Linearizer, in the Simulink model window, on the Apps tab, click Model Linearizer.

To linearize the model at the model initial condition, in Model Linearizer, on the Linear Analysis
tab, click Bode.

The software linearizes the model and plots its frequency response.

4 Troubleshooting Linearization Results

4-16

As can be seen from the Bode plot, the system linearizes to zero such that the torque has no effect on
the angle or angular velocity. You can explore why this is the case using the Linearization Advisor.

Linearize Model with Advisor Enabled

To relinearize the model and generate an advisor, select Linearization Advisor, and click Bode Plot
1.

The software linearizes the model, creates the linsys2_advisor document, and opens the Advisor
tab.

 Troubleshoot Linearization Results in Model Linearizer

4-17

Highlight Linearization Path

To show the linearization path for the current linearization, on the Advisor tab, click Highlight
Linearization Path. In the Simulink model, the blocks highlighted in:

• Blue numerically influence the model linearization.
• Red are on the linearization path but do not influence the model linearization for the current

operating point and block parameters.

For convenience, only the blocks underneath the pendulum subsystem are shown.

4 Troubleshooting Linearization Results

4-18

In this case, since the model linearized to zero, there are no blocks that contribute to the
linearization.

Investigate Potentially Problematic Blocks Using Advisor

The linsys2_advisor document shows a table listing blocks that may be problematic for the
linearization.

To view more information about a specific block linearization, in the corresponding row of the table,
click Block Info.

In this case, three blocks are reported by the advisor, a Saturation block and two Trigonometric
Function blocks. Investigate the Saturation block first since it has diagnostics. To do so, in the first
row of the table, click Block Info.

 Troubleshoot Linearization Results in Model Linearizer

4-19

There are two diagnostic messages for the Saturation block. The first message indicates that the
block is linearized outside of its lower saturation limit of -49, since the input operating point is
-49.05. The message also states the block can be linearized as a gain, which will linearize the block
as 1 regardless of the input operating point. To do so, first click linearizing the block as a gain,
which highlights the corresponding parameter in the block dialog box. Then, select the Treat as gain
when linearizing parameter.

4 Troubleshooting Linearization Results

4-20

The second message states that the linearization of this block causes the model to linearize to zero.
As shown in the Linearization section, the block is linearized to zero. Therefore, modifying the block
linearization is a good first step toward obtaining a nonzero model linearization.

Relinearize Model

After setting the Saturation block to be treated as a gain, relinearize the model. For now, ignore the
diagnostics for the two Trigonometric Function blocks.

To relinearize the model, on the Linear Analysis tab, click Bode Plot 1. The Bode Plot 1 document
updates, showing the nonzero response of linsys3.

In the corresponding linsys_advisor3 document, the Saturation block is no longer listed. However,
the two Trigonometric Function blocks are still shown.

 Troubleshoot Linearization Results in Model Linearizer

4-21

Highlight the linearization path.

Most of the blocks are now contributing to the model linearization, except for the paths going
through the listed Trigonometric Function blocks.

To understand why these blocks are not contributing to the linearization, navigate to the blocks from
the linsys3_advisor document. For example, click Block Info in the second row of the table.

4 Troubleshooting Linearization Results

4-22

For this Trigonometric Function block, the linearization is zero and the input operating point is
π/2 = 1 . 5708.

You can find the linearization of the block analytically by taking the first derivative of the sin
function with respect to the inputs:

∂
∂u sin(u) = cos(u)

Therefore, when evaluated at u = π/2 the linearization of the block is zero. The source of the input is
the first output of the second-order integrator, which is dependent upon the state theta. Therefore,
this block will linearize to zero if θ = π/2 + kπ, where k is an integer. The same condition applies for
the other Trigonometric Function in the angle_wrap subsystem.

If these blocks are not expected to linearize to zero, you can modify the operating point state theta,
and relinearize the model.

Run Prebuilt Advisor Queries

The Linearization Advisor provides a set of prebuilt queries for filtering block diagnostics. For
example, the Linearization Advice query is the default query run when the advisor is first created
and includes blocks on the path that:

 Troubleshoot Linearization Results in Model Linearizer

4-23

• Have diagnostic messages regarding the block linearization.
• Linearized to zero.
• Have substituted linearizations.

To run a different prebuilt query, on the Advisor tab, in the Queries gallery, click the query. For
example, click Zero I/O Pair on Path.

This query returns blocks with linearizations that have output channels that cannot be reached by
any input channel, or input channels that have no influence on any output channels. For example, the
second block in the table is a Trigonometric Function block configured as atan2. The first input of
this block cannot reach the only output.

Create and Run Custom Queries

The Linearization Advisor also provides a Query Builder for creating custom queries. You can use
these queries to find blocks in your model that match specific criteria. For example, to find all SISO
blocks that are numerically perturbed, first open the Query Builder. To do so, on the Advisor tab,
click New Query.

In the Query Builder dialog box:

1 Specify the Query Name as sisopert.
2 In the drop-down list, select Has 'Ny' Outputs', and specify 1 in the Outputs box.
3 To add another component to the query, click Add to Query.
4 In the second drop-down list, select Has 'Nu' Inputs', and specify 1 in the Inputs box.
5 Click Add to Query.
6 In the third drop-down list, select Perturbation.

4 Troubleshooting Linearization Results

4-24

Click Run Query.

The linsys3_advisor document shows the blocks that match the specified query criteria, and the
sisopert query is added to the Queries gallery.

To remove the sisopert query, on the Advisor tab, click Remove Query, and select sisopert.

 Troubleshoot Linearization Results in Model Linearizer

4-25

Export Advisor and Generate MATLAB Script

You can also debug model linearizations using the Linearization Advisor command-line functions. To
export the advisor object to the MATLAB® workspace, click Export. Then, in the Export Advisors
dialog box, select one or more advisors to export. For example, select linsys3_advisor.

Click Export.

Alternatively, you can generate a MATLAB script that automates the linearization, extraction of the
advisor, generation of custom queries, and running of queries. To generate this script, click the
Export split button, then select Generate Script.

4 Troubleshooting Linearization Results

4-26

See Also
Apps
Model Linearizer

More About
• “Identify and Fix Common Linearization Issues” on page 4-6
• “Troubleshoot Linearization Results at Command Line” on page 4-28
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37

 Troubleshoot Linearization Results in Model Linearizer

4-27

Troubleshoot Linearization Results at Command Line

This example shows how to debug the linearization of a Simulink® model at the command line using
a LinearizationAdvisor object. You can also troubleshoot linearization results interactively. For
more information, see “Troubleshoot Linearization Results in Model Linearizer” on page 4-16.

Open the model.

mdl = 'scdpendulum';
open_system(mdl)

The initial condition for the pendulum angle is 90 degrees counterclockwise from the upright
unstable equilibrium of 0 degrees. The initial condition for the pendulum angular velocity is 0 deg/s.
The nominal torque to maintain this state is -49.05 N m. This configuration is saved as the model
initial condition.

Linearize the Model

Linearize the model using the analysis points defined in the model and the model operating point.

io = getlinio(mdl);
linsys = linearize(mdl,io);

To check the linearization result, plot its Bode response.

bode(linsys)

4 Troubleshooting Linearization Results

4-28

The model linearized to zero such that the torque, tau, has no effect on the angle or angular velocity.
To find the source of the zero linearization, you can use a LinearizationAdvisor object.

Linearize Model with Advisor Enabled

To collect diagnostic information during linearization and create an advisor for troubleshooting, first
create a linearizeOptions option set, specifying the StoreAdvisor option as true.

opt = linearizeOptions('StoreAdvisor',true);

Linearize the Simulink model using this option set. Return the info output argument, which contains
linearization diagnostic information in a LinearizationAdvisor object.

[linsys1,~,info] = linearize(mdl,io,opt);

Extract the LinearizationAdvisor object.

advisor = info.Advisor;

Highlight Linearization Path

To show the linearization path for the current linearization, use highlight.

highlight(advisor)

 Troubleshoot Linearization Results at Command Line

4-29

View the pendulum subsystem.

As shown in the Linearization path dialog box, the blocks highlighted in:

• Blue numerically influence the model linearization.
• Red are on the linearization path but do not influence the model linearization for the current

operating point and block parameters.

Since the model linearized to zero, there are no blocks that contribute to the linearization.

4 Troubleshooting Linearization Results

4-30

Investigate Potentially Problematic Blocks

To obtain diagnostic information for blocks that may be problematic for linearization, use advise.
This function returns a new LinearizationAdvisor object that contains information on blocks on
the linearization path that satisfy at least one of the following criteria:

• Have diagnostic messages regarding their linearization
• Linearize to zero
• Have substituted linearizations

adv1 = advise(advisor);

View a summary of the diagnostic information for these blocks, use getBlockInfo.

getBlockInfo(adv1)

ans =

Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

In this case, the advisor reports three potentially problematic blocks, a Saturation block and two
Trigonometric Function blocks. When you run this example in MATLAB, the block paths display as
hyperlinks. To go to one of these blocks in the model, click the corresponding block path hyperlink.

To view more information about a specific block linearization, use getBlockInfo. For information on
the available diagnostics, see BlockDiagnostic.

For example, obtain the diagnostic information for the Saturation block.

diagInfo = getBlockInfo(adv1,1)

diagInfo =

Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

This block has the following two diagnostic messages regarding its linearization result.

• The block is analytically linearized to zero because the signal input value (-49.05) is outside the
lower limit of the block (-49). Consider linearizing the block as a gain.

 Troubleshoot Linearization Results at Command Line

4-31

• The linearization of the block has at least one zero input/output pair resulting in a zero input/
output pair for the system linearization. Modify the block parameters and/or operating point if the
block is expected to contribute to the model linearization.

The first message indicates that the block is linearized outside of its lower saturation limit of -49,
since the input operating point is -49.05.

The message also indicates that the block can be linearized as a gain, which linearizes the block as 1
regardless of the input operating point.

When you run this example in MATLAB, the text linearizing the block as a gain displays as a
hyperlink. To open the Block Parameters dialog box for the Saturation block, and highlight the option
for linearizing the block as a gain, click this hyperlink.

Select Treat as gain when linearizing, and click OK.

Alternatively, you can set this parameter from the command line.

set_param('scdpendulum/pendulum/Saturation','LinearizeAsGain','on')

The second diagnostic message states that the linearization of this block causes the overall model to
linearize to zero. View the linearization of this block.

diagInfo.Linearization

ans =

 D =
 u1
 y1 0

4 Troubleshooting Linearization Results

4-32

Name: Saturation
Static gain.

Since this block linearized to zero, modifying the block linearization by treating it as a gain is a good
first step toward obtaining a nonzero model linearization.

Relinearize Model

To see the effect of treating the Saturation block as a gain, relinearize the model, and plot its Bode
response.

[linsys2,~,info] = linearize(mdl,io,opt);
bode(linsys2)

The model linearization is now nonzero.

To check if any blocks are still potentially problematic for linearization, extract the advisor object,
and use the advise function.

advisor2 = info.Advisor;
adv2 = advise(advisor2);

View the block diagnostic information.

getBlockInfo(adv2)

ans =

 Troubleshoot Linearization Results at Command Line

4-33

Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

The two Trigonometric Function blocks are still listed.

Highlight the linearization path for the updated linearization.

highlight(advisor2)

View the pendulum subsystem.

To understand why these blocks are not contributing to the linearization, view their corresponding
block diagnostic information. For example, obtain the diagnostic information for the second
Trigonometric Function block.

diagInfo = getBlockInfo(adv2,2)

diagInfo =

Linearization Diagnostics for scdpendulum/pendulum/Trigonometric Function with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Perturbation'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

4 Troubleshooting Linearization Results

4-34

View the linearization of this block.

diagInfo.Linearization

ans =

 D =
 u1
 y1 0

Name: Trigonometric Function
Static gain.

The block linearized to zero. To see if this result is expected for the current operating condition of the
block, check its operating point.

diagInfo.OperatingPoint

ans =

Block Operating Point for scdpendulum/pendulum/Trigonometric Function

Inputs:

Port u
1 1.5708

The input operating point of the block is .

You can find the linearization of the block analytically by taking the first derivative of the sin function
with respect to the input.

Therefore, when evaluated at the linearization of the block is zero. The source of the input is
the first output of the second-order integrator, which is dependent upon the state theta. Therefore,
this block linearizes to zero if , where is an integer. The same condition applies for the
other Trigonometric Function block in the angle_wrap subsystem. If these blocks are not expected to
linearize to zero, you can modify the operating point state theta, and relinearize the model.

Create and Run Custom Queries

The Linearization Advisor also provides objects and functions for creating custom queries. Using
these queries, you can find blocks in your model that match specific criteria. For example, to find all
SISO blocks that are linearized using numerical perturbation, first create query objects for each
search criterion:

• Has one input
• Has one output
• Is numerically perturbed

 Troubleshoot Linearization Results at Command Line

4-35

qIn = linqueryHasInputs(1);
qOut = linqueryHasOutputs(1);
qPerturb = linqueryIsNumericallyPerturbed;

Create a CompoundQuery object by combining these query objects using logical operators.

sisopert = qIn & qOut & qPerturb;

Search the block diagnostics in advisor2 for blocks matching these criteria.

sisopertBlocks = find(advisor2,sisopert)

sisopertBlocks =

 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: '((Has 1 Inputs & Has 1 Outputs) & Perturbation)'

There are three SISO blocks in the model that are linearized using numerical perturbation.

For more information on using custom queries, see “Find Blocks in Linearization Results Matching
Specific Criteria” on page 4-37.

bdclose(mdl)

See Also
Functions
advise | find

More About
• “Identify and Fix Common Linearization Issues” on page 4-6
• “Troubleshoot Linearization Results in Model Linearizer” on page 4-16
• “Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37

4 Troubleshooting Linearization Results

4-36

Find Blocks in Linearization Results Matching Specific Criteria
When you linearize a Simulink model, you can find blocks in your linearization result that match
specific criteria using the Linearization Advisor. You can specify search criteria to find blocks that
can:

• Potentially cause linearization issues in your model, if your model does not linearize as expected.
For more information on identifying and fixing linearization issues using the Linearization Advisor,
see “Identify and Fix Common Linearization Issues” on page 4-6.

• Help you gain insight into your model linearization, even if the model has linearized as expected.

You can also query the Linearization Advisor at the command line using the find function. For an
example, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

Searching the linearization results requires linearization diagnostic information. To collect this
information, you must enable the Linearization Advisor before linearizing your model.

To enable the Linearization Advisor, in the Model Linearizer, on the Linear Analysis tab, select
Linearization Advisor.

When you select this option and linearize your model, the software opens an Advisor tab for
troubleshooting your linearization results. You can then find blocks of interest in the linearization
results by running queries with the Linearization Advisor.

After finding blocks of interest, you can examine the individual block linearizations using the
linearization diagnostic information. For more information, see “Block Linearization Troubleshooting”
on page 4-42.

Run Built-In Queries
The Linearization Advisor provides a set of built-in queries for searching your linearization results.
These queries are useful for finding blocks that are potentially causing linearization issues. To run
one of these queries, on the Advisor tab, in the Queries section, click the query.

Built-In Query Find Blocks That...
Linearization Advice Are potentially problematic for linearization. This

query is performed by default when the Advisor
tab opens.

 Find Blocks in Linearization Results Matching Specific Criteria

4-37

Built-In Query Find Blocks That...
Diagnostics on Path Are on the linearization path and that have

diagnostic messages regarding their
linearization. This query is a subset of the
Linearization Advice query.

Substitutions on Path Are on the linearization path and have a custom
block linearization specified. This query is a
subset of the Linearization Advice query.

Zero I/O Pair on Path Are on the linearization path and have at least
one input/output pair that linearizes to zero.

All Blocks on Path Are on the linearization path; that is, blocks
where at least one linearization input is
connected to at least one linearization output
through the block.

Create and Run Queries
The linearization advisor also provides a set of simple queries for searching your model. You can run
these queries on their own or use them to create compound queries.

Simple Query Find Blocks That...
All Blocks Are in the linearized model.
Linearized to Zero Linearize to zero.
Block Substituted Have a custom block linearization specified.
On Linearization Path Are on the linearization path.
Contributes to Linearization Numerically contribute to the model linearization

result.
Exact Are linearized using their defined exact

linearization.
Perturbation Are linearized using numerical perturbation.
Has Diagnostics Have diagnostic messages regarding their

linearization.
'BlockType' Blocks Are of a specified type.
Has 'Nu' Inputs Have a specified number of inputs.
Has 'Nx' States Have a specified number of states.
Has 'Ny' Outputs Have a specified number of outputs.
Has 'Ts' Sample Time Have a specified sample time.
Has Zero I/O Pair Have at least one input/output pair that linearizes

to zero.

To run a simple query, in the Model Linearizer, on the Advisor tab, click New Query.

4 Troubleshooting Linearization Results

4-38

In the Query Builder dialog box, configure the query. For example, create a query for finding all
blocks that numerically contribute to the linearization result.

1 In the Query Name field, specify the name for the query as Contributes.
2 In the drop-down list, select Contributes to Linearization.

3 If you select any of the following queries, specify the corresponding search parameter.

Query Search Parameter
'BlockType' Blocks Block Type — This parameter corresponds to the

blocktype property of the block. For more information,
see linqueryIsBlockType.

Has 'Nu' Inputs Inputs — Specify a positive integer.
Has 'Nx' States States — Specify a positive integer.
Has 'Ny' Outputs Outputs — Specify a positive integer.
Has 'Ts' Sample Time Sample Time — Specify a nonzero scalar. To find

continuous-time blocks, specify 0.
4 To create and run the query, click Run Query. The software runs the query and, on the Advisor

tab, displays the list of blocks that contribute to the model linearization.

The query is added to the Queries section.

 Find Blocks in Linearization Results Matching Specific Criteria

4-39

You can also create compound queries by logically combining existing queries using And, Or, and
Not logical operations. You can create a compound query using simple queries, built-in queries, or
other compound queries.

To create a compound query, in the Query Builder dialog box, configure the query using multiple
search criteria. For example, create a query to find all discrete-time blocks that are on the
linearization path.

1 In the Query Name field, specify the name for the query as Discrete on Path.
2 To find blocks on the linearization path, in the drop-down list, select On Linearization Path.
3 To add another search criteria, click Add to Query. The software adds a second row to the

search criteria. By default, the search criteria are combined using an And operation.
4 To find discrete-time blocks, first add a search criteria to find continuous-time blocks. In the

second row, in the drop-down list, select Has 'Ts' Sample Time. Keep the default Sample
Time of 0.

5 To find discrete-time blocks, in the second row, select Not.

6 Click Run Query.

Each time you create a custom query, the software adds it to the drop-down list of search criteria in
the Query Builder dialog box. You can then use your custom queries to create more complex queries.
For example, to find discrete-time blocks on the linearization path that are linearized using numerical
perturbation, create a query that combines the Discrete on Path custom query with the
Perturbed simple query using an And operation.

4 Troubleshooting Linearization Results

4-40

See Also
Apps
Model Linearizer

Functions
find

More About
• “Identify and Fix Common Linearization Issues” on page 4-6
• “Troubleshoot Linearization Results in Model Linearizer” on page 4-16
• “Troubleshoot Linearization Results at Command Line” on page 4-28

 Find Blocks in Linearization Results Matching Specific Criteria

4-41

Block Linearization Troubleshooting

Once you identify blocks of interest in the linearization results for your Simulink model by querying
the Linearization Advisor, you can troubleshoot the individual block linearizations. For more
information on querying the Linearization Advisor and viewing block diagnostic information, see
“Identify and Fix Common Linearization Issues” on page 4-6.

You can also troubleshoot individual block linearizations at the command line using a
BlockDiagnostic object. For an example, see “Troubleshoot Linearization Results at Command
Line” on page 4-28.

In the Model Linearizer, on the Advisor tab, the detailed diagnostic information for a block
linearization shows:

• A diagnostic summary, showing any corresponding diagnostic messages, and a linearization
summary table.

• The block linearization value.

4 Troubleshooting Linearization Results

4-42

• The block operating point; the state and input values for which the block is linearized.

You can diagnose potential linearization issues using this information.

Diagnostic Messages
Linearization diagnostic messages indicate blocks with properties or linearizations that correspond to
common linearization problems. Fixing linearization issues identified in diagnostic messages is a good
first step when troubleshooting your linearization.

 Block Linearization Troubleshooting

4-43

Some block configurations that can generate diagnostic messages include:

• Blocks with no predefined exact linearization and with non-floating-point signals or states. Such
blocks linearize to zero and generate diagnostic messages.

• Discontinuous blocks linearized at an operating point near a discontinuity. If such blocks are not
treated as a gain during linearization, the software generates diagnostic messages regarding their
linearization.

• Blocks with least one input/output pair that linearizes to zero and that causes a zero input/output
pair in the overall model linearization. A linearization has a zero input/output pair when a change
in an input signal value does not produce a corresponding change in an output value.

• Blocks that do not support linearization because they do not have a predefined exact linearization
and do not support numerical perturbation.

Some diagnostic messages propose solutions to their corresponding linearization issues. For example,
when an input signal is outside the saturation limits of a Saturation block, the diagnostic message
proposes treating the block as a gain during linearization.

Linearization Summary
The linearization summary table displays the following properties of the block linearization:

• Block Path — Location of the block in the Simulink model. To highlight the block in the model,
click the block path.

• Is On Path — Flag indicating whether the block is on the linearization path, that is, at least one
linearization input is connected to at least one linearization output through the block. If you
expect a block to be on the linearization path and it is not on the path, check the analysis point
configuration in your model. Incorrectly placed linearization I/Os or loop openings can exclude
blocks from the linearization path. Similarly, placing incorrect analysis points can unexpectedly
add blocks to the linearization path.

• Contributes to Linearization — Flag indicating whether the block numerically contributes to
the overall model linearization. If a block unexpectedly does not contribute to the linearization
result, investigate the linearization of the block and other blocks in the same branch of the
linearization path. For example, if an adjacent block on the linearization path linearizes to zero, an
otherwise correctly linearized block can be excluded from the linearization result.

• Linearization method — The method used to linearize the model, specified as one of the
following:

• Exact — The block linearization is computed using the defined analytic Jacobian of the block.
• Perturbation — The block does not have an analytic Jacobian. Instead, the block is linearized

using numerical perturbation of its inputs and states. Some numerically perturbed blocks, such
as those with discontinuities or non-floating-point input signals can linearize to zero.

• Block Substituted — The block linearization is specified using a custom block linearization.
Consider checking that the specified block linearization is correct for your application. For
more information, see “Specify Linear System for Block Linearization Using MATLAB
Expression” on page 2-125 and “Specify D-Matrix System for Block Linearization Using
Function” on page 2-126.

• Simscape Network — The block diagnostics correspond to a Simscape network in your model.
For more information on linearizing and troubleshooting Simscape networks, see “Linearize
Simscape Networks” on page 2-162.

4 Troubleshooting Linearization Results

4-44

• Not Supported — The block does not have an analytic Jacobian and does not support
numerical perturbation. Specify the linearization for this block using a custom linearization.
For more information, see “Specify Linear System for Block Linearization Using MATLAB
Expression” on page 2-125 and “Specify D-Matrix System for Block Linearization Using
Function” on page 2-126.

Block Linearization
To verify whether a block linearized as expected, check the block linearization equations. By default
the software displays the linearization in state-space format. In the Show linearization as drop-
down list, you can select a different display format.

To diagnose the cause of an unexpected block linearization, such as a block that linearizes to zero,
consider:

• Any corresponding diagnostic messages. These messages can highlight common causes of
incorrect linearizations and propose potential solutions.

• The block operating point. For example, if the input to a saturation block is outside the saturation
limits of the block, the block linearizes to zero.

• The block parameters. For example, if a block is configured to use non-floating-point inputs or
states and has no predefined exact linearization, it linearizes to zero.

Block Operating Point
If the block does not linearize as expected, check the operating point. The operating point at which
the block is linearized consists of input and state values. If the operating point for the block is
incorrect, check whether the overall model operating point is correct. For more information, see
“Check Operating Point” on page 4-4.

If an input signal value in the block operating point is incorrect, investigate the linearization of
upstream blocks from that signal. For example, consider a Product block with two inputs. The
operating point of this block consists of the two input signal values. If either input value is zero, the
path from the other input to the output linearizes to zero.

If you expect the Product block to contribute to the linearization result for the operating point at
which you linearized the model, check the linearization for the block that generates the zero input
signal. For complex models, the cause of the incorrect input signal can be more than one block
upstream.

Common Problematic Blocks
Some Simulink blocks have properties that cause them to linearize poorly. Often, such blocks either
linearize to zero or have linearization diagnostic messages associated with them. Therefore, the
Linearization Advisor identifies them as potentially problematic blocks when the Advisor tab first
opens.

The following table shows some blocks that commonly cause linearization issues and proposes
potential fixes for each block. All these blocks have corresponding diagnostic messages.

 Block Linearization Troubleshooting

4-45

Block Type Linearization Issue Possible Fix
Blocks that do not
support linearization

Some blocks are implemented without
defined analytic Jacobians and do not
support numerical perturbation.

Specify a custom block
linearization. For examples,
see “Specify Linear System
for Block Linearization
Using MATLAB Expression”
on page 2-125 and “Specify
D-Matrix System for Block
Linearization Using
Function” on page 2-126.

Blocks with
discontinuities

Blocks with discontinuities typically have
poor linearization results when the
operating point is near the discontinuity.

• Treat the block as a gain
of 1 during linearization.
To do so, select the
Treat as gain when
linearizing block
parameter.

• Specify a custom block
linearization. For
examples, see “Specify
Linear System for Block
Linearization Using
MATLAB Expression” on
page 2-125 and “Specify
D-Matrix System for
Block Linearization
Using Function” on page
2-126.

Event-Based Subsystems
(triggered subsystems)

Blocks within event-based subsystems
linearize to zero because such subsystems
do not trigger during linearization.

When possible, specify a
custom event-based
subsystem linearization as a
lumped average model or
periodic function call
subsystem. For more
information, see “Linearize
Event-Based Subsystems
(Externally Scheduled
Subsystems)” on page 2-
154.

Blocks with non-floating-
point signals

Blocks that have non-floating-point input
signals or states and do not have defined
analytic Jacobians linearize to zero.

Convert the non-floating-
point data types to either
double precision or single
precision.. For more
information, see “Linearize
Blocks with Non-Floating-
Point Signals or States” on
page 2-152.

4 Troubleshooting Linearization Results

4-46

Block Type Linearization Issue Possible Fix
Blocks that linearize
using numerical
perturbation rather than
defined analytic
Jacobians

Blocks that are located near discontinuous
regions, such as S-Functions, MATLAB
function blocks, or lookup tables, are
sensitive to numerical perturbation levels. If
the perturbation level is too small, the block
linearizes to zero.

Change the numerical
perturbation level of the
block. For more information,
see “Change Perturbation
Level of Blocks Perturbed
During Linearization” on
page 2-150.

See Also

More About
• “Linearization Troubleshooting Overview” on page 4-2
• “Identify and Fix Common Linearization Issues” on page 4-6

 Block Linearization Troubleshooting

4-47

Speed Up Linearization of Complex Models

Factors That Impact Linearization Performance
Large Simulink models and blocks with complex initialization functions can slow linearization.

Usually, the time it takes to linearize a model is directly related to the time it takes to update the
block diagram.

Blocks with Complex Initialization Functions
Use the MATLAB Profiler to identify complex bottlenecks in block initialization functions.

In the MATLAB Profiler, run the command:

set_param(modelname,'SimulationCommand','update')

Disabling the Linearization Advisor in the Model Linearizer
You can speed up the linearization of large models by disabling the Linearization Advisor in the
Model Linearizer app.

The Linearization Advisor stores diagnostic information, including linearization values of individual
blocks, which can impact linearization performance.

To disable the Linearization Advisor, in Model Linearizer, on the Linear Analysis tab, clear
Linearization Advisor.

Tip Alternatively, you can disable the Linearization Advisor by default when the Model Linearizer
app opens. To do so, in the MATLAB preferences dialog box, click Simulink Control Design. Then,
clear the Launch Linearization Advisor for exact linearizations in the Model Linearizer option.
This global setting persists from session to session until you change this option.

Batch Linearization of Large Simulink Models
When batch linearizing a large model that contains only a few varying parameters, you can use
linlftfold to reduce the computational load.

For more information, see “More Efficient Batch Linearization Varying Parameters” on page 3-64.

4 Troubleshooting Linearization Results

4-48

Frequency Response Estimation

• “Frequency Response Estimation Basics” on page 5-2
• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Estimate Frequency Response with Linearization-Based Input Using Model Linearizer”

on page 5-10
• “Estimate Frequency Response at the Command Line” on page 5-14
• “Analyze Estimated Frequency Response” on page 5-18
• “Estimation Input Signals” on page 5-25
• “Sinestream Input Signals” on page 5-30
• “Chirp Input Signals” on page 5-34
• “PRBS Input Signals” on page 5-37
• “Modify Estimation Input Signals” on page 5-41
• “Troubleshooting Frequency Response Estimation” on page 5-44
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-54
• “Disable Noise Sources During Frequency Response Estimation” on page 5-63
• “Estimate Frequency Response Models with Noise Using Signal Processing Toolbox”

on page 5-66
• “Estimate Frequency Response Models with Noise Using System Identification Toolbox”

on page 5-68
• “Generate MATLAB Code for Repeated or Batch Frequency Response Estimation” on page 5-70
• “Managing Estimation Speed and Memory” on page 5-71
• “Frequency Response Estimation Using Simulation-Based Techniques” on page 5-77
• “Validate Linearization in Frequency Domain at Command Line” on page 5-83
• “Describing Function Analysis of Nonlinear Simulink Models” on page 5-87
• “Speed Up Frequency Response Estimation Using Parallel Computing” on page 5-92
• “Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary

Signal” on page 5-97
• “Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence”

on page 5-104
• “Frequency Response Estimation for Permanent Magnet Synchronous Motor Model”

on page 5-116
• “Frequency Response Estimation to Measure Input Admittance and Output Impedance of Boost

Converter” on page 5-127

5

Frequency Response Estimation Basics
Frequency response describes the steady-state response of a system to sinusoidal inputs. Simulink
Control Design lets you estimate the frequency response of a model or perform online estimation of a
physical plant. The result is a frequency response model, stored as an frd model object. Applications
of frequency response models include:

• Validate exact linearization results. Frequency response estimation uses a different algorithm to
compute a linear model approximation and serves as an independent test of exact linearization.

• Analyze linear model dynamics or design a controller for the plant represented by the estimated
frequency response.

• Estimate a parametric model using System Identification Toolbox software.

Frequency Response Models
Consider applying a sinusoidal input of frequency ω to a linear system:

u t = Ausinωt .

The result is an output that is also a sinusoid with the same frequency, but with a different amplitude
and phase θ:

y t = Aysin ωt + θ .

The frequency response for a stable system describes the amplitude change and phase shift as a
function of frequency. If Y(s) and U(s) are the Laplace transforms of y(t) and u(t), respectively, then
G(s) is:

G s = Y s
U s ,

where

5 Frequency Response Estimation

5-2

G s = G jω =
Ay
Au

,

θ = ∠Y jω
X jω = tan−1 Im G jω

Re G jω .

The frd model that you get from frequency response estimation contains G(s) evaluated at particular
frequencies. Although your Simulink is usually nonlinear, you typically perform estimation at a
steady-state operating point. If the applied perturbation is small, the resulting frd model is an
approximation of the linearized response at that nominal operating point.

Offline and Online Estimation
Simulink Control Design lets you:

• Estimate the frequency response of a system modeled in Simulink, without modifying the model.
This approach is sometimes called offline frequency response estimation.

• Estimate the frequency response of a physical plant during real-time operation. This approach is
called online frequency response estimation.

The following table summarizes some of the differences between offline and online estimation and the
tools you use to perform them.

Goal Tool More Information
Estimate frequency response of
a system modeled in Simulink
without modifying the model

• Interactive workflow —
Model Linearizer

• Command-line workflow —
frestimate command

• “Estimate Frequency
Response Using Model
Linearizer” on page 5-6

• “Estimate Frequency
Response at the Command
Line” on page 5-14

Deploy frequency response
estimation algorithm for real-
time estimation of a physical
plant

Frequency Response Estimator
block

“Deploy Frequency Response
Estimation Algorithm for Real-
Time Use” on page 6-9

Perform online estimation of a
plant modeled in Simulink, such
as to validate estimation
parameters before deployment

Frequency Response Estimator
block

“Online Estimation Using Plant
Modeled in Simulink” on page 6-
5

Basic Estimation Workflow
For offline estimation, the basic frequency response estimation workflow includes the following steps:

1 Specify the portion of the model you want to estimate. You do so by configuring linearization
analysis points that specify the inputs and outputs for estimation.

2 Specify an operating point for estimation. Generally, you perform estimation at a steady-state
operating point. You can find such an operating point by trimming the model.

3 Create an input signal for estimation. The software injects this signal at the input you specify and
measures the response at the output.

 Frequency Response Estimation Basics

5-3

4 Perform the estimation and examine the results.

For examples illustrating this workflow, see:

• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Estimate Frequency Response at the Command Line” on page 5-14

For information about the online estimation workflow, see “Online Frequency Response Estimation
Basics” on page 6-2.

Model Requirements
You can estimate the frequency response of one or more blocks in a stable Simulink model at steady
state.

Your model can contain any Simulink blocks, including blocks with event-based dynamics. Examples
of blocks with event-based dynamics include Stateflow charts and triggered subsystems.

Disable the following types of blocks before estimation:

• Blocks that simulate random disturbances (noise). For alternatives ways to model systems with
noise, see “Estimate Frequency Response Models with Noise Using Signal Processing Toolbox” on
page 5-66.

• Source blocks that generate time-varying outputs that interfere with the estimation. See “Effects
of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-54.

See Also
frestimate | Model Linearizer | Frequency Response Estimator

More About
• “Estimate Frequency Response Using Model Linearizer” on page 5-6

5 Frequency Response Estimation

5-4

• “Estimate Frequency Response at the Command Line” on page 5-14
• “Estimation Input Signals” on page 5-25
• “Validate Linearization In Frequency Domain Using Model Linearizer” on page 2-110
• “Estimate Frequency Response Models with Noise Using System Identification Toolbox” on page

5-68
• “Online Frequency Response Estimation Basics” on page 6-2

External Websites
• What is Frequency Response?

 Frequency Response Estimation Basics

5-5

https://www.mathworks.com/discovery/frequency-response.html

Estimate Frequency Response Using Model Linearizer
This example shows how to estimate the frequency response of a portion of a Simulink model using
the Model Linearizer. To estimate the frequency response, you specify the portion of the model you
want to estimate, the operating point for estimation, and the input signal to use for estimation.

Open Simulink Model and Model Linearizer

Open the Simulink model.

sys = 'scdDCMotor';
open_system(sys)

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

Specify Portion of Model to Estimate

By default, Model Linearizer uses the linearization analysis points defined in the model (the model
I/Os) to determine where to inject the test signal and where to measure the frequency response. The
model scdDCMotor contains predefined linear analysis points: an input point at the compensator
output, and an open-loop output after the unit gain block. For this example, use these predefined
model I/Os to obtain the frequency response of the inner loop of the model with the outer loop open.

If you want to obtain the frequency response of a different portion of the model, on the Estimation
tab of Model Linearizer, use the Analysis I/Os drop-down list. Analysis points for estimation work
the same way as analysis points for linearization. For more information about linear analysis points,
see “Specify Portion of Model to Linearize” on page 2-10.

Specify Operating Point for Estimation

You perform frequency response estimation at a steady-state operating point of the model. You can
compute or specify an operating point in Model Linearizer using the Operating Point drop-down
list. By default, Model Linearizer uses the operating point defined by the model initial conditions.
For this example, use that operating point. For more information about operating points, see “About
Operating Points” on page 1-2.

Create Input Signal for Estimation

Frequency response estimation injects an input signal into the input analysis point you specify for
estimation. For this example, configure a sinestream signal, which is a series of sinusoidal
perturbations at frequencies you specify. (For more information about input signals, see “Estimation
Input Signals” on page 5-25.)

1 On the Estimation tab, in the Input Signal drop-down list, select Sinestream. The Create
sinestream input dialog box opens.

5 Frequency Response Estimation

5-6

2 To specify frequency points for the input signal, click Add Frequencies. In the Add frequencies
dialog box, specify the frequency range and number of points for the input signal. The frequency
points you specify are the frequencies at which Model Linearizer computes the estimated
response.

For this example, specify a range from 0.1 to 100 rad/s. Also, specify 100 logarithmically spaced
frequencies.

Click OK. The added points are visible in the frequency content viewer of the Create sinestream
input dialog box.

 Estimate Frequency Response Using Model Linearizer

5-7

Select all these frequency points for the estimation input signal.

3 Specify the amplitude of the input signal. Enter 1 in the Amplitude field. When you specify a
scalar value, Model Linearizer uses the same amplitude for all frequencies.

4 Click OK to create the sinestream input signal. The new input signal, in_sine1, appears in the
Linear Analysis Workspace.

Estimate Frequency Response

You can now estimate the frequency response and generate a frequency-domain plot of the result. To

do so, click Bode. The estimated frequency response, appears in the Linear Analysis
Workspace as the frd model estsys1.

5 Frequency Response Estimation

5-8

To export the estimated frequency response model to the MATLAB workspace for further analysis,
right click on the model in the Linear Analysis Workspace and select Export to MATLAB
Workspace section.

Analyze Estimated Frequency Response

The simulation results viewer in Model Linearizer lets you examine further details of the frequency
response estimation. For more information, see “Analyze Estimated Frequency Response” on page 5-
18.

See Also

More About
• “Frequency Response Estimation Basics” on page 5-2
• “Estimation Input Signals” on page 5-25
• “Analyze Estimated Frequency Response” on page 5-18
• “Estimate Frequency Response at the Command Line” on page 5-14

External Websites
• What is Frequency Response?

 Estimate Frequency Response Using Model Linearizer

5-9

https://www.mathworks.com/discovery/frequency-response.html

Estimate Frequency Response with Linearization-Based Input
Using Model Linearizer

When you have a linear model representing the portion of your Simulink model that you want to
estimate, you can use that model to generate the input signal. This alternative to manually specifying
the estimation signal (as shown in “Estimate Frequency Response Using Model Linearizer” on page 5-
6) can be useful when you are using frequency response estimation to validate a model obtained
through linearization. This example shows how to perform frequency response estimation in Model
Linearizer using an input signal that is based on the dynamics of an exact linearization of the model.

Linearize Simulink Model

In this example, linearize a Simulink model to obtain the linear model you use to generate the
estimation input signal.

1 Open the Simulink model.

sys = 'scdDCMotor';
open_system(sys)

This model contains predefined linear analysis points. There is an input point at the compensator
output and an open-loop output after the unit gain block. The response from the defined input to
the defined output is the response of the inner loop of the model, with the outer loop open.

2 In the Simulink model window, in the Apps gallery, click Model Linearizer.
3 Linearize the model using the predefined analysis points and using the model initial conditions as

the operating point.

On the Linear Analysis tab, click Bode.

5 Frequency Response Estimation

5-10

A new linearized model, linsys1, appears in the Linear Analysis Workspace.

Create Sinestream Input Signal

1 On the Estimation tab, in the Input Signal drop-down list, select Sinestream.
2 Initialize the input signal frequencies and parameters based on linsys1.

In the Create sinestream input dialog box, in the System drop-down list, select linsys1. If
linsys1 does not appear in the list, click Refresh.

Click Initialize frequencies and parameters

The frequency content viewer is populated with frequency points. The software chooses the
frequencies and input signal parameters automatically based on the dynamics of linsys1. The
software also automatically initializes other parameters of the sinestream signal, including:

• Amplitude
• Number of periods
• Settling periods
• Ramp periods
• Number of samples at each period

3 Select all the frequency points.

 Estimate Frequency Response with Linearization-Based Input Using Model Linearizer

5-11

4 Specify the amplitude of the input signal.

Enter 1 in the Amplitude box.
5 Create the input sinestream signal.

Click OK. The input signal in_sine1 appears in the Linear Analysis Workspace.

Estimate Frequency Response

Click Bode Plot 1 to estimate the frequency response.

The estimated system, estsys1, appears in the Linear Analysis Workspace and the its frequency
response is added to Bode Plot 1.

5 Frequency Response Estimation

5-12

The frequency response for the estimated model matches that of the linearized model. You can use
this approach to validate an exact linearization.

See Also

More About
• “Estimation Input Signals” on page 5-25
• “Estimate Frequency Response Using Model Linearizer” on page 5-6

 Estimate Frequency Response with Linearization-Based Input Using Model Linearizer

5-13

Estimate Frequency Response at the Command Line

This example shows how to estimate the frequency response of a Simulink® model at the MATLAB®
command line.

Open the Simulink model.

mdl = 'scdplane';
open_system(mdl)

For more information on the general model requirements for frequency response estimation, see
“Model Requirements” on page 5-4.

Specify input and output points for frequency response estimation using analysis points. Avoid
placing analysis points on bus signals.

io(1) = linio('scdplane/Sum1',1);
io(2) = linio('scdplane/Gain5',1,'output');

For more information about linear analysis points, see “Specify Portion of Model to Linearize” on
page 2-10 and linio.

Linearize the model and create a sinestream signal based on the dynamics of the resulting linear
system. For more information, see “Estimation Input Signals” on page 5-25 and
frest.Sinestream.

5 Frequency Response Estimation

5-14

sys = linearize('scdplane',io);
input = frest.Sinestream(sys);

If your model has not reached steady state, initialize the model using a steady-state operating point
before estimating the frequency response. You can check whether your model is at steady state by
simulating the model. For more information on finding steady-state operating points, see “Compute
Steady-State Operating Points” on page 1-5.

Find all source blocks in the signal paths of the linearization outputs that generate time-varying
signals. Such time-varying signals can interfere with the signal at the linearization output points and
produce inaccurate estimation results.

srcblks = frest.findSources('scdplane',io);

To disable the time-varying source blocks, create an frestimateOptions option set and specify the
BlocksToHoldConstant option.

opts = frestimateOptions;
opts.BlocksToHoldConstant = srcblks;

Estimate the frequency response.

[sysest,simout] = frestimate('scdplane',io,input,opts);

sysest is the estimated frequency response. simout is a Simulink.Timeseries object
representing the simulated output.

To speed up your estimation or decrease its memory requirements, see “Managing Estimation Speed
and Memory” on page 5-71.

Open the Simulation Results Viewer to analyze the estimated frequency response.

frest.simView(simout,input,sysest)

 Estimate Frequency Response at the Command Line

5-15

You can also compare the estimated frequency response, sysest, to an exact linearization of your
system, sys.

frest.simView(simout,input,sysest,sys)

5 Frequency Response Estimation

5-16

The Bode Diagram plot shows the response sys as a blue line.

See Also
linio | operspec | findop | frest.findSources | frestimateOptions | frestimate

More About
• “Estimation Input Signals” on page 5-25
• “Analyze Estimated Frequency Response” on page 5-18

 Estimate Frequency Response at the Command Line

5-17

Analyze Estimated Frequency Response

When you perform frequency response estimation, you can analyze the result by examining the raw
simulated response and the FFT used to convert it to an estimated frequency response. To do so, use
the Diagnostic viewer (in Model Linearizer) or the Simulation Results Viewer (at the MATLAB
command line).

View Simulation Results
View Simulation Results Using Model Linearizer

Use the Diagnostic Viewer to analyze the results of your frequency response estimation, obtained by
performing the steps in “Estimate Frequency Response Using Model Linearizer” on page 5-6, with
the extra step of activating the Diagnostic Viewer before performing estimation. To do so, in the
Estimation tab, select Diagnostic Viewer.

Then, perform the estimation. The Diagnostic Viewer appears in the plot pane.

To open the Diagnostic Viewer to view a previously estimated model in the Model Linearizer:

1 In the Linear Analysis Workspace, select the estimated model.
2 On the Plots and Results tab, click View Diagnostics.

5 Frequency Response Estimation

5-18

Note This option is only available for models that have been previously estimated with the
Diagnostic Viewer check box selected.

View Simulation Results (MATLAB Code)

Use the Simulation Results Viewer to analyze the results of your frequency response estimation,
obtained by performing the steps in “Estimate Frequency Response at the Command Line” on page 5-
14. Make sure you keep the simout output argument of frestimate.

To open the Simulation Results Viewer using the frest.simView command using the simulated
output simout, the input signal input is that you used for estimation, and the estimated frequency
response you obtained, sysest.

frest.simView(simout,input,sysest)

Interpret Frequency Response Estimation Results
Select Plots Displayed in Diagnostic Viewer

By default, the Diagnostic Viewer shows these plots:

• Frequency Response
• Time Response (Simulated Output)
• FFT of Time Response

To select the plots displayed in the Diagnostic Viewer using the Model Linearizer:

1 If the Diagnostic Viewer tab is not visible, in the Plots and Results tab, select the Diagnostic
Viewer plot.

2 In the Diagnostic Viewer tab, in the Plot Visibilities section, select the plots that you want to
view.

 Analyze Estimated Frequency Response

5-19

To modify plot settings, such as axis frequency units, right-click on a plot, and select the
corresponding option.

Select Plots Displayed in Simulation Results Viewer

By default, the Simulation Results Viewer shows these plots:

• Frequency Response
• Time Response (Simulated Output)
• FFT of Time Response

To select the plots displayed in the Simulation Results Viewer, choose the corresponding plot from the
Edit > Plots menu. To modify plot settings, such as axis frequency units, right-click a plot, and select
the corresponding option.

Frequency Response

Use the Bode plot to analyze the frequency response. If the frequency response does not match the
dynamics of your system, see “Troubleshooting Frequency Response Estimation” on page 5-44 for
information about possible causes and solutions. While troubleshooting, you can use the Bode plot
controls to view the time response at the problematic frequencies on page 5-21.

You can usually improve estimation results by either modifying your input signal on page 5-41 or
disabling the model blocks that drive your system away from the operating point, and repeating the
estimation.

Time Response (Simulated Output)

Use this plot to check whether the simulated output is at steady state at specific frequencies. If the
response has not reached steady state, see “Time Response Not at Steady State” on page 5-44 for
possible causes and solutions.

If you used the sinestream input for estimation, check both the filtered and the unfiltered time
response. You can toggle the display of filtered and unfiltered output by right-clicking the plot and
selecting Show filtered steady state output only. If both the filtered and unfiltered response
appear at steady state, then your model must be at steady state. You can explore other possible
causes in “Troubleshooting Frequency Response Estimation” on page 5-44.

Note If you used the sinestream input for estimation, toggling the filtered and unfiltered display only
updates the Time Response and FFT plots. This selection does not change the estimation results. For
more information about filtering during estimation, see the Algorithms section of frestimate.

FFT of Time Response

Use this plot to analyze the spectrum of the simulated output.

5 Frequency Response Estimation

5-20

For example, you can use the spectrum to identify strong nonlinearities. When the FFT plot shows
large amplitudes at frequencies other than the input signal, your model is operating outside of linear
range. If you are interested in analyzing the linear response of your system for small perturbations,
explore possible solutions in “FFT Contains Large Harmonics at Frequencies Other than the Input
Signal Frequency” on page 5-46.

Analyze Simulated Output and FFT at Specific Frequencies
Using the Diagnostic Viewer in Model Linearizer

Use the controls in the Diagnostic Viewer tab of the Model Linearizer to analyze the estimation
results at specific frequencies.

1 If the Diagnostic Viewer tab is not visible, in the Plots and Results tab, select the Diagnostic
Viewer plot.

2 In the Diagnostic Viewer tab, in the Frequency Selector section, specify the frequency range
that you want to inspect. Use the frequency units used in the Bode plot in the Diagnostic
Viewer.

Using the Simulation Results Viewer

In the Simulation Results Viewer, use the Bode controls to display the simulated output and its
spectrum at specific frequencies.

• Drag the arrows individually to display the time response and FFT at specific frequencies.
• Drag the shaded region to shift the time response and FFT to a different frequency range.

Annotate Frequency Response Estimation Plots
You can display a data tip on the Time Response, FFT, and Bode plots in the Simulation Results
Viewer by clicking the corresponding curve. Dragging the data tip updates the information.

 Analyze Estimated Frequency Response

5-21

Data tips are useful for correcting poor estimation results at a specific sinestream frequency, which
requires you to modify the input at a specific frequency. You can use the data tip to identify the
frequency index where the response does not match your system.

In the previous figure, the Time Response data tip shows that the frequency index is 11. You can use
this frequency index to modify the corresponding portion of the input signal. For example, to modify
the NumPeriods and SettlingPeriods properties of the sinestream signal, using MATLAB code:

input.NumPeriods(11) = 80;
input.SettlingPeriods(11) = 75;

To modify the sinestream in the Model Linearizer, see “Modify Sinestream Signal Using Model
Linearizer” on page 5-41

Displaying Estimation Results for Multiple-Input Multiple-Output
(MIMO) Systems

For MIMO systems, view frequency response information for specific input and output channels:

1 In both the Diagnostic Viewer and Simulation Results Viewer, right-click any plot, and select I/O
Selector.

2 Choose the input channel in the From list and the output channel in the To list.

5 Frequency Response Estimation

5-22

Result Thinning
When you have an estimated frequency response result with a large number of frequency points and
you are interested in data across a certain frequency range at a specific resolution, you can use
Result Thinning in Model Linearizer to extract interpolated frequency response data from an
estimated frequency response frd model across a specified frequency range and number of
frequency points.

To apply thinning to an estimated frequency response result, select the estimated model in the
Linear Analysis Workspace or MATLAB Workspace pane. Then, on the Plots and Results tab,
click Result Thinning.

In the Specify frequencies dialog box, specify the frequencies by either range or values. By default,
the dialog lets you specify logarithmically-spaced or linearly-spaced frequencies by range. To specify
frequencies by values, in the Specify by list, select values, and then specify a vector of frequency
values using the Values parameter. The frequency values must lie between the smallest and largest
frequency points in the model you want to thin.

 Analyze Estimated Frequency Response

5-23

Click OK. The software performs linear interpolation and returns an frd model containing the
interpolated frequency response data at the specified frequencies.

For an example of thinning a response estimated with PRBS input signal, see “Frequency Response
Estimation in Model Linearizer Using Pseudorandom Binary Sequence” on page 5-104.

See Also
frest.simView | frest.simCompare | frestimate

More About
• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Estimate Frequency Response at the Command Line” on page 5-14
• “Frequency Response Estimation Basics” on page 5-2

5 Frequency Response Estimation

5-24

Estimation Input Signals

Frequency response estimation requires an input signal to excite the model at frequencies of interest.
The software then measures the response at the specified output, using the input signal and
measured response to estimate the frequency response.

When you perform frequency response estimation, you specify what type of input signal to use and
what its properties are.

Offline Estimation
The following table summarizes the types of input signals you can use for offline estimation in Model
Linearizer or at the MATLAB command line for use with frestimate.

Signal Description
Sinestream on page 5-30 A series of sinusoidal perturbations applied one after another.

Sinestream signals are recommended for most situations. They are
especially useful when your system contains strong nonlinearities or
you require highly accurate frequency response models.

Chirp on page 5-34 A swept-frequency signal that excites your system at a range of
frequencies, such that the input frequency changes instantaneously.
Chirp signals are useful when your system is nearly linear in the
simulation range. They are also useful when you want to obtain a
response quickly for a lot of frequency points.

PRBS on page 5-37 A deterministic pseudorandom binary sequence that shifts between
two values and has white-noise-like properties. PRBS signals reduce
total estimation time compared to using sinestream input signals,
while producing comparable estimation results. PRBS signals are
useful for estimating frequency responses for communications and
power electronics systems.

Random on page 5-26 A random input signal. Random signals are useful because they can
excite the system uniformly at all frequencies up to the Nyquist
frequency.

Step on page 5-27 A step input signal. Step inputs are quick to simulate and can be
useful as a first try when you do not have much knowledge about the
system you are trying to estimate.

 Estimation Input Signals

5-25

Signal Description
Arbitrary on page 5-27 A MATLAB timeseries with which you can specify any time-varying

signal as input.

In general, the estimated frequency response is related to the input and output signals as:

Resp =
FFT yest(t)
FFT uest(t)

.

Here, uest(t) is the injected input signal and yest (t) is the corresponding simulated output signal. For
more details, see the Algorithms section of frestimate.

Online Estimation
For online estimation with the Frequency Response Estimator block, you can use two types of input
signals:

• Sinestream on page 5-30 — A series of sinusoidal perturbations applied one after another
• Superposition on page 5-28 — A set of sinusoidal perturbations applied simultaneously

For online estimation, using a sinestream signal can be more accurate and can accommodate a wider
range of frequencies than a superposition signal. The sinestream mode can also be less intrusive.
However, due to the sequential nature of the sinestream perturbation, each frequency point you add
increases the experiment time. Thus the estimation experiment is typically much faster with a
superposition signal with satisfactory results.

To specify which type of input signal to use for online estimation, use the Experiment mode
parameter of the Frequency Response Estimator block.

Sinestream Signals
For details about the structure of sinestream signals and how to create them, see “Sinestream Input
Signals” on page 5-30.

Chirp Signals
For details about the structure of chirp signals and how to create them, see “Chirp Input Signals” on
page 5-34.

PRBS Signals
For details about the structure of PRBS signals and how to create them, see “PRBS Input Signals” on
page 5-37.

Random Signals
Random signals are useful because they can excite the system uniformly at all frequencies up to the
Nyquist frequency. To create a random input signal for estimation:

• In the Model Linearizer, on the Estimation tab, select Input Signal > Random.

5 Frequency Response Estimation

5-26

• At the command line, use frest.Random to create the random signal and use it as an input
argument to frestimate.

The random signal comprises uniformly distributed random numbers in the interval [0 Amplitude]
or [Amplitude 0] for positive and negative amplitudes, respectively. You can specify the amplitude,
sample time, and number of samples directly when you create the input signal. Alternatively, if you
have a relevant linear time-invariant (LTI) model such as a state-space (ss) model, you can use it to
initialize the random signal parameters. For instance, if you have an exact linearization of your
system, you can use it to initialize the parameters.

When you use a random input signal for estimation, the frequencies returned in the estimated frd
model depend on the length and sampling time of the signal. They are the frequencies obtained in the
fast Fourier transform of the input signal (see the Algorithm section of frestimate).

Step Signals
Step inputs are quick to simulate. Like a random signal, a step signal can excite the system at all
frequencies up to the Nyquist frequency. For those reasons, a step input can be useful as a first try
when you do not have much knowledge about the system you are trying to estimate. However, the
amplitude of the excitation decreases rapidly with increasing frequency. Therefore, step signals are
best used to identify low-order plants where the slowest poles are dominant. Step inputs are not
recommended for estimation across a wide range of frequencies.

To create a step input signal for estimation, use frest.createStep. This function creates a
MATLAB timeseries that represents a step input having the sample time, step time, step size, and
total signal length that you specify when you call frest.createStep.

To use the step input signal you created in the MATLAB workspace:

• In the Model Linearizer, on the Estimation tab, select it from the Existing Input Signals
section of the Input Signal drop-down list.

• At the command line, use it as an input argument to frestimate.

When you use a step input signal for estimation, the frequencies returned in the estimated frd model
depend on the length and sampling time of the signal. They are the frequencies obtained in the fast
Fourier transform of the input signal (see the Algorithm section of frestimate).

Arbitrary Signals
If you want to use a signal other than a sinestream, chirp, step, or random signal, you can provide
your own MATLAB timeseries object. For instance, you can create a timeseries representing a
ramp, sawtooth, or square wave input.

To use a timeseries object as the input signal for estimation, first create the timeseries in the
MATLAB workspace. Then:

• In the Model Linearizer, on the Estimation tab, select it from the Existing Input Signals
section of the Input Signal drop-down list.

• At the command line, use it as an input argument to frestimate.

When you use an arbitrary input signal for estimation, the frequencies returned in the estimated frd
model depend on the length and sampling time of the signal. They are the frequencies obtained in the
fast Fourier transform of the input signal (see the Algorithm section of frestimate).

 Estimation Input Signals

5-27

Superposition Signals
Superposition signals are available only for online estimation with the Frequency Response Estimator
block. For frequency response estimation at a vector of frequencies ω = [ω1, … , ωN] at amplitudes A
= [A1, … , AN], the superposition signal is given by:

Δu = ∑
i

Aisin ωit .

The block supplies the perturbation Δu for the duration of the experiment (while the start/stop signal
is positive). The block determines how long to wait for system transients to die away and how many
cycles to use for estimation as shown in the following illustration.

Texp is the experiment duration that you specify with your configuration of the start/stop signal (See
the start/stop port description on the block reference page for more information). For the estimation
computation, the block uses only the data collected in a window of NlongestP. Here, P is the period of
the slowest frequency in the frequency vector ω, and Nlongest is the value of the Number of periods
of the lowest frequency used for estimation block parameter. Any cycles before this window are
discarded. Thus, the settling time Tsettle = Texp – NlongestP. If you know that your system settles quickly,
you can shorten Texp without changing Nlongest to effectively shorten Tsettle. If your system is noisy, you
can increase Nlongest to get more averaging in the data-collection window. Either way, always choose
Texp long enough for sufficient settling and sufficient data-collection. The recommended Texp =
2NlongestP.

To use a superposition signal for estimation, in the Frequency Response Estimator block, set the
Experiment mode parameter to Superposition. For details, see Frequency Response Estimator.

See Also
frestimate | frest.createStep | frest.Random | frest.Sinestream | frest.Chirp |
frest.PRBS

5 Frequency Response Estimation

5-28

More About
• “Sinestream Input Signals” on page 5-30
• “Chirp Input Signals” on page 5-34
• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Estimate Frequency Response at the Command Line” on page 5-14

 Estimation Input Signals

5-29

Sinestream Input Signals

In frequency response estimation, a sinestream signal consists of sine waves of varying frequencies
applied one after another. Each frequency excites the system for a period of time.

You can use a sinestream input signal for estimation at the command line, in Model Linearizer, or
with the Frequency Response Estimator block. The estimation algorithm injects the sinestream signal
at the input point you specify for estimation, and measures the response at the output point.

5 Frequency Response Estimation

5-30

Sinestream signals are recommended for most situations. They are especially useful when your
system contains strong nonlinearities or you require highly accurate frequency response models. The
frequency-response model that results when you use a sinestream input contains all the frequencies
in the sinestream signal.

When you create your sinestream input signal, you specify the following parameters for each
frequency:

• Number of periods for ramping up the signal to its maximum value
• Number of settling periods
• Total number of periods.

The number of estimation periods is the total number of periods minus the number of settling
periods. The estimation algorithms discard response data collected during the ramp periods and
settling periods time frames. Doing so allows any transient responses to die out. The algorithm uses
data collected during the estimation periods to compute the estimated frequency response.

(In offline estimation, if FIR filtering is on, the software also discards the first estimation period as
shown in the illustration. For details about the offline and online estimation algorithms, see the
Algorithms sections of frestimate and Frequency Response Estimator, respectively.)

 Sinestream Input Signals

5-31

Create Sinestream Signals Using Model Linearizer
In the Model Linearizer, to use a sinestream input signal for estimation, on the Estimation tab,
select:

• Input Signal > Sinestream when the sample time of the I/Os is continuous.
• Input Signal > Fixed Sample Time Sinestream when the sample time of the I/Os is discrete.

You can specify the frequencies to use in the sinestream in one of two ways:

• Manually, as shown in “Estimate Frequency Response Using Model Linearizer” on page 5-6
• Based on the dynamics of a linear model, such as a linearization of your system, as shown in

“Estimate Frequency Response with Linearization-Based Input Using Model Linearizer” on page
5-10

Other parameters you can specify for a sinestream signal in Model Linearizer include:

• Amplitude — Amplitude of injected sine waves
• Number of periods — Total number of periods at each frequency
• Settling periods — Number of periods to discard for the estimation computation
• Ramp periods — Number of periods for ramping up the amplitude of each sine wave to its

maximum value
• Perform filtering to improve estimation results — Filter the response data before estimating

frequency response (see the Algorithms section of frestimate)

Create Sinestream Signals Using MATLAB Code
To create a sinestream signal for estimation at the command line with frestimate, use:

• frest.Sinestream — Use when signal at input linearization point is continuous.
• frest.createFixedTsSinestream — Use when signal at input linearization point is discrete.

Sinestream Signals for Online Estimation
You can use a sinestream signal for online estimation with the Frequency Response Estimator block.
To do so, set the Experiment mode parameter to Sinestream. Other relevant block parameters
include:

• Frequencies — Vector of frequencies for the sinestream signal.
• Amplitudes — Signal amplitudes. You can specify a single amplitude for all frequencies, or

separate amplitudes for each frequency.
• Number of settling periods — Number of periods to discard for the estimation computation.
• Number of estimation periods — Number of periods to use in the estimation computation.

For details, see the Frequency Response Estimator block reference page.

See Also
frest.Sinestream | frest.createFixedTsSinestream

5 Frequency Response Estimation

5-32

More About
• “Estimation Input Signals” on page 5-25
• “Chirp Input Signals” on page 5-34
• “Modify Estimation Input Signals” on page 5-41
• “Frequency Response Estimation Using Simulation-Based Techniques” on page 5-77

 Sinestream Input Signals

5-33

Chirp Input Signals

A swept-frequency cosine input signal, or chirp signal, excites your system at a range of frequencies,
such that the input frequency changes instantaneously.

You can use a chirp input signal for frequency-response estimation at the command line or in Model
Linearizer. The estimation algorithm injects the chirp signal at the input point you specify for
estimation, and measures the response at the output point. Chirp signals are useful when your system
is nearly linear in the simulation range. They are also useful when you want to obtain a response
quickly for a lot of frequency points. The frequency-response model that results when you use a chirp
input contains only frequencies that fall within the range of the chirp.

Create Chirp Signals Using Model Linearizer
In the Model Linearizer, to use a chirp input signal for estimation, in the Estimation tab, select
Input Signal > Chirp. You can specify the frequency range and other properties of the chirp in one
of two ways:

• Enter the values manually in the Create chirp input dialog box.
• Initialize the frequencies based on the dynamics of a linear model, such as a linearization of your

system.

To create a chirp signal based on a linear model:

1 Obtain a linearized model, linsys1.

For example, see “Linearize Simulink Model at Model Operating Point” on page 2-54, which
shows how to linearize a model.

2 In the Model Linearizer, in the Estimation tab, select Input Signal > Chirp.

The Create chirp input dialog box opens.

5 Frequency Response Estimation

5-34

3 In the System list, select linsys1. Click Compute parameters.

The software automatically selects frequency points based on the dynamics of linsys1. The
software also automatically determines other parameters of the chirp signal, including:

• Frequency range — Range of frequencies for the chirp, which the software chooses based on
the frequencies at which the linear system has interesting dynamics.

• Amplitude — Amplitude of applied perturbation.
• Sample time — Sample time of signal. To avoid aliasing, the software chooses the sample

time such that the Nyquist frequency of the signal is five times the upper end of the frequency
range, 2π

5 * max(FreqRange) .

• Number of samples
• Initial phase
• Sweep method
• Sweep shape

4 Click OK to create the chirp input signal. A new input signal in_chirp1 appears in the Linear
Analysis Workspace.

 Chirp Input Signals

5-35

You can now select this signal in the Input Signal drop-down list for estimation.

The mapping between the parameters of the Create chirp input dialog box in the Model Linearizer
and the properties of frest.Chirp is as follows:

Create chirp input dialog box frest.Chirp property
Frequency range > From First element associated with the 'FreqRange'

option
Frequency range > To Second element associated with the

'FreqRange' option
Amplitude 'Amplitude'
Sample time (sec) 'Ts'
Number of samples 'NumSamples'
Initial phase (deg) 'InitialPhase'
Sweep method 'SweepMethod'
Sweep shape 'Shape'

Create Chirp Signals Using MATLAB Code
To create a chirp signal for estimation at the command line with frestimate, use frest.Chirp.
See that page for examples and more information about chirp signal properties.

See Also
frest.Chirp

More About
• “Estimation Input Signals” on page 5-25
• “Sinestream Input Signals” on page 5-30
• “Frequency Response Estimation Using Simulation-Based Techniques” on page 5-77

5 Frequency Response Estimation

5-36

PRBS Input Signals

A pseudorandom binary sequence (PRBS) is a periodic, deterministic signal with white-noise-like
properties that shifts between two values. A PRBS signal is inherently periodic with a maximum
period length of 2n–1, where n is the PRBS order.

You can use a PRBS input signal for frequency-response estimation at the command line or in Model
Linearizer. The estimation algorithm injects the PRBS signal at the input analysis point you specify
for estimation, and measures the response at the output analysis point. PRBS signals are useful for
estimating frequency responses for communications and power electronics applications.

Using PRBS input signals, you can:

• Reduce total estimation time compared to using sinestream input signals, while producing
comparable estimation results.

• Obtain faster frequency response estimation with a higher frequency resolution than using chirp
input signals.

When you create your PRBS input signal, specify the following parameters.

• Signal amplitude — The peak-to-peak range of the signal.
• Sample time — Set the sample time to match the sample time at the signals that correspond to the

input and output linear analysis points.

 PRBS Input Signals

5-37

• Signal order — The maximum length of the PRBS signal is 2n–1, where n is the signal order.
• Number of periods — Number of periods Np in the PRBS signal.

When specifying your PRBS signal parameters, consider the following:

• Set the amplitude such that the system is properly excited for your application. If the input
amplitude is too large, the signal can deviate too far from the model operating point. If the input
amplitude is too small, the PRBS signal is indistinguishable from noise and ripples in your model.

• For a given sample time, to increase the resolution over the low-frequency range, increase the
order of the PRBS signal.

• For most frequency response estimation applications, use a single period. Doing so produces a flat
frequency response across the frequency range of the signal.

• The frequency range of the generated PRBS signal is [Fmin,Fmax], where Fmin = (FN/Np) ⋅ (2/2n− 1)
and Fmax = FN. FN is the Nyquist frequency of the signal.

You can also create a PRBS signal with parameters based on the dynamics of a linear system, sys.
For instance, if you have an exact linearization of your system, you can use it to initialize the
parameters.

When you set the PRBS parameters using a linear system, the amplitude of the signal is 0.05 and the
number of periods is 1. To set the sample time and order of the signal, the software first selects a
signal frequency range, [Fmin,Fmax], based on the dynamics of sys.

If sys is a discrete-time system, then:

• The sample time of the PRBS is equal to the sample time of sys.
• The order of the PRBS is as follows, where ⌈.⌉ is the ceiling operator.

Order =
log 2π

Ts⋅Fmin
log 2

If sys is a continuous-time system, then:

• The sample time of the PRBS is

Ts = 2π
5 ⋅ Fmax

• The order of the PRBS is as follows, where ⌊.⌋ is the floor operator.

Order =
log 2π

Ts⋅Fmin
log 2

Create PRBS Signals Using Model Linearizer
In the Model Linearizer, to use a PRBS input signal for estimation, on the Estimation tab, select
Input Signal > PRBS Pseudorandom Binary Sequence.

In the Create PRBS input dialog box, specify the name of the PRBS signal object in Variable Name.
You can then specify the parameters of your PRBS input signal using the following fields.

5 Frequency Response Estimation

5-38

• Amplitude — Signal amplitude
• Sample time — Sample time
• Number of periods — Number of periods
• Signal order — Signal order

You can also automatically determine the parameters Number of periods and Signal order based
on a frequency range of interest. Automatic parameter determination helps create an input signal
that leads to an accurate frequency response over a specified frequency range.

To determine the parameters automatically, first set the Sample time parameter to match the sample
time at the point of signal injection. Next, specify the frequency range of interest in rad/s using the
Min and Max parameters, and then click Compute parameters.

Additionally, you can:

• Use the One sample per clock period parameter to specify whether the signal remains constant
for one sample per clock period or multiple samples per clock period. Use this parameter if you
have Number of periods > 1. By default, this option is enabled and the generated signal is
constant over one sample. When you disable this option, the generated signal is constant for the
specified number of samples.

• Use the Perform window-based filtering to improve estimation results parameter to apply
Hann window-based filtering, which produces a smoother frequency response estimation result.

Create PRBS Signals Using MATLAB Code
To create a PRBS signal for estimation at the command line with frestimate, use a frest.PRBS
object.

 PRBS Input Signals

5-39

Improve Frequency Response Result at Low Frequencies
To improve the frequency response estimation result at low frequencies, you can use a different
sample time other than the sample time in the original model. To do so, modify your model to use a
Constant block at the input analysis point and a Rate Transition block at the output analysis point.

For both the Constant block and the Rate Transition block, specify a new sample time for your PRBS
signal that is larger than the original sample time of the model.

The ability to change the sample time of the PRBS input signal provides an additional degree of
freedom in the frequency response estimation process. By using a larger sample time than in the
original model, you can obtain a higher resolution frequency response estimation result over the low-
frequency range. Additionally, running estimation at lower sampling rate reduces processing
requirements when deploying to hardware.

See Also
frest.PRBS | frestimate

More About
• “Estimation Input Signals” on page 5-25
• “Modify Estimation Input Signals” on page 5-41
• “Frequency Response Estimation Using Simulation-Based Techniques” on page 5-77
• “Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary

Signal” on page 5-97

5 Frequency Response Estimation

5-40

Modify Estimation Input Signals
When the frequency response estimation produces unexpected results, you can try modifying the
input signal properties in the ways described in “Troubleshooting Frequency Response Estimation”
on page 5-44.

Modify Sinestream Signal Using Model Linearizer
Add Frequency Points to Sinestream Input Signal

This example shows how to add frequency points to an existing sinestream input signal using the
Model Linearizer.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream Signals Using
Model Linearizer” on page 5-32.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Model Linearizer.

The Edit sinestream dialog box opens.
3 In the dialog box, click Add Frequencies.

The Add frequencies dialog box opens.

4 Enter the frequency range of the points to be added.
5 Click OK to add the specified frequency points to in_sine1.

Delete Frequency Point from Sinestream Input Signal

This example shows how to delete frequency points from an existing sinestream input signal using
the Model Linearizer.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream Signals Using
Model Linearizer” on page 5-32.

2 Double-click in_sine1 in the Linear Analysis Workspace section of the Model Linearizer.

The Edit sinestream dialog box opens.
3 In the frequency content viewer, select the frequency point to delete.

 Modify Estimation Input Signals

5-41

The selected point appears blue.

Tip To select multiple frequency points, click and drag across the frequency points of interest.
4 Click Remove Selected Frequencies delete the selected frequency points from the frequency

content viewer.
5 Click OK to save the modified input signal.

Modify Parameters for a Frequency Point in Sinestream Input Signal

This example shows how to modify signal parameters of an existing sinestream input signal using the
Model Linearizer.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream Signals Using
Model Linearizer” on page 5-32.

2 Double-click in_sine1 in the Linear Analysis Workspace section of the Model Linearizer.

The Edit sinestream dialog box opens.
3 In the frequency content viewer, select the frequency points to delete.

The selected points appears blue.

Tip To select multiple frequency points, click and drag across the frequency points of interest.

5 Frequency Response Estimation

5-42

4 Enter the new values for the signal parameters.

If the parameter value is <mixedvalue>, the parameter has different values for some of the
frequency points selected.

5 Click OK to save the modified input signal.

Modify Sinestream Signal Using MATLAB Code
For example, suppose that you used a sinestream input signal, and the output at a specific frequency
did not reach steady state. In this case, you can modify the characteristics of the sinestream input at
the corresponding frequency.

input.NumPeriods(index) = NewNumPeriods;
input.SettlingPeriods(index) = NewSettlingPeriods;

where index is the frequency value index of the sine wave you want to modify. NewNumPeriods and
NewSettlingPeriods are the new values of NumPeriods and SettlingPeriods, respectively.

To modify several signal properties at a time, you can use the set command. For example:

input = set(input,'NumPeriods',NewNumPeriods,...
 'SettlingPeriods',NewSettlingPeriods)

After modifying the input signal, repeat the estimation.

 Modify Estimation Input Signals

5-43

Troubleshooting Frequency Response Estimation

When to Troubleshoot
If, after analyzing your frequency response estimation, the frequency response plot does not match
the expected behavior of your system, you can use the time response and FFT plots to help you
improve the results.

If your estimation is slow or you run out of memory during estimation, see “Managing Estimation
Speed and Memory” on page 5-71.

Time Response Not at Steady State
What Does This Mean?

This time response has not reached steady state.

This plot shows a steady-state time response.

5 Frequency Response Estimation

5-44

Because frequency response estimation requires steady-state input and output signals, transients
produce inaccurate estimation results.

For sinestream input signals, transients sometimes interfere with the estimation either directly or
indirectly through spectral leakage. For chirp input signals, transients interfere with estimation.

How Do I Fix It?

Possible Cause Action
Model cannot initialize to steady state. • Increase the number of periods for frequencies that do

not reach steady state by changing the NumPeriods and
SettlingPeriods properties. See “Modify Estimation
Input Signals” on page 5-41.

• Disable all time-varying source blocks in your model and
repeat the estimation. See “Effects of Time-Varying
Source Blocks on Frequency Response Estimation” on
page 5-54.

(Sinestream input) Not enough periods
for the output to reach steady state.

• Increase the number of periods for frequencies that do
not reach steady state by changing the NumPeriods and
SettlingPeriods. See “Modify Estimation Input
Signals” on page 5-41.

• Check that filtering is enabled during estimation. You
enable filtering by setting the
ApplyFilteringInFRESTIMATE option to on. For
information about how estimation uses filtering, see the
frestimate reference page.

 Troubleshooting Frequency Response Estimation

5-45

Possible Cause Action
(Chirp input) Signal sweeps through
the frequency range too quickly.

Increase the simulation time by increasing NumSamples. See
“Modify Estimation Input Signals” on page 5-41.

After you try the suggested actions, recompute the estimation either:

• At all frequencies
• In a particular frequency range (only for sinestream input signals)

To recompute the estimation in a particular frequency range:

1 Determine the frequencies for which you want to recompute the estimation results. Then, extract
a portion of the sinestream input signal at these frequencies using fselect.

For example, these commands extract a sinestream input signal between 10 and 20 rad/s from
the input signal input:

input2 = fselect(input,10,20);
2 Modify the properties of the extracted sinestream input signal input2, as described in “Modify

Estimation Input Signals” on page 5-41.
3 Estimate the frequency response sysest2 with the modified input signal using frestimate.
4 Merge the original estimated frequency response sysest and the recomputed estimated

frequency response sysest2:

a Remove data from sysest at the frequencies in sysest2 using fdel.

sysest = fdel(sysest,input2.Frequency)
b Concatenate the original and recomputed responses using fcat.

sys_combined = fcat(sysest2,sysest)

Analyze the recomputed frequency response, as described in “Analyze Estimated Frequency
Response” on page 5-18.

For an example of frequency response estimation with time-varying source blocks, see “Effects of
Time-Varying Source Blocks on Frequency Response Estimation” on page 5-54

FFT Contains Large Harmonics at Frequencies Other than the Input
Signal Frequency
What Does This Mean?

When the FFT plot shows large amplitudes at frequencies other than the input signal, your model is
operating outside the linear range. This condition can cause problems when you want to analyze the
response of your linear system to small perturbations.

5 Frequency Response Estimation

5-46

For models operating in the linear range, the input amplitude A1 in y(t) must be larger than the
amplitudes of other harmonics, A2 and A3.

u(t) = A1sin(ω1 + ϕ1)
y(t) = A1sin(ω1 + ϕ1) + A2sin(ω2 + ϕ2) + A3sin(ω3 + ϕ3) + ...

How Do I Fix It?

Adjust the amplitude of your input signal to decrease the impact of other harmonics, and repeat the
estimation. Typically, you should decrease the input amplitude level to keep the model operating in
the linear range.

For more information about modifying signal amplitudes, see one of the following:

• frest.Sinestream
• frest.Chirp
• frest.PRBS
• “Modify Estimation Input Signals” on page 5-41

Time Response Grows Without Bound
What Does This Mean?

When the time response grows without bound, frequency response estimation results are inaccurate.
Frequency response estimation is only accurate close to the operating point.

 Troubleshooting Frequency Response Estimation

5-47

How Do I Fix It?

Try the suggested actions listed the table and repeat the estimation.

Possible Cause Action
Model is unstable. You cannot estimate the frequency response using

frestimate. Instead, use exact linearization to get a linear
representation of your model. See “Linearize Simulink Model
at Model Operating Point” on page 2-54 or the linearize
reference page.

Stable model is not at steady state. Disable all source blocks in your model, and repeat the
estimation using a steady-state operating point. See “Compute
Steady-State Operating Points” on page 1-5.

Stable model captures a growing
transient.

If the model captures a growing transient, increase the
number of periods in the input signal by changing
NumPeriods. Repeat the estimation using a steady-state
operating point.

Time Response Is Discontinuous or Zero
What Does This Mean?

Discontinuities or noise in the time response indicate that the amplitude of your input signal is too
small to overcome the effects of the discontinuous blocks in your model. Examples of discontinuous
blocks include Quantizer, Backlash, and Dead Zones.

If you used a sinestream input signal and estimated with filtering, turn filtering off in the Simulation
Results Viewer to see the unfiltered time response.

5 Frequency Response Estimation

5-48

The following model with a Quantizer block shows an example of the impact of an input signal that is
too small. When you estimate this model, the unfiltered simulation output includes discontinuities.

How Do I Fix It?

Increase the amplitude of your input signal, and repeat the estimation.

With a larger amplitude, the unfiltered simulated output of the model with a Quantizer block is
smooth.

 Troubleshooting Frequency Response Estimation

5-49

For more information about modifying signal amplitudes, see one of the following:

• frest.Sinestream
• frest.Chirp
• “Modify Estimation Input Signals” on page 5-41

Time Response Is Noisy
What Does This Mean?

When the time response is noisy, frequency response estimation results may be biased.

5 Frequency Response Estimation

5-50

How Do I Fix It?

frestimate does not support estimating frequency response estimation of Simulink models with
blocks that model noise. Locate such blocks with frest.findSources and disable them using the
BlocksToHoldConstant option of frestimate.

If you need to estimate a model with noise, use frestimate to simulate an output signal from your
Simulink model for estimation—without modifying your model. Then, use the Signal Processing
Toolbox™ or System Identification Toolbox software to estimate a model.

To simulate the output of your model in response to a specified input signal:

1 Create a random input signal. For example:

in = frest.Random('Ts',0.001,'NumSamples',1e4);

You can also specify your own custom signal as a timeseries object. For example:

t = 0:0.001:10;
y = sin(2*pi*t);
in_ts = timeseries(y,t);

2 Simulate the model to obtain the output signal. For example:

[sysest,simout] = frestimate(model,op,io,in_ts)

The second output argument of frestimate, simout, is a Simulink.Timeseries object that
stores the simulated output. in_ts is the corresponding input data.

3 Generate timeseries objects before using with other MathWorks® products:

input = generateTimeseries(in_ts);
output = simout{1}.Data;

You can use data from timeseries objects directly in Signal Processing Toolbox software, or
convert these objects to System Identification Toolbox data format. For examples, see “Estimate

 Troubleshooting Frequency Response Estimation

5-51

Frequency Response Models with Noise Using Signal Processing Toolbox” on page 5-66 and
“Estimate Frequency Response Models with Noise Using System Identification Toolbox” on page
5-68.

For a related example, see “Disable Noise Sources During Frequency Response Estimation” on page
5-63.

Time Response Shows Harmonics That Do Not Change Smoothly
What Does This Mean?

The estimated frequency response result does not match the linear system bode plot, possibly only
over a certain frequency range. When the time responses show magnitudes that do not change
smoothly, additional frequency components are affecting the response. These additional frequency
components come from the defined input signal.

5 Frequency Response Estimation

5-52

When the input signal is created using frest.Sinestream, the default value of
SamplesPerPeriod is 40. This default setting produces a coarse input signal, which causes the
mismatch in the bode plot.

How Do I Fix It?

To create a smoother input signal, increase the value of the SamplesPerPeriod setting. For more
information about setting SamplesPerPeriod, see the following:

• frest.Sinestream
• “Modify Estimation Input Signals” on page 5-41

 Troubleshooting Frequency Response Estimation

5-53

Effects of Time-Varying Source Blocks on Frequency Response
Estimation

Time-varying source blocks in a Simulink model can interfere with frequency response estimation by
driving the model away from the steady-state operating point of the system. To facilitate frequency
response estimation, you can disable time-varying source blocks by setting them to constant values
for estimation.

You can identify time-varying sources when estimating frequency responses at the command line and
when using the Model Linearizer app.

To find source blocks, the software traces every signal path that can affect the signal value at each
linearization output point in the model. The traced signal paths:

• Signal paths inside virtual and nonvirtual subsystems.
• Signal paths inside normal-mode referenced models. To ensure that the algorithm identifies

source blocks within referenced models, set all referenced models to normal simulation mode
before finding time-varying sources.

• Signals routed through From and Goto blocks, or through Data Store Read and Data Store Write
blocks.

• Signals routed through switches. The software algorithm assumes that any pole of a switch can be
active during frequency response estimation. The algorithm therefore follows the signal back
through all switch inputs.

Some time-varying source blocks might not be found by the algorithm. If the internal signal path of a
block does not contain a block with no input port, that block is not reported by the
frest.findSources function or in the app. To bring the model to steady state, replace the source
block with a Constant block, or a different source block.

Set Time-Varying Sources to Constant for Estimation Using Model
Linearizer
This example also shows how to improve estimation results by setting time-varying sources to be
constant when estimating frequency responses using the Model Linearizer app.

1 Open the Simulink model.

sys = "scdspeed_ctrlloop";
open_system(sys)

5 Frequency Response Estimation

5-54

2 Linearize the model.

a Set the Engine Model block to normal mode for accurate linearization.

set_param("scdspeed_ctrlloop/Engine Model","SimulationMode","Normal")
b Open the Model Linearizer for the model.

In the Simulink model window, in the Apps gallery, click Model Linearizer.
c

Click Bode to linearize the model and generate a Bode plot of the result.

The linearized model, linsys1, appears in the Linear Analysis Workspace.
3 Create an input sinestream signal for the estimation.

a Open the Create sinestream input dialog box.

On the Estimation tab, in the Input Signal drop-down list, select Sinestream.
b Open the Add frequencies dialog box.

Click Add Frequencies.
c Specify the input sinestream frequency range and number of frequency points.

Enter 10 in the Min box.

Enter 100 in the Max box.

Enter 10 in the box for the number of frequency points.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-55

Click OK.

The added points are visible in the frequency content viewer of the Create sinestream input
dialog box.

d In the frequency content viewer of the Create sinestream input dialog box, select all the
frequency points.

e Specify input sinestream parameters.

Change the Number of periods and Settling periods to ensure that the model reaches
steady-state for each frequency point in the input sinestream.

Enter 30 in the Number of periods box.

Enter 25 in the Settling periods box.
f Create the input sinestream.

Click OK. The new input signal, in_sine1, appears in the Linear Analysis Workspace.
4 Set the Diagnostic Viewer to open when estimation is performed.

On the Estimation tab, select Diagnostic Viewer.
5 Estimate the frequency response for the model.

Click Bode Plot 1 to estimate the frequency response. The Diagnostic Viewer appears
in the document area and the estimated system estsys1 appears in the Linear Analysis
Workspace.

6 Compare the estimated model and the linearized model.

a In Bode Plot 1, there is one frequency point where the estimation and linearization do not
match

5 Frequency Response Estimation

5-56

b Click on the Diagnostic Viewer tab in the plot area of the Model Linearizer.
c Configure the Diagnostic Viewer to show only the frequency point where the estimation

and linearization results do not match.

On the Diagnostic Viewer tab, in the Frequency Selector section, enter 9 in the From box
and 11 in the To box to set the frequency range that is analyzed in the Diagnostic Viewer.

The Filtered Steady State Time Response plot shows a signal that is not sinusoidal.
d View the unfiltered time response.

Right-click the Filtered Steady State Time Response plot and clear the Show filtered
steady state output only option.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-57

The step input and external disturbances drive the model away from the operating point
used to linearize the model, which prevents the response from reaching steady-state. To
correct this problem, find and disable the time-varying source blocks that interfere with the
estimation. Then, estimate the frequency response of the model again.

7 Find and disable the time-varying sources within the model.

a Open the Options for frequency response estimation dialog box.

On the Estimation tab, in the Options section, click More Options.

b In the Options for frequency response estimation dialog box, on the Time Varying Sources
tab, click Find and add time varying source blocks automatically.

This action populates the time varying sources list with the block paths of the time varying
sources in the model. These sources will be held constant during estimation.

5 Frequency Response Estimation

5-58

Close the dialog box.
8 Estimate the frequency response for the model.

On the estimation tab, click Bode Plot 1 to estimate the frequency response. The
estimated system estsys2, appears in the Linear Analysis Workspace.

9 Compare the newly estimated model and the linearized model.

In Bode Plot 1, the magnitude response of estsys1 matches the exact linearization.

Set Time-Varying Sources to Constant for Estimation at the Command
Line
This example also shows how to improve estimation results by setting time-varying sources to be
constant when estimating frequency responses using the frestimate function.

Open the Simulink model.

sys = "scdspeed_ctrlloop";
open_system(sys)

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-59

Obtain the linear analysis points from the model.

io = getlinio(mdl);

Set the Engine Model subsystem to normal mode for accurate simulation results.
set_param("scdspeed_ctrlloop/Engine Model","SimulationMode","Normal")

Linearize the model.
sys = linearize(mdl,io);

Estimate the frequency response between 10 and 100 rad/s.
in = frest.Sinestream(...
 "Frequency",logspace(1,2,10),...
 "NumPeriods",30,
 "SettlingPeriods",25);
[sysest,simout] = frestimate(mdl,io,in);

Compare the estimation results sysest with the exact linearization sys.
frest.simView(simout,in,sysest,sys)

To view the unfiltered time response for the first frequency point, in the Simulation Results Viewer:

• In the Bode Diagram section, adjust the shaded frequency range to contain only the first
frequency point, which does not match the exact linearization at that frequency.

• In the Time Response section, right click the plot and clear the Show filtered steady state
output only parameter.

5 Frequency Response Estimation

5-60

The step input and external disturbances drive the model away from the operating point, preventing
the response from reaching steady-state. To correct this problem, find and disable the time-varying
source blocks that interfere with the estimation.

Identify the time-varying source blocks using frest.findSources.

srcblks = frest.findSources(mdl,io);

Create a frequency response estimation option set to disable the blocks.

opts = frestimateOptions;
opts.BlocksToHoldConstant = srcblks;

Repeat the frequency response estimation using the specified options.

[sysest2,simout2] = frestimate(mdl,io,in,opts);
frest.simView(simout2,in,sysest2,sys)

In the Bode Diagram section, the estimated frequency response matches the exact linearization.

View the unfiltered time response for the first frequency point. In the Simulation Results Viewer:

• In the Bode Diagram section, adjust the shaded frequency range to contain only the first
frequency point.

• In the Time Response section, right click the plot and clear the Show filtered steady state
output only parameter.

 Effects of Time-Varying Source Blocks on Frequency Response Estimation

5-61

As shown in the Time Response plot, the system remains near the initial operating point.

See Also
Apps
Model Linearizer

Functions
frestimate | frestimateOptions | frest.findSources

Related Examples
• “Frequency Response Estimation Basics” on page 5-2

5 Frequency Response Estimation

5-62

Disable Noise Sources During Frequency Response Estimation

This example shows how to disable noise sources in your Simulink® model during frequency
response estimation. Such noise sources can interfere with the signal at the linearization output
points and produce inaccurate estimation results.

Open the model.

mdl = 'scdplane';
open_system(mdl)

Specify linearization input and output points.

io(1) = linio('scdplane/Sum1',1);
io(2) = linio('scdplane/Gain5',1,'output');

Linearize the model and create a sinestream estimation input signal based on the dynamics of the
resulting linear system.

sys = linearize(mdl,io);
in = frest.Sinestream(sys);

Estimate frequency response.

[sysest,simout] = frestimate(mdl,io,in);

 Disable Noise Sources During Frequency Response Estimation

5-63

Compare the estimated frequency response to the exact linearization result.

frest.simView(simout,in,sysest,sys)

In the Bode Diagram, the estimated frequency response does not match the response of the exact
linearization. This result is due to the effects of the Pilot and Wind Gust Disturbance blocks in the
model. To view the effects of the noise on the time response at a given frequency, right-click the time
response plot and make sure Show filtered steady state output only is selected.

Locate the source blocks in the model.

srcblks = frest.findSources(mdl,io);

Repeat the frequency response estimation with the source blocks disabled.

opts = frestimateOptions('BlocksToHoldConstant',srcblks);
[sysest,simout] = frestimate(mdl,io,in,opts);
frest.simView(simout,in,sysest,sys)

5 Frequency Response Estimation

5-64

The resulting frequency response matches the exact linearization results.

See Also
frestimate | frestimateOptions | frest.findSources | frest.simView

More About
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-54

 Disable Noise Sources During Frequency Response Estimation

5-65

Estimate Frequency Response Models with Noise Using Signal
Processing Toolbox

Open the Simulink model, and specify which portion of the model to linearize:

load_system('magball')
io(1) = linio('magball/Desired Height',1);
io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Create a random input signal for simulation:

in = frest.Random('Ts',0.001,'NumSamples',1e4);

Linearize the model at a steady-state operating point:

op = findop('magball',operspec('magball'),...
 findopOptions('DisplayReport','off'));
sys = linearize('magball',io,op);

Simulate the model to obtain the output at the linearization output point:

[sysest,simout] = frestimate('magball',io,in,op);

Estimate a frequency response model using Signal Processing Toolbox software, which includes
windowing and averaging:

input = generateTimeseries(in);
output = detrend(simout{1}.Data,'constant');
[Txy,F] = tfestimate(input.Data(:),...
 output,hanning(4000),[],4000,1/in.Ts);
systfest = frd(Txy,2*pi*F);

Compare the results of analytical linearization and tfestimate:
ax = axes;
h = bodeplot(ax,sys,'b',systfest,'g',systfest.Frequency);
setoptions(h,'Xlim',[10,1000],'PhaseVisible','off')
legend(ax,'Linear model using LINEARIZE','Frequency response using Signal Processing Toolbox',...
 'Location','SouthWest')

5 Frequency Response Estimation

5-66

In this case, the Signal Processing Toolbox command tfestimate gives a more accurate estimation
than frestimate due to windowing and averaging.

 Estimate Frequency Response Models with Noise Using Signal Processing Toolbox

5-67

Estimate Frequency Response Models with Noise Using System
Identification Toolbox

Open the Simulink model, and specify which portion of the model to linearize:

load_system('magball');
io(1) = linio('magball/Desired Height',1);
io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Compute the steady-state operating point, and linearize the model:

op = findop('magball',operspec('magball'),...
 findopOptions('DisplayReport','off'));
sys = linearize('magball',io,op);

Create a chirp signal, and use it to estimate the frequency response:

in = frest.Chirp('FreqRange',[1 1000],...
 'Ts',0.001,...
 'NumSamples',1e4);
[~,simout] = frestimate('magball',io,op,in);

Use System Identification Toolbox software to estimate a fifth-order, state-space model. Compare the
results of analytical linearization and the state-space model:

input = generateTimeseries(in);
output = simout{1}.Data;
data = iddata(output,input.Data(:),in.Ts);
sys_id = n4sid(detrend(data),5,'cov','none');
bodemag(sys,ss(sys_id('measured')),'r')
legend('Linear model obtained using LINEARIZE',...
 'State-space model using System Identification Toolbox',...
 'Location','SouthWest')

5 Frequency Response Estimation

5-68

 Estimate Frequency Response Models with Noise Using System Identification Toolbox

5-69

Generate MATLAB Code for Repeated or Batch Frequency
Response Estimation

This topic shows how to generate MATLAB code for frequency response estimation from the Model
Linearizer. You can generate either a MATLAB script or a MATLAB function. Generated MATLAB
scripts are useful when you want to programmatically reproduce a result you obtained interactively. A
generated MATLAB function allows you to perform multiple estimations with systematic variations in
estimation parameters such as operating point (batch estimation).

To generate MATLAB code for estimation:

1 In Model Linearizer, in the Estimation tab, interactively configure the input signal, analysis
I/Os, operating point, and other parameters for frequency response estimation.

2 Click to expand the gallery.

3 Select the type of code you want to generate:

•
 Script — Generate a MATLAB script that uses your configured parameter values. Select

this option when you want to repeat the same frequency response estimation at the MATLAB
command line.

•
 Function — Generate a MATLAB function that takes analysis I/Os, operating points, and

input signals as input arguments. Select this option when you want to perform multiple
frequency response estimations using different parameter values (batch estimation).

To use a generated MATLAB function for batch estimation, you can create a MATLAB script with a
for loop that cycles through values of the parameter you want to vary. Call the generated MATLAB
function in each iteration of the loop.

5 Frequency Response Estimation

5-70

Managing Estimation Speed and Memory

Ways to Speed up Frequency Response Estimation
The most time consuming operation during frequency response estimation is the simulation of your
Simulink model. You can try to speed up the estimation using any of the following ways:

• Reducing simulation stop time
• Specifying accelerator mode
• Using parallel computing

Reducing Simulation Stop Time

The time it takes to perform frequency response estimation depends on the simulation stop time.

To obtain the simulation stop time, in the Model Linearizer, in the Linear Analysis Workspace,
select the input signal. The simulation time will be displayed in the Variable Preview.

To obtain the simulation stop time from the input signal using MATLAB Code:

tfinal = getSimulationTime(input)

where input is the input signal. The simulation stop time, tfinal, serves as an indicator of the
frequency response estimation duration.

You can reduce the simulation time by modifying your signal properties.

Input Signal Action Caution
Sinestream Decrease the number of periods per

frequency, NumPeriods, especially at
lower frequencies.

You model must be at steady state to
achieve accurate frequency response
estimation. Reducing the number of
periods might not excite your model
long enough to reach steady state.

 Managing Estimation Speed and Memory

5-71

Input Signal Action Caution
Chirp Decrease the signal sample time, Ts,

or the number of samples,
NumSamples.

The frequency resolution of the
estimated response depends on the
number of samples NumSamples.
Decreasing the number of samples
decreases the frequency resolution of
the estimated frequency response.

For information about modifying input signals, see “Modify Estimation Input Signals” on page 5-41.

Specifying Accelerator Mode

You can try to speed up frequency response estimation by specifying the Rapid Accelerator or
Accelerator mode in Simulink.

For more information, see “What Is Acceleration?”.

Using Parallel Computing

You can try to speed up frequency response estimation using parallel computing in the following
situations:

• Your model has multiple inputs.
• Your single-input model uses a sinestream input signal, where the sinestream SimulationOrder

property has the value 'OneAtATime'.

For information on setting this option, see the frest.Sinestream reference page.

In these situations, frequency response estimation performs multiple simulations. If you have
installed the Parallel Computing Toolbox™ software, you can run these multiple simulations in
parallel on multiple MATLAB sessions (pool of MATLAB workers).

For more information about using parallel computing, see “Speeding Up Estimation Using Parallel
Computing” on page 5-72.

Speeding Up Estimation Using Parallel Computing
Configuring MATLAB for Parallel Computing

You can use parallel computing to speed up a frequency response estimation that performs multiple
simulations. You can use parallel computing with the Model Linearizer and frestimate. When you
perform frequency response estimation using parallel computing, the software uses the available
parallel pool. If no parallel pool is available and Automatically create a parallel pool is selected in
your Parallel Computing Toolbox preferences, then the software starts a parallel pool using the
settings in those preferences.

You can configure the software to automatically detect model dependencies and temporarily add them
to the parallel pool workers. However, to ensure that workers are able to access the undetected file
and path dependencies, create a cluster profile that specifies the same. The parallel pool used to
optimize the model must be associated with this cluster profile. For information on creating a cluster
profile, see “Add and Modify Cluster Profiles” (Parallel Computing Toolbox).

To manually open a parallel pool that uses a specific cluster profile, use:

5 Frequency Response Estimation

5-72

parpool(MyProfile)

MyProfile is the name of a cluster profile.

Estimating Frequency Response Using Parallel Computing Using Model Linearizer

After you configure your parallel computing settings, as described in “Configuring MATLAB for
Parallel Computing” on page 5-72, you can estimate the frequency response of a Simulink model
using the Model Linearizer app.

1 In Model Linearizer, on the Estimation tab, click More Options.
2 In the Options for frequency response estimation dialog box, on the Parallel Options tab, select

Use the parallel pool during estimation.

3 (Optional) Click Add path dependency.

In the Browse For Folder dialog box, navigate to and select the directory to add to the model path
dependencies.

Click OK.

Tip Alternatively, manually specify the paths in the Model path dependencies list. You can
specify the paths separated with a new line.

4 (Optional) Click Sync path dependencies from model.

This action finds the model path dependencies in your Simulink model and adds them to the
Model path dependencies list box.

Estimating Frequency Response Using Parallel Computing (MATLAB Code)

After you configure your parallel computing settings, as described in “Configuring MATLAB for
Parallel Computing” on page 5-72, you can estimate the frequency response of a Simulink model.

1 Find the paths to files that your Simulink model requires to run, called path dependencies.

dirs = frest.findDepend(model)

 Managing Estimation Speed and Memory

5-73

dirs is a cell array of character vectors containing path dependencies, such as referenced
models, data files, and S-functions.

For more information about this command, see frest.findDepend.

To learn more about model dependencies, see “Analyze Model Dependencies” and “Dependency
Analyzer Scope and Limitations”.

2 (Optional) Check that dirs includes all path dependencies. Append any missing paths to dirs:

dirs = vertcat(dirs,'\\hostname\C$\matlab\work')
3 (Optional) Check that all workers have access to the paths in dirs.

If any of the paths resides on your local drive, specify that all workers can access your local
drive. For example, this command converts all references to the C drive to an equivalent network
address that is accessible to all workers:

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')
4 Enable parallel computing and specify model path dependencies by creating an options object

using the frestimateOptions command:
options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

Tip To enable parallel computing for all estimations, select the global preference Use the
parallel pool when you use the "frestimate" command check box in the MATLAB
preferences. If your model has path dependencies, you must create your own frequency response
options object that specifies the path dependencies before beginning estimation.

5 Estimate the frequency response:

[sysest,simout] = frestimate('model',io,input,options)

For an example of using parallel computing to speed up estimation, see “Speed Up Frequency
Response Estimation Using Parallel Computing” on page 5-92.

Managing Memory During Frequency Response Estimation
Frequency response estimation terminates when the simulation data exceed available memory.
Insufficient memory occurs in the following situations:

• Your model performs data logging during a long simulation. A sinestream input signal with four
periods at a frequency of 1e-3 rad/s runs a Simulink simulation for 25,000 s. If you are logging
signals using To Workspace blocks, this length of simulation time might cause memory problems.

• A model with an output point discrete sample time of 1e-8 s that simulates at 5-Hz frequency (0.2
s of simulation per period), results in 0.2

1e− 8 = 2 million samples of data per period. Typically, this
amount of data requires over 300 MB of storage.

To avoid memory issues while estimating frequency response:

1 Disable any signal logging in your Simulink model. To learn how you can identify which model
components log signals and disable signal logging, see “Save Signal Data Using Signal Logging”.

2 Try one or more of the actions listed in the following sections:

5 Frequency Response Estimation

5-74

• “Model-Specific Ways to Avoid Memory Issues” on page 5-75
• “Input-Signal-Specific Ways to Avoid Memory Issues” on page 5-75

3 Repeat the estimation.

Model-Specific Ways to Avoid Memory Issues

To avoid memory issues, try one or more of the actions listed in the following table, as appropriate for
your model type.

Model Type Action
Models with fast discrete sample time specified at
output point

Insert a Rate Transition block at the output point
to lower the sample rate, which decreases the
amount of logged data. Move the linearization
output point to the output of the Rate Transition
block before you estimate. Ensure that the
location of the original output point does not have
aliasing as a result of rate conversion.

For information on determining sample rate, see
“View Sample Time Information”. If your
estimation is slow, see “Ways to Speed up
Frequency Response Estimation” on page 5-71.

Models with multiple input and output points
(MIMO models)

• Estimate the response for all input/output
combinations separately. Then, combine the
results into one MIMO model using the data
format described in “Create Frequency
Response Model from Data”.

• Use parallel computing to run the independent
simulations in parallel on different computers.
See “Speeding Up Estimation Using Parallel
Computing” on page 5-72.

Input-Signal-Specific Ways to Avoid Memory Issues

To avoid memory issues, try one or more of the actions listed in the following table, as appropriate for
your input signal type.

 Managing Estimation Speed and Memory

5-75

Input Signal Type Action
Sinestream • Remove low frequencies from your input

signal for which you do not need the
frequency response.

• Modify the sinestream signal to estimate each
frequency separately by setting the
SimulationOrder option to OneAtATime.
Then estimate using a frestimate syntax
that does not request the simulated time-
response output data, for example sysest =
frestimate(model,io,input).

• Use parallel computing to run independent
simulations in parallel on different computers.
See “Speeding Up Estimation Using Parallel
Computing” on page 5-72.

• Divide the input signal into multiple signals
using fselect. Estimate the frequency
response for each signal separately using
frestimate. Then, combine results using
fcat.

Chirp Create separate input signals that divide up the
swept frequency range of the original signal into
smaller sections using frest.Chirp. Estimate
the frequency response for each signal separately
using frestimate. Then, combine results using
fcat.

Random Decrease the number of samples in the random
input signal by changing NumSamples before
estimating. See “Time Response Is Noisy” on
page 5-50.

5 Frequency Response Estimation

5-76

Frequency Response Estimation Using Simulation-Based
Techniques

This example shows how to obtain the frequency response of Simulink® models when analytical
block-by-block linearization does not provide an accurate answer due to event-based dynamics in the
linearization path. Examples of such systems are models with triggered subsystems or models using
pulse width modulation (PWM) input signals.

Open the Model

Open the Simulink model for engine timing.

mdl = 'scdengine';
open_system(mdl)

Analytical block-by-block linearization of this model from the throttle angle to engine speed gives a
zero linearization result due to the triggered Compression subsystem in the linearization path.

io = getlinio(mdl);
linsys = linearize(mdl,io)

linsys =

 D =
 ThrottleAngl
 EngineSpeed 0

Static gain.

 Frequency Response Estimation Using Simulation-Based Techniques

5-77

Estimate Frequency Response Using Sinestream Input Signal

Sinestream input signals are the most reliable input signals for estimating an accurate frequency
response of a Simulink model using the frestimate function. A sinestream signal is composed of
individual sinusoidal signals that are appended to each other. The frestimate function simulates
the model for each frequency in the sinestream input signal, as specified using the Frequency
parameter, for the corresponding amount of periods, as specified using the NumPeriods parameter.
After the simulation, frestimate uses the output signal to compute the response at each frequency.
frestimate uses only the periods after the system reaches a steady state for that input frequency,
that is, after a number of settling periods as specified using the SettlingPeriods parameter.

Create a sinestream signal with 50 logarithmically spaced distinct frequencies between 0.1 and 10
rad/s.

in = frest.Sinestream('Frequency',logspace(-1,1,50),'Amplitude',1e-3)

The sinestream input signal:

 Frequency : [0.1 0.10985 0.12068 0.13257 ...] (rad/s)
 Amplitude : 0.001
 SamplesPerPeriod : 40
 NumPeriods : 4
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : 1
 ApplyFilteringInFRESTIMATE (on/off) : on
 SimulationOrder (Sequential/OneAtATime): Sequential

By default, each frequency in a sinestream input signal is simulated for four periods, that is,
NumPeriods is 4 for all frequencies. Also, the end of the first period is specified to be where the
system reaches steady state, that is, SettlingPeriods is 1 for all frequencies. Therefore,
frestimate uses the last three periods of the output signals.

Using this sinestream input signal, perform the frequency response estimation using the
frestimate function, and plot the resulting frequency response data.

[sys,simout] = frestimate(mdl,io,in);
bode(sys)

5 Frequency Response Estimation

5-78

You can inspect the estimation results using the Simulation Results Viewer. The viewer shows time-
domain and frequency-domain simulation results for the selected frequencies and a summary bode
plot where you can interactively switch between frequencies.

frest.simView(simout,in,sys);

 Frequency Response Estimation Using Simulation-Based Techniques

5-79

You can use the viewer as a tool to diagnose issues that impact the accuracy of the frequency
response estimation, such as:

• Not reaching steady state
• Excitation of nonlinearities
• Running into instabilities

Estimate Frequency Response Using Chirp Input Signal

Another input signal you can use when estimating frequency response data from a Simulink model is
a frequency chirp. A frequency chirp differs from a sinestream in that the frequency is
instantaneously varied.

You can use chirp input signals to obtain faster frequency response estimation. However, the
resulting frequency response can be less reliable than that obtained using sinestream inputs, since
each frequency is not simulated long enough to drive the system to steady state at that frequency.

5 Frequency Response Estimation

5-80

Create a chirp signal that sweeps between the frequencies 0.1 and 10 rad/s logarithmically.

in_chirp = frest.Chirp('FreqRange',[0.1 10],'Amplitude',1e-3,...
 'SweepMethod','logarithmic','NumSamples',3000);

Perform the frequency response estimation using the chirp signal.

sys_chirp = frestimate(mdl,io,in_chirp);

Plot the results obtained from both the sinestream and chirp input signals together.

bode(sys,sys_chirp,'r')

Estimate Frequency Response Using PRBS Input Signal

Another input signal you can use when estimating frequency response data from a Simulink model is
a pseudorandom binary sequence (PRBS). A PRBS is a periodic, deterministic signal with white-noise-
like properties that shifts between two values.

You can use PRBS input signals to obtain faster frequency response estimation with a higher
frequency resolution than the chirp signal.

Create a PRBS signal with an order of 12 and one period in the signal. Using a single period produces
a nonperiodic PRBS. The length of the generated PRBS is 4095 (2^12 - 1). To obtain an accurate
frequency response estimation, the length of the PRBS must be sufficiently large. To ensure that the
system is properly excited, specify the perturbation amplitude of the PRBS as 0.01.

in_PRBS = frest.PRBS('Order',12,'NumPeriods',1,'Amplitude',1e-2,'Ts',0.1,'UseWindow','off');

 Frequency Response Estimation Using Simulation-Based Techniques

5-81

Perform the frequency response estimation using the PRBS signal.

sys_PRBS = frestimate(mdl,io,in_PRBS);

Plot the results obtained with both PRBS and sinestream input signals together.

bode(sys_PRBS,sys,'r',{0.1 10})

Close the model.

bdclose('scdengine')

See Also
frestimate

More About
• “Frequency Response Estimation Basics” on page 5-2

5 Frequency Response Estimation

5-82

Validate Linearization in Frequency Domain at Command Line

This example shows how to validate a block-by-block analytical linearization result using frequency
response estimation. To run this example, you need Aerospace Blockset™ software.

Linearize Model

Open the Simulink® model for the lightweight airplane. For more information on this model, see
“Lightweight Airplane Design” (Aerospace Blockset).

mdl = 'scdskyhogg';
open_system(mdl)

You can linearize the lightweight airplane model from the altitude command signal, AltCmd, to the
sensed height, h_sensed. These linear analysis points are already specified in the model.

io = getlinio(mdl)

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdskyhogg/Pilot/Add
- Port: 1
- Signal Name: AltCmd
2. Linearization output measurement located at the following signal:
- Block: scdskyhogg/Vehicle System Model/Avionics/Autopilot/Bus Selector1
- Port: 1
- Signal Name: <h_sensed>

Linearize the model using the linearize function. The model is preconfigured to use an operating
point obtained using a simulation snapshot at t = 75.

sys = linearize(mdl,io);
bode(sys)

 Validate Linearization in Frequency Domain at Command Line

5-83

Estimate Frequency Response

To determine whether the linearization results properly capture characteristics of the nonlinear
model, such as the anti-resonance around 6.28 rad/s, you can validate the linearization result using
frestimate.

Create a sinestream input signal. Use the linearization result as an input argument to automatically
set various parameters of the sinestream input signal, such as the set of frequencies and the number
of periods for each frequency, based on the linear system.

in = frest.Sinestream(sys);
in.Amplitude = 0.5

The sinestream input signal:

 Frequency : [0.0034142;0.0054345;0.0086502;0.013768 ...] (rad/s)
 Amplitude : 0.5
 SamplesPerPeriod : [110417;69370;43582;27381 ...]
 NumPeriods : [4;4;4;4 ...]
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : [1;1;1;1 ...]
 ApplyFilteringInFRESTIMATE (on/off) : on
 SimulationOrder (Sequential/OneAtATime): Sequential

5 Frequency Response Estimation

5-84

The software selects 25 frequencies at which to compute the response. These frequencies vary
between 0.0034 rad/s and 14.5 rad/s. The frequencies that are automatically selected focus on where
interesting dynamics occur (such as the anti-resonance at 6.28 rad/s). The number of periods that it
takes for the system to reach steady state is estimated for each of these frequencies and varies
between 1 period (for 0.0034 rad/s) and 188 periods (for 14.5 rad/s).

Estimate the frequency response using this input signal. frestimate simulates the model with the
input signal, which can take a long time in a normal simulation model. To speed up the simulation,
configure the model to use rapid accelerator mode.

set_param(mdl,'SimulationMode','rapid');

Using rapid accelerator mode can significantly increase the speed of the simulation. The actual speed
improvement depends on your computer configuration.

To run the frequency response estimation use the following command.

sysest = frestimate(mdl,in,io);

For this example, you can load the estimation result from a MAT-file.

load scdskyhogg_frestresults.mat;

Compare the analytical linearization result against the frequency response data from frestimate.
The frequency response data and analytical linearization result match well, validating that anti-
resonance between the frequencies 1 and 10 rad/s does exist in the actual nonlinear airplane model.

bode(sys,sysest,'r*')

 Validate Linearization in Frequency Domain at Command Line

5-85

Close the model.

bdclose('scdskyhogg')

See Also
frestimate

More About
• “Validate Linearization In Frequency Domain Using Model Linearizer” on page 2-110
• “Validate Linearization in Time Domain” on page 2-107

5 Frequency Response Estimation

5-86

Describing Function Analysis of Nonlinear Simulink Models

This example shows how to use the frequency response estimation to perform a sinusoidal-input
describing function analysis for a model with a saturation nonlinearity.

Describing function analysis is a technique for studying the frequency response of nonlinear systems.
It is an extension of linear frequency response analysis. In linear systems, transfer functions depend
only on the frequency of the input signal. In nonlinear systems, when a specific class of input signal,
such as a sinusoid, is applied to a nonlinear element, you can represent the nonlinear element using a
describing function. A describing function depends not only on the input frequency but also on the
input amplitude. Describing function analysis has a wide area of applications from frequency
response analysis to the prediction of limit cycles.

To use sinusoidal-input describing function analysis, which is the most common type of describing
function analysis, your model should satisfy the following conditions.

1 Nonlinearity is time-invariant.
2 Nonlinearity does not generate any subharmonics in response to the input sinusoid.
3 The system filters out any superharmonics generated by the nonlinearity (this condition is often

referred to as the filtering hypothesis).

In this example, you perform describing function analysis on a model with a saturation nonlinearity
that satisfies these conditions.

Open the Simulink® model.

mdl = 'scdsaturationDF';
open_system(mdl)

The saturation nonlinearity has the following sinusoidal input describing function.

Here, for a saturation with upper and lower limits of 0.5 and -0.5, respectively, and A is the
amplitude of the sinusoidal input signal.

 Describing Function Analysis of Nonlinear Simulink Models

5-87

Compute and plot the describing function for amplitudes varying between 0.1 and 2.1. The
describing function is implemented in saturationDF.m.

A = linspace(0.1,2.1,21);
N_A = saturationDF(0.5./A);
plot(A, N_A)
xlabel('Amplitude')
ylabel('N_A(A)')
title('Describing Function for Saturation')

You can compute the describing function for the saturation nonlinearity using frestimate over the
same set of amplitudes for a fixed frequency of 5 rad/s. Since the describing function for a saturation
does not depend on frequency, it is sufficient to run the analysis at a single frequency.

Define the input and output linear analysis points.

io(1) = linio('scdsaturationDF/In1',1,'input');
io(2) = linio('scdsaturationDF/Saturation',1,'output');

For each amplitude, create a sinestream input with the fixed 5 rad/s frequency and given amplitude.
Then, run frestimate using this input signal.

w = 5;
N_A_withfrest = zeros(size(N_A));
for ct = 1:numel(A)
 in = frest.Sinestream('Frequency',w,'Amplitude',A(ct));
 sysest = frestimate(mdl,in,io);

5 Frequency Response Estimation

5-88

 N_A_withfrest(ct) = real(sysest.resp);
end

Plot the frequency response estimation result along with the describing function.

plot(A,N_A,A,N_A_withfrest,'r*')
xlabel('Amplitude')
ylabel('N_A(A)')
title('Describing Function for Saturation Using frestimate')
legend('Describing function','Frequency response estimate')

Close the model.

bdclose(mdl)

You can also run a closed-loop describing function analysis over a frequency range. Open the model
for this analysis.

mdl = 'scdsaturationDFcl';
open_system(mdl)

 Describing Function Analysis of Nonlinear Simulink Models

5-89

To begin, analytically compute the frequency response from the reference to the output using
describing functions. To do so, first compute the amplitude of the input signal to the nonlinearity,
given the reference amplitude and frequency. The input amplitude for the nonlinearity is not
necessarily equal to the reference amplitude.

L = zpk([],[0 -1 -10],1);
w = logspace(-2,2,50);
A_DF = zeros(numel(A),numel(w));
for ct_amp = 1:numel(A)
 for ct_freq = 1:numel(w)
 % Compute the input amplitude to the nonlinearity by solving the
 % analytical equation.
 opt = optimset('Display','off');
 A_DF(ct_amp,ct_freq) = ...
 fzero(@(A_DF) solveForSatAmp(A_DF,L,w(ct_freq),A(ct_amp)),...
 A(ct_amp),opt);
 end
end

Next, for each amplitude, compute the analytical frequency response of the closed-loop system from
the reference to the output using the describing function. Store the results in an array of frd objects.

L_w = freqresp(L,w);
for ct = 1:numel(A)
 N_A = saturationDF(0.5./A_DF(ct,:));
 cl_resp = N_A(:).*L_w(:)./(1+N_A(:).*L_w(:));
 cl(1,1,ct) = frd(cl_resp,w);
end

Obtain the frequency response for the closed-loop system using frestimate in a manner similar to
the saturation describing function analysis.

io(1) = linio('scdsaturationDFcl/r',1,'input');
io(2) = linio('scdsaturationDFcl/Linear',1,'output');
for ct = 1:numel(A)
 in = frest.Sinestream('Frequency',w,'Amplitude',A(ct),...
 'NumPeriods',10,'SettlingPeriods',7);
 cl_withfrest(1,1,ct) = frestimate(mdl,in,io);
end

Plot the analytically calculated closed-loop magnitude along with the result from frestimate. As
expected, the results match. The arrow indicates the direction of increasing amplitude.

5 Frequency Response Estimation

5-90

h = figure;
bodemag(cl,'b',cl_withfrest,'r')
annotation(h,'textarrow',[0.64 0.58],[0.64 0.58],'String','Increasing A');
legend('Analytical result','Frequency response estimate',...
 'Location','southwest')

Close the model.

bdclose(mdl)

See Also
frestimate | frest.Sinestream

 Describing Function Analysis of Nonlinear Simulink Models

5-91

Speed Up Frequency Response Estimation Using Parallel
Computing

This example illustrates how to speed up frequency response estimation of Simulink® models using
parallel computing. In some scenarios, the frestimate function estimates the frequency response of
a Simulink model by performing multiple Simulink simulations. You can distribute these simulations
to a pool of MATLAB® workers by using Parallel Computing Toolbox™ software.

This example requires Parallel Computing Toolbox software. You can optionally run simulations on a
computer cluster using MATLAB Parallel Server™ software. This example uses the local worker
functionality available in Parallel Computing Toolbox software.

Speed up Simulink Simulations Performed by frestimate

When you compute a frequency response using the frestimate function, the majority of
computation time is spent in Simulink simulations. To reduce the total simulation time, you can:

1 Use rapid accelerator mode. Use this method when frestimate performs only one Simulink
simulation. For an example, see “Validate Linearization in Frequency Domain at Command Line”
on page 5-83.

2 Distribute simulations across workers in a MATLAB pool. Use this method when frestimate
performs multiple Simulink simulations. frestimate performs more than one Simulink
simulation when you specify the following:

• A sinestream input signal with the SimulationOrder parameter set to 'OneAtATime'. In this
case, each frequency in the sinestream signal is simulated separately.

• Linear analysis points with more than one input point or a nonscalar input point. In this case, each
linearization input point or each channel in a nonscalar linearization input point yields a separate
Simulink simulation.

Using the frestimate function with parallel computing also supports normal, accelerator, and rapid
accelerator modes.

Configure a MATLAB Pool

To use parallel computing to speed up frequency response estimation, configure and start a pool of
MATLAB workers before you run the frestimate function.

To check if a MATLAB pool is open, use the gcp function. If no pool is open, open one using the
parpool function.

if isempty(gcp)
 parpool local
end

Distribute Simulink Simulations for Each Frequency in Sinestream Input

When you use a sinestream input signal with the frestimate function and you set the
SimulationOrder parameter to 'OneAtATime', each frequency in the sinestream signal simulates
in a separate Simulink simulation. If you enable the parallel computing option, the simulations
corresponding to individual frequencies are distributed among workers in the MATLAB pool.

Open the model, and obtain the linear analysis points stored in the model.

5 Frequency Response Estimation

5-92

mdl = 'scdengine';
open_system(mdl)
io = getlinio(mdl);

Create a sinestream input signal with a 'OneAtATime' simulation order.

in = frest.Sinestream('Frequency',logspace(-1,1,50),'Amplitude',1e-3,...
 'SimulationOrder','OneAtATime');

In this model, there is a single linearization input point and a single linearization output point. There
are 50 frequencies in the sinestream signal. The frestimate command performs 50 separate
Simulink simulations because the SimulationOrder parameter is set to 'OneAtATime'.

To distribute these simulations among workers, enable parallel computing for frestimate. Create
an frestimateOptions object and set the UseParallel option to 'on'. Use this object as an input
argument for frestimate.

opt = frestimateOptions('UseParallel','on');
sysest = frestimate(mdl,io,in,opt);
bode(sysest,'r*')

 Speed Up Frequency Response Estimation Using Parallel Computing

5-93

In general, parallel computing significantly speeds up frequency response estimation using
frestimate. The actual processing times and amount of improvement will depend on your computer
setup and your Parallel Computing Toolbox configuration. For example, the amount of improvement
can be affected by various factors including the overhead from client-to-worker data transfer and
resource competition between worker processes and OS processes.

Close the model.

bdclose(mdl)

Distribute Simulink Simulations for Input Channels

When the number of linearization input points or the number of channels in a linearization input point
is greater than one, the frestimate command distributes individual Simulink simulations
corresponding to these input channels among workers in the MATLAB pool.

Open the model, and obtain the linear analysis points stored in the model.

mdl = 'scdplane';
open_system(mdl)

io(1) = linio('scdplane/Sum1',1,'input');
io(2) = linio('scdplane/Actuator Model',1,'input');
io(3) = linio('scdplane/Gain5',1,'output');

5 Frequency Response Estimation

5-94

With the linio function, you specify two linearization input points, which are both located on scalar
Simulink signals. If you run the frestimate command to estimate the frequency response for this
model, two Simulink simulations occur, one for each input.

Linearize the model, and create an input signal using the linearization result.

sys = linearize(mdl,io);
in = frest.Sinestream(sys);

Before estimating the frequency response, find all source blocks in the signal paths of the
linearization outputs that generate time-varying signals using the findSources function. Such time-
varying signals can interfere with the signal at the linearization output points and produce inaccurate
estimation results. To disable the time-varying source blocks, create an frestimateOptions option
set and specify the BlocksToHoldConstant option.

srcblks = frest.findSources('scdplane',io);
opt = frestimateOptions('BlocksToHoldConstant',srcblks);

Enable parallel computing using the UseParallel estimation option, which distributes simulations
among workers.

opt.UseParallel = 'on';

Run frestimate using parallel computing.

sysest = frestimate(mdl,io,in,opt);

 Speed Up Frequency Response Estimation Using Parallel Computing

5-95

Plot the estimation result against the analytical linearization

bodeopts = bodeoptions;
bodeopts.PhaseMatching = 'on';
bodeplot(sys,sysest,'r*',bodeopts);

Close the model, the open figure, and the parallel pool.

bdclose(mdl)
close(gcf)
delete(gcp)

See Also
frestimate | frestimateOptions | parpool | gcp

More About
• “Managing Estimation Speed and Memory” on page 5-71
• “Troubleshooting Frequency Response Estimation” on page 5-44

5 Frequency Response Estimation

5-96

Frequency Response Estimation for Power Electronics Model
Using Pseudorandom Binary Signal

This example shows how to identify a frequency domain model using a pseudorandom binary
sequence (PRBS) for a power electronics system modeled in Simulink® using Simscape™ Electrical™
components. This example addresses the frequency response estimation process in the controller
design workflow using a PRBS as the input signal.

Typically, power electronics systems cannot be linearized because they use high-frequency switching
components, such as pulse-width modulation (PWM) generators. However, most Simulink Control
Design™ PID tuning tools design PID gains based on a linearized plant model. To obtain such a model
for a power electronics model that cannot be linearized, you can estimate the plant frequency
response over a range of frequencies, as shown in this example.

To collect frequency response data, you can:

• Estimate the plant frequency response at the command line.
• Estimate the plant frequency response using the Model Linearizer app.

This example shows how to estimate the plant frequency response at the command line. To learn how
to estimate the plant frequency response for a power electronics system in Model Linearizer using a
PRBS input signal, see “Frequency Response Estimation in Model Linearizer Using Pseudorandom
Binary Sequence” on page 5-104.

Boost Converter Model

This example uses a boost converter model as a power electronics system. A boost converter circuit
converts one DC voltage to another, typically higher, DC voltage by controlled chopping or switching
of the source voltage.

mdl = 'scdboostconverter';
open_system(mdl)

This model uses a MOSFET driven by a PWM signal for switching. The output voltage is
regulated to the reference value . A digital PID controller adjusts the PWM duty cycle, ,

 Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary Signal

5-97

based on the voltage error signal. For this example, you estimate the frequency response from the
PWM duty cycle to the load voltage .

Simscape Electrical software contains predefined blocks for many power electronics systems. This
model contains a variant subsystem with two versions of the boost converter model:

• Boost converter circuit constructed using electrical power components. The parameters of the
circuit components are based on [1].

• Boost converter block configured to have the same parameters as the boost converter circuit. For
more information on this block, see Boost Converter (Simscape Electrical).

To use the Boost Converter block version of the subsystem, in the model, click Boost Converter
Block or use the following command.

set_param([bdroot '/Boost Converter'],...
 'LabelModeActiveChoice','block_boost_converter');

Find Model Operating Point

To estimate the frequency response for the boost converter, you must first determine the steady-state
operating point at which you want the converter to operate. For more information on finding
operating points, see “Find Steady-State Operating Points for Simscape Models” on page 1-106. For
this example, use an operating point estimated from a simulation snapshot at 0.045 seconds.

opini = findop(mdl,0.045);

Initialize the model with the computed operating point.

set_param(mdl,'LoadInitialState','on','InitialState','getstatestruct(opini)');

Create Pseudorandom Binary Signal

A pseudorandom binary signal (PRBS) is a periodic, deterministic signal with white-noise-like
properties that shifts between two values. A PRBS is an inherently periodic signal with a maximum
period length of , where is the PRBS order. For more information, see “PRBS Input Signals”
on page 5-37.

Create a PRBS with the following configuration.

• To use a nonperiodic PRBS, set the number of periods to 1.
• Use a PRBS order of 14, producing a signal of length 16383. To obtain an accurate frequency

response estimation, the length of the PRBS must be sufficiently large.
• Set the injection frequency of the PRBS to 200 kHz to match the sample time in the model. That is,

specify a sample time of 5e-6 seconds.
• To ensure that the system is properly excited, set the perturbation amplitude to 0.05. If the input

amplitude is too large, the boost converter operates in discontinuous-current mode. If the input
amplitude is too small, the PRBS is indistinguishable from ripples in the power electronic circuits.

in_PRBS = frest.PRBS('Order',14,'NumPeriods',1,'Amplitude',0.05,'Ts',5e-6);

Collect Frequency Response Data

To collect frequency response data, you can estimate the plant frequency response at the command
line. To do so, first get the input and output linear analysis points from the model.

5 Frequency Response Estimation

5-98

io = getlinio(mdl);

Specify the operating point using the model initial conditions.

op = operpoint(mdl);

Find all source blocks in the signal paths of the linearization outputs that generate time-varying
signals. Such time-varying signals can interfere with the signal at the linearization output points and
produce inaccurate estimation results.

srcblks = frest.findSources(mdl,io);

To disable the time-varying source blocks, create an frestimateOptions option set and specify the
BlocksToHoldConstant option.

opts = frestimateOptions;
opts.BlocksToHoldConstant = srcblks;

Estimate the frequency response using the PRBS input signal.

sysest_prbs = frestimate(mdl,io,op,in_PRBS,opts);

Analytical Transfer Function of Boost Converter Model

Analytical tranfer function can be determined based on component parameters of the model.

L = 20e-6;
C = 1480e-6;
R = 6;
rC = 8e-3;
rL = 1.8e-3;
Vo = 18;
Iload = Vo/R;

To compute the analytical transfer function, you require the actual duty cycle value. For this boost
converter, use the logged duty cycle at the operating point.

D = 0.734785;
d = 1-0.734785;

Define the analytical transfer function, which is based on [1], using the component parameters in the
boost converter model.

Den = [L*C*(R+rC) L+C*rL*(R+rC)+C*R*rC-R*D*C*rC R+rL-R*D-R^2*D*(1-D)/(R+rC)];
Num1 = [L/R/(1-D)^2 rL/R/(1-D)^2-R/(R+rC)+Iload/Vo*(2*rL/(1-D)^2+R*rC/(R+rC)/(1-D))];
Num = [C*rC*Num1(1) Num1(1)+C*rC*Num1(2) Num1(2)];
TFvd = tf(-R*Vo*(1-D)^2*Num, (1+rL/R/(1-D)-R*D/(R+rC))*Den);

For a more accurate description, account for the delay due to PWM signal in the transfer function
TFvd.

N = 1.5;
Ts = 5e-6;
iodelay = N*Ts; % 0.5 PWM + 1 ZOH
TFvd.IODelay = iodelay;

 Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary Signal

5-99

Compare Frequency Response Data to Sinestream FRE Results

Compare the estimation results when using PRBS signal to those found using a sinestream input
signal. Compare the signals across the 15 logarithmically spaced frequencies used for the sinestream
ranging from 50 Hz to 5 kHz.

load frdSinestream
wbode = estsysSinestream.Frequency;
opts = bodeoptions;
opts.PhaseMatching = 'on';
opts.XLim = [wbode(1),wbode(end)];
bodeplot(sysest_prbs,estsysSinestream,TFvd,opts);
legend('PRBS estimation result','Sinestream estimation result',...
'Analytical transfer function','Location','northeast');
grid on

To find the simulation time taken for frequency response estimation by an input signal, you can use
the getSimulationTime function.

tfinal_sinestream = in_sine1.getSimulationTime
tfinal_prbs = in_PRBS.getSimulationTime

tfinal_sinestream =

 0.2833

5 Frequency Response Estimation

5-100

tfinal_prbs =

 0.0819

The simulation time with in_PRBS is about 30% of the time taken by in_sine1 to estimate the
frequency response of the model. This indicates that the frequency response estimation with PRBS
input signal is much faster than the sinestream input signal.

The estimated frequency response result, sysest_prbs, closely matches estsysSinestream.
Because the PRBS input signal estimates frequency responses with a large number of frequency
points, the estimation result provides more information about the resonant characteristics of the
system. To get similar results using sinestream input signal, you might need to increase the number
of frequency points, which results in an increase in estimation time. You can use this approach to
obtain accurate frequency response estimation results in a shorter simulation time as compared to
estimation with sinestream signals.

Improve Frequency Response Result at Low Frequencies

To improve the frequency response estimation result at lower frequencies, you can use a sample time
slower than the sample time in the original boost converter model. To do so, modify the model to use
a Constant block at the input analysis point and a Rate Transition block at the output analysis point.

For both the Constant block and the Rate Transition block, use a sample time of 5e-5 seconds, which
is ten times slower than the original sample time of 5e-6 seconds.

Create a PRBS input signal using the new sample time with an order of 12.

in_PRBS = frest.PRBS('Order',12,'NumPeriods',1,'Amplitude',0.05,'Ts',5e-5);

With the new PRBS input signal, you can obtain a frequency response that extends to lower
frequencies.

 Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary Signal

5-101

The ability to change the sample time of the PRBS input signal time provides an additional degree of
freedom in the frequency response estimation process. Using a larger sample time than in the
original model, you can obtain a higher resolution frequency response estimation result over the low-
frequency range with a short simulation time. Additionally, running estimation at lower sampling rate
reduces processing requirements when deploying to hardware.

Close the model.

close_system(mdl,0)

References

[1] Lee, S. W. Practical Feedback Loop Analysis for Voltage-Mode Boost Converter. Application Report
SLVA633. Texas Instruments, 2014. https://www.ti.com/lit/an/slva633/slva633.pdf.

See Also
frest.PRBS | frestimate | frestimateOptions

Related Examples
• “Frequency Response Estimation Basics” on page 5-2
• “Estimate Frequency Response at the Command Line” on page 5-14
• “PRBS Input Signals” on page 5-37
• “Estimation Input Signals” on page 5-25

5 Frequency Response Estimation

5-102

https://www.ti.com/lit/an/slva633/slva633.pdf

• Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence on
page 5-104

 Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary Signal

5-103

Frequency Response Estimation in Model Linearizer Using
Pseudorandom Binary Sequence

This example shows how to identify a frequency domain model using a pseudorandom binary
sequence (PRBS) for a power electronics system modeled in Simulink® using Simscape™ Electrical™
components. This example addresses the frequency response estimation process in the controller
design workflow using a PRBS as the input signal.

Typically, power electronics systems cannot be linearized because they use high-frequency switching
components, such as pulse-width modulation (PWM) generators. However, most Simulink Control
Design™ PID tuning tools design PID gains based on a linearized plant model. To obtain such a model
for a power electronics model that cannot be linearized, you can estimate the plant frequency
response over a range of frequencies, as shown in this example.

To collect frequency response data, you can:

• Estimate the plant frequency response at the command line.
• Estimate the plant frequency response using the Model Linearizer app.

This example shows how to estimate the plant frequency response in Model Linearizer. To learn
how to estimate the plant frequency response for a power electronics system at the command line
using PRBS input signal, see “Frequency Response Estimation for Power Electronics Model Using
Pseudorandom Binary Signal” on page 5-97.

Boost Converter Model

This example uses a boost converter model as a power electronics system. A boost converter circuit
converts one DC voltage to another, typically higher, DC voltage by controlled chopping or switching
of the source voltage.

mdl = 'scdboostconverter';
open_system(mdl)

This model uses a MOSFET driven by a PWM signal for switching. The output voltage Vout is
regulated to the reference value Vref . A digital PID controller adjusts the PWM duty cycle, Duty,

5 Frequency Response Estimation

5-104

based on the voltage error signal. For this example, you estimate the frequency response from the
PWM duty cycle to the load voltage Vout.

Simscape Electrical software contains predefined blocks for many power electronics systems. This
model contains a variant subsystem with two versions of the boost converter model:

• Boost converter circuit constructed using electrical power components. The parameters of the
circuit components are based on [1] on page 5-115.

• Boost converter block configured to have the same parameters as the boost converter circuit. For
more information on this block, see Boost Converter (Simscape Electrical).

To use the Boost Converter block version of the subsystem, in the model, click Boost Converter
Block or use the following command.

set_param([bdroot '/Boost Converter'],...
 'OverrideUsingVariant','block_boost_converter');

Open Model Linearizer and Find Model Operating Point

To open the Model Linearizer, in the Simulink model window, in the Apps gallery, click Model
Linearizer.

To estimate the frequency response for the boost converter, you must first determine the steady-state
operating point at which you want the converter to operate. For more information on finding
operating points, see “Find Steady-State Operating Points for Simscape Models” on page 1-106. For
this example, use an operating point estimated from a simulation snapshot at 0.045 seconds.

To specify the simulation snapshot time, in the Model Linearizer, on the Linear Analysis tab, in the
Operating Point list, select Take Simulation Snapshot.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
0.045.

Click Take Snapshots to find the model operating point. An operating point, op_snapshot1,
appears in the Data Browser, in the Linear Analysis Workspace section.

To initialize the model with the computed operating point, double-click op_snapshot1, and then in
the Edit dialog box click Initialize Model.

 Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence

5-105

In the Initialize Model dialog box, specify a Variable Name for the operating point object.
Alternatively, you can use the default variable name.

To export the operating point to the MATLAB® workspace and set the model initial condition to this
operating point, click OK.

Specify Portion of Model to Estimate

By default, Model Linearizer uses the linearization analysis points defined in the model (the model
I/Os) to determine where to inject the test signal and where to measure the frequency response. The
model scdboostconverter contains predefined linear analysis points: an input point at the PID
controller output and an open-loop output before the negative feedback sum block.

If you want to obtain the frequency response of a different portion of the model, on the Estimation
tab of Model Linearizer, use the Analysis I/Os drop-down list. Analysis points for estimation work
the same way as analysis points for linearization. For more information about linear analysis points,
see “Specify Portion of Model to Linearize” on page 2-10.

5 Frequency Response Estimation

5-106

Create Pseudorandom Binary Sequence Input Signal

A PRBS is a periodic, deterministic signal with white-noise-like properties that shifts between two
values. A PRBS is an inherently periodic signal with a maximum period length of 2n− 1, where n is
the PRBS order.

To create a PRBS input signal, in the Model Linearizer, on the Estimation tab, under Input
Signal, select PRBS Pseudorandom Binary Sequence.

In the Create PRBS input dialog box, first set the Sample time to 5e–6 to match the sample time at
the point of input signal injection in the model. Next, specify the frequency range as 300 rad/s to
30000 rad/s using the Min and Max parameters, and then click Compute Parameters. The software
computes the signal parameters Number of periods and Signal order based on the specified
frequency range. Automatic parameter determination helps create an input signal that leads to an
accurate frequency response over a specified frequency range.

 Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence

5-107

To use a nonperiodic PRBS, set the Number of periods parameter to 1.

To ensure that the system is properly excited, set the perturbation amplitude to 0.05 using the
Amplitude parameter. If the input amplitude is too large, the boost converter operates in
discontinuous-current mode. If the input amplitude is too small, the PRBS is indistinguishable from
ripples in the power electronic circuits.

5 Frequency Response Estimation

5-108

Click OK. The software adds the PRBS signal to the Linear Analysis Workspace.

Collect Frequency Response Data

In the Estimation tab, select op_snapshot1 as the estimation operating point.

Find all source blocks in the signal paths of the linearization outputs that generate time-varying
signals. Such time-varying signals can interfere with the signal at the linearization output points and
produce inaccurate estimation results. To disable the time-varying source blocks, click More
Options. In the Options for frequency response estimation dialog box, on the Time Varying Sources
tab, click Find and add time varying source blocks automatically.

 Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence

5-109

Close the dialog box after block paths appear.

To estimate and plot the frequency response, on the Estimation tab, click Bode. The estimated
system, estsys1, appears in the Linear Analysis Workspace and is added to Bode Plot 1.

5 Frequency Response Estimation

5-110

Frequency Response Estimation Result Thinning

Frequency response estimation with PRBS input signal produces results with a large number of
frequency points. You can use the “Result Thinning” on page 5-23 functionality to extract an
interpolated result from an estimated frequency response model across a specified frequency range
and number of frequency points.

To extract the result over the desired frequency range of 300 rad/s to 30000 rad/s, select estsys1 in
the Linear Analysis Workspace, and on the Plots and Results tab click Result Thinning. In the
Specify frequencies dialog box, enter a frequency range 300 rad/s to 30000 rad/s. Also, specify 30
logarithmically spaced frequency points.

 Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence

5-111

Click OK. The estimated system, estsys1_thinned, appears in the Linear Analysis Workspace.
To plot the thinned result, select estsys1_thinned and click Bode.

5 Frequency Response Estimation

5-112

Compare Frequency Response Data to Sinestream FRE Results

In the Model Linearizer, you can also compare the frequency response data with the result obtained
using a sinestream signal. Load the supplied frequency response estimation result using the following
command.

load frdSinestream

The result estsysSinestream is a model with 15 logarithmically spaced frequencies estimated
using a sinestream ranging from 50 Hz to 5 kHz.

To compare the sinestream result to the thinned result in the Model Linearizer, select
estsysSinestream in the MATLAB Workspace pane of Data Browser and click Bode Plot 2.

 Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence

5-113

To find the final simulation time taken for frequency response estimation by an input signal, select the
input signal in the Linear Analysis Workspace and view the simulation time in the Variable
Preview pane of the Model Linearizer. Alternatively, you can export the input signals to MATLAB
Workspace and use the getSimulationTime function. Load a previously saved session for this
example.

load boostconv_frdPRBS.mat
tfinal_sinestream = in_sine1.getSimulationTime

tfinal_sinestream = 0.2833

tfinal_prbs = in_prbs1.getSimulationTime

tfinal_prbs = 0.0819

The simulation time with in_prbs1 is about 30% of the time taken by in_sine1 to estimate the
frequency response of the model. This indicates that the frequency response estimation with PRBS
input signal is much faster than the sinestream input signal.

The estimated frequency response result estsys1_thinned closely matches estsysSinestream.
Because the PRBS input signal estimates frequency responses with a large number of frequency
points, the estimation result provides more information about the resonant characteristics of the
system. To get similar results using a sinestream input signal, you might need to increase the number

5 Frequency Response Estimation

5-114

of frequency points, which results in an increase in estimation time. You can use this approach to
obtain accurate frequency response estimation results in a shorter simulation time as compared to
estimation with sinestream signals.

Close the model.

close_system(mdl,0)

References

[1] Lee, S. W. Practical Feedback Loop Analysis for Voltage-Mode Boost Converter. Application Report
SLVA633. Texas Instruments, 2014. https://www.ti.com/lit/an/slva633/slva633.pdf.

See Also
Model Linearizer

Related Examples
• “Frequency Response Estimation Basics” on page 5-2
• “PRBS Input Signals” on page 5-37
• “Estimation Input Signals” on page 5-25
• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Estimate Frequency Response with Linearization-Based Input Using Model Linearizer” on page

5-10
• “Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary

Signal” on page 5-97

 Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence

5-115

Frequency Response Estimation for Permanent Magnet
Synchronous Motor Model

This example shows the frequency response estimation workflow for a Field-Oriented Controlled
(FOC) three-phase Permanent Magnet Synchronous Motor (PMSM) modeled using components from
Motor Control Blockset™. This example uses Model Linearizer from Simulink® Control Design™
software to obtain a frequency-response model (frd) object, which you can use to estimate a
parametric model for the motor.

PMSM Model

The PMSM model is based on the Motor Control Blockset™ mcb_pmsm_foc_sim model. The model
includes:

• A subsystem to model inverter and PMSM dynamics
• Inner-loop (current) and outer-loop (speed) PI controllers to implement a field-oriented control

algorithm for motor speed control

You can examine this model for more details. In this example, the original model is modified to ensure
that the simulation starts from a steady state. The steady state serves as the operating point used in
the frequency response estimation workflow.

Open the Simulink® model.

model = 'scd_fre_mcb_pmsm_foc_sim';
open_system(model)

Modify Model to Start Simulation from Steady State

To ensure that the simulation starts from a steady state, modify initial conditions of the original
model. To obtain these initial conditions, enable signal logging for the speed feedback signal and
simulate the model to the steady state, with a speed of 0.5 per-unit (p.u.). To ensure that the speed
reaches the desired steady state, after the simulation, examine the simulation result in the Simulation
Data Inspector.

5 Frequency Response Estimation

5-116

Based on the speed response in the preceding figure, you can use the simulation results after 0.6
seconds to obtain block initial conditions for frequency response estimation. In addition to the initial
conditions, modify settings in filters associated with the speed control loop for faster speed reference
tracking. The changes are intended to make the simulation start from a steady state but do not affect
the motor plant model. Make the following changes to the model.

• In the SpeedRef block, set Step time to 0 s and Initial value to the steady state reference value
0.5 p.u.

• In the Speed Control subsystem, in the Zero_Cancellation block, set Filter coefficient to 1 for
faster tracking.

• In the Speed Control > PI_Controller_Speed subsystem, in the Ki2 block, set the Constant value
to 0.01725. That is, the speed controller's initial value, y0.

• In the Current Control > Input Scaling > Calculate Position and Speed subsystem, in the Speed
Measurement block, set the Delays for speed calculation to 1 for faster speed measurement.

• In the Current Control > Control_System > Closed Loop Control > Current_Controllers >
PI_Controller_Id subsystem, in the Ki1 block, set the Constant value to 0.025. That is, d-axis
controller's initial value, y0.

 Frequency Response Estimation for Permanent Magnet Synchronous Motor Model

5-117

• In the Current Control > Control_System > Closed Loop Control > Current_Controllers >
PI_Controller_Iq subsystem, in the Kp1 block, set the Constant value to 0.435. That is, q-axis
controller's initial value, y0.

• In Inverter and Motor - Plant Model subsystem, in the Surface Mount PMSM block, set Initial d-
axis and q-axis current (idq0) to [-0.4 0.55] and Initial rotor mechanical speed
(omega_init) to 215.

Alternatively, you can set the block parameters using the following commands.

set_param([model,'/SpeedRef'],'Time','0','Before','0.5')
set_param([model,'/Speed Control/Zero_Cancellation'],'Filter_constant','1')
set_param([model,'/Speed Control/PI_Controller_Speed/Ki2'],'Value','0.01725')
set_param([model,...
 '/Current Control/Input Scaling/ Calculate Position and Speed/Speed Measurement'],...
 'DelayLength','1')
currCtrlsPath = '/Current Control/Control_System/Closed Loop Control/Current_Controllers/';
set_param([model,currCtrlsPath,'PI_Controller_Id/Ki1'],'Value','0.025')
set_param([model,currCtrlsPath,'PI_Controller_Iq/Kp1'],'Value','0.435')
set_param([model,'/Inverter and Motor - Plant Model/Surface Mount PMSM'], ...
 'idq0','[-0.4 0.55]','omega_init','215')

Frequency Response Estimation Using Fixed Sample Sinestream Signal

After the necessary changes, the simulation starts from a steady state with the motor speed around
0.5 p.u. You can then use Model Linearizer to conduct frequency response estimation. To open the
Model Linearizer, in the Simulink model window, in the Apps gallery, click Model Linearizer.

To collect frequency response data, you must first specify the portion of model to estimate. By
default, Model Linearizer uses the linearization analysis points defined in the model (the model
I/Os) to determine where to inject the test signal and where to measure the frequency response. The
model scd_fre_mcb_pmsm_foc_sim contains predefined linear analysis points:

• Open-loop input points at the outputs of d-axis and q-axis current PI controllers
• Open-loop output points at speed, d-axis current, and q-axis current feedback signals

To view or edit these analysis points, on the Estimation tab of Model Linearizer, on the Analysis
I/Os list, click Edit Model I/Os. Analysis points for estimation work the same way as analysis
points for linearization. For more information about linear analysis points, see “Specify Portion of
Model to Linearize” on page 2-10.

Additionally, find all source blocks in the signal paths of the linearization outputs that generate time-
varying signals. Such time-varying signals can interfere with the signal at the linearization output
points and produce inaccurate estimation results. To disable the time-varying source blocks, click
More Options . In the Options for frequency response estimation dialog box, on the Time Varying
Sources tab, click Find and add time varying source blocks automatically .

5 Frequency Response Estimation

5-118

The software holds the values of these blocks at their corresponding initial conditions during
frequency response estimation.

For this example, create a fixed sample time sinestream input signal for estimation. Create a signal
with 20 frequency points from 1 rad/s to 2000 rad/s and an amplitude of 0.05. For more information
on defining sinestream input signals, see “Sinestream Input Signals” on page 5-30.

To create the signal, on the Estimation tab of the Model Linearizer, in the Input Signal list, select
Fixed Sample Time Sinestream.

 Frequency Response Estimation for Permanent Magnet Synchronous Motor Model

5-119

In the Specify fixed sample time dialog box, specify a Sample time of 5e-5 seconds.

Click OK. The Create sinestream input with fixed sample time dialog box opens.

Specify the frequency units for estimation. In the Frequency units list, select rad/s.

To specify the frequencies at which to estimate the plant response, click the add frequencies icon.

5 Frequency Response Estimation

5-120

In the Add frequencies dialog box, specify 20 logarithmically spaced frequencies ranging from 1 rad/s
to 2000 rad/s.

Click OK. The added points are visible in the frequency content viewer of the Create sinestream input
with fixed sample time dialog box.

To specify the amplitude of the input signal, first select all the frequencies in the plot area. Then, in
the Amplitude field, enter 0.05. Use default values for the remaining parameters.

 Frequency Response Estimation for Permanent Magnet Synchronous Motor Model

5-121

Click OK to create the fixed sample time sinestream signal.

To estimate and plot the frequency response, one the Estimation tab, click Bode. The estimated
frequency response appears in the Linear Analysis Workspace as the frd model estsys1 and
response is added to Bode Plot 1.

5 Frequency Response Estimation

5-122

Frequency Response Estimation Using PRBS Input Signal

In addition to sinestream input signals, you can also use PRBS input signals in frequency response
estimation. For this example, create an input signal with 1 period, an order of 18, and an amplitude of
0.1.

To create the signal, on the Estimation tab of the Model Linearizer, in the Input Signal list, click
PRBS Pseudorandom Binary Sequence.

In the Create PRBS input dialog box, configure the parameters of the PRBS signal. The input dialog
box assists you to set the signal order and number of periods based on the frequency range you are
interested in. First, set the Sample time to 5e-5 seconds. Next, enter a frequency range between 1
rad/s and 2000 rad/s, and then click Compute Parameters. The software computes the signal
parameters Number of periods and Signal order. To ensure that the system is properly excited, set
the perturbation amplitude to 0.1 using the Amplitude parameter. Use default values for the
remaining parameters.

 Frequency Response Estimation for Permanent Magnet Synchronous Motor Model

5-123

Click OK to create the input signal.

To estimate and plot the frequency response, on the Estimation tab, click Bode. The estimated
frequency response appears in the Linear Analysis Workspace as the frd model estsys2.
Frequency response estimation with PRBS input signal produces results with a large number of
frequency points. You can use the “Result Thinning” on page 5-23 functionality to extract an
interpolated result from an estimated frequency response model across a specified frequency range
and number of frequency points.

To apply thinning to the estimated result, select estsys2 in the Linear Analysis Workspace, and on
the Plots and Results tab click Result Thinning.

In the Specify frequencies dialog box, specify a frequency range between 1 rad/s and 2000 rad/s with
30 logarithmically spaced points.

5 Frequency Response Estimation

5-124

Click OK. The thinned estimated system, estsys2_thinned, appears in the Linear Analysis
Workspace. To compare the result with estsys1, click Bode Plot 1.

To find the final simulation time for frequency response estimation by an input signal, select the input
signal in the Linear Analysis Workspace and view the simulation time in the Variable Preview
area of the Model Linearizer. Alternatively, you can export the input signals to the MATLAB®

 Frequency Response Estimation for Permanent Magnet Synchronous Motor Model

5-125

workspace and use the getSimulationTime function. Load a previously saved session and display
the simulation times.

load pmsm_fre_comparison.mat
tfinal_sinestream = in_sine1.getSimulationTime
tfinal_prbs = in_prbs1.getSimulationTime

tfinal_sinestream =

 76.2012

tfinal_prbs =

 13.1071

Both input signals provide similar performances in frequency response estimation. You can use PRBS
input signals to obtain accurate frequency response estimation results in a shorter simulation time as
compared to estimation with sinestream signals. However, since PRBS estimation results contain a
large number of frequency points, you must thin them for accurate parametric estimation.

Estimate Parametric Model from Frequency Response Result

Parametric models, such as transfer function models and state-space models, are widely used in
control design workflows. You can estimate a parametric model from the frequency response
estimation result.

To estimate a parametric model for the PMSM motor, first export estsys1 or estsys2_thinned to
MATLAB workspace, then use tfest or ssest functions from the System Identification Toolbox™
software to estimate a transfer function model or a state-space model, respectively.

Close the model.

close_system(model,0)

See Also
Model Linearizer

Related Examples
• “Frequency Response Estimation Basics” on page 5-2
• “Estimation Input Signals” on page 5-25
• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Estimate Frequency Response with Linearization-Based Input Using Model Linearizer” on page

5-10

5 Frequency Response Estimation

5-126

Frequency Response Estimation to Measure Input Admittance
and Output Impedance of Boost Converter

This example shows how to measure the input admittance and output impedance of a boost converter
modeled in Simulink® using Simscape™ Electrical™ components. This example uses the frequency
response estimation process to measure the input admittance and output impedance of an existing
power electronics circuit model.

Typically, these measurements of power electronics systems require extensive modifications to these
models. However, Simulink Control Design™ software provides tools to conduct frequency response
estimation to measure these important properties of a power electronics circuit. In this example, you
also compare the estimated frequency response results to the analytical transfer function models
constructed using component parameters.

Boost Converter Model

This example uses a model based on the boost converter model scdboostconverter. The original
model is modified for these measurements as follows.

• A Probe block is added to measure the input current. To estimate the frequency response model
for input admittance, the model contains Input Perturbation and Output Measurement linear
analysis points at the input voltage and input current, respectively.

• A Controlled Current Source block is added in parallel with the load. To estimate the frequency
response model for output impedance, the model contains Input Perturbation and Output
Measurement linear analysis points at the current source and output voltage, respectively.

You can examine this model for more details.

Open the model.

mdl = 'scdboostconverterMeasureAdmittanceImpedance';
open_system(mdl)

 Frequency Response Estimation to Measure Input Admittance and Output Impedance of Boost Converter

5-127

To use the Boost Converter block version of the subsystem, in the model, click Boost Converter
Block or use the following command.

set_param([mdl '/Boost Converter'],...
 'OverrideUsingVariant','block_boost_converter')

Create Pseudorandom Binary and Sinestream Input Signals for Estimation

A pseudorandom binary signal (PRBS) is a periodic, deterministic signal with white-noise-like
properties that shifts between two values. A PRBS is an inherently periodic signal with a maximum
period length of 2n− 1, where n is the PRBS order. For more information, see “PRBS Input Signals”
on page 5-37.

Create a PRBS with the following configuration:

• To use a nonperiodic PRBS, set the number of periods to 1.
• Use a PRBS order of 14, producing a signal of length 16,383. To obtain an accurate frequency

response estimation, the length of the PRBS must be sufficiently large.
• Set the injection frequency of the PRBS to 200 kHz to match the sample time in the model. That is,

specify a sample time of 5e-6 seconds.
• To ensure that the system is properly excited, set the perturbation amplitude to 1.

in_PRBS = frest.PRBS('Order',14,'NumPeriods',1,'Amplitude',1,'Ts',5e-6);

Create a sinestream input signal with 30 frequencies between 200 rad/s and 600,000 rad/s. Set the
amplitude of the input signal to 0.5 to make it consistent with the PRBS input signal.

in_Sinestream = frest.createFixedTsSinestream(5e-06,{200,6e5});
in_Sinestream.Amplitude = 0.5;

Using different input signals leads to a different simulation time for the frequency response
estimation process. To achieve similar results, the PRBS input signal typically takes a much shorter
simulation time than the sinestream input signal. Here, in_PRBS takes about 15% of the simulation
time as in_Sinestream.

Display the simulation time for frequency response estimation by in_PRBS.

in_PRBS.getSimulationTime

ans = 0.0819

Display the simulation time for frequency response estimation by in_Sinestream.

in_Sinestream.getSimulationTime

ans = 0.5207

In this example, you can use these input signals to estimate frequency response models for both input
admittance and output impedance measurements.

Find Model Operating Point

To estimate the frequency response for the boost converter, you must first determine the steady-state
operating point at which you want the converter to operate. For more information on finding
operating points, see “Find Steady-State Operating Points for Simscape Models” on page 1-106. For
this example, use an operating point estimated from a simulation snapshot at 0.045 seconds.

5 Frequency Response Estimation

5-128

opini = findop(mdl,0.045);

Initialize the model with the computed operating point.

set_param(mdl,'LoadInitialState','on','InitialState','getstatestruct(opini)')

Measure Input Admittance

To collect frequency response data, you can estimate the plant frequency response at the command
line. To do so, first get the input and output linear analysis points from the model.

io_Yin(1) = linio([mdl,'/PID Controller'],1,'loopbreak');
io_Yin(2) = linio([mdl,'/Sampling'],1,'loopbreak');
io_Yin(3) = linio([mdl,'/Vin Value'],1,'input');
io_Yin(4) = linio([mdl,'/Rate Transition1'],1,'output');

Specify the operating point using the model initial conditions.

op_Yin = operpoint(mdl);

Find all source blocks in the signal paths of the linearization outputs that generate time-varying
signals. Such time-varying signals can interfere with the signal at the linearization output points and
produce inaccurate estimation results.

srcblksYin = frest.findSources(mdl,io_Yin);

To disable the time-varying source blocks, create an frestimateOptions option set and specify the
BlocksToHoldConstant option.

optsYin = frestimateOptions;
optsYin.BlocksToHoldConstant = srcblksYin;

Estimate the frequency response using the PRBS input signal.

sysestYin_prbs = frestimate(mdl,io_Yin,op_Yin,in_PRBS,optsYin);

Frequency response estimation with a PRBS input signal produces results with many frequency
points. Simulink Control Design software lets you estimate plant frequency response using the Model
Linearizer app. You can also use Model Linearizer to further improve a frequency response
estimated at the command line.

You can use Result Thinning in Model Linearizer to extract an interpolated result from an
estimated frequency response model across a specified frequency range and number of frequency
points. For more information, see “Result Thinning” on page 5-23.

Apply thinning to sysestYin_prbs over frequencies between 200 rad/s and 600,000 rad/s with 50
logarithmically spaced frequency points.

Click OK. The thinned model, sysestYin_prbs_thinned, appears in the MATLAB® Workspace.
Alternatively, use the thinned result provided with this example.

 Frequency Response Estimation to Measure Input Admittance and Output Impedance of Boost Converter

5-129

For comparison purposes, estimate the frequency response using the defined sinestream input signal.
To estimate the frequency response, run the following at the Command Window.

sysestYin_sine = frestimate(mdl,io_Yin,op_Yin,in_Sinestream,optsYin);

Because estimation with sinestream signals takes a long time, a model estimated using this input
signal is provided with this example.

Measure Output Impedance

To estimate the frequency response for this model, you can use the workflow described in the
previous section of this example, with slightly different settings of linear analysis points.

Get linear analysis points from the model.

io_Zout(1) = linio([mdl,'/PID Controller'],1,'loopbreak');
io_Zout(2) = linio([mdl,'/Sampling'],1,'loopbreak');
io_Zout(3) = linio([mdl,'/Constant'],1,'input');
io_Zout(4) = linio([mdl,'/Rate Transition2'],1,'output');

Specify the operating point using the model initial conditions.

op_Zout = operpoint(mdl);

5 Frequency Response Estimation

5-130

Find and disable time-varying source blocks.

srcblksZout = frest.findSources(mdl,io_Zout);
optsZout = frestimateOptions;
optsZout.BlocksToHoldConstant = srcblksZout;

Estimate the frequency response using the PRBS input signal.

sysestZout_prbs = frestimate(mdl,io_Zout,op_Zout,in_PRBS,optsZout);

Using Model Linearizer, apply “Result Thinning” on page 5-23 to sysestZout_prbs over
frequencies between 200 rad/s and 600,000 rad/s with 50 logarithmically spaced frequency points.
Alternatively, use the thinned result provided with this example.

For comparison purposes, estimate the frequency response using the defined sinestream input signal.
To estimate the frequency response, run the following at the Command Window.

sysestZout_sine = frestimate(mdl,io_Zout,op_Zout,in_Sinestream,optsZout);

Because estimation with sinestream signals takes a long time, a model estimated using this input
signal is provided with this example.

Analytical Transfer Functions

Compare the estimation results to the analytical transfer functions based on component parameters.
Use the following parameters from the model.

L = 20e-6;
C = 1480e-6;
R = 6;
rC = 8e-3;
rL = 1.8e-3;

To compute the analytical transfer function, you require the actual duty cycle value. For this boost
converter, use the logged duty cycle at the operating point.

D = 0.734785;
d = 1-D;

Define the analytical transfer functions for input admittance and output impedance, which are based
on [1], using the component parameters in the boost converter model.

Yin = tf([C*(R+rC) 1], [L*C*(R+rC) L+C*rL*(R+rC)+C*R*rC-R*D*C*rC R+rL-R*D-R^2*D*d/(R+rC)]);
Zout = tf(R*[C*rC*L L+C*rC*(rL+R*D*rC*d/(R+rC)) rL+R*D*rC*d/(R+rC)], ...
 [L*C*(R+rC) L+C*rL*(R+rC)+C*R*rC-R*D*C*rC R+rL-R*D-R^2*D*d/(R+rC)]);

For a more accurate description, account for the delay due to PWM signal in the transfer function
Yin.

N = 0.5;
Ts = 5e-6;
iodelay = N*Ts; % 0.5 PWM
Yin.IODelay = iodelay;

Compare Frequency Response Data to Analytical Transfer Function

Compare frequency response estimation (FRE) results using PRBS and sinestream input signals to
the analytical transfer functions over the frequency range of interest.

 Frequency Response Estimation to Measure Input Admittance and Output Impedance of Boost Converter

5-131

Load the thinned PRBS results and sinestream results from a previously saved session.

load sysest_prbs_thinned_yin_zout
load sysest_sine_yin_zout

Compare results for input admittance.

figure
bode(sysestYin_prbs_thinned,'b-')
hold on
bode(sysestYin_sine,'k*-')
bode(Yin,'r--',{10,1e6})
legend('FRE result using PRBS','FRE result using sinestream','Analytical result',...
 'Location','best')
title([{'Comparison of Estimated Frequency Responses with'},...
 {'Analytical Transfer Function for Input Admittance'}])
grid on

Compare results for output impedance.

figure
bode(sysestZout_prbs_thinned,'b-')
hold on
bode(sysestZout_sine,'k*-')
bode(Zout,'r--',{10,1e6})
legend('FRE result using PRBS','FRE result using sinestream','Analytical result',...
 'Location','best')
title([{'Comparison of Estimated Frequency Responses with'},...

5 Frequency Response Estimation

5-132

 {'Analytical Transfer Function for Output Impedance'}])
grid on

Examine the Bode plots. The FRE results obtained using the PRBS input signal capture interesting
frequency-domain properties. For example, around the magnitude peak, the estimated frequency
response result with the PRBS input signal matches the analytical transfer function much better than
the frequency response estimation result with the sinestream input signal.

Close the model.

close_system(mdl,0);

References

[1] Ahmadi, Reza, and Mehdi Ferdowsi. “Modeling Closed-Loop Input and Output Impedances of DC-
DC Power Converters Operating inside Dc Distribution Systems.” In 2014 IEEE Applied Power
Electronics Conference and Exposition - APEC 2014, 1131–38, 2014. https://doi.org/10.1109/
APEC.2014.6803449.

See Also
frest.PRBS | frest.createFixedTsSinestream | frestimate | frestimateOptions

 Frequency Response Estimation to Measure Input Admittance and Output Impedance of Boost Converter

5-133

Related Examples
• “Frequency Response Estimation Basics” on page 5-2
• “Estimate Frequency Response at the Command Line” on page 5-14
• “Estimation Input Signals” on page 5-25
• “Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary

Signal” on page 5-97
• Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence on

page 5-104

5 Frequency Response Estimation

5-134

Online Frequency Response Estimation

• “Online Frequency Response Estimation Basics” on page 6-2
• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9
• “Online Frequency Response Estimation During Simulation” on page 6-15
• “Collect Frequency Response Experiment Data for Offline Estimation” on page 6-18
• “Online Estimation of Frequency Responses of a Nonlinear Plant” on page 6-22

6

Online Frequency Response Estimation Basics
The Frequency Response Estimator block in Simulink Control Design lets you measure the frequency
response of your system in operation. The block performs an experiment that injects signals into the
plant and measures the plant output. If you have a code-generation product such as Simulink
Coder™, you can generate code that implements the estimation algorithm on hardware. Deploying
the algorithm to hardware lets you measure the frequency response of a physical plant in real time.

Embedded frequency-response estimation is a useful option when you have a physical plant and a test
bed or control environment to operate in. In this case, you can deploy the Frequency Response
Estimator block to your hardware. You trigger the tuning process via an input to the block, so you can
tune your controller at any time. For details, see “Deploy Frequency Response Estimation Algorithm
for Real-Time Use” on page 6-9.

If you have a plant model in Simulink, you can use the Frequency Response Estimator block to
preview plant response and adjust the experiment settings before performing estimation in real time.
Doing so helps ensure that real-time estimation does not drive your system out of the desirable
operating range. For details, see “Online Estimation Using Plant Modeled in Simulink” on page 6-5.
You can also use the block to obtain the frequency response of a plant that cannot be linearized in
Simulink, as an alternative to offline frequency response estimation with Model Linearizer or
frestimate.

When Not to Use Online Frequency-Response Estimation
You can use online frequency response estimation with any stable SISO plant. For an unstable plant,
online estimation works in a closed-loop configuration, provided that the closed loop is internally
stable. A closed-loop system is internally stable if and only if the roots of the nominal closed-loop
characteristic equation all lie in the open left half-plane. For a plant with transfer function G = NG/DG
and controller C = NC/DC, the characteristic equation is:

DGDC + NGNC = 0.

In practice, this condition means that no unstable poles in G are stabilized by pole-zero cancellation
in GC. Do not use online estimation with an unstable plant that does not meet this condition.

Online frequency response estimation does not work well when there are large disturbances in the
plant during the estimation experiment. Disturbances distort the plant response to the perturbation
signals, yielding poor estimation results.

System Configurations for Online Frequency Response Estimation
To use online frequency response estimation, you configure and deploy the Frequency Response
Estimator block. The block performs an estimation experiment by injecting test signals in the plant
and measuring system response.

The following schematic diagram illustrates a typical configuration for fitting the Frequency
Response Estimator block into a closed-loop system.

6 Online Frequency Response Estimation

6-2

In this configuration, the block receives a control signal u, adds a perturbation Δu to it, and injects
the perturbed signal directly into the plant. It then measures the plant response y and uses the result
to compute the estimated frequency response.

Alternatively, you can configure the block such that the output is the perturbation Δu only. You can
then add this signal to the plant input yourself, as shown in the following schematic diagram.

As an alternative to the closed-loop configurations shown above, you can use the block in an open-
loop plant, typically using a constant input signal u to drive the plant to the desired operating point. It
is a good practice to use the closed-loop configuration, particularly for real-time estimation. In a
closed-loop configuration, the controller works to suppress the injected disturbance and maintain
safe plant operation.

Estimation Workflow
The general workflow for online frequency response estimation is as follows.

1 Incorporate the Frequency Response Estimator block into your system in one of the
configurations described above.

 Online Frequency Response Estimation Basics

6-3

2 Configure the start/stop signal that controls when the estimation experiment begins and ends.
You can use this signal to initiate the experiment at any time.

3 Configure experiment parameters such as the frequencies at which to estimate the response and
the amplitudes of the injected perturbations.

4 Start the experiment using the start/stop signal, and allow it to run long enough for the
estimation process, based on the experiment length recommended by the block.

5 Stop the experiment and examine the estimated frequency response.

For detailed information on performing each of these steps, see:

• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9

See Also
Frequency Response Estimator

More About
• “Frequency Response Estimation Basics” on page 5-2
• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9

6 Online Frequency Response Estimation

6-4

Online Estimation Using Plant Modeled in Simulink
When you have a plant modeled in Simulink, you can perform frequency response estimation using
Model Linearizer or the frestimate command without changing the model. The Frequency
Response Estimator block is an alternative that lets you incorporate the estimation experiment
directly into your model and perform estimation while the model is running. This approach is
especially useful when you plan to deploy the block for online estimation of a physical plant. Testing
the estimation algorithm and experiment parameters against a Simulink model of the plant before
deployment can help ensure that online estimation is safe for your plant.

Workflow for Online Estimation in Simulink
The following steps provide a general overview of the workflow for online frequency response
estimation of a plant modeled in Simulink.

1 Incorporate the Frequency Response Estimator block on page 6-5 into your model.
2 Configure the start/stop signal on page 6-6 that controls when the estimation experiment

begins and ends.
3 Configure experiment parameters on page 6-7 such as the frequencies at which you want to

perform estimation.
4 Run the model on page 6-7. Use the start/stop signal to initiate the estimation experiment.

When you start the experiment, the block injects test signals and measures the response of the
plant. When you end the experiment, you can examine the estimated frequency response.

Step 1. Incorporate Frequency Response Estimator into Model
The following illustration shows one way to incorporate a Frequency Response Estimator block into a
closed-loop control system. In this configuration, you insert the block between the controller and the
plant.

The control signal feeds into the u port of the Frequency Response Estimator block. The u + Δu port
feeds into the plant input. Before you begin the estimation process, the block feeds the control signal
directly from u to u + Δu without adding any perturbation. In that state, the block has no effect on

 Online Estimation Using Plant Modeled in Simulink

6-5

the system behavior. (You can perform frequency response estimation in an open-loop configuration
by connecting u to a constant source that drives your plant to the desired operating point for
estimation. However, it is a good practice to use the closed-loop configuration, particularly for real-
time estimation. In a closed-loop configuration, the controller works to suppress the injected
disturbance and maintain safe plant operation.)

The start/stop signal controls when the estimation process begins and ends (see “Step 2. Configure
Start/Stop Signal” on page 6-6). Start the experiment when the plant is in steady state at the
desired operating point. When the start/stop signal is positive, the block injects test signals at u +
Δu and measures the response at y. The block calculates the estimated frequency response and
returns it at the frd port.

For an example, see “Online Frequency Response Estimation During Simulation” on page 6-15.

Apply Perturbation Signal Only

The default configuration requires inserting the block between the controller and the plant. If you
want to add the perturbation signal to the control signal yourself, in the Frequency Response
Estimator block parameters, set Output Signal Configuration to perturbation only. In this
configuration, the block output contains the perturbation signal only, at the port Δu. You inject this
perturbation signal into the plant using, for example, a sum block, as in the following diagram.

In this configuration, because the Frequency Response Estimator is not part of the closed loop, you
can optionally comment it out without disrupting the loop configuration.

Step 2. Configure Start/Stop Signal
To start and stop the frequency response estimation experiment, use a signal at the start/stop port.
When the experiment is not running, the block generates no perturbation signal. In this state, the
block has no impact on plant behavior. The frequency-response estimation experiment begins and
ends when the block receives a rising or falling signal at the start/stop port, respectively. In the
systems illustrated in “Step 1. Incorporate Frequency Response Estimator into Model” on page 6-5,

6 Online Frequency Response Estimation

6-6

staggered step signals start and stop the experiment. You can configure any other logic appropriate
for your application to control the start and stop times of the experiment. For example, you can use a
Signal Editor block to configure a start/stop signal to carry out multiple experiments in a single
simulation run.

The block provides a recommended experiment length in the Experiment Length section of the
block parameters. Typically, you configure the start/stop signal such that there is at least that much
time between the rising and falling signals. You must also make sure that the simulation does not stop
before the experiment stops. For more information about how the block determines the recommended
experiment length, see the Frequency Response Estimator block reference page.

Step 3. Set Experiment Parameters
The frequency-response estimation experiment injects signals at the frequencies you specify with the
Frequencies parameter (or at the w port) of the Frequency Response Estimation block. Specify the
perturbation amplitudes using the Amplitudes parameter (or at the amp port).

The block can apply the perturbation at each frequency as sequential sinusoidal (Sinestream),
simultaneous sinusoidal (Superposition), or pseudorandom binary sequence (PRBS). To specify
which mode to use, set the Experiment mode parameter.

• Sinestream mode — Applies the perturbation one frequency at a time. Sinestream mode can be
more accurate and can accommodate a wider range of frequencies than superposition mode.

• Superposition — Applies the perturbation as a superposition signal containing all frequencies at
once. The estimation experiment is generally faster in superposition mode.

• PRBS — Applies the perturbation as a deterministic pseudorandom binary sequence that shifts
between two values and has white-noise-like properties. PRBS signals reduce total estimation time
compared to the other two modes, while producing comparable estimation results. PRBS signals
are useful for estimating frequency responses for communications and power electronics systems.

You can also specify parameters that tell the block how long to let the system settle when the
perturbation is applied, and how long to measure the response for the estimation. For further details
about the two signal types and their relative advantages, see the Experiment mode parameter
description on the Frequency Response Estimator block reference page.

Step 4. Run Model and Examine Estimated Frequency Response
After you have configured all the parameters for the estimation experiment, run the model. Allow the
model to run long enough to complete the estimation experiment, based on the recommended
experiment length provided by the block. If you select Display Bode plot, the block generates a
Bode plot to visualize the estimated frequency response during the experiment.

During the experiment, the block updates the estimated frequency response at the frd port. The
signal at this port is a vector with one value for each frequency specified by Frequencies. You can
write this signal to the MATLAB workspace using a To Workspace block, or use Simulink data logging
to write the data to the workspace as a Simulink.SimulationData.Dataset object. The logged
values show the convergence of the frequency responses during the experiment. The most
meaningful value is the value when the experiment stops. For that reason, you can discard all values
except the last one.

For an example of a model configured to perform online frequency response estimation, see “Online
Frequency Response Estimation During Simulation” on page 6-15.

 Online Estimation Using Plant Modeled in Simulink

6-7

See Also
Frequency Response Estimator

More About
• “Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9
• “Online Frequency Response Estimation During Simulation” on page 6-15
• “Online Estimation of Frequency Responses of a Nonlinear Plant” on page 6-22
• “Online Frequency Response Estimation Basics” on page 6-2

6 Online Frequency Response Estimation

6-8

Deploy Frequency Response Estimation Algorithm for Real-
Time Use

You can use the online frequency-response estimation algorithm in a standalone application for real-
time estimation of a physical plant. To do so, you must deploy the Frequency Response Estimator
block into your own system by creating a Simulink model for deployment. You can configure this
model with the experiment parameters. Or, you can configure it to supply such parameters externally
from elsewhere in your system. Once deployed to your own system, the estimator model injects
signals into your plant and receives the plant response, without using Simulink to control the
experiment. Deploying the estimation algorithm requires a code-generation product such as Simulink
Coder.

Workflow
In overview, the workflow for deploying the Frequency Response Estimator for real-time tuning is:

1 Create a Simulink model on page 6-9 for deploying the block to your system.
2 Configure the start/stop signal on page 6-12 that controls when the estimation experiment

begins and ends.
3 Configure experiment parameters on page 6-12 such as the frequencies at which you want to

perform estimation.
4 Deploy the model to your system, and run the estimation experiment on page 6-13 against your

physical plant. When you end the experiment, you can examine the estimated frequency
response.

In practice, for real-time estimation, you might want to specify some parameters at run time, such as
the estimation frequencies or perturbation amplitudes. For information about specifying parameters
in your deployed application, see “Access Experiment Parameters After Deployment” on page 6-13.

Step 1. Create Deployable Simulink Model with Frequency Response
Estimator Block
Using a Frequency Response Estimator block for real-time estimation requires creating a Simulink
model for deployment. In the most basic form, a model for deploying real-time estimation resembles
the following illustration.

 Deploy Frequency Response Estimation Algorithm for Real-Time Use

6-9

Here, the blocks connected to the inputs and outputs of the Frequency Response Estimator block
represent hardware interfaces that read or write real-time data for your system. For example, the
Read control signal block can be an interface for receiving serial data, a UDP Receive block for
receiving UDP packets, or an interface for receiving other signals via wireless network. Similarly the
blocks for writing data, such as Write plant input, can be interfaces for serial, UDP, or other
interfaces for writing data to hardware.

The default ports of the Frequency Response Estimator block are:

• u — Receives the control signal.
• y — Receives the plant output.
• start/stop — Receives the signal that begins and ends the estimation experiment.
• u + Δu — Outputs the signal to feed to the plant input. When the experiment is not running, u +

Δu outputs the control signal as received at u. When the experiment is running, the block adds the
perturbation Δu to this signal.

• data — Outputs the simulation data collected during the estimation experiment. This data
includes the perturbation applied to the plant input and the response received at y.

• frd — Outputs the estimated frequency responses.

For more details about all ports, see the Frequency Response Estimator block reference page.

In the illustrated configuration, the frequencies at which to perform estimation and the amplitudes of
the perturbation to apply at each frequency are hard-wired into the block. If you want to set these
values after deployment, set the block parameter Excitation Signal Source to External ports.
Doing so adds the w and amp ports to the block, as shown in the following illustration.

6 Online Frequency Response Estimation

6-10

In this configuration, the deployed module can read frequencies and perturbation amplitudes for the
estimation experiment at run time.

Store Data for Offline Estimation

The previously illustrated configurations discard the data output port, which provides the input and
response signals collected during the estimation experiment. If you want to use this experiment data,
you can store the output from this port. For instance, to conserve resources in a deployed
environment, you can configure the block to collect the experiment data without performing the
estimation. You can then perform the estimation in MATLAB using frestimate. A model configured
this way for deployment resembles the following illustration.

 Deploy Frequency Response Estimation Algorithm for Real-Time Use

6-11

Step 2. Configure Start/Stop Signal
To start and stop the frequency response estimation experiment, use a signal at the start/stop port.
When the experiment is not running, the block generates no perturbation signal. In this state, the
block has no impact on plant behavior. The frequency-response estimation experiment begins and
ends when the block receives a rising or falling signal at the start/stop port, respectively. You can
configure any logic appropriate for your application to control the start and stop times of the
experiment.

The block provides a recommended experiment length in the Experiment Length section of the
block parameters. Typically, you configure the start/stop signal such that there is at least that much
time between the rising and falling signals. In a deployed environment when you are setting
estimation parameters at run time, you must be aware of how experiment parameters such as
estimation frequencies affect the required experiment length. For more information about
determining the appropriate length, see the Frequency Response Estimator block reference page.

Step 3. Set Experiment Parameters
The frequency-response estimation experiment injects signals at the frequencies you specify with the
Frequencies parameter (or at the w port) of the Frequency Response Estimation block. Specify the
perturbation amplitudes using the Amplitudes parameter (or at the amp port).

6 Online Frequency Response Estimation

6-12

The block can apply the perturbation at each frequency as sequential sinusoidal (Sinestream),
simultaneous sinusoidal (Superposition), or pseudorandom binary sequence (PRBS). To specify
which mode to use, set the Experiment mode parameter.

• Sinestream mode — Applies the perturbation one frequency at a time. Sinestream mode can be
more accurate and can accommodate a wider range of frequencies than superposition mode.

• Superposition — Applies the perturbation as a superposition signal containing all frequencies at
once. The estimation experiment is generally faster in superposition mode.

• PRBS — Applies the perturbation as a deterministic pseudorandom binary sequence that shifts
between two values and has white-noise-like properties. PRBS signals reduce total estimation time
compared to the other two modes, while producing comparable estimation results. PRBS signals
are useful for estimating frequency responses for communications and power electronics systems.

You can also specify parameters that tell the block how long to let the system settle when the
perturbation is applied, and how long to measure the response for the estimation. For further details
about the two signal types and their relative advantages, see the Experiment mode parameter
description on the Frequency Response Estimator block reference page.

Step 4. Run Experiment
After you deploy the estimation module to your system, use a rising start/stop signal to begin the
estimation experiment. The deployed module injects the test signals into your physical plant in real
time. After an appropriate time, your falling start/stop signal ends the experiment. (For more
information about determining the appropriate length, see the Frequency Response Estimator block
reference page.)

When the experiment is complete, you can obtain the estimated frequency response at the frd port.

If your deployed environment is short of resources for the online estimation computation, you can
configure the block to collect experiment data only, and perform the estimation offline later. For an
example, see “Collect Frequency Response Experiment Data for Offline Estimation” on page 6-18.

Access Experiment Parameters After Deployment
Some of the parameters that you set to configure the estimation experiment are tunable, such that
you can access them in the generated code. Most parameters, however, are not tunable. For those
parameters, you must configure them in the block before deployment, or use an external block port
for the parameters for which one is available.

Tunable Parameters

The following parameters of the Frequency Response Estimator block are tunable after deployment.
For more information about all these parameters, see the block reference pages.

Parameter Description
Number of estimation periods Number of periods after settling to use for

estimation (sinestream mode)
Number of settling periods Number of periods to wait for settling of

transients (sinestream mode)

 Deploy Frequency Response Estimation Algorithm for Real-Time Use

6-13

Parameter Description
Number of periods of the lowest frequency
used for estimation

Duration of data-collection window (superposition
mode)

Non-Tunable Parameters

The remaining parameters of the Frequency Response Estimator are not tunable after deployment.
For the Frequencies and Amplitudes parameters, you can enable external ports that allow you to
supply experiment frequencies and perturbation amplitudes after deployment. To enable the w and
amp block inputs, in the Excitation Signal Source parameter, select External ports.

Modify Experiment Sample Time After Deployment

The Sample time (Ts) parameter is not tunable. As a consequence, you cannot access it directly in
generated code when you deploy the block. To change the controller sample time in the deployed
block at run time:

1 Set Controller sample time (sec) to –1.
2 Put the block in a Triggered Subsystem.
3 Trigger the subsystem at the desired sample time.

If you use this approach, you must make sure at run time that your sample time is fast enough to
keep your estimation frequencies below the Nyquist frequency.

See Also
Frequency Response Estimator

More About
• “Online Frequency Response Estimation Basics” on page 6-2
• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Collect Frequency Response Experiment Data for Offline Estimation” on page 6-18

6 Online Frequency Response Estimation

6-14

Online Frequency Response Estimation During Simulation

This example shows how to use the Frequency Response Estimator block to perform online frequency
response estimation during simulation of the model in Simulink®. This approach can be useful when
you plan to deploy the block for online estimation of a physical plant. Testing the estimation algorithm
and experiment parameters against a Simulink model of the plant before deployment can help ensure
that online estimation is safe for your plant.

Control System Model

This example uses a model that already contains the Frequency Response Estimator block configured
for estimation. Open the model.

mdl = "OnlineFreqRespEstimEx.slx";
open_system(mdl)

The model contains a plant in a closed-loop configuration with a PI controller. The Frequency
Response Estimator block accepts the control signal as the input u. It feeds the control signal plus a
perturbation into the plant input. You specify properties of the perturbation signal using parameters
of the block.

Experiment Parameters

The Frequency Response Estimator block is configured to run the experiment in sinestream mode,
which means that it injects a separate perturbation at each frequency. The block is also configured to
use the same amplitude, 1, for each frequency in the perturbation signal.

The block is further configured to estimate frequency responses at the frequencies w =
logspace(0,2,20). To ensure that the experiment sampling rate is fast enough to accommodate
the highest frequency, it is a good practice to set the sampling time to about 0.6 / wmax or faster,
where wmax is the highest frequency in rad/s. For this example, the experiment sample time is 0.005
seconds, is fast enough for the wmax of 100 rad/s.

 Online Frequency Response Estimation During Simulation

6-15

Start/Stop Signal

The step blocks connected to the start/stop input port turn the experiment on with a rising signal
at t = 5, when the model is at steady state. The block provides a recommended experiment length of
about 174 s. This value is based on the specified frequencies w, the number of settling periods to wait
at each frequency, and the number of periods to use for estimation. To ensure that the experiment
runs long enough for a good result, the start/stop signal stops the experiment at t = 180. For
details about the recommended experiment length, see Frequency Response Estimator.

Estimation Results

Simulate the model. You can use the scope to visualize the control signal, the perturbation signal, and
the plant output. Because the Display Bode Plot block parameter is selected, the block
automatically generates a plot of the specified baseline model and updates it periodically with the
estimated frequency response.

sim(mdl)

The signal at the frd port is a vector containing the current values of the estimated response at each
frequency in w. The To Workspace block connected to that port writes the signal to the MATLAB®
workspace variable frdata. In the To Workspace block, the Limit data points to last parameter is
set to 1, so that frdata contains only the final estimated responses at each frequency. Convert
frdata to a frd model object.

sys_estim = frd(frdata,w);
size(sys_estim)

6 Online Frequency Response Estimation

6-16

FRD model with 1 outputs, 1 inputs, and 20 frequency points.

You can now use sys_estim with Control System Toolbox™ analysis and control design commands
that accept frd models as input, such as bode and pidtune. Alternatively, if you have System
Identification Toolbox™ software, you can use the frequency response data to estimate a parametric
model of your system.

Logged Experiment Data

The model is also configured to log the estimation data at the block output port data (see “Save
Signal Data Using Signal Logging” for information about data logging). The data is stored in the
MATLAB workspace as the Simulink.SimulationData.Dataset object logsout. For information
about how to use this data, see “Collect Frequency Response Experiment Data for Offline Estimation”
on page 6-18.

See Also
Frequency Response Estimator

More About
• “Online Frequency Response Estimation Basics” on page 6-2
• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Collect Frequency Response Experiment Data for Offline Estimation” on page 6-18

 Online Frequency Response Estimation During Simulation

6-17

Collect Frequency Response Experiment Data for Offline
Estimation

This example shows how to use the Frequency Response Estimator block to perform a frequency
response estimation experiment and store the data for later estimation offline. In practice, you can
use this approach to perform the experiment in real time against a physical plant, when your
deployed environment is short of resources for the online estimation computation. In this example,
for illustration purposes, you perform the experiment on a plant modeled in Simulink®.

Model and Experiment Parameters

This example uses a model that already contains a Frequency Response Estimator block configured to
collect experiment data for offline estimation.

Open the model.

mdl = "CollectFreqRespEstimDataEx.slx";
open_system(mdl)

The model contains a plant in a closed-loop configuration with a PI controller. The Frequency
Response Estimator block accepts the control signal as the input u. It feeds the control signal plus a
perturbation into the plant input.

The Frequency Response Estimator block is configured to run the experiment in sinestream mode,
with the same experiment parameters used in the example “Online Frequency Response Estimation
During Simulation” on page 6-15. In this example, however, the Estimation Mode parameter is set
to Offline. In this configuration, block injects the specified perturbation signals and collects the
response data, but does not perform the estimation. The block is configured to use a sinestream
signal at the frequencies w = logspace(0,2,20).

Collect Experiment Data

Simulate the model. The block performs the experiment and collects the response data. The scope
shows the applied sinestream signal and the system response.

6 Online Frequency Response Estimation

6-18

sim(mdl)
open_system('CollectFreqRespEstimDataEx/Scope1')

The model is configured to log the estimation data at the block output port data (see “Save Signal
Data Using Signal Logging” for information about data logging). The data is stored in the MATLAB
workspace as the Simulink.SimulationData.Dataset object logsout. Because data is the only
logged port, you can access the logged data in the first entry in logsout. The Values field of that
entry is a structure containing four fields.

logdata = logsout{1}.Values

logdata =

 struct with fields:

 Ready: [1x1 timeseries]
 Perturbation: [1x1 timeseries]
 PlantInput: [1x1 timeseries]
 PlantOutput: [1x1 timeseries]
 Info: [1x1 struct]

 Collect Frequency Response Experiment Data for Offline Estimation

6-19

 u: [1x1 timeseries]
 y: [1x1 timeseries]

The Ready field is a timeseries containing a logical signal that indicates which time steps contain the
data to used for the estimation. For a sinestream signal, this field indicates which perturbation
periods for the estimation to discard (settling periods). Perturbation contains the sinestream
perturbation applied to the plant. The PlantInput and PlantOutput timeseries contain the signals
at the block inputs u and y, respectively.

Estimate Frequency Response

If you collect this data in a deployed environment with limited computational resources, you can use
the data to perform frequency response estimation offline, using the frestimate command. Give
frestimate the logdata structure and the same frequencies you used for the Frequencies
parameter in the block. frestimate processes logdata to obtain a frequency response data (frd)
model containing the estimated responses at those frequencies.

sys_estim = frestimate(logdata,w,'rad/s');
size(sys_estim)

FRD model with 1 outputs, 1 inputs, and 20 frequency points.

Examine the estimated frequency response.

figure
bode(sys_estim,'b*')

6 Online Frequency Response Estimation

6-20

See Also
Frequency Response Estimator

More About
• “Online Frequency Response Estimation Basics” on page 6-2
• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Online Estimation of Frequency Responses of a Nonlinear Plant” on page 6-22
• “Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9

 Collect Frequency Response Experiment Data for Offline Estimation

6-21

Online Estimation of Frequency Responses of a Nonlinear Plant

This example shows how to use the Frequency Response Estimator block to perform online estimation
of the plant frequency responses. For a nonlinear plant, estimation at different nominal operating
points produces different frequency responses.

Real Time Frequency Response Estimation

Frequency response describes the steady state response of a system to a sinusoidal input signal. If
the system is linear (), the output signal is a sine wave of the same frequency with a different
magnitude and a phase shift. A frequency response data (frd) model that stores frequency response
information at multiple frequencies is useful for tasks such as analyzing plant dynamics, validating
linearization results, designing a control system, and estimating a parametric model.

There are different ways to obtain an frd model in the Simulink® environment. The most common
approach is to linearize the Simulink model and calculate the frequency responses directly from the
obtained state-space system. When the Simulink model cannot be linearized, you can use the
frestimate command or use the Model Linearizer app to run simulation with some perturbation
signals. Afterwards, the plant frequency responses are estimated offline based on the collected
experiment data. This approach is called offline estimation.

This example shows an alternative online estimation approach using the Frequency Response
Estimator block is to conduct an experiment and estimate the frequency response during simulation.
Although this example uses a plant modeled in Simulink, if you do not have a plant model in Simulink,
you can deploy the block on your target system and carry out frequency response estimation against
a physical plant in real time. For more information, see “Online Frequency Response Estimation
Basics” on page 6-2.

Nonlinear Plant Model

This example uses a stable nonlinear SISO plant. The plant has two states. Trim the model to find an
initial steady-state operating point at which the plant output is zero.

plantMDL = 'scdfrePlant';
y0 = 0;
op = operspec(plantMDL);
op.Outputs.Known = true;
op.Outputs.y = y0;
options = findopOptions('DisplayReport','off');
[op_point, op_report] = findop(plantMDL,op,options);
x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = op_report.Outputs.y;
u0 = op_report.Inputs.u;

A goal of this example is to obtain plant frequency responses from 0.1 rad/s to 10 rad/s at two other
steady-state operating points, plant output = 0.5 and plant output = -0.5. To bring the plant to these
operating points, design a discrete PID controller at the initial operating point. Use a controller
sample time of 0.01 sec and an open-loop bandwidth is 20 rad/s.

Ts = 0.01;
G0 = c2d(linearize(plantMDL,op_point),Ts);
c = pidtune(G0,'pidf',20);

6 Online Frequency Response Estimation

6-22

Online Estimation Using Sinestream Mode

The model scdfreSinestream includes the plant in a PID control loop using the controller c. It also
contains the Frequency Response Estimator block in the control action + perturbation output
configuration. In that configuration, you insert the block into the control loop between controller and
plant.

mdlSS = 'scdfreSinestream';
open_system(mdlSS);

You can use the start/stop signal to start and stop an online estimation experiment. When the block
is idle, the control signal passes through the block without any change.

During the experiment, when the Experiment Mode is Sinestream, the block injects sinusoidal
signals into to the plant one frequency after another, from the lowest to the highest. Compared with
the Superposition mode, the sinestream experiment is less intrusive and more accurate. However, it
requires a much longer time to conduct the experiment.

In this example, you can obtain an exact linearization of the model. Therefore, you can use it as the
baseline in the block, letting you directly compare estimation result with this "truth" at run time. Find
a steady-state operating point at which the plant output is 0.5, and linearize at this operating point to
obtain G1.

op.Outputs.y = 0.5;
op_point = findop(plantMDL,op,options);
G1 = c2d(linearize(plantMDL,op_point),Ts);

Configure the block to use the model G1 as the baseline for the Bode plot.

 Online Estimation of Frequency Responses of a Nonlinear Plant

6-23

set_param([mdlSS,'/Frequency Response Estimator'], 'BaselinePlant', 'G1');

The experiment starts at 10 sec after PID controller moves the plant to the new operating point (y =
0.5). After the experiment starts, the PID controller tries to reject the injected sine waves, which are
effectively load disturbance. Thus the controller ensures that the plant does not move too far away
from the nominal operating point during the experiment, and reduces the impact of plant nonlinearity
on the estimation result. Simulate the model and observe on the Bode plot how the estimated
response evolves during the experiment. The estimation result matches the baseline very well.

sim(mdlSS);
figSS = gcf;
hold on;

Online Estimation Using Superposition Mode

Open another model, scdfreSuperposition. In this model, the Frequency Response Estimator
block is configured for perturbation only output. In this configuration, you can position to block
outside of the control loop. When the block is idle, the perturbation signal entering the Sum block is
0, so the loop is unaffected.

mdlSP = 'scdfreSuperposition';
open_system(mdlSP);

6 Online Frequency Response Estimation

6-24

This model has the same plant and controller. However, the Frequency Response Estimator block in
this model is configured to use the Superposition experiment mode. In this mode, all the sine waves
are added together and injected to the plant at the same time. Compared with the sinestream
experiment, the superposition experiment is must faster (especially when you are targeting low
frequencies).

Find a steady-state operating point with plant output of -0.5. Linearize the plant to find a baseline
response at this operating point, G2.

op.Outputs.y = -0.5;
op_point = findop(plantMDL,op,options);
G2 = c2d(linearize(plantMDL,op_point),Ts);

Configure the block to use the model G2 as the baseline for the Bode plot.

set_param([mdlSP,'/Frequency Response Estimator'], 'BaselinePlant', 'G2');

The experiment starts at 10 sec after the PID controller moves the plant to the new operating point (y
= -0.5). Note that the recommended experiment length is 377 seconds, much shorter than 1738
seconds used in the sinestream experiment. Simulate the model and again observe the progress of
the estimation on the Bode plot.

sim(mdlSP);
figSP = gcf;
hold on;

 Online Estimation of Frequency Responses of a Nonlinear Plant

6-25

Online Estimation Using PRBS Mode

Open another model, scdfrePRBS. In this model, the Frequency Response Estimator block is
configured for perturbation only output. In this configuration, you can position to block outside of
the control loop. When the block is idle, the perturbation signal entering the Sum block is 0, so the
loop is unaffected.

mdlPRBS = 'scdfrePRBS';
open_system(mdlPRBS);

6 Online Frequency Response Estimation

6-26

This model has the same plant and controller. However, the Frequency Response Estimator block in
this model is configured to use the PRBS experiment mode. In this mode, a pseudorandom binary
sequence is injected into the plant model. Compared with the sinestream and superposition
experiments, the PRBS experiment is much faster even with much higher resolution in frequency
domain.

Find a steady-state operating point with plant output of -0.5. Linearize the plant to find a baseline
response at this operating point, G3.

op.Outputs.y = -0.5;
op_point = findop(plantMDL,op,options);
G3 = c2d(linearize(plantMDL,op_point),Ts);

Configure the block to use the model G3 as the baseline for the Bode plot.

set_param([mdlPRBS,'/Frequency Response Estimator'], 'BaselinePlant', 'G3');

The experiment starts at 10 sec after the PID controller moves the plant to the new operating point (y
= -0.5). Note that the recommended experiment length is 163.82 seconds, much shorter than 377
seconds used in the superposition experiment. Simulate the model and again observe the progress of
the estimation on the Bode plot.

sim(mdlPRBS);
figPRBS = gcf;
hold on;

 Online Estimation of Frequency Responses of a Nonlinear Plant

6-27

Offline Estimation Using Logged Experiment Data

Frequency Response Estimator block has a data outport that allows you to log the experiment data
from simulation or in real-time. You can process that data set offline with the frestimate command
to generate an frd object.

w = logspace(-1,1,20);

Compare online and offline estimation results from the sinestream experiment.

G1frd = frestimate(dataSS,w,'rad/s');
figure(figSS);
bodeplot(gca,G1frd,w,'o');
legend('truth','online','offline')

6 Online Frequency Response Estimation

6-28

Compare online and offline estimation results from the superposition experiment.

G2frd = frestimate(dataSP,w,'rad/s');
figure(figSP);
bodeplot(gca,G2frd,w,'o');
legend('truth','online','offline')

 Online Estimation of Frequency Responses of a Nonlinear Plant

6-29

Compare online and offline estimation results from the PRBS experiment.

G3frd = frestimate(dataPRBS,w,'rad/s');
figure(figPRBS);
bodeplot(gca,G3frd,w,'o');
legend('truth','online','offline')

6 Online Frequency Response Estimation

6-30

For more information about using experiment data for offline estimation, see “Collect Frequency
Response Experiment Data for Offline Estimation” on page 6-18.

See Also
Frequency Response Estimator

More About
• “Online Frequency Response Estimation Basics” on page 6-2
• “Online Estimation Using Plant Modeled in Simulink” on page 6-5

 Online Estimation of Frequency Responses of a Nonlinear Plant

6-31

PID Controller Tuning

• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2
• “Open PID Tuner” on page 7-5
• “Analyze Design in PID Tuner” on page 7-8
• “Verify the PID Design in Your Simulink Model” on page 7-13
• “Tune at a Different Operating Point” on page 7-14
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection” on page 7-17
• “Design Two-Degree-of-Freedom PID Controllers” on page 7-26
• “Tune PID Controller Within Model Reference” on page 7-30
• “Specify PI-D and I-PD Controllers” on page 7-33
• “Design PID Controller from Plant Frequency-Response Data” on page 7-37
• “Frequency-Response Based Tuning” on page 7-38
• “Design PID Controller Using Plant Frequency Response Near Bandwidth” on page 7-44
• “Import Measured Response Data for Plant Estimation” on page 7-52
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56
• “System Identification for PID Control” on page 7-62
• “Preprocess Data” on page 7-65
• “Input/Output Data for Identification” on page 7-68
• “Choosing Identified Plant Structure” on page 7-69
• “Design Controller for Boost Converter Model Using Frequency Response Data” on page 7-77
• “Design Controller for Power Electronics Model Using Simulated I/O Data” on page 7-95
• “Design PID Controller Using Simulated I/O Data” on page 7-110
• “Design PID Controller Using Estimated Frequency Response” on page 7-126
• “Design Family of PID Controllers for Multiple Operating Points” on page 7-134
• “Implement Gain-Scheduled PID Controllers” on page 7-141
• “Design Controller for Vehicle Platooning” on page 7-146
• “Plant Cannot Be Linearized or Linearizes to Zero” on page 7-154
• “Cannot Find a Good Design in PID Tuner” on page 7-155
• “Simulated Response Does Not Match PID Tuner Response” on page 7-156
• “Cannot Find Acceptable PID Design in Simulated Model” on page 7-158
• “Controller Performance Deteriorates When Switching Time Domains” on page 7-159
• “When Tuning the PID Controller, the D Gain Has a Different Sign from the I Gain” on page 7-160
• “Tune Field-Oriented Controllers Using SYSTUNE” on page 7-161
• “Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels”

on page 7-176
• “Frequency Response Based PID Tuner” on page 7-186

7

Introduction to Model-Based PID Tuning in Simulink

You can use PID Tuner to interactively tune PID gains in a Simulink model containing a PID
Controller, Discrete PID Controller, PID Controller (2DOF), or Discrete PID Controller (2DOF) block.
PID Tuner allows you to achieve a good balance between performance and robustness for either one-
degree-of-freedom or two-degree-of-freedom PID controllers. When you use PID Tuner, it:

• Automatically computes a linear model of the plant in your model. PID Tuner considers the plant
to be the combination of all blocks between the PID controller output and input. Thus, the plant
includes all blocks in the control loop, other than the controller itself. See “What Plant Does PID
Tuner See?” on page 7-2.

• Automatically computes an initial PID design with a balance between performance and
robustness. PID Tuner bases the initial design upon the open-loop frequency response of the
linearized plant. See “PID Tuning Algorithm” on page 7-3.

• Provides tools and response plots to help you interactively refine the performance of the PID
controller to meet your design requirements. See “Open PID Tuner” on page 7-5.

For plants that do not linearize or that linearize to zero, there are several alternatives for obtaining a
plant model for tuning. These alternatives include:

• “Design PID Controller from Plant Frequency-Response Data” on page 7-37 — Use the
frequency-response estimation command frestimate or the Frequency Response Based PID
Tuner to obtain estimated frequency responses of the plant by simulation.

• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56 — If you
have System Identification Toolbox, you can use PID Tuner to estimate the parameters of a linear
plant model based on time-domain response data. PID Tuner then tunes a PID controller for the
resulting estimated model. The response data can be either measured from your real-world
system, or obtained by simulating your Simulink® model.

You can use PID Tuner to design one-degree-of-freedom or two-degree-of-freedom PID controllers.
You can often achieve both good setpoint tracking and good disturbance rejection using a one-degree-
of-freedom PID controller. However, depending upon the dynamics in your model, using a one-degree-
of-freedom PID controller can require a tradeoff between setpoint tracking and disturbance rejection.
In such cases, if you need both good setpoint tracking and good disturbance rejection, use a two-
degree-of-freedom PID Controller.

For examples of tuning one- and two-degree-of-freedom PID compensators, see:

• “PID Controller Tuning in Simulink”
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection” on page 7-17

What Plant Does PID Tuner See?
PID Tuner considers as the plant all blocks in the loop between the PID Controller block output and
input. The blocks in your plant can include nonlinearities. Because automatic tuning requires a linear
model, PID Tuner computes a linearized approximation of the plant in your model. This linearized
model is an approximation to a nonlinear system, which is valid in a small region around a given
operating point of the system.

7 PID Controller Tuning

7-2

By default, PID Tuner linearizes your plant using the initial conditions specified in your Simulink
model as the operating point. The linearized plant can be of any order and can include any time
delays. The PID tuner designs a controller for the linearized plant.

In some circumstances, however, you want to design a PID controller for a different operating point
from the one defined by the model initial conditions. For example:

• The Simulink model has not yet reached steady-state at the operating point specified by the model
initial conditions, and you want to design a controller for steady-state operation.

• You are designing multiple controllers for a gain-scheduling application and must design each
controller for a different operating point.

In such cases, change the operating point used by PID Tuner. See “Opening PID Tuner” on page 7-
5.

For more information about linearization, see “Linearize Nonlinear Models” on page 2-3.

PID Tuning Algorithm
Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded input.
• Adequate performance — The closed-loop system tracks reference changes and suppresses

disturbances as rapidly as possible. The larger the loop bandwidth (the frequency of unity open-
loop gain), the faster the controller responds to changes in the reference or disturbances in the
loop.

• Adequate robustness — The loop design has enough gain margin and phase margin to allow for
modeling errors or variations in system dynamics.

MathWorks algorithm for tuning PID controllers meets these objectives by tuning the PID gains to
achieve a good balance between performance and robustness. By default, the algorithm chooses a
crossover frequency (loop bandwidth) based on the plant dynamics, and designs for a target phase
margin of 60°. When you interactively change the response time, bandwidth, transient response, or
phase margin using the PID Tuner interface, the algorithm computes new PID gains.

For a given robustness (minimum phase margin), the tuning algorithm chooses a controller design
that balances the two measures of performance, reference tracking and disturbance rejection. You
can change the design focus to favor one of these performance measures. To do so, use the Options
dialog box in PID Tuner.

When you change the design focus, the algorithm attempts to adjust the gains to favor either
reference tracking or disturbance rejection, while achieving the same minimum phase margin. The
more tunable parameters there are in the system, the more likely it is that the PID algorithm can
achieve the desired design focus without sacrificing robustness. For example, setting the design focus
is more likely to be effective for PID controllers than for P or PI controllers. In all cases, fine-tuning
the performance of the system depends strongly on the properties of your plant. For some plants,
changing the design focus has little or no effect.

See Also
Apps
PID Tuner

 Introduction to Model-Based PID Tuning in Simulink

7-3

Blocks
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

More About
• “Choose a Control Design Approach” on page 9-2

7 PID Controller Tuning

7-4

Open PID Tuner
You can use PID Tuner to interactively tune PID gains in a Simulink model containing a PID
Controller, Discrete PID Controller, PID Controller (2DOF), or Discrete PID Controller (2DOF) block.
For more information, see “Introduction to Model-Based PID Tuning in Simulink” on page 7-2.

Prerequisites for PID Tuning
Before you can use PID Tuner, you must:

• Create a Simulink model containing a PID Controller, Discrete PID Controller, PID Controller
(2DOF), or Discrete PID Controller (2DOF) block. Your model can have one or more PID blocks,
but you can only tune one PID block at a time.

• If you are tuning a multi-loop control system with coupling between the loops, consider using
other Simulink Control Design tools instead of PID Tuner. For more information, see “Choose
a Control Design Approach” on page 9-2.

• The PID Controller blocks support vector signals. However, using PID Tuner requires scalar
signals at the block inputs. That is, the PID block must represent a single PID controller.

Your plant (all blocks in the control loop other than the controller) can be linear or nonlinear. The
plant can also be of any order, and have any time delays.

• Configure the PID block settings, such as controller type, controller form, time domain, sample
time. For more information on these block settings, see the individual block reference pages:

• PID Controller
• Discrete PID Controller
• PID Controller (2DOF)
• Discrete PID Controller (2DOF)

Opening PID Tuner
To open PID Tuner and view the initial compensator design:

1 Open the Simulink model by typing the model name at the MATLAB command prompt.
2 To open the block dialog box, double-click the PID controller block.
3 In the block dialog box, in the Select Tuning Method drop-down list, select Transfer

Function Based (PID Tuner App). To open PID Tuner, click Tune.

When you open PID Tuner, the following actions occur:

• PID Tuner automatically linearizes the plant at the operating point specified by the model initial
conditions, as described in “What Plant Does PID Tuner See?” on page 7-2. If you want to design a
controller for a different operating point, see “Tune at a Different Operating Point” on page 7-14.

Note If the plant model in the PID loop linearizes to zero, PID Tuner provides the Obtain plant
model dialog box. This dialog box allows you to obtain a new plant model by either:

• Linearizing at a different operating point (see “Tune at a Different Operating Point” on page 7-
14).

 Open PID Tuner

7-5

• Importing an LTI model object representing the plant. For example, you can import frequency
response data (frd model) obtained by frequency response estimation. For more information,
see “Design PID Controller Using Estimated Frequency Response” on page 7-126.

• Identifying a linear plant model from simulated or measured response data (requires System
Identification Toolbox software). PID Tuner uses system identification to estimate a linear
plant model from the time-domain response of your plant to an applied input. For an example,
see “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56.

As an alternative, you can exit PID Tuner and use the Frequency Response Based PID Tuner,
which runs simulations to perturb the plant and estimate frequency responses at frequencies near
the control bandwidth. See “Frequency-Response Based Tuning” on page 7-38.

• PID Tuner computes an initial compensator design for the linearized plant model using the
algorithm described in “PID Tuning Algorithm” on page 7-3.

• PID Tuner displays the closed-loop step reference tracking response for the initial compensator
design. For comparison, the display also includes the closed-loop response for the gains specified
in the PID controller block, if that closed loop is stable, as shown in the following figure.

Tip After the tuner opens, you can close the controller block dialog box.

See Also
Apps
PID Tuner

Blocks
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

7 PID Controller Tuning

7-6

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

 Open PID Tuner

7-7

Analyze Design in PID Tuner
To determine whether your PID controller meets your requirements, you can analyze the system
response using the PID Tuner response plots.

Plot System Responses
To determine whether the compensator design meets your requirements, you can analyze the system
response using the response plots. On the PID Tuner tab, select a response plot from the Add Plot
menu. The Add Plot menu also lets you choose from several step plots (time-domain response) or
Bode plots (frequency-domain response).

For 1-DOF PID controller types such as PI, PIDF, and PDF, the software computes system responses
based upon the following single-loop control architecture, where G is your specified plant and C is the
PID controller:

7 PID Controller Tuning

7-8

For 2-DOF PID controller types such as PI2, PIDF2, and I-PD, the software computes responses based
upon the following architecture:

The system responses are based on the decomposition of the 2-DOF PID controller, C, into a setpoint
component Cr and a feedback component Cy, as described in “Two-Degree-of-Freedom PID
Controllers”.

The following table summarizes the available responses for analysis plots.

Response Plotted System (1-DOF) Plotted System (2-DOF) Description
Plant G G Plant response. Use to

examine plant dynamics.
Open-loop GC –GCy Response of the open-loop

controller-plant system.
Use for frequency-domain
design.
Use when your design
specifications include
robustness criteria such as
open-loop gain margin and
phase margin.

Reference tracking GC
1 + GC (from r to y) GCr

1 − GCy
 (from r to y)

Closed-loop system
response to a step change
in setpoint. Use when your
design specifications
include setpoint tracking.

Controller effort C
1 + GC (from r to u) Cr

1 − GCy
 (from r to u)

Closed-loop controller
output response to a step
change in setpoint. Use
when your design is
limited by practical
constraints, such as
controller saturation.

 Analyze Design in PID Tuner

7-9

Response Plotted System (1-DOF) Plotted System (2-DOF) Description
Input disturbance
rejection

G
1 + GC (from d1 to y) G

1 − GCy
 (from d1 to y) Closed-loop system

response to load
disturbance (a step
disturbance at the plant
input). Use when your
design specifications
include input disturbance
rejection.

Output disturbance
rejection

1
1 + GC (from d2 to y) 1

1 − GCy
 (from d2 to y) Closed-loop system

response to a step
disturbance at plant
output. Use when you
want to analyze sensitivity
to modeling errors.

Compare Tuned Response to Block Response

By default, PID Tuner plots system responses using both:

• The PID coefficient values in the controller block in the Simulink model (Block response).
• The PID coefficient values of the current PID Tuner design (Tuned response).

As you adjust the current PID Tuner design, such as by moving the sliders, the Tuned response
plots change, while the Block response plots do not.

To write the current PID Tuner design to the Simulink model, click . When you do so, the current
Tuned response becomes the Block response. Further adjustment of the current design creates a
new Tuned response line.

7 PID Controller Tuning

7-10

To hide the Block response, click Options, and clear Show Block Response.

View Numeric Values of System Characteristics
You can view the values for system characteristics, such as peak response and gain margin, either:

• Directly on the response plot — Use the right-click menu to add characteristics, which appear as
blue markers. Then, left-click the marker to display the corresponding data panel.

• In the Performance and robustness table — To display this table, click Show Parameters.

Export Plant or Controller to MATLAB Workspace
You can export the linearized plant model computed by PID Tuner to the MATLAB workspace for
further analysis. To do so, click Update Block and select Export.

In the Export dialog box, check the models that you want to export. Click OK to export the plant or
controller to the MATLAB workspace as state-space (ss) model object or pid object, respectively.

 Analyze Design in PID Tuner

7-11

Refine the Design
If the response of the initial controller design does not meet your requirements, you can interactively
adjust the design. PID Tuner gives you two Domain options for refining the controller design:

• Time domain (default) — Use the Response Time slider to make the closed-loop response of the
control system faster or slower. Use the Transient Behavior slider to make the controller more
aggressive at disturbance rejection or more robust against plant uncertainty.

• Frequency — Use the Bandwidth slider to make the closed-loop response of the control system
faster or slower (the response time is 2/wc, where wc is the bandwidth). Use the Phase Margin
slider to make the controller more aggressive at disturbance rejection or more robust against
plant uncertainty.

In both modes, there is a tradeoff between reference tracking and disturbance rejection performance.
For an example that shows how to use the sliders to adjust this tradeoff, see “Tune PID Controller to
Favor Reference Tracking or Disturbance Rejection” on page 7-17.

Once you find a compensator design that meets your requirements, verify that it behaves in a similar
way in the nonlinear Simulink model. For instructions, see “Verify the PID Design in Your Simulink
Model” on page 7-13.

Tip To revert to the initial controller design after moving the sliders, click Reset Design.

See Also
PID Tuner

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

7 PID Controller Tuning

7-12

Verify the PID Design in Your Simulink Model
In PID Tuner, you tune the compensator using a linear model of your plant. First, you find a good
compensator design in PID Tuner. Then, verify that the tuned controller meets your design
requirements when applied to the nonlinear plant in your Simulink model.

To verify the compensator design in the nonlinear Simulink model:

1
In the PID Tuner tab, click to update the Simulink PID controller block with the tuned PID
parameters.

Tip To update PID block parameters automatically as you tune the controller in PID Tuner, click
Update Block and check Auto-update block.

2 Simulate the Simulink model, and evaluate whether the simulation output meets your design
requirements.

Because PID Tuner works with a linear model of your plant, the simulated response sometimes does
not match the response in PID Tuner. See “Simulated Response Does Not Match PID Tuner
Response” on page 7-156 for more information.

If the simulated response does not meet your design requirements, see “Cannot Find Acceptable PID
Design in Simulated Model” on page 7-158.

 Verify the PID Design in Your Simulink Model

7-13

Tune at a Different Operating Point
By default, PID Tuner linearizes your plant and designs a controller at the operating point specified
by the initial conditions in your Simulink model. Sometimes, this operating point differs from the
operating point for which you want to design a controller. For example, you want to design a
controller for your system at steady-state. However, the Simulink model is not generally at steady-
state at the initial condition. In this case, change the operating point that PID Tuner uses for
linearizing your plant and designing a controller.

To set a new operating point for PID Tuner, use one of the following methods. The method you
choose depends upon the information you have about your desired operating point.

Known State Values Yield the Desired Operating Conditions
In this case, set the state values in the model directly.

1 Close PID Tuner.
2 Set the initial conditions of the components of your model to the values that yield the desired

operating conditions.
3 Click Tune in the PID controller dialog box to open PID Tuner. PID Tuner linearizes the plant

using the new default operating point and designs a new initial controller for the new linear plant
model.

After PID Tuner generates a new initial controller design, continue from “Analyze Design in PID
Tuner” on page 7-8.

Model Reaches Desired Operating Conditions at a Finite Time
In this case, use PID Tuner to relinearize the model at a particular simulation time.

1 In the PID Tuner tab, in the Plant menu, select Re-linearize Closed Loop.
2

In the Closed Loop Re-Linearization tab, click Run Simulation to simulate the model for
the time specified in the Simulation Time text box.

PID Tuner plots the error signal as a function of time. You can use this plot to identify a time at
which the model is in steady-state. Slide the vertical bar to a snapshot time at which you want to
linearize the model.

3
Click Linearize to linearize the model at the selected snapshot time. PID Tuner computes a
new linearized plant and saves it to the PID Tuner workspace. PID Tuner automatically designs
a controller for the new plant, and displays a response plot for the new closed-loop system. PID
Tuner returns you PID Tuner tab, where the Plant menu reflects that the new plant is selected
for the current controller design.

Note For models with Trigger-Based Operating Point Snapshot blocks, the software captures an
operating point at events that trigger before the simulation reaches the snapshot time.

After PID Tuner generates a new initial controller design, continue from “Analyze Design in PID
Tuner” on page 7-8.

7 PID Controller Tuning

7-14

You Computed an Operating Point in Model Linearizer
1 In the Model Linearizer app, drag the saved operating point object from the Linear Analysis

Workspace to the MATLAB Workspace.

2 In PID Tuner, in the PID Tuner tab, in the Plant menu, select Import.

3 Select Importing an LTI system or linearizing at an operating point defined in MATLAB
workspace. Select your exported operating point in the table.

4 Click OK. PID Tuner computes a new linearized plant and saves it to the PID Tuner workspace.
PID Tuner automatically designs a controller for the new plant, and displays a response plot for
the new closed-loop system. PID Tuner returns you PID Tuner tab, where the Plant menu
reflects that the new plant is selected for the current controller design.

After PID Tuner generates a new initial controller design, continue from “Analyze Design in PID
Tuner” on page 7-8.

 Tune at a Different Operating Point

7-15

See Also

More About
• “About Operating Points” on page 1-2
• “Compute Steady-State Operating Points” on page 1-5

7 PID Controller Tuning

7-16

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection

This example shows how to tune a PID controller to reduce overshoot in reference tracking or to
improve rejection of a disturbance at the plant input. Using the PID Tuner app, the example
illustrates the tradeoff between reference tracking and disturbance-rejection performance in PI and
PID control systems.

Single-Loop PI Control Model

Load a Simulink model that contains a PID controller block.

open_system("singlePILoop")

The plant in this example is:

Plant = 0 . 3
s2 + 0 . 1s

The model also includes a reference signal and a step disturbance at the plant input. Reference
tracking is the response at y to the reference signal, r. Disturbance rejection is a measure of the
suppression at y of the injected disturbance, d. When you use PID Tuner to tune the controller, you
can adjust the design to favor reference tracking or disturbance rejection as your application
requires.

Design Initial PI Controller
Design an initial controller for the plant. To do so, double-click the PID controller block to open the
Block Parameters dialog box, and click Tune. PID Tuner opens and automatically computes an initial
controller design.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

7-17

The controller in the Simulink model is configured as a PI-type controller. Therefore, the initial
controller designed by PID Tuner is also of PI-type.

Add a step response plot of the input disturbance rejection. Select Add Plot > Input Disturbance
Rejection.

PID Tuner tiles the disturbance-rejection plot in a new tab.

7 PID Controller Tuning

7-18

Tip Click and drag the tab to position the plots.

By default, for a given bandwidth and phase margin, PID Tuner tunes the controller to achieve a
balance between reference tracking and disturbance rejection. In this case, the controller yields some
overshoot in the reference-tracking response. The controller also suppresses the input disturbance
with a longer settling time than the reference tracking, after an initial peak.

Click to update the Simulink model with this initial controller design. Doing so also updates the
Block Response plots in PID Tuner, so that as you change the controller design, you can compare the
results with the initial design.

Adjust Transient Behavior
Depending on your application, you might want to alter the balance between reference tracking and
disturbance rejection to favor one or the other. For a PI controller, you can alter this balance using
the Transient Behavior slider. Move the Transient behavior slider to the left to improve the
disturbance rejection. The responses with the initial controller design are now displayed as the
Block response (dotted line).

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

7-19

Lowering the transient-behavior coefficient to 0.45 speeds up disturbance rejection, but also
increases overshoot in the reference-tracking response.

Tip Right-click the reference-tracking plot and select Characteristics > Peak Response to obtain a
numerical value for the overshoot.

Move the Transient behavior to the right until the overshoot in the reference-tracking response is
minimized.

7 PID Controller Tuning

7-20

Increasing the transient-behavior coefficient to 0.70 nearly eliminates the overshoot, but results in
sluggish disturbance rejection. You can try moving the Transient behavior slider until you find a
suitable balance between reference tracking and disturbance rejection for your application. How
much the slider affects the balance depends on the plant model. For some plant models, the effect is
not as large as shown in this example.

Change PID Tuning Design Focus
So far, the response time of the control system has remained fixed while you have changed the
transient-behavior coefficient. These operations are equivalent to fixing the bandwidth and varying
the target minimum phase margin of the system. If you want to fix both the bandwidth and target
phase margin, you can still change the balance between reference tracking and disturbance rejection.
To tune a controller that favors either disturbance rejection or reference tracking, you change the
design focus of the PID tuning algorithm.

Changing the PID Tuner design focus is more effective the more tunable parameters there are in the
control system. Therefore, it does not have much effect when used with a PI controller. To see its
effect, change the controller type to PID. In the Simulink model, double-click the PID controller block.
In the block parameters dialog box, in the Controller drop-down menu, select PID.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

7-21

Click Apply. Then, click Tune. This action updates PID Tuner with a new controller design, this time

for a PID controller. Click to the Simulink model with this initial PID controller design, so that you
can compare the results when you change design focus.

7 PID Controller Tuning

7-22

As in the PI case, the initial PID design balances reference tracking and disturbance rejection. In this
case as well, the controller yields some overshoot in the reference-tracking response, and suppresses
the input disturbance with a longer settling time.

Change the PID Tuner design focus to favor reference tracking without changing the response time

or the transient-behavior coefficient. To do so, click Options, and in the Focus menu, select
Reference tracking.

PID Tuner automatically retunes the controller coefficients with a focus on reference-tracking
performance.

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

7-23

The responses with the balanced controller are now displayed as the Block response, and the
controller tuned with a focus reference-tracking is the Tuned response. The plots show that the
resulting controller tracks the reference input with considerably less overshoot and a faster settling
time than the balanced controller design. However, the design yields much poorer disturbance
rejection.

Finally, change the design focus to favor disturbance rejection. In the Options dialog box, in the
Focus menu, select Input disturbance rejection.

This controller design yields improved disturbance rejection, but results in some increased overshoot
in the reference-tracking response.

7 PID Controller Tuning

7-24

When you use design focus option, you can still adjust the Transient Behavior slider for further fine-
tuning of the balance between these two measures of performance. Use the design focus and the
sliders together to achieve the performance balance that best meets your design requirements. The
effect of this fine-tuning on system performance depends strongly on the properties of your plant. For
some plants, moving the Transient Behavior slider or changing the Focus option has little or no
effect.

To obtain independent control over reference tracking and disturbance rejection, you can use a two-
degree-of-freedom controller, PID Controller (2DOF), instead of a single degree-of-freedom controller.

See Also

More About
• “PID Tuning Algorithm” on page 7-3
• “Analyze Design in PID Tuner” on page 7-8
• “Verify the PID Design in Your Simulink Model” on page 7-13
• “Design Two-Degree-of-Freedom PID Controllers” on page 7-26

 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection

7-25

Design Two-Degree-of-Freedom PID Controllers
Using PID Tuner, you can tune two-degree-of-freedom PID Controller (2DOF) and Discrete PID
Controller (2DOF) blocks to achieve both good setpoint tracking and good disturbance rejection.

About Two-Degree-of-Freedom PID Controllers
A two-degree-of-freedom PID compensator, commonly known as an ISA-PID compensator, is
equivalent to a feedforward compensator and a feedback compensator, as shown in the following
figure.

The feedforward compensator is PD and the feedback compensator is PID. In the PID Controller
(2DOF) and Discrete PID Controller (2DOF) blocks, the setpoint weights b and c determine the
strength of the proportional and derivative action in the feedforward compensator. For more
information, see the PID Controller (2DOF) and Discrete PID Controller (2DOF) block reference
pages.

Tuning Two-Degree-of-Freedom PID Controllers
PID Tuner tunes the PID gains P, I, D, and N. For the PID Controller (2DOF) blocks, the tuner also
automatically tunes the setpoint weights b and c. You can use the same techniques to refine and
analyze the design that you use for tuning one-degree-of-freedom PID controllers.

To tune a 2-DOF PID controller block in a Simulink model:

1 Double-click the block. In the block parameters dialog box, click Tune.

PID Tuner opens, linearizes the model at the model initial conditions, and automatically
computes an initial controller design that balances performance and robustness. In this design,
PID Tuner adjusts the setpoint weights b and c if necessary, as well as the PID gains. To see the
tuned values of all coefficients, click Show Parameters.

7 PID Controller Tuning

7-26

2 Analyze and refine the initial design, as described in “Analyze Design in PID Tuner” on page 7-8.
All the same response plots, design adjustments, and options are available for tuning 2-DOF PID
controllers as in the single-degree-of-freedom case.

3 Verify the controller design, as described in “Verify the PID Design in Your Simulink Model” on
page 7-13.

Fixed-Weight Controller Types
When you tune a PID Controller (2DOF) block in PID Tuner, the Type menu shows additional options
for specifying the controller type. These options include controllers with fixed setpoint weights, such
as the controllers described in “Specify PI-D and I-PD Controllers” on page 7-33.

 Design Two-Degree-of-Freedom PID Controllers

7-27

The availability of some type options depends on the Controller setting in the PID Controller (2DOF)
block dialog box.

Type Description Controller Setting in Block
PIDF2 2-DOF PID controller with filter on

derivative term. PID Tuner tunes all
controller parameters, including setpoint
weights.

PID

PIDF2-fixbc 2-DOF PID controller with filter on
derivative term. PID Tuner fixes setpoint
weights at the values specified in the
controller block.

PID

PIDF 2-DOF controller with action equivalent to
a 1-DOF PIDF controller, with fixed b = 1
and c = 1.

PID

I-PDF 2-DOF PID controller with filter on
derivative term, with fixed b = 0 and c =
0.

PID

IDF-P 2-DOF PID controller with filter on
derivative term, with fixed b = 0 and c =
1.

PID

PI-DF 2-DOF PID controller with filter on
derivative term, with fixed b = 1 and c =
0.

PID

PI2 2-DOF PI controller. PID Tuner tunes all
controller parameters, including setpoint
weight on proportional term, b.

PI

7 PID Controller Tuning

7-28

Type Description Controller Setting in Block
PI2-fixbc 2-DOF PI controller with filter on

derivative term. PID Tuner fixes setpoint
weight b at the value specified in the
controller block.

PI

PI 2-DOF controller with action equivalent to
a 1-DOF PI controller, with fixed b = 1.

PI

PDF2 2-DOF PD controller with filter on
derivative term (no integrator). PID
Tuner tunes all controller parameters,
including setpoint weights.

PD

PDF2-fixbc 2-DOF PD controller with filter on
derivative term. PID Tuner fixes setpoint
weights at the values specified in the
controller block.

PD

PD 2-DOF controller with action equivalent to
a 1-DOF PD controller, with fixed b = 1
and c = 1.

PD

See Also

More About
• “Analyze Design in PID Tuner” on page 7-8
• “Verify the PID Design in Your Simulink Model” on page 7-13
• “Specify PI-D and I-PD Controllers” on page 7-33

 Design Two-Degree-of-Freedom PID Controllers

7-29

Tune PID Controller Within Model Reference

In Simulink®, you can include one model inside another using model referencing (see “Model
Reference Basics”). When using PID Tuner or Frequency Response Based PID Tuner to tune a
PID controller block in a referenced model, there are some constraints to be aware of.

In general, you can tune a PID controller block in a referenced model using either PID Tuner or
Frequency Response Based PID Tuner. When you open either tuner, the software prompts you to
specify which model to use as the top-level model for linearization and tuning (PID Tuner) or
estimation and tuning (Frequency Response Based PID Tuner). For example, consider the model
model_ref_pid.

open_system("model_ref_pid")

The Inner Loop system is a referenced model that contains the controller block to tune. Open the
referenced model.

open_system("model_ref_pid/Inner Loop")

The Inner Loop model contains a PID controller block, PID. Open that block. In the Select Tuning
Method drop-down list, select Transfer Function Based (PID Tuner App), and click Tune to
open PID Tuner. The software prompts you to select which open model is the top-level model for
linearization and tuning. (Selecting Frequency Response Based to open Frequency Response
Based PID Tuner results in a similar prompt.)

7 PID Controller Tuning

7-30

The available choices for top-level model include the referenced model itself plus any open model in
which the referenced model:

• Appears exactly once, and
• Is configured for normal simulation mode.

The tuning tools do not detect models that contain the model reference but are not open.

Selecting innerloop causes the tuner to disregard model_ref_pid. Instead, the tuner tunes the
PID Controller block for the plant G_Inner alone, as if there were no outer loop.

Alternatively, you can select model_ref_pid as the top-level model. When you do so, the tuner
considers the dynamics of both the inner and outer loops and tunes with both loops closed. In this
case, the PID controller sees the effective plant (1+G_Outer*Gain)*G_Inner.

Select the desired top-level model, and click OK. The tuner you selected with the Select Tuning
Method opens for tuning the specified top-level model.

Models with Multiple Instances of the Referenced Model

Sometimes, tuning can proceed when the referenced model appears multiple times in an open model.
If the following conditions are met, you can tune the PID controller block using the referenced model
as the top-level model:

• The only open models that contain the model reference have multiple instances of it, and

 Tune PID Controller Within Model Reference

7-31

• At least one of these instances is in normal mode.

When this condition occurs, the software issues a warning. In this case, because the tuner can only
tune with respect to the referenced model, you cannot specify a top-level model.

Referenced Model in Accelerated or Other Simulation Modes

If there is no normal mode instance of the referenced model in any open model, tuning cannot
proceed. In this case, the software issues an error. To tune the PID controller block, convert at least
one instance of the referenced model in an open model to normal simulation mode.

See Also
PID Tuner

More About
• “Model Reference Basics”
• “Choosing a Simulation Mode”
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

7 PID Controller Tuning

7-32

Specify PI-D and I-PD Controllers
PI-D and I-PD controllers are used to mitigate the influence of changes in the reference signal on the
control signal. These controllers are variants of the 2DOF PID controller.

The general formula of a parallel-form 2DOF PID controller is:

u = P(br − y) + I1
s (r − y) + D N

1 + N 1
s

(cr − y) .

Here, r and y are the reference input and measured output, respectively. u is the controller output,
also called the control signal. P, I, and D specify the proportional, integral, and derivative gains,
respectively. N specifies the derivative filter coefficient. b and c specify setpoint weights for the
proportional and derivative components, respectively. For a 1DOF PID controller, b and c are equal to
1.

If r is nonsmooth or discontinuous, the derivative and proportional components can contribute large
spikes or offsets in u, which can be infeasible. For example, a step input can lead to a large spike in u
because of the derivative component. For a motor actuator, such an aggressive control signal could
damage the motor.

To mitigate the influence of r on u, set b or c, or both, to 0. Use one of the following setpoint-weight-
based forms:

• PI-D (b = 1 and c = 0) — Derivative component does not directly propagate changes in r to u,
whereas the proportional component does. However, the derivative component, which has a
greater impact, is suppressed. Also referred to as the derivative of output controller.

The general formula for this controller form is:

u = P(r − y) + I1
s (r − y) − D N

1 + N 1
s

y .

• I-PD (b = 0 and c = 0) — Proportional and derivative components do not directly propagate
changes in r to u.

The general formula for this controller form is:

u = − Py + I1
s (r − y) − D N

1 + N 1
s

y .

You can tune the P, I, D, and N coefficients of a PI-D or I-PD controller to achieve the desired
disturbance rejection and reference tracking.

Simulate PI-D and I-PD Controllers in Simulink

To specify a PI-D or I-PD controller using the PID Controller (2DOF) or Discrete PID Controller
(2DOF) blocks, open the block and set the Controller parameter to PID.

• For a PI-D controller, set the Setpoint weight (b) parameter to 1 and the Setpoint weight (c)
parameter to 0.

 Specify PI-D and I-PD Controllers

7-33

• For an I-PD controller, set the Setpoint weight (b) parameter to 0 and the Setpoint weight (c)
parameter to 0.

Open the pid2dof_setpoint_based_controllers model, which compares the performance of a
1DOF PID, a PI-D, and an I-PD controller. The model uses the same P, I, and D parameters for all three
controllers

mdl = "pid2dof_setpoint_based_controllers";
open_system(mdl)

Simulate the model.

sim("pid2dof_setpoint_based_controllers")

7 PID Controller Tuning

7-34

All of the controllers reject the disturbance equally well. The 1DOF PID controller results in a large
spike when the reference changes from 0 to 1. The PI-D form results in a smaller jump. In contrast,
the I-PD form does not react as much to the reference change.

Automatic Tuning of PI-D and I-PD Controllers
You can use PID Tuner to automatically tune PI-D and I-PD controllers while preserving the fixed b
and c values. To do so:

1 In the model, open the block. In the block dialog box, in the Controller menu, select PID.
2 Click Tune. PID Tuner opens.
3 In PID Tuner, in the Type menu, select PI-DF or I-PDF. PID Tuner retunes the controller

gains, fixing b = 1 and c = 0 for PI-D, and b = 0 and c = 0 for I-PD.

 Specify PI-D and I-PD Controllers

7-35

You can now analyze system responses as described in “Analyze Design in PID Tuner” on page 7-8.

See Also
PID Controller (2DOF) | Discrete PID Controller (2DOF)

More About
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection” on page 7-17
• “Design Two-Degree-of-Freedom PID Controllers” on page 7-26

7 PID Controller Tuning

7-36

Design PID Controller from Plant Frequency-Response Data
Most Simulink Control Design PID tuning tools design PID gains based on a linearized plant model.
When your plant model does not linearize or linearizes to zero, one option is to design a PID
controller based on simulated frequency-response data. Simulink Control Design gives you several
ways to do so.

Use Frequency Response Based PID Tuner
Use Frequency Response Based PID Tuner to design a PID controller using estimated plant
frequency responses near the target open-loop bandwidth. Advantages of this approach include:

• Frequency Response Based PID Tuner works even if disturbances are present in the plant
model.

• You can configure the estimation and tuning in one dialog box, making tuning less complex than
using frestimate or Model Linearizer to estimate the frequency response.

For more information about using Frequency Response Based PID Tuner, see “Frequency-
Response Based Tuning” on page 7-38.

Use frestimate or Model Linearizer
Use the frestimate command or the frequency-response estimation workflow in Model Linearizer
to estimate the plant frequency response over a range of frequencies that you specify. This approach
results in a frequency-response data (frd) model object that you then import into PID Tuner.
Advantages of this approach include:

• You do not have to specify a control bandwidth ahead of time. PID Tuner chooses an initial
control bandwidth, which you can adjust to achieve the desired balance between performance and
robustness.

• You can use the interactive tuning and analysis tools of PID Tuner to examine the estimated
linear response of the tuned system in the frequency domain. Also, you can use the frd model of
the plant for other analysis tasks.

• Depending on the particulars of your model, this approach can be faster, because Frequency
Response Based PID Tuner simulates your model twice.

For more information, see:

• “Design PID Controller Using Estimated Frequency Response” on page 7-126
• “Estimate Frequency Response Using Model Linearizer” on page 5-6

See Also

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2
• “Frequency-Response Based Tuning” on page 7-38
• “Design PID Controller Using Estimated Frequency Response” on page 7-126

 Design PID Controller from Plant Frequency-Response Data

7-37

Frequency-Response Based Tuning
Frequency Response Based PID Tuner simulates the model to estimate the plant frequency
responses at a few frequencies near the control bandwidth. It then uses the estimated frequency
response to tune the gains in your PID Controller. This tuner is a useful alternative when PID Tuner
cannot linearize the plant at the operating point you want to use for tuning.

Frequency Response Based PID Tuner can tune the P, I, D, and N parameters in PID Controller
and PID Controller (2DOF) blocks in both continuous time and discrete time. For PID Controller
(2DOF) blocks, the tuner does not tune the setpoint weights b and c.

How Frequency Response Based PID Tuner Works
Like the interactive PID Tuner, the Frequency Response Based PID Tuner considers the plant to
be all blocks in the loop between the PID Controller block output and input. The Frequency
Response Based PID Tuner performs a perturbation experiment to estimate the open-loop
frequency response of the plant. To do so, the tuner performs the following steps:

1 Breaks the feedback loop at the controller output and simulates the model, applying perturbation
signals to the plant. The perturbations include sinusoidal signals at frequencies [1/3,1,3,10]ωc ,
where ωc is the target bandwidth you specify for tuning. If the plant is asymptotically stable, the
applied signal also includes a step perturbation.

2 Measures the response to the perturbation at the controller input.
3 Uses the resulting data to estimate the plant frequency response at the four frequencies. For

asymptotically stable plants, the tuner also uses the response to the step perturbation to estimate
the plant DC gain.

4 Uses the estimated frequency response to compute PID gains that balance performance and
robustness.

If your model includes disturbances, the tuner can run two simulations: a simulation without
perturbation to get a baseline response, and a simulation with the perturbations applied to the plant.
The tuner then uses the difference between the two responses to remove the effects of disturbances
in the model. In this case, the estimated frequency response used for tuning is based on this
disturbance-free response.

Open Frequency Response Based PID Tuner
To open the Frequency Response Based PID Tuner, in the PID Controller block dialog box, in the
Select Tuning Method drop-down list, select Frequency Response Based.

7 PID Controller Tuning

7-38

Click Tune. The Frequency Response Based PID Tuner opens. The tuner reads some parameters
from the PID Controller block. These parameters include:

• Controller type (such as PI, PD, or PID)
• Controller form (parallel or ideal)
• Controller time domain (continuous-time or discrete-time)
• Controller sample time

In the Frequency Response Based PID Tuner, You configure the settings for the estimation
experiment and the tuning goals.

 Frequency-Response Based Tuning

7-39

Configure Experiment Settings
In the Experiment Settings section, you specify parameters that control the frequency-response
estimation experiment. For more details about these settings, click Help.

7 PID Controller Tuning

7-40

1 Specify whether to run two simulations (default) or one. If your model includes disturbances that
can affect the result of the frequency-response estimation experiment, select 2 simulations
(remove disturbances). With this option selected, the tuner runs a baseline simulation and
subtracts the resulting frequency response from the perturbed simulation to remove the effects
of disturbances. If your model does not include any such disturbances, skip the baseline
simulation by selecting 1 simulation.

2 Specify whether the plant is asymptotically stable or has a single integrator. If the plant is
asymptotically stable, the estimation experiment includes an estimation of the plant DC gain. The
Frequency Response Based PID Tuner performs this estimation by injecting a step signal into
the plant.

Caution Do not use the Frequency Response Based PID Tuner with an unstable plant or a
plant containing multiple integrators.

3 Specify the start time of the experiment in the Start time (t0) field. Start the experiment when
the plant is at the desired equilibrium operating point. For instance, if you know that your
simulation must run to 10 s for the plant to reach such an operating point, specify a start time of
10.

4 Specify the experiment duration in the Duration (tspan) field. Let the experiment run long
enough for the frequency-response estimation algorithm to collect sufficient data for a good
estimate at all frequencies it probes. A conservative estimate for the experiment duration is
100/ωc, where ωc is the target bandwidth for tuning that you specify.

5 Specify the perturbation amplitudes. During the tuning experiment, the Frequency Response
Based PID Tuner injects a sinusoidal signal into the plant at four frequencies, [1/3,1,3,10]ωc .
Use the Sine amplitudes (Asin) field to specify the amplitudes of these injected signals. You can
provide a scalar value to inject the same amplitude at each frequency, or a vector of length 4 to
specify different amplitudes for each.

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower-frequency
inputs and increasing the amplitude of the higher-frequency inputs. It is numerically better for
the estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and
generates a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the
nominal operating point, and to avoid saturating the plant input or output

In the experiment, the sinusoidal signals are superimposed (with the step perturbation, if any, in
the case of open-loop tuning). Thus, the perturbation can be at least as large as the sum of all
amplitudes. Therefore, to obtain appropriate values for the amplitudes, consider:

• Actuator limits. Make sure that the largest possible perturbation is within the range of your
plant actuator. Saturating the actuator can introduce errors into the estimated frequency
response.

• How much the plant response changes in response to a given actuator input at the nominal
operating point for tuning. For instance, suppose that you are tuning a PID controller used in

 Frequency-Response Based Tuning

7-41

engine-speed control. You have determined that at frequencies around the target bandwidth,
a 1° change in throttle angle causes a change of about 200 rpm in the engine speed. Suppose
further that to preserve linear performance the speed must not deviate by more than 100 rpm
from the nominal operating point. In this case, choose amplitudes to ensure that the
perturbation signal is no greater than 0.5 (assuming that value is within actuator limits).

If your plant is asymptotically stable, specify amplitude of the step perturbation in the Step
amplitudes (Astep) field. The considerations for choosing a step amplitude are the same as the
considerations for specifying the step amplitudes.

Configure Design Goals
In the Design Specifications section of the dialog box, you specify your goals for PID tuning.

Specify the target bandwidth in the Target bandwidth (rad/sec) field. The target bandwidth is the
target value for the 0-dB gain crossover frequency of the tuned open-loop response CP, where P is the
plant response, and C is the controller response. This crossover frequency roughly sets the control
bandwidth. For a desired rise-time τ, a good guess for the target bandwidth is 2/τ.

In the Target phase margin (degrees) field, specify a target minimum phase margin for the tuned
open-loop response at the crossover frequency. The target phase margin reflects desired robustness
of the tuned system. Typically, choose a value in the range of about 45°– 60°. In general, higher phase
margin improves overshoot, but can limit response speed. The default value, 60°, tends to balance
performance and robustness, yielding about 5-10% overshoot, depending on the characteristics of
your plant.

For more details about these settings, click Help.

Tune and Validate Controller Gains
Click Tune to initiate the frequency-response estimation experiment. While the estimation
experiment is running, the tuner:

• Closes the open PID Controller block.
• Clears any previous tuning results displayed in the tuner dialog box.
• Replaces the PID Controller block in your model with an unnamed subsystem.

Note When the estimation experiment is completed or canceled, the tuner restores the PID
Controller block. This process might result in some displacement of signal wires on the model canvas,
and puts your Simulink model in a state with unsaved changes.

When the estimation experiment ends, the tuner computes new PID gains and displays them in the
Tuning Results section of the dialog box. (For more information about the tuning results, click
Help.)

7 PID Controller Tuning

7-42

If Automatically update block is selected, the Frequency Response Based PID Tuner writes the
new PID gains to the PID Controller block when tuning is completed. Otherwise, click Update PID
Block to write the tuned gains to the block. Simulate the model to validate the tuned gains against
your full nonlinear system.

For an example illustrating the use of the Frequency Response Based PID Tuner to tune a PID
Controller block in a Simulink model that does not linearize, see “Design PID Controller Using Plant
Frequency Response Near Bandwidth” on page 7-44.

See Also

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2
• “Design PID Controller Using Plant Frequency Response Near Bandwidth” on page 7-44
• “Design PID Controller Using Estimated Frequency Response” on page 7-126

 Frequency-Response Based Tuning

7-43

Design PID Controller Using Plant Frequency Response Near
Bandwidth

This example shows one of several ways to tune a PID controller for plants that cannot be linearized.
In this example, you use the Frequency Response Based PID Tuner to automatically characterize the
frequency response of a buck converter around the control bandwidth and then tune the PID
controller.

Buck Converter Model

Buck converters convert DC to DC. The model in this example uses a switching power supply to
convert a 30V DC supply into a regulated DC supply. The converter is modeled using MOSFETs rather
than ideal switches to ensure that device on-resistances are correctly represented. The converter
response from reference voltage to measured voltage includes the MOSFET switches. Traditional PID
design requires a linear model of the system from the "reference voltage" (controller output) to
measured voltage. However, because of the switches in this model, automated linearization results in
a zero system. When a model linearizes to zero, several alternatives are available.

• Relinearize the system. Linearize the model at a different operating point or simulation
snapshot time.

• Identify a new plant. Use measured or simulated data to identify a plant model (requires System
Identification Toolbox™ software).

• Frequency response based tuning. Use simulated data to obtain the frequency response for the
plant.

For this example, use the Frequency Response Based PID Tuner to estimate the frequency
responses of the system and tune the PID controller. For an example that uses system identification to
identify a plant model, see “Design PID Controller Using Simulated I/O Data” on page 7-110.

For more information on creating a buck converter model, see “Buck Converter” (Simscape
Electrical).

open_system('scdbuckconverter')

7 PID Controller Tuning

7-44

The model uses a reference voltage that switches from 15 to 25 Volts at 0.004 seconds and a load
current that is active from 0.0025 to 0.005 seconds. The controller is initialized with default gains
that produce overshoot and a slow settling time. Simulating the model shows the underdamping and
slow response of the system.

sim('scdbuckconverter')
open_system('scdbuckconverter/Scope 1')
open_system('scdbuckconverter/Scope 2')

 Design PID Controller Using Plant Frequency Response Near Bandwidth

7-45

7 PID Controller Tuning

7-46

For this example, improve the bandwidth and phase margin of the system to achieve better
performance by characterizing the system using frequency response estimation and tuning the PID
gains. When tuning the PID controller, consider the following characteristics of the buck converter
system.

• No system process or sensor noise
• Controller input is the PWM signal
• PWM signal is limited (saturated) to be between 0 and 1
• Nominal output of the controller at steady-state is 0.5

For buck converter systems, it is desired to have a system with a low rise time and low overshoot. For
this example, tune the controller to achieve a rise time of 250e-6 seconds and an overshoot of less
than 10%.

Open Frequency Response Based PID Tuner

Open the Feedback controller subsystem and then open the PID Controller block dialog. In Select
Tuning Method, select Frequency Response Based and click Tune. The Frequency Response
Based PID Tuner opens for the buck converter controller.

 Design PID Controller Using Plant Frequency Response Near Bandwidth

7-47

The Frequency Response Based PID Tuner automatically tunes a PID controller for the plant using
two simulations. The first simulation generates a baseline response. The second simulation breaks the
loop at the plant input, and perturbs the plant with sine and step signals. The tuner takes the
difference between the two simulated responses, which removes the effect of any disturbances in the
model. The tuner then uses the resulting data to estimate the plant frequency response. Finally, it
uses the estimated frequency response to compute PID gains.

When you open the Frequency Response Based PID Tuner, it reads parameters from the PID
Controller block to determine the structure of your PID controller. These parameters include:

• PID Controller Type (P, I, PI, PID etc.)
• PID Controller Form (Parallel, Ideal)
• Integrator Method, if applicable (Forward Euler, Trapezoidal etc.)
• Derivative Filter Method, if applicable (Forward Euler, Trapezoidal etc.)
• Sample Time, if applicable

Specify Experiment Settings

Before tuning, specify parameters of the experiment the tuner performs to estimate the frequency
response of the plant.

7 PID Controller Tuning

7-48

Start time is the time, in seconds, at which the tuner begins applying the perturbation signals to the
plant. Choose a start time at which the plant is at the nominal operating point you want to use for
tuning. For this example, the buck converter has an initial transient that falls off by 0.002 seconds.
Therefore, enter 0.002 for Start Time.

Specify the Duration of the perturbation experiment. A conservative estimate for the duration of the
experiment is 100 divided by the target bandwidth. The target bandwidth is approximately 2/τ, where
τ is the desired rise time. For this example, the desired rise time is 250e-6 seconds which results in a
target bandwidth of 8000 radians per second. In this example, a conservative estimate for the
duration would then be 100/8000 or 0.0125 seconds. Choose 0.0125 seconds for the Duration.

During the experiment, the tuner injects sinusoidal signals into the plant at four frequencies, [1/3, 1,
3, 10] , where is the target bandwidth you specify for tuning. Specify the amplitudes of the
injected sine waves in the Sine Amplitudes field.

Choose signal amplitudes which have magnitudes above the noise floor of the system and will not
saturate the system. For this example there is no noise in the system to consider. However, the
controller output (duty cycle of the PWM) is limited to [0 1] and the nominal output of the controller
at steady-state is 0.5. To remain within these limits, specify a sine amplitude of 0.1. Specifying a
scalar value uses the same amplitude at all four frequencies.

For an asymptotically stable plant, the tuner also injects a step signal to estimate the plant DC gain.
Choose an amplitude for this step signal based on the same considerations you used to choose the
sine amplitudes. For this example, enter 0.1 in the Step Amplitude field as well.

Specify Design Goals

Finally, specify the target bandwidth for tuning. As noted previously, the target bandwidth is 8000
radians per second. Enter 8000 in the Bandwidth field. The default target phase margin, 60 degrees,
corresponds to an overshoot of about 10% or better.

Tune PID Controller and Validate Results

Click Tune to begin the two simulations of the buck converter and tune the PID Controller.

At the conclusion of the tuning procedure, the tuned gains, estimated phase margin, and nominal
plant input are displayed in the Frequency Response Based PID Tuner dialog in the Tuning
Results section. Check the estimated phase margin to ensure that it is close to the Target phase
margin.

 Design PID Controller Using Plant Frequency Response Near Bandwidth

7-49

To verify the results, simulate the model using the tuned PID gains. Click Update PID Block to write
the tuned gains to the PID Controller block. Then, simulate the model to confirm the PID controller
performance.

7 PID Controller Tuning

7-50

bdclose('scdbuckconverter')

See Also
PID Controller | PID Controller (2DOF) | Discrete PID Controller | Discrete PID Controller (2DOF)

More About
• “Frequency-Response Based Tuning” on page 7-38

 Design PID Controller Using Plant Frequency Response Near Bandwidth

7-51

Import Measured Response Data for Plant Estimation
This example shows how to use PID Tuner to import measured response data for plant estimation.

If you have System Identification Toolbox software, you can use PID Tuner to estimate the
parameters of a linear plant model based on time-domain response data. PID Tuner then tunes a PID
controller for the resulting estimated model. The response data can be either measured from your
real-world system, or obtained by simulating your Simulink model. Plant estimation is especially
useful when your Simulink model cannot be linearized or linearizes to zero. For plant identification,
you must specify a finite value for the Simulink model stop time.

When you import response data, PID Tuner assumes that your measured data represents a plant
connected to the PID controller in a negative-feedback loop. In other words, PID Tuner assumes the
following structure for your system. PID Tuner assumes that you injected an input signal at u and
measured the system response at y, as shown.

You can import response data stored in the MATLAB workspace as a numeric array, a timeseries
object, or an iddata object. To import response data:

1 In PID Tuner, in the PID Tuner tab, in the Plant menu, select Identify New Plant.

2
In the Plant Identification tab, click Get I/O data. Select the type of measured response
data you have. For example, if you measured the response of your plant to a step input, select
Step Response. To import the response of your system to an arbitrary stimulus, select Arbitrary
I/O Data.

7 PID Controller Tuning

7-52

3 In the Import Response dialog box, enter information about your response data. For example, for
step-response data stored in a variable outputy and sampled every 0.1s:

Click Import. The Plant Identification tab opens, displaying the response data and the
response of an initial estimated plant.

 Import Measured Response Data for Plant Estimation

7-53

4 Depending on the quality and features of your response data, you might want to perform some
preprocessing on the data to improve the estimated plant results. The Preprocess menu gives
you several options for preprocessing response data, such as removing offsets, filtering, or
extracting on a subset of the data. In particular, when the response data has an offset, it is
important for good identification results to remove the offset.

In the Plant Identification tab, click Preprocess and select the preprocessing option you
want to use. A tab opens with a figure that displays the original and preprocessed data. Use the
options in the tab to specify preprocessing parameters.

(For more information about preprocessing options, see “Preprocess Data” on page 7-65.)

7 PID Controller Tuning

7-54

When you are satisfied with the preprocessed signal, click Update to save the change to the

signal. Click to return to the Plant Identification tab.

PID Tuner automatically adjusts the plant parameters to create a new initial guess for the plant
based on the preprocessed response signal.

You can now adjust the structure and parameters of the estimated plant to obtain the estimated linear
plant model for PID Tuning. See “Interactively Estimate Plant from Measured or Simulated Response
Data” on page 7-56 for more information.

See Also

More About
• “System Identification for PID Control” on page 7-62
• “Input/Output Data for Identification” on page 7-68
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56

 Import Measured Response Data for Plant Estimation

7-55

Interactively Estimate Plant from Measured or Simulated
Response Data

If you have System Identification Toolbox software, PID Tuner lets you estimate the parameters of a
linear plant model based on time-domain response data . PID Tuner then tunes a PID controller for
the resulting estimated model. The response data can be either measured from your real-world
system, or obtained by simulating your Simulink model. Plant estimation is especially useful when
your Simulink model cannot be linearized or linearizes to zero. For plant identification, you must
specify a finite value for the Simulink model stop time.

PID Tuner gives you several techniques to graphically, manually, or automatically adjust the
estimated model to match your response data. This topic illustrates some of those techniques.

Obtain Response Data for Identification

In PID Tuner, in the PID Tuner tab, in the Plant menu, select Identify New Plant.

In the Plant Identification tab, click Get I/O data. This menu allows you to obtain system
response data in one of two ways:

• Simulate Data. Obtain system response data by simulating the response of your Simulink model
to an input signal. For more information, see “Design PID Controller Using Simulated I/O Data” on
page 7-110.

• Import I/O Data. Import measured system response data as described in “Import Measured
Response Data for Plant Estimation” on page 7-52.

Once you have imported or simulated data, the Plant Identification plot displays the response data
and the response of an initial estimated plant. You can now select the plant structure and adjust the
estimated plant parameters until the response of the estimated plant is a good fit to the response
data.

7 PID Controller Tuning

7-56

Preprocess Data

Depending on the quality and features of your imported or simulated data, you might want to perform
some preprocessing on the data to improve the estimated plant results. PID Tuner provides several
options for preprocessing response data, such as removing offsets, filtering, or extracting a subset of
the data. For information, see “Preprocess Data” on page 7-65.

Adjust Plant Structure and Parameters

PID Tuner allows you to specify a plant structure, such as One Pole, Two Real Poles, or State-
Space Model. In the Structure menu, choose the plant structure that best matches your response.
You can also add a transport delay, a zero, or an integrator to your plant.

In the following sample plot, the one-pole structure gives the qualitatively correct response. You can
make further adjustments to the plant structure and parameter values to make the response of the
estimated system a better match to the measured response data.

 Interactively Estimate Plant from Measured or Simulated Response Data

7-57

PID Tuner gives you several ways to adjust the plant parameters:

• Graphically adjust the response of the estimated system by dragging the adjustors on the plot. In
this example, drag the red x to adjust the estimated plant time constant. PID Tuner recalculates
system parameters as you do so. As you change the estimated system’s response, it becomes
apparent that there is some time delay between the application of the step input at t = 5 s, and
the response of the system to that step input.

To add a transport delay to the estimated plant model, in the Plant Structure section, check
Delay. A vertical line appears on the plot, indicating the current value of the delay. Drag the line

7 PID Controller Tuning

7-58

left or right to change the delay, and make further adjustments to the system response by
dragging the red x.

• Adjust the numerical values of system parameters such as gains, time constants, and time delays.

To numerically adjust the values of system parameters, click Edit Parameters.

Suppose that you know from an independent measurement that the transport delay in your system
is 1.5 seconds. In the Plant Parameters dialog box, enter 1.5 for τ. Check Fix to fix the
parameter value. When you check Fix for a parameter, neither graphical nor automatic
adjustments to the estimated plant model affect that parameter value.

•
Automatically optimize the system parameters to match the measured response data. Click
Auto Estimate to update the estimated system parameters using the current values as an initial
guess.

You can continue to iterate using any of these methods to adjust plant structure and parameter values
until the estimated system response adequately matches the measured response.

Save Plant and Tune PID Controller

When you are satisfied with the fit, click Save Plant. Doing so saves the estimated plant,
Plant1, to PID Tuner workspace. Doing so also selects the Step Plot: Reference Tracking figure

 Interactively Estimate Plant from Measured or Simulated Response Data

7-59

and returns you to the PID Tuner tab. PID Tuner automatically designs a PI controller for Plant1,
and displays a response plot for the new closed-loop system. The Plant menu reflects that Plant1 is
selected for the current controller design.

Tip To examine variables stored in the PID Tuner workspace, use the Plant List area.

You can now use the PID Tuner tools to refine the controller design for the estimated plant and
examine tuned system responses.

You can also export the identified plant from the PID Tuner workspace to the MATLAB workspace for

further analysis. In the PID Tuner tab, click Export. Check the plant model you want to export to
the MATLAB workspace. For this example, export Plant1, the plant you identified from response

data. You can also export the tuned PID controller. Click OK. The models you selected are saved
to the MATLAB workspace.

Identified plant models are saved as identified LTI models, such as idproc or idss.

Tip Alternatively, right-click a plant in the Plant List to select it for tuning or export it to the
MATLAB workspace.

7 PID Controller Tuning

7-60

See Also

More About
• “Choosing Identified Plant Structure” on page 7-69
• “Input/Output Data for Identification” on page 7-68
• “System Identification for PID Control” on page 7-62
• “Import Measured Response Data for Plant Estimation” on page 7-52

 Interactively Estimate Plant from Measured or Simulated Response Data

7-61

System Identification for PID Control

Plant Identification
In many situations, a dynamic representation of the system you want to control is not readily
available. One solution to this problem is to obtain a dynamical model using identification techniques.
The system is excited by a measurable signal and the corresponding response of the system is
collected at some sample rate. The resulting input-output data is then used to obtain a model of the
system such as a transfer function or a state-space model. This process is called system identification
or estimation. The goal of system identification is to choose a model that yields the best possible fit
between the measured system response to a particular input and the model’s response to the same
input.

If you have a Simulink model of your control system, you can simulate input/output data instead of
measuring it. The process of estimation is the same. The system response to some known excitation is
simulated, and a dynamical model is estimated based upon the resulting simulated input/output data.

Whether you use measured or simulated data for estimation, once a suitable plant model is identified,
you impose control objectives on the plant based on your knowledge of the desired behavior of the
system that the plant model represents. You then design a feedback controller to meet those
objectives.

If you have System Identification Toolbox software, you can use PID Tuner for both plant
identification and controller design in a single interface. You can import input/output data and use it
to identify one or more plant models. Or, you can obtain simulated input/output data from a Simulink
model and use that to identify one or more plant models. You can then design and verify PID
controllers using these plants. PID Tuner also allows you to directly import plant models, such as
one you have obtained from an independent identification task.

For an overview of system identification, see About System Identification (System Identification
Toolbox).

Linear Approximation of Nonlinear Systems for PID Control
The dynamical behavior of many systems can be described adequately by a linear relationship
between the system’s input and output. Even when behavior becomes nonlinear in some operating
regimes, there are often regimes in which the system dynamics are linear. For example, the behavior
of an operational amplifier or the lift-vs-force dynamics of aerodynamic bodies can be described by
linear models, within a certain limited operating range of inputs. For such a system, you can perform
an experiment (or a simulation) that excites the system only in its linear range of behavior and collect
the input/output data. You can then use the data to estimate a linear plant model, and design a PID
controller for the linear model.

In other cases, the effects of nonlinearities are small. In such a case, a linear model can provide a
good approximation, such that the nonlinear deviations are treated as disturbances. Such
approximations depend heavily on the input profile, the amplitude and frequency content of the
excitation signal.

Linear models often describe the deviation of the response of a system from some equilibrium point,
due to small perturbing inputs. Consider a nonlinear system whose output, y(t), follows a prescribed
trajectory in response to a known input, u(t). The dynamics are described by dx(t)/dt = f(x, u), y =
g(x,u) . Here, x is a vector of internal states of the system, and y is the vector of output variables. The

7 PID Controller Tuning

7-62

functions f and g, which can be nonlinear, are the mathematical descriptions of the system and
measurement dynamics. Suppose that when the system is at an equilibrium condition, a small
perturbation to the input, Δu, leads to a small perturbation in the output, Δy:

Δẋ = ∂ f
∂x Δx + ∂ f

∂uΔu,

Δy = ∂g
∂x Δx + ∂g

∂uΔu .

For example, consider the system of the following Simulink block diagram:

When operating in a disturbance-free environment, the nominal input of value 50 keeps the plant
along its constant trajectory of value 2000. Any disturbances would cause the plant to deviate from
this value. The PID Controller’s task is to add a small correction to the input signal that brings the
system back to its nominal value in a reasonable amount of time. The PID Controller thus needs to
work only on the linear deviation dynamics even though the actual plant itself might be nonlinear.
Thus, you might be able to achieve effective control over a nonlinear system in some regimes by
designing a PID controller for a linear approximation of the system at equilibrium conditions.

Linear Process Models
A common use case is designing PID controllers for the steady-state operation of manufacturing
plants. In these plants, a model relating the effect of a measurable input variable on an output
quantity is often required in the form of a SISO plant. The overall system may be MIMO in nature, but
the experimentation or simulation is carried out in a way that makes it possible to measure the
incremental effect of one input variable on a selected output. The data can be quite noisy, but since
the expectation is to control only the dominant dynamics, a low-order plant model often suffices. Such
a proxy is obtained by collecting or simulating input-output data and deriving a process model (low
order transfer function with unknown delay) from it. The excitation signal for deriving the data can
often be a simple bump in the value of the selected input variable.

Advanced System Identification Tasks
In PID Tuner, you can only identify single-input, single output, continuous-time plant models.
Additionally, PID Tuner cannot perform the following system identification tasks:

• Identify transfer functions of arbitrary number of poles and zeros. (PID Tuner can identify
transfer functions up to three poles and one zero, plus an integrator and a time delay. PID Tuner
can identify state-space models of arbitrary order.)

 System Identification for PID Control

7-63

• Estimate the disturbance component of a model, which can be useful for separating measured
dynamics from noise dynamics.

• Validate estimation by comparing the plant response against an independent dataset.
• Perform residual analysis.

If you need these enhanced identification features, import your data into the System Identification
app (System Identification). Use the System Identification app to perform model identification
and export the identified model to the MATLAB workspace. Then import the identified model into PID
Tuner for PID controller design.

For more information about the System Identification Tool, see “Identify Linear Models Using System
Identification App” (System Identification Toolbox).

See Also
System Identification

More About
• “Input/Output Data for Identification” on page 7-68
• “Choosing Identified Plant Structure” on page 7-69
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56

7 PID Controller Tuning

7-64

Preprocess Data

Ways to Preprocess Data
In PID Tuner, you can preprocess plant data before you use it for estimation. After you import I/O
data, on the Plant Identification tab, use the Preprocess menu to select a preprocessing operation.

• “Remove Offset” on page 7-65 — Remove mean values, a constant value, or an initial value from
the data.

• “Scale Data” on page 7-66 — Scale data by a constant value, signal maximum value, or signal
initial value.

• “Extract Data” on page 7-66 — Select a subset of the data to use in the . You can graphically
select the data to extract, or enter start and end times in the text boxes.

• “Filter Data” on page 7-66 — Process data using a low-pass, high-pass, or band-pass filter.
• “Resample Data” on page 7-66 –– Resample data using zero-order hold or linear interpolation.
• “Replace Data” on page 7-67 –– Replace data with a constant value, region initial value, region
final value, or a line. You can use this functionality to replace outliers.

You can perform as many preprocessing operations on your data as are required for your application.
For instance, you can both filter the data and remove an offset.

Remove Offset

It is important for good results to remove data offsets. In the Remove Offset tab, you can remove
offset from all signals at once or select a particular signal using the Remove offset from signal drop
down list. Specify the value to remove using the Offset to remove drop down list. The options are:

• A constant value. Enter the value in the box. (Default: 0)
• Mean of the data, to create zero-mean data.
• Signal initial value.

As you change the offset value, the modified data is shown in preview in the plot.

 Preprocess Data

7-65

After making choices, update the existing data with the preprocessed data by clicking .

Scale Data

In the Scale Data tab, you can choose to scale all signals or specify a signal to scale. Select the
scaling value from the Scale to use drop-down list. The options are:

• A constant value. Enter the value in the box. (Default: 1)
• Signal maximum value.
• Signal initial value.

As you change the scaling, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Extract Data

Select a subset of data to use in Extract Data tab. You can extract data graphically or by specifying
start time and end time. To extract data graphically, click and drag the vertical bars to select a region
of the data to use.

Filter Data

You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass filter blocks high
frequency signals, a high-pass filter blocks low frequency signals, and a band-pass filter combines the
properties of both low- and high-pass filters.

On the Low-Pass Filter, High-Pass Filter, or Band-Pass Filter tab, you can choose to filter all
signals or specify a particular signal. For the low-pass and high-pass filtering, you can specify the
normalized cutoff frequency of the signal. Where, a normalized frequency of 1 corresponds to half the
sampling rate. For the band-pass filter, you can specify the normalized start and end frequencies.
Specify the frequencies by either entering the value in the associated field on the tab. Alternatively,
you can specify filter frequencies graphically, by dragging the vertical bars in the frequency-domain
plot of your data.

Click Options to specify the filter order, and select zero-phase shift filter.

After making choices, update the existing data with the preprocessed data by clicking .

Resample Data

In the Resample Data tab, specify the sampling period using the Resample with sample period:
field. You can resample your data using one of the following interpolation methods:

• Zero-order hold — Fill the missing data sample with the data value immediately preceding it.

7 PID Controller Tuning

7-66

• Linear interpolation — Fill the missing data using a line that connects the two data points.

By default, the resampling method is set to zero-order hold. You can select the linear
interpolation method from the Resample Using drop-down list.

The modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking .

Replace Data

In the Replace Data tab, select data to replace by dragging across a region in the plot. Once you
select data, choose how to replace it using the Replace selected data drop-down list. You can
replace the data you select with one of these options:

• A constant value
• Region initial value
• Region final value
• A line

The replaced preview data changes color and the replacement data appears on the plot. At any time
before updating, click Clear preview to clear the data you replaced and start over.

After making choices, update the existing data with the preprocessed data by clicking .

Replace Data can be useful, for example, to replace outliers. Outliers can be defined as data values
that deviate from the mean by more than three standard deviations. When estimating parameters
from data containing outliers, the results may not be accurate. Hence, you might choose to replace
the outliers in the data before you estimate the parameters.

See Also

More About
• “Input/Output Data for Identification” on page 7-68
• “System Identification for PID Control” on page 7-62
• “Import Measured Response Data for Plant Estimation” on page 7-52

 Preprocess Data

7-67

Input/Output Data for Identification

Data Preparation
Identification of a plant model for PID tuning requires a single-input, single-output data set.

If you have measured data, use the data import dialogs to bring in identification data. Some common
sources of identification data are transient tests such as bump test and impact test. For such data,
PID Tuner provides dedicated dialogs that require you to specify data for only the output signal
while characterizing the input by its shape. For an example, see “Interactively Estimate Plant from
Measured or Simulated Response Data” on page 7-56.

If you want to obtain input/output data by simulating a Simulink model, the PID Tuner interface lets
you specify the shape of the input stimulus used to generate the response. For an example, see the
Simulink Control Design example “Design a PID Controller Using Simulated I/O Data.”

Data Preprocessing
PID Tuner lets you preprocess your imported or simulated data. PID Tuner provides various options
for detrending, scaling, and filtering the data.

It is strongly recommended to remove any equilibrium-related signal offsets from the input and
output signals before proceeding with estimation. You can also filter the data to focus the signal
contents to the frequency band of interest.

Some data processing actions can alter the nature of the data, which can result in transient data
(step, impulse or wide pulse responses) to be treated as arbitrary input/output data. When that
happens the identification plot does not show markers for adjusting the model time constants and
damping coefficient.

For an example that includes a data-preprocessing step, see: “Interactively Estimate Plant from
Measured or Simulated Response Data” on page 7-56.

For further information about data-preprocessing options, see “Preprocess Data” on page 7-65.

7 PID Controller Tuning

7-68

Choosing Identified Plant Structure
PID Tuner provides two types of model structures for representing the plant dynamics: process
models and state-space models.

Use your knowledge of system characteristics and the level of accuracy required by your application
to pick a model structure. In absence of any prior information, you can gain some insight into the
order of dynamics and delays by analyzing the experimentally obtained step response and frequency
response of the system. For more information see the following in the System Identification Toolbox
documentation:

• “Correlation Models” (System Identification Toolbox)
• “Frequency-Response Models” (System Identification Toolbox)

Each model structure you choose has associated dynamic elements, or model parameters. You adjust
the values of these parameters manually or automatically to find an identified model that yields a
satisfactory match to your measured or simulated response data. In many cases, when you are unsure
of the best structure to use, it helps to start with the simplest model structure, transfer function with
one pole. You can progressively try identification with higher-order structures until a satisfactory
match between the plant response and measured output is achieved. The state-space model structure
allows an automatic search for optimal model order based on an analysis of the input-output data.

When you begin the plant identification task, a transfer function model structure with one real pole is
selected by default. This default set up is not sensitive to the nature of the data and may not be a
good fit for your application. It is therefore recommended that you choose a suitable model structure
before performing parameter identification.

Process Models
Process models are transfer functions with 3 or fewer poles, and can be augmented by addition of
zero, delay and integrator elements. Process models are parameterized by model parameters
representing time constants, gain, and time delay. In PID Tuner, choose a process model in the
Plant Identification tab using the Structure menu.

 Choosing Identified Plant Structure

7-69

For any chosen structure you can optionally add a delay, a zero and/or an integrator element using
the corresponding checkboxes. Click Edit Parameters to view the model transfer function
configured by these choices.

The simplest available process model is a transfer function with one real pole and no zero or delay
elements:

H s = K
T1s + 1 .

This model is defined by the parameters K, the gain, and T1, the first time constant. The most complex
process-model structure choose has three poles, an additional integrator, a zero, and a time delay,
such as the following model, which has one real pole and one complex conjugate pair of poles:

H s = K
Tzs + 1

s T1s + 1 Tω
2s2 + 2ζTωs + 1

e−τs .

7 PID Controller Tuning

7-70

In this model, the configurable parameters include the time constants associated with the poles and
the zero, T1, Tω, and Tz. The other parameters are the damping coefficient ζ, the gain K, and the time
delay τ.

When you select a process model type, PID Tuner automatically computes initial values for the plant
parameters and displays a plot showing both the estimated model response and your measured or
simulated data. You can edit the parameter values graphically using indicators on the plot, or
numerically using the Plant Parameters editor. For an example illustrating this process, see
“Interactively Estimate Plant Parameters from Response Data”.

The following table summarizes the various parameters that define the available types of process
models.

Parameter Used By Description
K — Gain All transfer functions Can take any real value.

In the plot, drag the plant
response curve (blue) up or
down to adjust K.

T1 — First time constant Transfer function with one or
more real poles

Can take any value between 0
and T, the time span of
measured or simulated data.

In the plot, drag the red x left
(towards zero) or right (towards
T) to adjust T1.

T2— Second time constant Transfer function with two real
poles

Can take any value between 0
and T, the time span of
measured or simulated data.

In the plot, drag the magenta x
left (towards zero) or right
(towards T) to adjust T2.

Tω — Time constant associated
with the natural frequency ωn,
where Tω = 1/ωn

Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between 0
and T, the time span of
measured or simulated data.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust Tω.

ζ — Damping coefficient Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between 0
and 1.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust ζ.

 Choosing Identified Plant Structure

7-71

Parameter Used By Description
τ — Transport delay Any transfer function Can take any value between 0

and T, the time span of
measured or simulated data.

In the plot, drag the orange
vertical bar left (towards zero)
or right (towards T) to adjust τ.

Tz — Model zero Any transfer function Can take any value between –T
and T, the time span of
measured or simulated data.

In the plot, drag the red circle
left (towards –T) or right
(towards T) to adjust Tz.

Integrator Any transfer function Adds a factor of 1/s to the
transfer function. There is no
associated parameter to adjust.

State-Space Models
The state-space model structure for identification is primarily defined by the choice of number of
states, the model order. Use the state-space model structure when higher order models than those
supported by process model structures are required to achieve a satisfactory match to your measured
or simulated I/O data. In the state-space model structure, the system dynamics are represented by
the state and output equations:

ẋ = Ax + Bu,
y = Cx + Du .

x is a vector of state variables, automatically chosen by the software based on the selected model
order. u represents the input signal, and y the output signals.

To use a state-space model structure, in the Plant Identification tab, in the Structure menu, select
State-Space Model. Then click Configure Structure to open the State-Space Model Structure
dialog box.

7 PID Controller Tuning

7-72

Use the dialog box to specify model order, delay and feedthrough characteristics. If you are unsure
about the order, select Pick best value in the range, and enter a range of orders. In this case, when
you click Estimate in the Plant Estimation tab, the software displays a bar chart of Hankel singular
values. Choose a model order equal to the number of Hankel singular values that make significant
contributions to the system dynamics.

When you choose a state-space model structure, the identification plot shows a plant response (blue)
curve only if a valid estimated model exists. For example, if you change structure after estimating a
process model, the state-space equivalent of the estimated model is displayed. If you change the
model order, the plant response curve disappears until a new estimation is performed.

When using the state-space model structure, you cannot directly interact with the model parameters.
The identified model should thus be considered unstructured with no physical meaning attached to
the state variables of the model.

However, you can graphically adjust the input delay and the overall gain of the model. When you
select a state-space model with a time delay, the delay is represented on the plot by a vertical orange
bar is shown on the plot. Drag this bar horizontally to change the delay value. Drag the plant
response (blue) curve up and down to adjust the model gain.

Existing Plant Models
Any previously imported or identified plant models are listed the Plant List area.

 Choosing Identified Plant Structure

7-73

You can define the model structure and initialize the model parameter values using one of these
plants. To do so, in the Plant Identification tab, in the Structure menu, select a linear plant model.

If the plant you select is a process model (idproc object), PID Tuner uses its structure for the
identified plant. If the plant is any other model type, PID Tuner uses the state-space model structure.
The app initializes the estimated plant parameters using the selected plant.

Switching Between Model Structures
When you switch from one model structure to another, the software preserves the model
characteristics (pole/zero locations, gain, delay) as much as possible. For example, when you switch
from a one-pole model to a two-pole model, the existing values of T1, Tz, τ and K are retained, T2 is
initialized to a default (or previously assigned, if any) value.

7 PID Controller Tuning

7-74

Estimating Parameter Values
Once you have selected a model structure, you have several options for manually or automatically
adjusting parameter values to achieve a good match between the estimated model response and your
measured or simulated input/output data. For an example that illustrates all these options, see:

• “Interactively Estimate Plant Parameters from Response Data” (Control System Toolbox)
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56 Simulink

Control Design)

PID Tuner does not perform a smart initialization of model parameters when a model structure is
selected. Rather, the initial values of the model parameters, reflected in the plot, are arbitrarily-
chosen middle of the range values. If you need a good starting point before manually adjusting the
parameter values, use the Initialize and Estimate option from the Plant Identification tab.

Handling Initial Conditions
In some cases, the system response is strongly influenced by the initial conditions. Thus a description
of the input to output relationship in the form of a transfer function is insufficient to fit the observed
data. This is especially true of systems containing weakly damped modes. PID Tuner allows you to
estimate initial conditions in addition to the model parameters such that the sum of the initial
condition response and the input response matches the observed output well. Use the Estimation
Options dialog box to specify how the initial conditions should be handled during automatic
estimation. By default, the initial condition handling (whether to fix to zero values or to estimate) is
automatically performed by the estimation algorithm. However, you can enforce a certain choice by
using the Initial Conditions menu.

Initial conditions can only be estimated with automatic estimation. Unlike the model parameters, they
cannot be modified manually. However, once estimated they remain fixed to their estimated values,
unless the model structure is changed or new identification data is imported.

If you modify the model parameters after having performed an automatic estimation, the model
response will show a fixed contribution (i.e., independent of model parameters) from initial
conditions. In the following plot, the effects of initial conditions were identified to be particularly
significant. When the delay is adjusted afterwards, the portion of the response to the left of the input
delay marker (the τ Adjustor) comes purely from initial conditions. The portion to the right of the τ
Adjustor contains the effects of both the input signal as well as the initial conditions.

 Choosing Identified Plant Structure

7-75

See Also

More About
• “System Identification for PID Control” on page 7-62
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56

7 PID Controller Tuning

7-76

Design Controller for Boost Converter Model Using Frequency
Response Data

This example shows how to design a PID controller for a power electronics system modeled in
Simulink® using Simscape™ Electrical™ components.

Typically, power electronics systems cannot be linearized because they use high-frequency switching
components, such as pulse-width modulation (PWM) generators. However, most Simulink® Control
Design™ PID tuning tools design PID gains based on a linearized plant model. To obtain such a model
for a power electronics model that cannot be linearized, you can:

• Estimate the plant frequency response over a range of frequencies as shown in this example.
• Estimate the parameters of a linear model of the plant using System Identification Toolbox™

software. For an example see, “Design Controller for Power Electronics Model Using Simulated
I/O Data” on page 7-95.

Boost Converter Model

This example uses a boost converter model as an example of a power electronics system. A boost
converter circuit converts one DC voltage to another, typically higher, DC voltage by controlled
chopping or switching of the source voltage.

mdl = 'scdboostconverter';
open_system(mdl)

In this model, a MOSFET driven by a pulse-width modulation (PWM) signal is used for switching. The
output voltage should be regulated to the reference value . A digital PID controller adjusts
the PWM duty cycle, , based on the voltage error signal. For this example, you estimate the
frequency response from the PWM duty cycle to the load voltage .

Simscape Electrical software contains predefined blocks for many power electronics systems. This
model contains a variant subsystem with two versions of the boost converter model:

 Design Controller for Boost Converter Model Using Frequency Response Data

7-77

• Boost converter circuit constructed using electrical power components. The parameters of the
circuit components are based on [1].

• Boost converter block configured to have the same parameters as the boost converter circuit. For
more information on this block, see Boost Converter (Simscape Electrical).

Find Model Operating Point

To design a controller for the boost converter, you must first determine the steady-state operating
point at which you want the converter to operate. For more information on finding operating points,
see “Find Steady-State Operating Points for Simscape Models” on page 1-106. For this example, use
an operating point estimated from a simulation snapshot.

To find the operating point, use the Model Linearizer. To open Model Linearizer, in the Simulink
model window, on the Apps tab, click Model Linearizer.

In the Model Linearizer, on the Linear Analysis tab, in the Operating Point drop-down list, select
Take Simulation Snapshot.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
0.045, which is enough time for the closed-loop system to reach steady state.

7 PID Controller Tuning

7-78

Click Take Snapshots.

The software simulates the model and creates an operating point that contains the input and state
values of the model at the specified snapshot time. This operating point, op_snapshot1, is added to
the Linear Analysis Workspace.

To initialize the model with the computed operating point, double-click op_snapshot1.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-79

In the Edit dialog box, click Initialize model.

In the Initialize Model dialog box, select MATLAB Workspace, and click OK. The software exports
the operating point to the MATLAB® workspace and initializes the model with the inputs and states
in the operating point.

Collect Frequency Response Data

Before collecting frequency response data, you must first specify the portion of the model for which
you want to find the frequency response. For this example, the model contains open-loop input and
output linear analysis points at the output and input of the PID controller block.

To collect frequency response data, you must also specify an input signal. For this example, use a
fixed-step sinestream signal. For more information on defining sinestream input signals, see
“Sinestream Input Signals” on page 5-30.

On the Estimation tab, in the Input Signal drop-down list, click Fixed Sample Time Sinestream.

7 PID Controller Tuning

7-80

In the Specify fixed sample time dialog box, specify a Sample time of 5e-6 seconds. The sample
time of the Sinestream input signal must match the sample time at the input linear analysis point.

Click OK.

In the Create sinestream input with fixed sample time dialog box, configure the parameters of the
sinestream signal.

Specify the frequency units for estimation. In the Frequency units drop-down list, select Hz.

For this example, the frequency response estimation can either use one simulation per frequency or
one simulation for all frequencies. In the Simulation order drop-down list, select the default option
Single simulation for all frequencies. If you have Parallel Computing Toolbox™ software, you can
speed up the frequency response estimation by choosing One frequency per simulation and
enabling the parallel pool for estimation. To enable the parallel pool, on the Estimation tab, click
More Options, then in the dialog box, select Use parallel pool during estimation.

To specify the frequencies at which to estimate the plant response, click the + icon.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-81

In the Add frequencies dialog box, specify 15 logarithmically-spaced frequencies ranging from 50 Hz
to 5 kHz.

Click OK.

To ensure the system is properly excited, set the amplitude at all frequencies. If the input amplitude
is too large, the boost converter will operate in discontinuous-current mode. If the input amplitude is
too small, the sinestream will be indistinguishable from ripples in the power electronics circuits. Both
situations produce inaccurate frequency response estimation results.

To set the amplitude, first select all the frequencies in the plot area. Then, in the Amplitude field,
type 0.01.

Leave all other sinestream settings at their default values.

7 PID Controller Tuning

7-82

To create the sinestream signal, click OK.

The model has time-varying line and load disturbances modeled as step functions that will interfere
with the frequency response estimation. To hold these disturbances constant during the simulation,
click More Options. Then, in the Options for frequency response estimation dialog box, on the Time
Varying Sources tab, click Find and add time varying source blocks automatically.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-83

To estimate and plot the frequency response, on the Estimation tab, click Bode.

7 PID Controller Tuning

7-84

The software estimates the frequency response and displays the result in Bode Plot 1. The frequency
response is plotted using discrete points and shows the peak response between 1200 and 1600 rad/s.

To tune your PID controller, you must export the frequency response to the MATLAB workspace. In
the Data Browser, drag estsys1 from the Linear Analysis Workspace to the MATLAB
Workspace.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-85

Specify Controller Structure

Before tuning a PID Controller block using PID Tuner, you must first specify your controller
structure. To do so, double-click the PID Controller block. Then, specify the following controller
parameters:

• Controller
• Form
• Time domain
• Discrete-time settings
• Other settings, such as the controller initial conditions, output saturation levels, and anti-windup
configuration

For this example, use the current controller configuration; that is, a discrete-time parallel-form PID
controller without anti-windup.

Using the PID Tuner, you can tune the parameters of the following controller blocks:

• PID Controller
• PID Controller (2DOF)
• Discrete PID Controller

7 PID Controller Tuning

7-86

• Discrete PID Controller (2DOF)

If your model uses the Simscape Electrical Discrete PI Controller (Simscape Electrical) block or
Discrete PI Controller with Integral Anti-Windup (Simscape Electrical) block, you must replace this
block with a PID Controller block before tuning.

Tune Controller

To open the PID Tuner, click Tune. When PID Tuner first opens, it attempts to linearize the model.
Due to the PWM components, the model analytically linearizes to zero.

For this example, you tune the controller using the estimated frequency response data as your plant
model. To import the frequency response data, on the PID Tuner tab, click Plant, and then, under
Create a New Plant, click Import.

In the Obtain plant model dialog box, select Importing an LTI System, and in the table, select
estsys1.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-87

Click Import.

Since you are using an estimated frequency response, PID Tuner cannot plot a step response. To
view the frequency response, click Add Plot, and under Bode, click Open-loop.

7 PID Controller Tuning

7-88

Close the Step Plot document.

The Bode plot shows a block response (dashed line) and a tuned response (solid line). The block
response is the open-loop response for the current PID gains in the PID Controller block. The tuned
response is the open-loop response using the tuned PID gains in PID Tuner.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-89

To tune the controller in terms of bandwidth and phase margin, design the controller in the frequency
domain. In the Domain drop-down list, select Frequency.

For this example, set the Bandwidth and Phase Margin to 9425 rad/s (1.5 kHz) and 60 deg,
respectively, according to the design criteria specified in [1].

PID Tuner selects controller parameters that meet these design specifications.

7 PID Controller Tuning

7-90

To view the tuned controller parameters and performance metrics, including the gain and phase
margins, click Show Parameters. The tuned result has an infinite gain margin and 65 deg phase
margin at about 9425 rad/s.

 Design Controller for Boost Converter Model Using Frequency Response Data

7-91

To update the PID Controller block with the tuned gains, click Update Block.

Validate Controller

You can examine the tuned controller performance using a simulation with line and load
disturbances. To examine the controller dynamic performance, the Simulink model uses the following
disturbances:

• Line disturbance at t = 0.075 sec, which increases the input voltage, , from 5V to 10V.
• Load disturbance at t = 0.1 sec, which increases the load resistance, from 3 ohms to 6

ohms.

Simulate the model.

7 PID Controller Tuning

7-92

The controller rejects the line and load disturbances well.

References

[1] Lee, S. W. "Practical Feedback Loop Analysis for Voltage-Mode Boost Converter." Application
Report No. SLVA633. Texas Instruments. January 2014. www.ti.com/lit/an/slva633/slva633.pdf

See Also
PID Tuner

 Design Controller for Boost Converter Model Using Frequency Response Data

7-93

More About
• “Design Controller for Power Electronics Model Using Simulated I/O Data” on page 7-95

7 PID Controller Tuning

7-94

Design Controller for Power Electronics Model Using Simulated
I/O Data

This example shows how to design a PID controller for a power electronics system modeled in
Simulink using Simscape Electrical components.

Many power electronics systems cannot be linearized because they use high-frequency switching
components, such as pulse-width modulation (PWM) generators. However, most Simulink Control
Design PID tuning tools design PID gains based on a linearized plant model. To obtain such a model
for a power electronics model that cannot be linearized, you can:

• Estimate the parameters of a linear model of the plant using System Identification Toolbox
software as shown in this example.

• Estimate the plant frequency response over a range of frequencies. For an example, see “Design
Controller for Boost Converter Model Using Frequency Response Data” on page 7-77.

Boost Converter Model
This example uses a boost converter model as an example of a power electronics system. A boost
converter circuit converts one DC voltage to another, typically higher, DC voltage by controlled
chopping or switching of the source voltage.

mdl = 'scdboostconverter';
open_system(mdl)

In this model, a MOSFET driven by a pulse-width modulation (PWM) signal is used for switching. The
output voltage Vout should be regulated to the reference value Vref. A digital PID controller adjusts
the PWM duty cycle, Duty, based on the voltage error signal. For this example, you estimate a linear
model from the PWM duty cycle to the load voltage Vout.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-95

Simscape Electrical software contains predefined blocks for many power electronics systems. This
model contains a variant subsystem with two versions of the boost converter model:

• Boost converter circuit constructed using electrical power components. The parameters of the
circuit components are based on [1].

• Boost converter block configured to have the same parameters as the boost converter circuit. For
more information on this block, see Boost Converter.

Find Model Operating Point
To design a controller for the boost converter, you must first determine the steady-state operating
point at which you want the converter to operate. For more information on finding operating points,
see “Find Steady-State Operating Points for Simscape Models” on page 1-106. For this example, use
an operating point estimated from a simulation snapshot.

To find the operating point, use the Model Linearizer app. To open Model Linearizer, in the
Simulink model window, in the Apps gallery, click Model Linearizer.

In the Model Linearizer, on the Linear Analysis tab, in the Operating Point drop-down list, select
Take Simulation Snapshot.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
0.045, which is enough time for the closed-loop system to reach steady state.

7 PID Controller Tuning

7-96

Click Take Snapshots.

The software simulates the model and creates an operating point that contains the input and state
values of the model at the specified snapshot time. This operating point, op_snapshot1, is added to
the Linear Analysis Workspace.

To initialize the model with the computed operating point, double-click op_snapshot1.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-97

In the Edit dialog box, click Initialize model.

In the Initialize Model dialog box, select MATLAB Workspace, and click OK. The software exports
the operating point to the MATLAB workspace and initializes the model with the inputs and states in
the operating point.

7 PID Controller Tuning

7-98

Specify Controller Structure
Before tuning a PID controller block using PID Tuner, you must specify your controller structure. To
do so, double-click the controller block. Then, specify the following controller parameters:

• Controller
• Form
• Time domain
• Discrete-time settings
• Other settings such as the controller initial conditions, output saturation levels, and anti-windup
configuration.

For this example, use the current controller configuration; that is, a discrete-time parallel-form PID
controller without anti-windup.

Using PID Tuner, you can tune the parameters of the following controller blocks:

• PID Controller
• PID Controller (2DOF)
• Discrete PID Controller
• Discrete PID Controller (2DOF)

If your model uses the Simscape Electrical Discrete PI Controller block or Discrete PI Controller with
Integral Anti-Windup block, you must replace this block with a Discrete PID Controller block before
tuning.

Identify Plant Model
To open the PID Tuner, click Tune. When PID Tuner first opens, it attempts to linearize the model.
Due to the PWM components, the model analytically linearizes to zero.

To obtain a linear plant model, on the PID Tuner tab, click Plant, and then under Create a New
Plant, click Identify New Plant.

To identify a plant model, first obtain input/output data by simulating your model. On the Plant
Identification tab, click Get I/O Data > Simulate Data. For plant identification, you must specify a
finite value for the Simulink model stop time.

On the Simulate I/O Data tab, configure the input signal with the following settings.

• Signal Type of Step.
• Sample Time of 5e-06.
• Onset Lag of 0.025, which is enough time for the plant to reach steady state.
• Stop Time of 0.07, which is enough time for the plant output to return to steady state after the

step input.
• Offset of 0.736, which is the value of the PID Controller block output at the computed operating

point. For this model, the offset corresponds to the value of the state in the Computational delay
block. If you do not have such a corresponding state in your model, you can attach a scope to the
output of the PID Controller block and simulate the model at the computed operating point.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-99

To specify the step amplitude, click . Then, in the Step Input Specifications dialog box, in the
Amplitude field, type 0.01. This value is large enough to sufficiently excite the system and small
enough to prevent the controller from entering discontinuous-current mode.

Click Run Simulation. To obtain the input/output response of the plant, PID Tuner injects the
specified input signal at the output of the PID Controller block and measures the corresponding
output response at the input of the controller. The software runs two simulations, an offset response
without the input signal and an input response with the input signal. The difference between these
responses is the output response.

7 PID Controller Tuning

7-100

In the Plant Identification figure, the Input plot shows the specified input signal, and the Output
plot shows the corresponding output response.

To use this simulated input/output data, click Apply. Then, to close the Simulate I/O Data tab, click
Close.

On the Plant Identification tab, select the plant structure to identify based on your knowledge of
the plant and the appearance of the output step response. For this example, the output response
looks like an underdamped second-order response. In the Structure drop-down list, select
Underdamped Pair.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-101

To obtain a rough approximation of the identified plant, in the Identified Plant Structure plot, drag
the dashed lines that correspond to the envelope of the step response. Adjust the response so that it
approximates the output response.

7 PID Controller Tuning

7-102

To fine-tune the approximate response, click Auto Estimate. The software estimates the parameters
of the identified plant model using the current parameters as an initial guess.

The Plant Identification Progress dialog box shows the results of the estimation process. For this
example, the fit to the estimation data is greater than 98%. To use this identified plant, on the Plant
Identification tab, click Apply.

The PID Tuner updates its identified plant model, selects controller parameters to meet the tuning
requirements in the Tuning Tools section, and plots the tuned response of this controller. To expand
the plot, close the Plant Identification figure.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-103

The step response shows a block response (dashed line) and a tuned response (solid line). The block
response corresponds to the current PID gains in the PID Controller block. The tuned response
corresponds to the tuned PID gains in PID Tuner.

Tune Controller
To tune the controller based on bandwidth and phase margin, on the PID Tuner tab, in the Domain
drop-down list, select Frequency.

For this example, set the Bandwidth and Phase Margin to 9425 rad/s (1.5 kHz) and 60 deg,
respectively, according to the design criteria specified in [1].

PID Tuner selects controller parameters that meet these design specifications.

To view the frequency response of the tuned system, click Add Plot, and under Bode, click Open-
loop.

7 PID Controller Tuning

7-104

To adjust the limits of the Bode plot, right-click the plot area, and select Properties. Then, in the
Property Editor dialog box, on the Limits tab, set the axis limits.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-105

To view the tuned controller parameters and performance metrics, including the gain and phase
margins, click Show Parameters. The tuned result has a 32.7 dB gain margin and 69 deg phase
margin at about 9425 rad/s.

7 PID Controller Tuning

7-106

To update the PID Controller block with the tuned gains, on the PID Tuner tab, click Update Block.

Validate Controller
You can examine the tuned controller performance using a simulation with line and load
disturbances. To examine the controller dynamic performance, the Simulink model uses the following
disturbances:

• Line disturbance at t = 0.075 sec, which increases the input voltage, Vin, from 5V to 10V
• Load disturbance at t = 0.1 sec, which increases the load resistance, Rload, from 3 ohms to 6

ohms

Simulate the model.

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-107

The controller rejects the line and load disturbances well.

References
[1] Lee, S. W. "Practical Feedback Loop Analysis for Voltage-Mode Boost Converter." Application

Report No. SLVA057. Texas Instruments. January 2014. www.ti.com/lit/an/slva633/slva633.pdf

See Also
PID Tuner

7 PID Controller Tuning

7-108

More About
• “Design Controller for Boost Converter Model Using Frequency Response Data” on page 7-77

 Design Controller for Power Electronics Model Using Simulated I/O Data

7-109

Design PID Controller Using Simulated I/O Data

This example shows how to tune a PID controller for plants that cannot be linearized. You use PID
Tuner to identify a plant for your model. Then tune the PID controller using the identified plant.

This example uses a buck converter model that requires Simscape™ Electrical™ software.

Buck Converter Model

Buck converters convert DC to DC. This model uses a switching power supply to convert a 30V DC
supply into a regulated DC supply. The converter is modeled using MOSFETs rather than ideal
switches to ensure that device on-resistances are correctly represented. The converter response from
reference voltage to measured voltage includes the MOSFET switches. PID design requires a linear
model of the system from the reference voltage to the measured voltage. However, because of the
switches, automated linearization results in a zero system. In this example, using PID Tuner, you
identify a linear model of the system using simulation instead of linearization.

For more information on creating a buck converter model, see “Buck Converter” (Simscape
Electrical).

open_system('scdbuckconverter')
sim('scdbuckconverter')

7 PID Controller Tuning

7-110

The model is configured with a reference voltage that switches from 15 to 25 Volts at 0.004 seconds
and a load current that is active from 0.0025 to 0.005 seconds. The controller is initialized with
default gains and results in overshoot and slow settling time.

open_system('scdbuckconverter/Scope 1')
open_system('scdbuckconverter/Scope 2')

 Design PID Controller Using Simulated I/O Data

7-111

Simulate Model to Generate I/O Data

To open the PID Tuner, in the Feedback controller subsystem, open the PID Controller block
dialog, and click Tune. PID Tuner indicates that the model cannot be linearized and returned a zero
system.

7 PID Controller Tuning

7-112

PID Tuner provides several alternatives when linearization fails. In the Plant drop-down list, you can
select one of the following methods:

• Import - Import a linear model from the MATLAB workspace.
• Re-linearize Closed Loop - Linearize the model at different simulation snapshot times.
• Identify New Plant - Identify a plant model using measured data.

For this example, click Identify New Plant to open the Plant Identification tool. For plant
identification, you must specify a finite value for the Simulink model stop time.

 Design PID Controller Using Simulated I/O Data

7-113

To open a tool that simulates the model to collect data for plant identification, on the Plant
Identification tab, click Get I/O Data > Simulate Data.

On the Simulate I/O Data tab, you simulate the plant seen by the controller. The software
temporarily:

• Removes the PID Controller block from the model.
• Injects a signal where the output of the PID block used to be.
• Measures the resulting signal where the input to the PID block used to be.

7 PID Controller Tuning

7-114

This data describes the response of the plant seen by the controller. The PID Tuner uses this
response data to estimate a linear plant model.

Configure the input signal as a step input with the following properties:

• Sample Time () = 5e-6 - Controller sample rate.
• Offset () = 0.51 - Output offset value that puts the converter in a state where the output

voltage is near 15V and gives the operating point around which to tune the controller.
• Onset Time () = 0.003 - Delay to allow sufficient time for the converter to reach the 15V

steady state before applying the step change.
• Step Amplitude () = 0.4 - Step size of the controller output (plant input) to apply to the model.

This value is added to the offset value so that the actual plant input steps from 0.51 to 0.91.
The controller output (plant input) is limited to the range [0.01 0.95].

 Design PID Controller Using Simulated I/O Data

7-115

Select Show Input Response, Show Offset Response, and Show Identification Data. Then, click
the Run Simulation. The Plant Identification plot is updated.

7 PID Controller Tuning

7-116

The red curve is the offset response. The offset response is the plant response to a constant input of
. The response shows that the model has some transients with a constant input, in particular:

• The [0 0.001] second range where the converter reaches the 15V steady state. Recall that this
signal is the control error signal and hence drops to zero as steady state is reached.

• The [0.0025 0.004] second range where the converter reacts to the current load being applied
while the reference voltage is maintained at 15V.

• The 0.004 second point where the reference voltage signal is changed from 15V to 25V resulting
in a larger control error signal.

• The [0.005 0.006] second range where the converter reacts to the current load being removed.

The blue curve shows the complete plant response that contains the contributions from the initial
transients (significant for times < 0.001 seconds), the response to the cyclic current load (time
durations 0.0025 to 0.005 seconds), reference voltage change (at 0.004 seconds), and response to the
step test signal (applied at time 0.003 seconds). In contrast, the red curve is the response to only the
initial transients, reference voltage step, and cyclic current load.

 Design PID Controller Using Simulated I/O Data

7-117

The green curve is the data that will be used for plant identification. This curve is the change in
response due to the step test signal, which is the difference between the blue (input response) and
red (offset response) curves taking into account the negative feedback sign.

To use the measured data to identify a plant model, click Apply. Then, to return to plant
identification, click Close.

Plant Identification

PID Tuner identifies a plant model using the data generated by simulating the model. You tune the
identified plant parameters so that the identified plant response, when provided the measured input,
matches the measured output.

You can manually adjust the estimated model. Click and drag the plant curve and pole location (X) to
adjust the identified plant response so that it matches the identification data as closely as possible.

7 PID Controller Tuning

7-118

To tune the identified plant using automated identification, click Auto Estimate. The automated
tuning response is not much better than the interactive tuning. The identified plant and identification
data do not match well. Change the plant structure to get a better match.

• In the Structure drop-down list, select Underdamped pair.
• Click and drag the 2nd order envelope to match the identified data as closely as possible (almost

critically damped).
• Click Auto Estimate to fine tune the plant model.

 Design PID Controller Using Simulated I/O Data

7-119

7 PID Controller Tuning

7-120

To designate the identified model as the current plant for controller tuning, Click Apply. PID Tuner
then automatically tunes a controller for the identified plant and updates the Reference Tracking
step plot.

Controller Tuning

The PID Tuner automatically tunes a PID controller for the identified plant. The tuned controller
response has about 5% overshoot and a settling time of around 0.0006 seconds. Click the Reference
Tracking step plot to make it the current figure.

 Design PID Controller Using Simulated I/O Data

7-121

The controller output is the duty cycle for the PWM system and must be limited to [0.01 0.95]. To
confirm that the controller output satisfies these bounds, create a controller effort plot. On the PID
Tuner tab, in the Add Plot drop-down list, under Step, click Controller effort. Move the newly
created Controller effort plot to the second plot group.

7 PID Controller Tuning

7-122

In the Controller effort plot, the tuned response (solid line) shows a large control effort required at
the start of the simulation. To achieve a settling time of about 0.0004 seconds and overshoot of 9%,
adjust the Response Time and Transient Behavior sliders. These adjustments reduce the maximum
control effort to the acceptable range.

 Design PID Controller Using Simulated I/O Data

7-123

To update the Simulink block with the tuned controller values, click Update Block.

To confirm the PID controller performance, simulate the Simulink model.

7 PID Controller Tuning

7-124

bdclose('scdbuckconverter')

See Also
PID Tuner

More About
• “System Identification for PID Control” on page 7-62
• “Input/Output Data for Identification” on page 7-68
• “Interactively Estimate Plant from Measured or Simulated Response Data” on page 7-56
• “Choosing Identified Plant Structure” on page 7-69

 Design PID Controller Using Simulated I/O Data

7-125

Design PID Controller Using Estimated Frequency Response

This example shows how to design a PI controller using a frequency response estimated from a
Simulink model. This is an alternative PID design workflow when the linearized plant model is invalid
for PID design (for example, when the plant model has zero gain).

Open the Model

Open the engine control model and take a few moments to explore it.

mdl = 'scdenginectrlpidblock';
open_system(mdl)

The PID loop includes a PI controller in parallel form that manipulates the throttle angle to control
the engine speed. The PI controller has default gains that makes the closed loop system oscillate. We
want to design the controller using the PID Tuner that is launched from the PID block dialog.

open_system([mdl '/Engine Speed (rpm)'])
sim(mdl)

7 PID Controller Tuning

7-126

Close the scope.

close_system([mdl '/Engine Speed (rpm)'])

PID Tuner Obtaining a Plant Model with Zero Gain From Linearization

In this example, the plant seen by the PID block is from throttle angle to engine speed. Linearization
input and output points are already defined at the PID block output and the engine speed
measurement respectively. Linearization at the initial operating point gives a plant model with zero
gain.

To verify the zero linearization, first obtain the linearization input and output points from the model.

io = getlinio(mdl);

Then, linearize the plant at its initial operating point.

linsys = linearize(mdl,io)

linsys =

 D =
 Throttle Ang
 EngineSpeed 0

Static gain.

The reason for obtaining zero gain is that there is a triggered subsystem (Compression) in the
linearization path and the analytical block-by-block linearization does not support event-based
subsystems. Since PID Tuner uses the same approach to obtain a linear plant model, PID Tuner also
obtains a plant model with zero gain and rejects it during the launching process.

To launch the PID Tuner, open the PID block dialog, and click Tune. An information dialog opens
and indicates that the plant model linearized at the initial operating point has zero gain and cannot
be used to design a PID controller.

 Design PID Controller Using Estimated Frequency Response

7-127

An alternative way to obtain a linear plant model is to directly estimate the frequency response data
from the Simulink model, create an frd system in the MATLAB workspace, and import it back to PID
Tuner to continue PID design.

Obtain Estimated Frequency Response Data Using Sinestream Signals

The sinestream input signal is the most reliable input signal for estimating an accurate frequency
response of a Simulink model using the frestimate function. For more information on how to use
frestimate, see “Frequency Response Estimation Using Simulation-Based Techniques” on page 5-
77.

In this example, create a sine stream that sweeps frequency from 0.1 to 10 rad/sec with an amplitude
of 1e-3. You can inspect the estimation results using the bode plot.

Construct the sinestream signal.

in = frest.Sinestream('Frequency',logspace(-1,1,50),'Amplitude',1e-3);

Estimate the frequency response. This process can take a few minutes.

sys = frestimate(mdl,io,in);

Display the estimated frequency response.

bode(sys)

7 PID Controller Tuning

7-128

Design PI Controller

sys is an frd system that represents the plant frequency response at the initial operating point. To
use it in PID Tuner, we need to import it after PID Tuner is launched. Click Plant, and select
Import. The sampling rate of the imported frd plant must match the sampling rate of the PID
Controller block.

 Design PID Controller Using Estimated Frequency Response

7-129

Click Importing an LTI system, and in the list, select sys. Then, click "OK" to import the frd
system into PID Tuner. The automated design returns a stabilizing controller. Click Add Plot, and
select Open-Loop Bode plot. The plot shows reasonable gain and phase margin. Click Show
Parameters to see the gain and phase margin values. Time domain response plots are not available
for frd plant models.

7 PID Controller Tuning

7-130

 Design PID Controller Using Estimated Frequency Response

7-131

To update the PID block P and I gains, click Update Block.

Simulate Closed-Loop Performance in Simulink Model

Simulation in Simulink shows that the new PI controller provides good performance when controlling
the nonlinear model.

7 PID Controller Tuning

7-132

Close the model.

bdclose(mdl)

See Also
Apps
PID Tuner

Functions
linearize | frestimate

Related Examples
• “Design PID Controller from Plant Frequency-Response Data” on page 7-37
• “Design PID Controller Using Plant Frequency Response Near Bandwidth” on page 7-44
• “Design Controller for Boost Converter Model Using Frequency Response Data” on page 7-77

 Design PID Controller Using Estimated Frequency Response

7-133

Design Family of PID Controllers for Multiple Operating Points

This example shows how to design an array of PID controllers for a nonlinear plant in Simulink® that
operates over a wide range of operating points.

Open Plant Model

The plant is a continuous stirred tank reactor (CSTR) that operates over a wide range of operating
points. A single PID controller can effectively use the coolant temperature to regulate the output
concentration around a small operating range for which the PID controller is designed. However,
since the plant is a strongly nonlinear system, control performance degrades if the operating point
changes significantly. The closed-loop system can even become unstable.

Open the CSTR plant model.

mdl = 'scdcstrctrlplant';
open_system(mdl)

7 PID Controller Tuning

7-134

For more information on this system, see [1].

Introduction to Gain Scheduling

A common approach to solve the nonlinear control problem is to use gain scheduling with linear
controllers. Generally speaking, designing a gain scheduling control system takes four steps.

1 Obtain a plant model for each operating region. The usual practice is to linearize the plant at
several equilibrium operating points.

2 Design a family of linear controllers, such as PID controllers, for the plant models obtained in the
previous step.

3 Implement a scheduling mechanism such that the controller coefficients, such as PID gains, are
changed based on the values of the scheduling variables. Smooth (bumpless) transfer between
controllers is required to minimize disturbance to plant operation.

4 Assess control performance with simulation.

For more information on gain scheduling, see [2].

This example focuses on designing a family of PID controllers for the nonlinear CSTR plant.

Obtain Linear Plant Models for Multiple Operating Points

The output concentration C is used to identify different operating regions. The CSTR plant can
operate at any conversion rate between a low conversion rate (C = 9) and a high conversion rate (C =
2). In this example, divide the operating range into eight regions represented by C = 2 through 9.

Specify the operating regions.

C = [2 3 4 5 6 7 8 9];

Create an array of default operating point specifications.

op = operspec(mdl,numel(C));

Initialize the operating point specifications by specifying that the output concentration is a known
value and specifying the output concentration value.

for ct = 1:numel(C)
 op(ct).Outputs.Known = true;
 op(ct).Outputs.y = C(ct);
end

Compute the equilibrium operating points corresponding to the values of C.

opoint = findop(mdl,op,findopOptions('DisplayReport','off'));

Linearize the plant at these operating points.

Plants = linearize(mdl,opoint);

Since the CSTR plant is nonlinear, the linear models display different characteristics. For example,
plant models with high and low conversion rates are stable, while the others are not.

isstable(Plants,'elem')'

ans =

 Design Family of PID Controllers for Multiple Operating Points

7-135

 1x8 logical array

 1 1 0 0 0 0 1 1

Design PID Controllers for the Plant Models

To design multiple PID controllers in batch, use the pidtune function. The following commands
generate an array of PID controllers in parallel form. The desired open-loop crossover frequency is at
1 rad/sec and the phase margin is the default value of 60 degrees.

Controllers = pidtune(Plants,'pidf',1);

Display the controller for C = 4.

Controllers(:,:,4)

ans =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = -12.4, Ki = -1.74, Kd = -16, Tf = 0.00875

Continuous-time PIDF controller in parallel form.

To analyze the closed-loop responses for step setpoint tracking, first construct the closed-loop
systems.

clsys = feedback(Plants*Controllers,1);

Plot the closed-loop responses.

figure
hold on
for ct = 1:length(C)
 % Select a system from the LTI array
 sys = clsys(:,:,ct);
 sys.Name = ['C=',num2str(C(ct))];
 sys.InputName = 'Reference';
 % Plot step response
 stepplot(sys,20);
end
legend('show','location','southeast')

7 PID Controller Tuning

7-136

All the closed loops are stable, but the overshoots of the loops with unstable plants (C = 4, through 7)
are too large. To improve the results for the unstable plant models, increase the target open-loop
bandwidth to 10 rad/sec.

Controllers = pidtune(Plants,'pidf',10);

Display the controller for C = 4.

Controllers(:,:,4)

ans =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = -283, Ki = -151, Kd = -128, Tf = 0.0183

Continuous-time PIDF controller in parallel form.

Construct the closed-loop systems, and plot the closed-loop step responses for the new controllers.

clsys = feedback(Plants*Controllers,1);
figure
hold on
for ct = 1:length(C)
 % Select a system from the LTI array.

 Design Family of PID Controllers for Multiple Operating Points

7-137

 sys = clsys(:,:,ct);
 set(sys,'Name',['C=',num2str(C(ct))],'InputName','Reference');
 % Plot the step response.
 stepplot(sys,20)
end
legend('show','location','southeast')

All the closed-loop responses are now satisfactory. For comparison, examine the response when you
use the same controller at all operating points. Create another set of closed-loop systems, where each
one uses the C = 2 controller, and plot their responses.

clsys_flat = feedback(Plants*Controllers(:,:,1),1);

figure
stepplot(clsys,clsys_flat,20)
legend('C-dependent Controllers','Single Controller')

7 PID Controller Tuning

7-138

The array of PID controllers designed separately for each concentration gives considerably better
performance than a single controller.

However, the closed-loop responses shown above are computed based on linear approximations of the
full nonlinear system. To validate the design, implement the scheduling mechanism in your model
using the PID Controller block as shown in “Implement Gain-Scheduled PID Controllers” on page 7-
141.

Close the model.

bdclose(mdl)

References

[1] Seborg, Dale E., Thomas F. Edgar, and Duncan A. Mellichamp. Process Dynamics and Control. 2nd
ed., John Wiley & Sons, Inc, 2004, pp. 34-36.

[2] Rugh, Wilson J., and Jeff S. Shamma. 'Research on Gain Scheduling'. Automatica 36, no. 10
(October 2000): 1401-1425.

See Also
operspec | findop | pidtune

 Design Family of PID Controllers for Multiple Operating Points

7-139

More About
• “Implement Gain-Scheduled PID Controllers” on page 7-141
• “Design Controller for Boost Converter Model Using Frequency Response Data” on page 7-77

7 PID Controller Tuning

7-140

Implement Gain-Scheduled PID Controllers

This example shows how to implement gain-scheduled control in a Simulink® model using a family of
PID controllers. The PID controllers are tuned for a series of steady-state operating points of the
plant, which is highly nonlinear.

This example builds on the work done in “Design Family of PID Controllers for Multiple Operating
Points” on page 7-134. In that example, the continuous stirred-tank reactor (CSTR) plant model is
linearized at steady-state operating points that have output concentrations C = 2, 3, ..., 8, 9. The
nonlinearity in the CSTR plant yields different linearized dynamics at different output concentrations.
The example uses the pidtune function to generate and tune a separate PID controller for each
output concentration.

You can expect each controller to perform well in a small operating range around its corresponding
output concentration. This example shows how to use the PID Controller block to implement all of
these controllers in a gain-scheduled configuration. In such a configuration, the PID gains change as
the output concentration changes. This configuration ensures good PID control at any output
concentration within the operating range of the control system.

Begin with the controllers generated in “Design Family of PID Controllers for Multiple Operating
Points” on page 7-134. If these controllers are not already in the MATLAB® workspace, load them
from the data file PIDGainSchedExample.mat.

load PIDGainSchedExample

This operation puts two variables in the MATLAB workspace, Controllers and C. The model array
Controllers contains eight pid models, each tuned for one output concentration in the vector C.

To implement these controllers in a gain-scheduled configuration, create lookup tables that associate
each output concentration with the corresponding set of PID gains. The Simulink model
PIDGainSchedCSTRExampleModel contains such lookup tables, configured to provide gain-
scheduled control for the CSTR plant. Open this model.

open_system("PIDGainSchedCSTRExampleModel")

 Implement Gain-Scheduled PID Controllers

7-141

In this model, the PID Controller block is configured to have external input ports for the PID
coefficients. Using external inputs allows the coefficients to vary as the output concentration varies.
Open the block to examine the configuration.

7 PID Controller Tuning

7-142

Setting the Source parameter to external enables the input ports for the coefficients.

The model uses a 1-D Lookup Table block for each of the PID coefficients. In general, for gain-
scheduled PID control, use your scheduling variable as the lookup-table input, and the corresponding
controller coefficient values as the output. In this example, the CSTR plant output concentration is
the lookup table input, and the output is the PID coefficient corresponding to that concentration. To
see how the lookup tables are configured, open the P Lookup Table block.

The Table data parameter contains the array of proportional coefficients for each controller,
Controllers.Kp. (For more information about the properties of the pid models in the
Controllers array, see pid.) Each entry in this array corresponds to an entry in the array C that is
entered in the Breakpoints 1 parameter. For concentration values that fall between entries in C, the
P Lookup Table block performs linear interpolation to determine the value of the proportional
coefficient. To set up lookup tables for the integral and derivative coefficients, configure the I
Lookup Table and D Lookup Table blocks using Controllers.Ki and Controllers.Kd,
respectively. For this example, this configuration is already done in the model.

The pid models in the Controllers array express the derivative filter coefficient as a time constant,
Controllers.Tf (see the pid reference page for more information). However, the PID Controller
block expresses the derivative filter coefficient as the inverse constant, N. Therefore, the N Lookup

 Implement Gain-Scheduled PID Controllers

7-143

Table block must be configured to use the inverse of each value in Controllers.Tf. Open the N
Lookup Table block to see the configuration.

Simulate the model. The Concentration Setpoint block is configured to step through a sequence
of setpoints that spans the operating range between C = 2 and C = 9 (shown in yellow on the scope).
The simulation shows that the gain-scheduled configuration achieves good setpoint tracking across
this range (blue on the scope).

7 PID Controller Tuning

7-144

As was shown in “Design Family of PID Controllers for Multiple Operating Points” on page 7-134, the
CSTR plant is unstable in the operating range between C = 4 and C = 7. The gain-scheduled PID
controllers stabilize the plant and yield good setpoint tracking through the entire unstable region. To
fully validate the control design against the nonlinear plant, apply a variety of setpoint test sequences
that test the tracking performance for steps of different sizes and directions across the operating
range. You can also compare the performance against a design without gain scheduling, by setting all
entries in the Controllers array equal.

See Also
pid | pidtune | PID Controller | n-D Lookup Table

More About
• “Design Family of PID Controllers for Multiple Operating Points” on page 7-134

 Implement Gain-Scheduled PID Controllers

7-145

Design Controller for Vehicle Platooning

This example shows how to design a controller for vehicle platooning applications. In a platoon of
vehicles, every following vehicle maintains a constant spacing from its preceding vehicle. Vehicles
travelling in tightly spaced platoons can improve traffic flow, safety, and fuel economy.

Platooning has the following control objectives [1].

• Individual vehicle stability — Spacing error for each following vehicle converges to zero if the
preceding vehicle is traveling at constant speed.

• String stability — Spacing errors do not amplify as they propagate towards the tail of the vehicle
string.

For an example that uses the designed controller in a platooning application with vehicle-to-vehicle
communication, see “Truck Platooning Using Vehicle-to-Vehicle Communication” (Automated Driving
Toolbox).

Platooning Model

In this example, there are five vehicles in the platoon. Every vehicle is modeled as a truck-trailer
system with the following parameters. All lengths are in meters.

L1 = 6; % Truck length
L2 = 10; % Trailer length
M1 = 1; % Interconnection length

The lead vehicle follows a given acceleration profile. Each trailing vehicle has a controller that
controls its acceleration.

Open the Simulink® model.

mdl = 'fiveVehiclePlatoon';
open_system(mdl)

7 PID Controller Tuning

7-146

Controller Design

In this example, the trailing vehicles all use the same controller design, which has the following
structure.

aego = C1alead + 1 − C1 afront− K1 vego− vlead − K2 xego− xfront + L

Here:

• aego, vego, and xego are the respective acceleration, velocity, and position of the ego vehicle, that is,
the trailing vehicle under control.

• afront and vfront are the acceleration and velocity of the vehicle directly in front of the ego vehicle.
• alead and xlead are the acceleration and position of the lead vehicle in the platoon.

Each vehicle obtains this information from onboard sensors and wireless communication with the
other vehicles in the platoon.

The parameters for the controller are as follows.

• L is the desired following distance.
• C1 is a constant.

 Design Controller for Vehicle Platooning

7-147

• K1 is a constant.
• K2 is a PID controller.

The controller minimizes the velocity error vlead− vego using controller K1, and minimizes the spacing
error xego− xfront + L using K2.

Define the initial controller parameters.

L = L1 + L2 + M1 + 5; % Front-to-front vehicle spacing
C1 = 0.8; % Constant gain
K1 = 8; % Constant gain
K2 = [2,1]; % PD gains for spacing control [P,D]

Run the simulation.

sim(mdl);

7 PID Controller Tuning

7-148

In the top plot, the velocity of each following vehicle converges to the lead velocity. In the bottom
plot, the spacing between vehicles converges to the desired spacing.

PID Tuning

To improve performance, you can tune the gains of the PID controller. As an example, tune the
spacing PID controller K2 for the 4th vehicle in the platoon.

Open the controller.

open_system([mdl '/4th with controller/controller/K2'])

In the block parameters, under Select tuning method, select Transfer Function Based (PID
Tuner App). Click Tune.

In the PID Tuner app, tune the response time and transient behavior of the controller. For example, a
Response Time 3 seconds and a Transient Behavior factor of 0.6 produce a PID controller with a
faster response and no overshoot.

 Design Controller for Vehicle Platooning

7-149

To update the controller parameters in the model, click Update Block.

For this example, open and simulate a Simulink model with the tuned parameters of the 4th controller
set.

mdlTuned = 'fiveVehiclePlatoonTuned';
open_system(mdlTuned)
sim(mdlTuned);

7 PID Controller Tuning

7-150

In the spacing plot, the error for the 4th vehicle converges faster than in the previous simulation.

Since the trailing vehicles use the same controller design, set the K2 gains for the other trailing
vehicles to the tuned gains from the 4th vehicle.

% Obtained tuned controller gains.
pTuned = get_param([mdlTuned '/4th with controller/controller/K2'],'P');
dTuned = get_param([mdlTuned '/4th with controller/controller/K2'],'D');

% Set gains in other controllers.
set_param([mdlTuned '/3rd with controller/controller/K2'],'P',pTuned)
set_param([mdlTuned '/3rd with controller/controller/K2'],'D',dTuned)
set_param([mdlTuned '/2nd with controller/controller/K2'],'P',pTuned)
set_param([mdlTuned '/2nd with controller/controller/K2'],'D',dTuned)
set_param([mdlTuned '/1st with controller/controller/K2'],'P',pTuned)
set_param([mdlTuned '/1st with controller/controller/K2'],'D',dTuned)

Simulate the model with all the trailing vehicle controllers K2 controllers tuned.

sim(mdlTuned);

 Design Controller for Vehicle Platooning

7-151

7 PID Controller Tuning

7-152

The error for all the trailing vehicles converge faster than in the original simulation.

References

[1] Rajamani, Rajesh. Vehicle Dynamics and Control. 2. ed. Mechanical Engineering Series. New York,
NY Heidelberg: Springer, 2012.

See Also
Apps
PID Tuner

Blocks
PID Controller

Related Examples
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2
• “Truck Platooning Using Vehicle-to-Vehicle Communication” (Automated Driving Toolbox)

 Design Controller for Vehicle Platooning

7-153

Plant Cannot Be Linearized or Linearizes to Zero
When you open PID Tuner, it attempts to linearize the model at the operating point specified by the
model initial conditions. Sometimes, PID Tuner cannot obtain a nonzero linear system for the plant
as seen by the PID controller.

How to Fix It
If the plant model in the PID loop cannot be linearized or linearizes to zero, you have several options
for obtaining a linear plant model for PID tuning. The following table summarizes some of the options
and when they are useful.

Approach Useful When More Information
Linearize at a different
operating point

There is a known operating
point suitable for tuning, such
as:

• A simulation snapshot time
at which the plant is in a
linearizable steady state.

• Known state values or a
previously trimmed
operating point at which the
plant is linearizable.

“Tune at a Different Operating
Point” on page 7-14

Import a linear model of the
plant to PID Tuner

You have an LTI model of the
plant at the desired operating
condition for tuning in the
MATLAB workspace.

In PID Tuner, in the Plant
menu, select Import.

Tune the controller using
simulated plant frequency-
response data

The plant is not linearizable in
any operating condition suitable
for tuning.

“Design PID Controller from
Plant Frequency-Response
Data” on page 7-37

Use system identification to
estimate a linear plant model
from measured or simulated
response data

You have System Identification
Toolbox software. An advantage
of this approach is that it yields
an analytic plant model that you
can use for further analysis.

“Interactively Estimate Plant
from Measured or Simulated
Response Data” on page 7-56

See Also

More About
• “Cannot Find a Good Design in PID Tuner” on page 7-155
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

7 PID Controller Tuning

7-154

Cannot Find a Good Design in PID Tuner
After adjusting the PID Tuner sliders, sometimes you cannot find a design that meets your design
requirements when you analyze the PID Tuner response plots.

How to Fix It
Try a different PID controller type. It is possible that your controller type is not the best choice for
your plant or your requirements.

For example, the closed-loop step response of a P- or PD-controlled system can settle on a value that
is offset from the setpoint. If you require a zero steady-state offset, adding an integrator (using a PI or
PID controller) can give better results.

As another example, sometimes a PI controller does not provide adequate phase margin. You can
instead try a PID controller to give the tuning algorithm extra degrees of freedom to satisfy both
speed and robustness requirements simultaneously.

To switch controller types, in the controller block dialog box:

• Select a different controller type from the Controller drop-down menu.
• Click Apply to save the change.
• Click Tune to instruct PID Tuner to tune the parameters for the new controller type.

If you cannot find any satisfactory controller with PID Tuner, PID control possibly is not sufficient for
your requirements. You can design more complex controllers using Control System Designer.

See Also
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

More About
• “Simulated Response Does Not Match PID Tuner Response” on page 7-156
• “Control System Designer Tuning Methods” on page 9-4
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

 Cannot Find a Good Design in PID Tuner

7-155

Simulated Response Does Not Match PID Tuner Response
When you run your Simulink model using the PID gains computed by PID Tuner, the simulation
output differs from the PID Tuner response plot.

There are several reasons why the simulated model can differ from the PID Tuner response plot. If
the simulated result meets your design requirements (despite differing from the PID Tuner
response), you do not need to refine the design further. If the simulated result does not meet your
design requirements, see “Cannot Find Acceptable PID Design in Simulated Model” on page 7-158.

Some causes for a difference between the simulated and PID Tuner responses include:

• The reference signals or disturbance signals in your Simulink model differ from the step signals
that PID Tuner uses. If you need step signals to evaluate the performance of the PID controller in
your model, change the reference signals in your model to step signals.

• The structure of your model differs from the loop structure that PID Tuner designs for. PID
Tuner assumes the loop configuration shown in the following figure.

As the figure illustrates, PID Tuner designs for a PID controller in the feedforward path of a
unity-gain feedback loop. If your Simulink model differs from this structure, or injects a
disturbance signal in a different location, your simulated response differs from the PID Tuner
response.

• You have enabled nonlinear features in the PID Controller block in your model, such as saturation
limits or anti-windup circuitry. PID Tuner ignores nonlinear settings in the PID Controller block,
which can cause PID Tuner to give a different response from the simulation.

• Your Simulink model has strong nonlinearities in the plant that make the linearization invalid over
the full operating range of the simulation.

• You selected an operating point using PID Tuner that is different from the operating point saved
in the model. In this case, PID Tuner has designed a controller for a different operating point
than the operating point that begins the simulation. Simulate your model using the PID Tuner
operating point by initializing your Simulink model with this operating point. See “Simulate
Simulink Model at Specific Operating Point” on page 1-95.

See Also
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

7 PID Controller Tuning

7-156

More About
• “Cannot Find Acceptable PID Design in Simulated Model” on page 7-158
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

 Simulated Response Does Not Match PID Tuner Response

7-157

Cannot Find Acceptable PID Design in Simulated Model
When you run your Simulink model using the PID gains computed by PID Tuner, the simulation
output may not meet your design requirements.

How to Fix It
Sometimes, PID control is not adequate to meet the control requirements for your plant. If you cannot
find a design that meets your requirements when you simulate your model, consider designing a more
complex controller using Control System Designer.

If you have enabled saturation limits in the PID Controller block without antiwindup circuitry, enable
antiwindup circuitry. You can enable antiwindup circuitry in two ways:

• Activate the PID Controller block antiwindup circuitry on the PID Advanced tab of the block
dialog box.

• Use the PID Controller block tracking mode to implement your own antiwindup circuitry external
to the block. Activate the PID Controller block tracking mode on the PID Advanced tab of the
block dialog box.

To learn more about both ways of implementing antiwindup circuitry, see “Anti-Windup Control Using
PID Controller Block”.

After enabling antiwindup circuitry, run the simulation again to see whether controller performance is
acceptable.

If the loop response is still unacceptable, try slowing the response of the PID controller. To do so,
reduce the response time or the bandwidth in PID Tuner. See “Refine the Design” on page 7-12.

You can also try implementing gain-scheduled PID control to help account for nonlinearities in your
system. See “Design Family of PID Controllers for Multiple Operating Points” on page 7-134 and
“Implement Gain-Scheduled PID Controllers” on page 7-141.

If you still cannot get acceptable performance with PID control, consider using a more complex
controller. See Control System Designer.

See Also
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

More About
• “Simulated Response Does Not Match PID Tuner Response” on page 7-156
• “Controller Performance Deteriorates When Switching Time Domains” on page 7-159
• “Control System Designer Tuning Methods” on page 9-4
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

7 PID Controller Tuning

7-158

Controller Performance Deteriorates When Switching Time
Domains

After you obtain a well-tuned, continuous-time controller using PID Tuner, you can discretize the
controller using the Time Domain selector button in the PID Controller block dialog box. Sometimes,
the resulting discrete-time controller performs poorly or even becomes unstable.

How to Fix It
In some cases, you can improve performance by adjusting the sample time by trial and error.
However, this procedure can yield a poorly tuned controller, especially where your application
imposes a limit on the sample time. Instead, if you change time domains and the response
deteriorates, click Tune in the PID Controller block dialog box to design a new controller.

Note If the plant and controller time domains differ, PID Tuner discretizes the plant (or converts the
plant to continuous time) to match the controller time domain. If the plant and controller both use
discrete time, but have different sample times, PID Tuner resamples the plant to match the
controller. All conversions use the tustin method (see “Continuous-Discrete Conversion Methods”.

See Also
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

More About
• “When Tuning the PID Controller, the D Gain Has a Different Sign from the I Gain” on page 7-

160
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

 Controller Performance Deteriorates When Switching Time Domains

7-159

When Tuning the PID Controller, the D Gain Has a Different
Sign from the I Gain

When you design a controller using PID Tuner, the resulting derivative gain, D, can have a different
sign from the integral gain I. PID Tuner always returns a stable controller, even if one or more gains
are negative.

For example, the following expression gives the PID controller transfer function in Ideal form:

c = P 1 + I
s + Ds

s
N + 1

= P 1 + DN s2 + I + N s + IN
s s + N

For a stable controller, all three numerator coefficients require positive values. Because N is positive,
IN > 0 requires that I is also positive. However, the only restriction on D is (1 + DN) > 0. Therefore,
as long as DN > –1, a negative D still yields a stable PID controller.

Similar reasoning applies for any controller type and for the Parallel controller form. For more
information about controller transfer functions, see the PID controller block reference pages.

See Also
PID Controller | Discrete PID Controller | PID Controller (2DOF) | Discrete PID Controller (2DOF)

More About
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

7 PID Controller Tuning

7-160

Tune Field-Oriented Controllers Using SYSTUNE

This example shows how to use the systune command to tune Field-Oriented Control (FOC) for a
permanent magnet synchronous machine (PMSM) based on a frequency response estimation (FRE)
result.

Field-Oriented Control

In this example, field-oriented control (FOC) for a permanent magnet synchronous machine (PMSM)
is modeled in Simulink® using Simscape™ Electrical™ components.

mdl = 'scdfocmotorSystune';
open_system(mdl)
SignalEditorPath = [mdl,'/System_Inputs/Reference_System_Inputs'];

Field-oriented control controls 3-phase stator currents as a vector. FOC is based on projections,
which transform a 3-phase time-dependent and speed-dependent system into a two-coordinate time-
invariant system. These transformations are the Clarke Transformation, Park Transformation, and
their respective inverse transforms. These transformations are implemented as blocks within the
Controller_Algorithm subsystem.

 Tune Field-Oriented Controllers Using SYSTUNE

7-161

The advantages of using FOC to control AC motors include:

• Torque and flux controlled directly and separately
• Accurate transient and steady-state management
• Similar performance compared to DC motors

The Controller_Algorithm subsystem contains all three PI controllers. The outer-loop PI controller
regulates the speed of the motor. The two inner-loop PI controllers control the d-axis and q-axis
currents separately. The command from the outer loop PI controller directly feeds to the q-axis to
control torque. The command for the d-axis is zero for PMSM because the rotor flux is fixed with a
permanent magnet for this type of AC motor.

Before tuning controllers, examine the speed responses with the original controllers, and save the
simulation results to a MAT-file, SystunedSpeed.mat. The existing speed PI controller has gains of P
= 0.08655 and I = 0.1997. The current PI controllers both have gains of P = 1 and I = 200.

scdfocmotorSystuneOriginalResponse

Plot the speed response with the original controllers. The plots exhibit steady-state errors and
relatively slow transient behavior. You can tune the controllers to achieve a better performance.

figure
plot(logsout_original_oneside{2}.Values);
hold on
plot(logsout_original_oneside{1}.Values);
legend('Original Controller','Speed Reference','Location','southeast');
grid on
hold off

figure
plot(logsout_original_twoside{2}.Values);

7 PID Controller Tuning

7-162

hold on
plot(logsout_original_twoside{1}.Values);
legend('Original Controller','Speed Reference','Location','northeast');
grid on
hold off

 Tune Field-Oriented Controllers Using SYSTUNE

7-163

Collect Frequency Response Data

To collect frequency response data, find an operating point at a speed of 150 rad/sec, specify linear
analysis points, define input signals, and estimate the frequency response.

Disconnect the original controllers, and simulate the open-loop system model with VD and VQ
commands. To reach the operating point, specify initial voltages of -0.1 V for VD and 3.465 V for VQ
using the ctrlIniValues structure. Constant voltage command blocks are connected by setting
switch signals in the switchIniValue structure.

switchIniValue.openLoopD = 1;
switchIniValue.openLoopQ = 1;
ctrlIniValues.voltageD = -0.1;
ctrlIniValues.voltageQ = 3.465;

7 PID Controller Tuning

7-164

Capture a simulation snapshot at 3 sec as the operating point for frequency response estimation.

set_param(SignalEditorPath,'ActiveScenario',...
 'Test_Case_150_rad_sec_Steady_state');
op = findop(mdl,3);

Use the simulation snapshot operating point as the initial condition of the model. Change the model
initial values in the ctrlIniValues structure to be at this steady state. For the d-axis current
controller, the current ID is 0 A. For the q-axis current controller, the current IQ is 0.1 A. For the
outer-loop speed controller, the reference current is 0.122 A and the speed is at 150 rad/s. For the
PMSM plant, set the rotor velocity in the pmsm structure to 150 rad/s.

set_param(mdl,'LoadInitialState','on');
set_param(mdl,'InitialState','getstatestruct(op)');
ctrlIniValues.currentDIC = 0;
ctrlIniValues.currentQIC = 0.1;
ctrlIniValues.speedIC = 150;
ctrlIniValues.speedCurrent = 0.122;
pmsm.RotorVelocityInit = 150;

Add linear analysis points to the model for frequency response estimation. Add open-loop input points
to VD and VQ. Add open-loop output points to ID, IQ, and speed. In addition, add a loop break analysis
point to the speed measurement.

io = getlinio(mdl);

 Tune Field-Oriented Controllers Using SYSTUNE

7-165

Define input sinestream signal from 10 to 10,000 rad/s with a fixed sample time of 4e-6 s, that is,
the sample time of the current control loop sampleTime.CurrentControl. The sinestream signal
magnitude is 0.25 V. This magnitude ensures that the plant is properly excited within the saturation
limit. If the excitation amplitude is either too large or too small, it produces inaccurate frequency
response estimation results.

in = frest.createFixedTsSinestream(sampleTime.CurrentControl,{10,1e4});
in.Amplitude = 0.5;

Estimate the frequency response at the specified steady state operating point op, using the linear
analysis points in io and the input signals in in. After finishing the frequency response estimation,
modify the input and output channel names in the resulting model, and plot the frequency response.

estsys = frestimate(mdl,op,io,in);
estsys.InputName = {'Vd','Vq'};
estsys.OutputName = {'Id','Iq','speed'};
figure
bode(estsys,'.')

7 PID Controller Tuning

7-166

Tune Control System Using systune

Obtain a state-space linear system model from the frequency response estimation result. Using an
option set for the ssest function, set the numerical search method used for this iterative parameter
estimation as the Levenberg-Marquardt least-squares search. Estimate a state-space model with four
states and a period of 4e-6 seconds. This step requires System Identification Toolbox™ software.

optssest = ssestOptions('SearchMethod','lm');
optssest.Regularization.Lambda = 0.1;
sys_singletune = ssest(estsys,4,'Ts',sampleTime.CurrentControl,optssest);

In order to tune all three PI controllers in the PMSM FOC model, construct a control system as shown
in the following block diagram.

 Tune Field-Oriented Controllers Using SYSTUNE

7-167

Define three tunable discrete-time PID blocks and their I/Os for d-axis current control, q-axis current
control, and speed control. The sample times of these discrete-time PID controllers must be
consistent, which is the same as the current control loop sample time. To ensure a better
approximation of faster controllers as compared to the original slower controllers, set the discrete
integrator formula for each PID controller to 'Trapezoidal'.

Cd = tunablePID('Cd','pi',sampleTime.CurrentControl);
Cd.IFormula = 'Trapezoidal';
Cd.u = 'Id_e';
Cd.y = 'Vd';

Cq = tunablePID('Cq','pi',sampleTime.CurrentControl);
Cq.IFormula = 'Trapezoidal';
Cq.u = 'Iq_e';
Cq.y = 'Vq';

Cspeed = tunablePID('Cspeed','pi',sampleTime.CurrentControl);
Cspeed.IFormula = 'Trapezoidal';
Cspeed.u = 'speed_e';
Cspeed.y = 'Iq_ref';

Create three summing junctions for the inner and outer feedback loops.

sum_speed = sumblk('speed_e = speed_ref - speed');
sum_id = sumblk('Id_e = Id_ref - Id');
sum_iq = sumblk('Iq_e = Iq_ref - Iq');

Define inputs, outputs, and analysis points for controller tuning.

input = {'Id_ref','speed_ref'};
output = {'Id','Iq','speed'};
APs = {'Iq_ref','Vd','Vq','Id','Iq','speed'};

Finally, assemble the complete control system, ST0, using these components.

ST0 = connect(sys_singletune,Cd,Cq,Cspeed,sum_speed,sum_id,sum_iq,input,output,APs);

Define tuning goals, including tracking and loop shape goals to ensure command tracking, as well as
gain goals to prevent saturations. For the speed controller, set the tracking bandwidth to 150 rad/s.
This bandwidth is used in both the tracking and loop shape goals. Additionally, set the DC error to
0.001 to reflect a maximum steady-state error of 0.1%. Set the peak error to 10. For the d-axis
current controller, set the tracking bandwidth to 2500 rad/s, which is much faster than the outer-loop

7 PID Controller Tuning

7-168

speed controller. To prevent saturating controllers, specify goals to constrain the gains for all three
controllers.

TR1 = TuningGoal.Tracking('speed_ref','speed',2/150,0.001,10);
TR2 = TuningGoal.Tracking('Id_ref','Id',2/2500);
LS1 = TuningGoal.LoopShape('Id',2500);
LS2 = TuningGoal.LoopShape('speed',150);
MG1 = TuningGoal.Gain('speed_ref','Iq_ref',2);
MG2 = TuningGoal.Gain('speed_ref','Vq',50);
MG3 = TuningGoal.Gain('Id_ref','Vd',20);

Tune all three PI controllers using systune with all tuning goals based on the constructed model
ST0. To increase the likelihood of finding parameter values that meet all design requirements, set
options for systune to run five additional optimizations starting from five randomly generated
parameter values.

opt = systuneOptions('RandomStart',5);
rng(2)
[ST1,fSoft] = systune(ST0,[TR1,TR2,LS1,LS2,MG1,MG2,MG3],opt);

Final: Soft = 1.01, Hard = -Inf, Iterations = 62
Final: Soft = 497, Hard = -Inf, Iterations = 71
 Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Soft = 1.01, Hard = -Inf, Iterations = 55
 Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Soft = 1.01, Hard = -Inf, Iterations = 54
Final: Soft = 1.01, Hard = -Inf, Iterations = 51
Final: Soft = 1.01, Hard = -Inf, Iterations = 47

After finding a solution using systune, show how tuning goals are met in the tuned model ST1. Show
the tracking, loop shape, and gain tuning goals separately. Dashed lines in the following figures
represent tuning goals and solid lines are the result of the tuned controllers.

figure
viewGoal([TR1,TR2],ST1)
figure
viewGoal([LS1,LS2],ST1)
figure
viewGoal([MG1,MG2,MG3],ST1)

 Tune Field-Oriented Controllers Using SYSTUNE

7-169

7 PID Controller Tuning

7-170

 Tune Field-Oriented Controllers Using SYSTUNE

7-171

After verifying tuning goals, extract controller parameters from the tuned model ST1. Use tuned PI
controller parameters to update the workspace parameters for the PI controller blocks.

Cd = getBlockValue(ST1,'Cd');
Cq = getBlockValue(ST1,'Cq');
Cspeed = getBlockValue(ST1,'Cspeed');

The d-axis current PI controller has tuned gains:

paramCurrentControlPD = Cd.Kp
paramCurrentControlID = Cd.Ki

paramCurrentControlPD =

 2.5952

paramCurrentControlID =

 2.4166e+03

The q-axis current PI controller has tuned gains:

paramCurrentControlPQ = Cq.Kp
paramCurrentControlIQ = Cq.Ki

7 PID Controller Tuning

7-172

paramCurrentControlPQ =

 5.5948

paramCurrentControlIQ =

 707.6873

The speed PI controller has tuned gains:

paramVelocityControlTuneP = Cspeed.Kp
paramVelocityControlTuneI = Cspeed.Ki

paramVelocityControlTuneP =

 0.3643

paramVelocityControlTuneI =

 0.4932

After tuning all three controllers together using systune, the controller gains are significantly
different from the original values. The PID controller in the speed control loop has a different sample
time, which is 0.001 second. The tuned result uses a different sample time of 4e-6 second but the
controller gains are the same. To make sure controller performances are identical with different
sample times, the discrete integrator format of the PID controllers is 'Trapezoidal' in this example.

Validate Tuned Controller

Examine the performances using the tuned controller gains. First, initialize the model to its zero
initial conditions using ctrlIniValues. Connect the PID controller blocks by setting switch signals
in the switchIniValue and set proper initial conditions for the PMSM plant model.

switchIniValue.openLoopQ = 0;
switchIniValue.openLoopD = 0;
ctrlIniValues.currentDIC = 0;
ctrlIniValues.voltageD = 0;
ctrlIniValues.currentQIC = 0;
ctrlIniValues.voltageQ = 0;
ctrlIniValues.speedIC = 0;
ctrlIniValues.speedCurrent = 0;
pmsm.RotorVelocityInit = 0;
set_param(mdl,'LoadInitialState','off')

Configure the model to use a one-sided speed command signal and simulate the model. Show the
speed response of the model to the one-sided speed command that rises from 0 rad/s to 150 rad/s at
0.05 s, and then to 200 rad/s at 0.8 s. Save the simulation result to logsout_tuned_oneside in
the MAT-file, SystunedSpeed.mat.

set_param(SignalEditorPath,'ActiveScenario','Test_Case_150_rad_sec_No_load');
sim(mdl);

 Tune Field-Oriented Controllers Using SYSTUNE

7-173

logsout_tuned_oneside = logsout;
save('SystunedSpeed','logsout_tuned_oneside','-append')

Configure the model to use a two-sided speed command signal and simulate the model. Show the
speed response of the model to the two-sided speed command that rises from 0 rad/s to 150 rad/s at
0.05 s, reverses direction at 0.5 s and then back to 0 rad/s at 0.8 s. Save the simulation result to
logsout_tuned_twoside in the MAT-file, SystunedSpeed.mat.

set_param(SignalEditorPath,'ActiveScenario','Test_Case_1_150_rad_sec_No_load');
sim(mdl);
logsout_tuned_twoside = logsout;
save('SystunedSpeed','logsout_tuned_twoside','-append')

Compare the motor speed responses between the existing controller gains and the tuned result. The
speed responses are shown side-by-side over the one-second simulation. The speed response follows
more closely to the step command. The steady-state error also decreases after the PI controllers are
tuned with systune.

scdfocmotorSystunePlotSpeed

7 PID Controller Tuning

7-174

After tuning the controllers, the motor response improves with faster transient response and smaller
steady-state error under both types of speed commands.

bdclose(mdl)

See Also
systune

More About
• “Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block” on page 8-45

 Tune Field-Oriented Controllers Using SYSTUNE

7-175

Islanded Operation of Remote Microgrid Using Droop
Controllers with Multiple Fidelity Levels

This example shows islanded operation of a remote microgrid modeled in Simulink® using
Simscape™ Electrical™ components. This example demonstrates the simplest grid-forming controller
with droop control.

Remote Microgrid Model

A remote microgrid is often used to serve electric loads in locations without a connection to the main
grid. Because the main grid is not available to balance load changes, controlling such a low-inertia
microgrid is challenging.

The microgrid in this example consists of two inverter subsystems connected to two different points
of common coupling (PCC) buses. The microgrid originally reaches power balance with the fixed
loads while a switchable load also connects to the microgrid. A microgrid typically has a preplanned
load shedding strategy to reach balanced operations. In a remote microgrid, instant load shedding is
difficult to implement. In this example, there is no high-level energy management system, so the
microgrid frequency and voltage are kept around their nominal values (60 Hz and 380 Vrms,
respectively) using droop control.

In this microgrid diagram, each inverter subsystem interfaces an ideal DC source to represent the DC
link of a typical renewable energy generation system, such as a photovoltaic array, wind turbine, or
battery energy storage system. Each subsystem includes a droop controller to calculate the d-axis
and q-axis reference voltages. The voltage controller regulates voltages by generating the switching

7 PID Controller Tuning

7-176

sequences feeding to the inverter. The loads originally connected consume a total of 175 kW AC
power with a power factor of 0.95.

Droop Control

The droop P/F is set to 2.5%, meaning that microgrid frequency is allowed to vary 1.5 Hz with 1 p.u.
change of real power injected from an inverter. The droop Q/V is also set to 2.5%, meaning that the
microgrid voltage at each PCC bus is allowed to vary over a range of 9.5 Vrms around the nominal
380 Vrms with 1 p.u. change of reactive power.

Microgrid Model

Open the model.

mdl = 'scd3busMicrogridDroopControlFidelityLevels';
open_system(mdl)

The microgrid is connected to two separate DC sources, each with a nominal voltage of 1000 V. There
is a total of 175 kW load in the microgrid at the beginning of simulation. At 2 seconds, a load
consuming 15 kW real power with a power factor of 0.98 is connected into the microgrid through a
breaker, Breaker 1. The microgrid's operation, including the real and apparent power consumption
of both inverters, is scheduled using a scenario loaded into a Signal Editor block inside the
Operation Commands subsystem.

 Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels

7-177

Model Fidelity Levels

You can simulate the inverter switching behavior in low or high fidelity, depending on your needs. The
active variant in the Inverter subsystems determines the fidelity level.

7 PID Controller Tuning

7-178

High-Fidelity Mode

In high-fidelity mode, a PWM Generator block creates a switch gate signal, g. This signal is then fed
to the gate input of the inverter, G.

The high-fidelity mode models and simulates all switches within the inverter individually. By default,
the switches are IGBT models. You can change the switch model using the Switching device
parameter in the Converter (Three-Phase) block.

This level of switch simulation represents the inverter behavior in great detail and captures any small
changes in the output voltage and frequency. However, because the high-fidelity mode models the
behavior of each individual switch within the inverter, it results in slower simulation times. For this
reason, the high-fidelity model is best used when you are interested in closely analyzing system
response characteristics, such as the voltage or frequency ripple, and simulation time is a lower
priority.

Low-Fidelity Mode

In low-fidelity mode, the Switching device parameter of the Converter (Three-Phase) block is set to
Averaged Switch, which uses an averaged PWM inverter model instead of fully modeling each
individual switch.

 Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels

7-179

The averaged PWM model works by using the modulation waveform that is output by the PWM
Generator (Three-phase, Two-level) block and converting this modulation waveform from the range [–
1,1] to a duty cycle signal in the range [0,1]. When the low-fidelity mode is active, this duty cycle
signal replaces the switch signal as the inverter gate input.

The model performs the duty cycle conversion in the Average-Value Signal subsystem.

Because the switches are not modeled in this mode, simulation steps are permitted to be larger than
the switching period, resulting in faster simulations. However, this also causes some converter
phenomena such as voltage and frequency ripple to not be fully captured. Since the low-fidelity model

7 PID Controller Tuning

7-180

simulates more quickly but does not fully represent all inverter behavior, it is best used in situations
where you would like to run simulations in quick succession and are primarily interested in the
system's high-level operation, such as when trying out different controller design iterations.

Simulation

To change the active fidelity level, in the Simulink model, under Select a model fidelity level, click
Low or High. The model is set to high-fidelity mode by default, so first simulate the model in this
mode. You can change the model parameters using the
scd3busMicrogridDroopControlDataFidelityLevels.m script provided with this example.
Additionally, to change the inverter real and apparent power setpoints P and Q, respectively, edit the
active scenario in the Signal Editor block.

To observe the simulation results, open the inverter frequency and voltage scopes.

open_system([mdl,'/Scopes/Inverter Freq']);
open_system([mdl,'/Scopes/Voltage']);

High Fidelity Simulation

First, perform a model update.

set_param(mdl,'SimulationCommand','update');

Simulate and time the model in high-fidelity mode (this may take a few minutes, depending on your
system).

tic;
sim(mdl);
highFidelitySimTime = toc;
highFidelityLogs = logsout;
fprintf("High fidelity simulation took %.2f seconds\n", highFidelitySimTime)

High fidelity simulation took 394.30 seconds

After the abrupt load increase at 2 seconds, the microgrid maintains its frequency around 60 Hz and
voltages around 1 p.u. at the PCC of each inverter. Both sources share the increased real and reactive
power loads, as you can see in the Active and Reactive Power scope. The inverter real and
reactive powers adjust without using any high-level supervisory control.

open_system([mdl,'/Scopes/Active & Reactive Power']);

Low Fidelity Simulation

Now, set the model to low fidelity mode.

fidelity = scd3busMicrogridDroopControl_variants_enum.Low;
Ts = 5e-5;
Ts_V = 1e-5;
Tsc = 1e-3;
Tsc_V = 5e-3;

Perform a model update.

set_param(mdl,'SimulationCommand','update');

Simulate and time the model.

 Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels

7-181

tic;
sim(mdl);
lowFidelitySimTime = toc;
lowFidelityLogs = logsout;
timeDifference = highFidelitySimTime/lowFidelitySimTime;
fprintf("Low fidelity simulation took %.2f seconds, which is \n%.1f " + ...
 "times faster than high fidelity.\n", lowFidelitySimTime, timeDifference);

Low fidelity simulation took 35.11 seconds, which is
11.2 times faster than high fidelity.

The low-fidelity model shows very similar results to the high-fidelity model on an average basis but
does not show the ripple in the voltage and frequency waveforms that appeared in high-fidelity mode.

Simulation Results Comparison

Plot the frequency of inverters for both the low- and high-fidelity models.

figure;
tiledlayout(2,1)
nexttile
plot(highFidelityLogs{12}.Values)
hold on
plot(lowFidelityLogs{12}.Values)
hold off
ylabel('Frequency (Hz)')
ylim([58 62])
title('Inverter1 Frequency')
legend(["High fidelity", "Low fidelity"])
nexttile
plot(highFidelityLogs{10}.Values)
hold on
plot(lowFidelityLogs{10}.Values)
hold off
ylabel('Frequency (Hz)')
ylim([58 62])
title('Inverter2 Frequency')

7 PID Controller Tuning

7-182

Now plot the per-unit voltage of inverters for both models.

figure;
tiledlayout(2,1)
nexttile
plot(highFidelityLogs{13}.Values)
hold on
plot(lowFidelityLogs{13}.Values)
hold off
ylabel('Voltage (p.u.)')
ylim([0.9 1.2])
title('Inverter1 Voltage')
legend(["High fidelity", "Low fidelity"])
nexttile
plot(highFidelityLogs{11}.Values)
hold on
plot(lowFidelityLogs{11}.Values)
ylabel('Voltage (p.u.)')
ylim([0.9 1.2])
title('Inverter2 Voltage')

 Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels

7-183

As expected, the high-fidelity model captures the frequency and voltage ripple in much more detail,
but the low-fidelity model runs much faster.

Control Design Considerations

Regardless of the fidelity level you use, note that there are oscillations in both the frequency and
voltage waveforms at each PCC. This result is not surprising as the droop control technique is a
simple grid-forming controller for microgrids. Such oscillations might be even worse if you consider
the dynamics of energy storage devices and renewable energy resources. To improve the power
quality in the microgrid, more advanced approaches are available, such as synchronous machine
emulation and virtual oscillator control. You can implement many of these grid-forming controllers
based on droop controller architecture.

The inverter controller also contains voltage controllers. You can further tune the voltage PI
controllers to achieve better tracking performance of the d-axis and q-axis reference voltages. For an
example on how to tune controllers using the PID Tuner app, see “Design PID Controller Using
Simulated I/O Data” on page 7-110.

Close Model

Close the model without saving.

close_system(mdl,0)

7 PID Controller Tuning

7-184

See Also
PID Controller | PID Tuner

Related Examples
• “Design Controller for Power Electronics Model Using Simulated I/O Data” on page 7-95
• “Design Controller for Boost Converter Model Using Frequency Response Data” on page 7-77

 Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels

7-185

Frequency Response Based PID Tuner

Frequency Response Based PID Tuner tunes the gains of PID controller based on a simulation
experiment that estimates the frequency-response of the plant in your model. It is particularly useful
for tuning or retuning the gains of a PID Controller for a plant that you cannot linearize.

The frequency-response based PID tuning process begins with an estimation experiment that breaks
the loop at the plant input, and perturbs the plant with sine and step signals. The tuner then uses the
resulting data to estimate the plant frequency response. Finally, it uses the estimated frequency
response to compute PID gains to balance performance and robustness.

Use the settings in this dialog box to specify parameters for the frequency-response estimation
experiment and the goals for PID tuning. Then, click Tune to run the experiment and tune the PID
gains.

For more information about how Frequency Response Based PID Tuner works, see “Frequency-
Response Based Tuning” on page 7-38.

Note While the estimation experiment is running, the tuner replaces the PID Controller block in your
model with an unnamed subsystem. When the estimation experiment is completed or canceled, the
tuner restores the PID Controller block. This process might result in some displacement of signal
wires on the model canvas.

Experiment Settings
Use the settings in this section to specify parameters of the estimation experiment.

Number of simulations

Specify whether to perform two simulations to remove the effects of disturbances in the model.

• 2 simulations (remove disturbances) — Select when your model includes disturbances that
have a large enough effect on the plant response to interfere with the estimation experiment. In
this case, the tuner performs two simulations:

• A simulation without any perturbations, to generate a baseline plant response, including plant
input and output values at the nominal operating point.

• A simulation with perturbations on the plant input.

The tuner uses the difference between these two simulations to compute the estimated frequency
response that it uses for tuning. This process removes the effect of disturbances in the model,
which would otherwise distort the estimated frequency response.

• 1 simulation — Select when your model does not include disturbances that affect the frequency-
response estimation. Selecting this option skips the baseline simulation, cutting the overall PID
tuning time in half.

Default: 2 simulations (remove disturbances)

7 PID Controller Tuning

7-186

Plant information

Specify whether your plant is asymptotically stable or has an integrator.

• Asymptotically stable — Select when your plant is stable and has no integrators. When this
option is selected, the estimation experiment includes an estimation of the plant DC gain. The
Frequency Response Based PID Tuner performs this estimation by injecting a step signal into the
plant.

• Has single integrator — Select when your plant contains one integrator. When this option is
selected, the experiment does not include a step perturbation and DC-gain estimate.

Caution Do not use the Frequency Response Based PID Tuner with an unstable plant or a plant
containing multiple integrators.

Default: Asymptotically stable

Start time (t0)

Specify the experiment start time. Start the experiment when the plant is at the desired equilibrium
operating point. For instance, if you know that your simulation must run to 10 s for transient effects
to decay, specify a start time of 10.

Default: 0

Duration (tspan)

Specify how long to let the frequency-response estimation experiment run. Let the experiment run
long enough for the frequency-response estimation algorithm to collect sufficient data for a good
estimate at all frequencies it probes. A conservative estimate for the experiment duration is 100/ωc,
where ωc is the target bandwidth for tuning that you specify with the Target bandwidth (rad/sec)
parameter.

The Frequency Response Based PID Tuner computes tuned PID gains when the experiment ends.

Default: 100

Sine amplitudes (Asin)

During the tuning experiment, the Frequency Response Based PID Tuner injects a sinusoidal signal
into the plant at four frequencies, [1/3,1,3,10]ωc , where ωc is the target bandwidth for tuning. Use
Sine Amplitudes (Asin) to specify the amplitude of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency.
• Vector of length 4 to specify a different amplitude at each of [1/3,1,3,10]ωc , respectively.

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower-frequency inputs
and increasing the amplitude of the higher-frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

 Frequency Response Based PID Tuner

7-187

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

In the experiment, the sinusoidal signals are superimposed (with the step perturbation, if any, in the
case of open-loop tuning). Thus, the perturbation can be at least as large as the sum of all amplitudes.
Therefore, to obtain appropriate values for the amplitudes, consider:

• Actuator limits. Make sure that the largest possible perturbation is within the range of your plant
actuator. Saturating the actuator can introduce errors into the estimated frequency response.

• How much the plant response changes in response to a given actuator input at the nominal
operating point for tuning. For instance, suppose that you are tuning a PID controller used in
engine-speed control. You have determined that at frequencies around the target bandwidth, a 1°
change in throttle angle causes a change of about 200 rpm in the engine speed. Suppose further
that to preserve linear performance the speed must not deviate by more than 100 rpm from the
nominal operating point. In this case, choose amplitudes to ensure that the perturbation signal is
no greater than 0.5 (assuming that value is within actuator limits).

Default: 1

Step amplitude (Astep)

If Plant is asymptotically stable is selected, the Frequency Response Based PID Tuner estimates
the DC gain by injecting a step signal into the plant. Use this parameter to set the amplitude of the
signal. The considerations for choosing a step amplitude are the same as the considerations for
specifying Sine amplitudes (Asin).

Default: 1

Design Specifications
Use the settings in this section to specify tuning goals.

Target bandwidth (rad/sec)

Specify the target value for the 0-dB gain crossover frequency of the tuned open-loop response CP,
where P is the plant response, and C is the controller response. This crossover frequency roughly sets
the control bandwidth. For a desired rise-time τ, a good guess for the target bandwidth is 2/τ.

When tuning a discrete-time controller with sample time Ts, the target bandwidth, ωc, must satisfy
ωcTs ≤ 0.3. This requirement ensures that the highest frequency in the estimation experiment, 10ωc,
is less than the Nyquist frequency. Because of this condition, the fastest rise time you can enforce for
discrete-time tuning is about 1.67Ts. If this rise time does not meet your design goals, consider
reducing Ts.

Default: 1

Target phase margin (degrees)

Specify a target minimum phase margin for the tuned open-loop response at the crossover frequency.
The target phase margin reflects desired robustness of the tuned system. Typically, choose a value in
the range of about 45°– 60°. In general, higher phase margin improves overshoot, but can limit

7 PID Controller Tuning

7-188

response speed. The default value, 60°, tends to balance performance and robustness, yielding about
5-10% overshoot, depending on the characteristics of your plant.

Default: 60

Automatically Update Block
When this option is selected, the Frequency Response Based PID Tuner automatically updates the
gains in the PID Controller block when the experiment and tuning is complete. If you want to examine
the tuning results before updating the block, clear this option. In that case, click Update PID Block
to write the tuned gains to the block.

Tune and Cancel
Click Tune to initiate the frequency-response estimation experiment. While the estimation
experiment is running, the tuner:

• Closes the open PID Controller block.
• Clears any previous tuning results displayed in the tuner dialog box.
• Replaces the PID Controller block in your model with an unnamed subsystem.

Note When the estimation experiment is completed or canceled, the tuner restores the PID
Controller block. This process might result in some displacement of signal wires on the model canvas,
and puts your Simulink model in a state with unsaved changes.

To abort the experiment before completion, click Cancel. When you do so, the tuner does not
compute new gains.

Tuning Results
While the experiment is running, this section displays the progress of the estimation experiment.
When the experiment and tuning is complete, the resulting PID gains are displayed. Also displayed
are:

• Estimated phase margin — Estimated phase margin achieved by the tuned system, in degrees.
The tuner calculates this value from the angle of G(jωc)C(jωc), where G is the plant, C is the tuned
controller, and ωc is the crossover frequency (bandwidth). The estimated phase margin might
differ from the target phase margin you specify in the Target phase margin (degrees)
parameter. It is an indicator of the robustness and stability achieved by the tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the larger
the value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.
• Nominal plant input — Plant input at the nominal operating point, when the experiment begins.

For additional information about the experiment and tuning results, click Export To MATLAB. When
you do so, the tuner creates a structure in the MATLAB workspace, OnlinePIDTuningResult,
containing the following fields:

 Frequency Response Based PID Tuner

7-189

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are necessary for
the controller type of your PID Controller block. For instance, if you are tuning a PI controller, the
structure contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec) parameter.
• TargetPhaseMargin — The value you specified in the Target phase margin (degrees)

parameter.
• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or pidstd (for

standard form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the response

data obtained at the four frequencies [1/3, 1, 3, 10]ωc.
• PlantNominalInput — The plant input at the nominal operating point when the experiment

begins.
• PlantDCGain — The estimated DC gain of the system in absolute units, if Plant is

asymptotically stable is selected during tuning.

See Also

More About
• “Frequency-Response Based Tuning” on page 7-38

7 PID Controller Tuning

7-190

PID Autotuning

• “When to Use PID Autotuning” on page 8-2
• “How PID Autotuning Works” on page 8-5
• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “PID Autotuning in Real Time” on page 8-13
• “Control Real-Time PID Autotuning in Simulink” on page 8-20
• “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23
• “Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block” on page 8-29
• “BLDC Motor Speed Control with Cascade PI Controllers” on page 8-35
• “Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block” on page 8-45
• “Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID Autotuner

Block” on page 8-52
• “Tune Field-Oriented Controllers for a PMSM Using Closed-Loop PID Autotuner Block”

on page 8-60
• “Design PID Controllers for Three-Phase Rectifier Using Closed-Loop PID Autotuner Block”

on page 8-67
• “PID Autotuning for UAV Quadcopter” on page 8-73
• “Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block” on page 8-86
• “Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block”

on page 8-96

8

When to Use PID Autotuning
The PID autotuner blocks in Simulink Control Design let you tune a PID controller without a
parametric plant model or an initial controller design. If you have a code-generation product such as
Simulink Coder, you can generate code that implements the tuning algorithm on hardware. Deploying
the algorithm to hardware lets you tune a controller for a physical plant, with or without using
Simulink to manage the tuning process.

To achieve model-free tuning, use the Closed-Loop PID Autotuner or Open-Loop PID Autotuner
blocks. These blocks perform a frequency-response estimation experiment that injects signals into the
plant and measures the plant output with the feedback loop closed or open, respectively. The blocks
use the resulting estimated frequency response to tune PID gains for the plant.

PID autotuning works with any asymptotically stable or integrating SISO plant, whether low-order or
high-order, with or without time delay, and with or without direct feedthrough. It can tune any type of
PID controller. You trigger the tuning process via an input to the block, so you can tune your
controller at any time.

PID Autotuning for a Physical Plant
Embedded PID autotuning is a useful option when you have a PID-controlled system and a test bed or
control environment to operate in. In this case, you can deploy an autotuner block to your hardware
and automatically tune the gains of the PID controller in your system.

In practice, you can manage the PID autotuning process in several ways, including:

• Deploy the autotuning algorithm as a standalone embedded module and manage the tuning
process in your own software and hardware environment. For details, see “PID Autotuning in Real
Time” on page 8-13.

• Initiate, monitor, and analyze the autotuning process via Simulink. For details, see “Control Real-
Time PID Autotuning in Simulink” on page 8-20.

PID Autotuning for a Plant Model in Simulink
If you have a plant model in Simulink, you can use PID autotuning to:

• Obtain an initial PID design for your plant, which you can refine by tuning against the physical
plant.

• Preview plant response and adjust the settings for PID autotuning before tuning the controller in
real time. Doing so helps ensure that real-time tuning does not drive your system out of the
desirable operating range.

For more information, see “PID Autotuning for a Plant Modeled in Simulink” on page 8-7.

Closed-Loop vs. Open-Loop PID Autotuning
The PID autotuning tools let you tune:

• In a closed-loop configuration, with your plant under control of an existing PID controller (Closed-
Loop PID Autotuner block).

8 PID Autotuning

8-2

• In an open-loop configuration (Open-Loop PID Autotuner block). With open-loop autotuning, if the
plant is in a feedback loop, the autotuner opens the loop for the duration of the tuning process.

In general, if you do not have an initial PID design, start with open-loop autotuning, and switch to
closed-loop autotuning for retuning or refinement. If you have an initial PID design for your plant, use
closed-loop tuning, which is safer for your plant. With closed-loop autotuning, the controller remains
in the loop to:

• Reject unexpected plant disturbances to maintain safe operation of the plant during the estimation
experiment.

• Reduce the risk that the perturbations used for the experiment drive the plant away from the
desired operating point.

Additional advantages of the closed-loop autotuning approach include:

• Closed-loop tuning works with multiple-integrator plants. In contrast, you cannot use open-loop
autotuning for multiple-integrator plants. Even single-integrator plants risk drifting away from the
desired operating point during open-loop tuning.

• Because the feedback loop remains closed, there is no concern about controller saturation during
the tuning process. In contrast, with open-loop autotuning, a controller with integral action can
saturate while the loop is open. Such saturation can create a jump at the plant input when the
tuning process ends. With open-loop tuning, you must take additional steps to ensure that the
controller continues to track autotuner block output during tuning. (See, for instance, “PID
Autotuning for a Plant Modeled in Simulink” on page 8-7.)

If safe operation of your plant is not a practical concern (such as when tuning against a plant model
in Simulink), open-loop autotuning has these advantages:

• Open-loop tuning can result in more accurate frequency-response estimation and tuning. In
closed-loop tuning, the controller suppresses injected perturbations, which can result in less
accurate frequency-response estimation and poorer tuning results.

• Open-loop tuning is faster. Closed-loop tuning uses a lower-frequency perturbation signal, which
makes the process about three times longer.

• The memory footprint of the deployed algorithm is slightly smaller.

Caution

• Do not use either closed-loop or open-loop PID autotuning with an unstable plant.
• Do not use open-loop PID autotuning with a plant that has more than one integrator. You can use

closed-loop PID autotuning with a multiple-integrator plant.

To get started with either type of PID autotuner, see “How PID Autotuning Works” on page 8-5.

When Not to Use PID Autotuning
PID Autotuning is not suitable for unstable plants. The perturbations applied in open-loop tuning can
drive an unstable plant to operating conditions that are unsafe for the plant. Although closed-loop
autotuning does not have that risk, it does not yield meaningful tuning results for unstable plants.

 When to Use PID Autotuning

8-3

PID autotuning does not work well when there are large disturbances in the plant during the
estimation experiment. Disturbances distort the plant response to the perturbation signals, yielding
poor estimation results.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5

8 PID Autotuning

8-4

How PID Autotuning Works
To use PID autotuning, configure and deploy one of the PID autotuner blocks, Closed-Loop PID
Autotuner or Open-Loop PID Autotuner.

Autotuning Process
The PID autotuner blocks work by performing a frequency-response estimation experiment. The
blocks inject test signals into your plant and tune PID gains based on an estimated frequency
response.

The following schematic diagram illustrates generally how a PID autotuner block fits into a control
system.

Until the autotuning process begins, the autotuner block relays the control signal directly from u to
the plant input at u+Δu. In that state, the module has no effect on the performance of your system.

When the autotuning process begins, the block injects a test signal at u out to collect plant input-
output data and estimate frequency response in real time.

• If you use the Open-Loop PID Autotuner block, the block opens the feedback loop between u and u
+Δu for the duration of the estimation experiment. It injects into u+Δu a superposition of
sinusoidal signals at frequencies [1/3, 1, 3, 10]ωc, where ωc is your specified target bandwidth for
tuning. For nonintegrating plants, the block can also inject a step signal to estimate the plant DC
gain. All test signals are injected on top of the nominal plant input, which is the value of the signal
at u when the experiment begins.

• If you use the Closed-Loop PID Autotuner block, the plant remains under control of the PID
controller with its current gains during the experiment. Closed-loop tuning uses sinusoidal test
signals at the frequencies [1/10,1/3, 1, 3, 10]ωc.

When the experiment ends, the block uses the estimated frequency response to compute PID gains.
The tuning algorithm aims to balance performance and robustness while achieving the control
bandwidth and phase margin that you specify. You can configure logic to transfer the tuned gains
from the block to your PID controller, allowing you to validate closed-loop performance in real time.

 How PID Autotuning Works

8-5

Workflow for PID Autotuning
The following steps provide a general overview of the workflow for PID autotuning.

1 Incorporate a PID autotuner block into your system, as shown in the schematic diagram.
2 Configure the start/stop signal that controls when the tuning experiment begins and ends. You

can use this signal to initiate the PID autotuning process at any time. When you stop the
experiment, the block returns tuned PID gains.

3 Specify controller parameters such as controller type and the target bandwidth for tuning.
4 Configure experiment parameters such as the amplitudes of the perturbations injected during the

frequency-response experiment.
5 Start the autotuning process using the start/stop signal, and allow it to run long enough to

complete the frequency-response estimation experiment.
6 Stop the autotuning process. When the experiment stops, the autotuner computes and returns

tuned PID gains.
7 Transfer the tuned gains from the block to your PID controller. You can then validate the

performance of the tuned controller in Simulink or in real time.

For detailed information on performing each of these steps, see:

• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “PID Autotuning in Real Time” on page 8-13

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “When to Use PID Autotuning” on page 8-2

8 PID Autotuning

8-6

PID Autotuning for a Plant Modeled in Simulink
To use PID autotuning for a plant modeled in Simulink, you incorporate a PID autotuner block into the
model. You can control the autotuning process while the model is running. When tuning is complete
you can validate tuned controller parameters against the simulated plant. Using PID autotuning this
way can be useful for generating an initial PID design that you later refine with real-time autotuning.

Workflow for Autotuning in Simulink
The following steps provide a general overview of the workflow for PID autotuning in Simulink using
the Closed-Loop PID Autotuner or Open-Loop PID Autotuner blocks.

1 Incorporate a PID autotuner block on page 8-7 into your model between the PID controller and
the plant.

2 Configure the start/stop signal on page 8-9 that controls when the tuning experiment begins
and ends.

3 Specify controller parameters on page 8-9 such as controller type and the target bandwidth for
tuning.

4 Configure experiment parameters on page 8-10 such as the amplitudes of the perturbations
injected during the frequency-response experiment.

5 Run the model and initiate tuning on page 8-11. Use the start/stop signal to initiate the PID
autotuning process. When you start the process, the autotuner block injects test signals and
measures the response of the plant.

6 Stop the experiment on page 8-11 with the start/stop signal. When the experiment stops, the
autotuner block computes and returns tuned PID gains. You can examine the tuned gains for
reasonableness.

7 Transfer the tuned gains on page 8-11 from the autotuner block to your PID controller. You can
then validate the performance of the tuned controller in Simulink.

Step 1. Incorporate Autotuner into Model
The following illustration shows one way to incorporate a Closed-Loop PID Autotuner block in
between your PID controller and your plant.

 PID Autotuning for a Plant Modeled in Simulink

8-7

The control signal u from the PID controller feeds into the u port of the autotuner block. The u+Δu
port feeds into the plant input. Before you begin the autotuning process, the autotuner block feeds
the PID control signal directly from u to u+Δu and the plant input. In that state, the autotuner block
has no effect on plant or controller behavior. During the autotuning process, the block injects test
signals at the plant input and measures the response at y.

The start/stop signal controls when the autotuning process begins and ends (see “Step 2.
Configure Start/Stop Signal” on page 8-9). When the experiment ends, the block calculates PID
gains and returns them at the pid gains port.

For a more detailed example of a Simulink model configured for closed-loop PID autotuning, see
“Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block” on page 8-29.

Bumpless Transfer for Open-Loop Tuning

The Open-Loop PID Autotuner block opens the loop between u and u+Δu during the estimation
experiment. If your controller includes integral action, you can use signal tracking to avoid integrator
windup while the loop is open. Signal tracking enables the PID controller to continue to track the real
plant input while it is out of the loop. Without it, your system can experience a bump when the control
loop is closed at the end of the tuning process. In system of the following illustration, the PID
controller is a Simulink PID Controller block with the Enable tracking mode parameter on. The
plant input feeds into the tracking input of the controller block.

8 PID Autotuning

8-8

For a more detailed example of a Simulink model configured for open-loop PID autotuning, see “Tune
PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23.

Step 2. Configure Start/Stop Signal
To start and stop the autotuning process, use a signal at the start/stop port. When the experiment
is not running, the block passes signals unchanged from u to u+Δu. In this state, the block has no
impact on plant or controller behavior.

The frequency-response estimation experiment begins and ends when the block receives a rising or
falling signal at the start/stop port, respectively. In the systems illustrated in “Step 1. Incorporate
Autotuner into Model” on page 8-7, the start/stop signal is a simple switch. While the model is
running, you can use the switch to begin and end the experiment. When you end the experiment, the
algorithm generates the tuned PID gains and the block returns them at the pid gains port.

As an alternative to a manual switch, you can configure the start/stop signal to begin and end the
experiment automatically at particular simulation times. For example, you can use the sum of two
Step blocks: Configure one Step block to step from 0 to 1 at the experiment start time, and a second
Step block to step from 1 to 0 at the end time. Feed the sum of the two signals into the start/stop
port of the PID autotuner block.

You can configure any other logic appropriate for your application to control the start and stop times
of the experiment. For more information about when to start and stop the experiment, see “Step 5.
Run Model and Initiate Tuning Experiment” on page 8-11.

Step 3. Specify Controller Parameters and Tuning Goals
In the PID autotuner block, specify the configuration of the PID controller you are tuning, using the
following block parameters:

 PID Autotuning for a Plant Modeled in Simulink

8-9

• Type
• Form
• Time Domain
• Controller sample time (sec)
• Integrator method
• Filter method

Then, specify the target bandwidth and phase margin for tuning with the Target bandwidth (rad/
sec) and Target phase margin (degrees) parameters, respectively.

The target bandwidth, specified in rad/sec, is the target value for the 0-dB gain crossover frequency
of the tuned open-loop response CP, where P is the plant response, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a desired rise-time τ seconds, a
good guess for the target bandwidth is 2/τ rad/sec.

The target phase margin reflects your desired robustness of the tuned system. Typically, choose a
value in the range of about 45°– 60°. In general, higher phase margin improves overshoot, but can
limit response speed. The default value, 60°, tends to balance performance and robustness, yielding
about 5-10% overshoot, depending on the characteristics of your plant.

For more information about setting these parameters, see the Closed-Loop PID Autotuner or Open-
Loop PID Autotuner block reference pages.

Step 4. Set Experiment Parameters
The frequency-response estimation experiment injects sinusoidal signals at frequencies around the
target bandwidth ωc:

• [1/3, 1, 3, 10]ωc for the Open-Loop PID Autotuner block
• [1/10,1/3, 1, 3, 10]ωc for the Closed-Loop PID Autotuner block

Use the Sine Amplitudes parameter of the blocks to specify the amplitudes of these signals.

If your plant is asymptotically stable, the Open-Loop PID Autotuner block can estimate the plant DC
gain with a step perturbation. Specify the amplitude of this perturbation with the Step Amplitude
parameter. If your plant has a single integrator, clear the Estimate DC gain with step signal
parameter.

Caution

• Do not use either closed-loop or open-loop PID autotuning with an unstable plant.
• Do not use open-loop PID autotuning with a plant that has more than one integrator. You can use

closed-loop PID autotuning with a multiple-integrator plant.

All the perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level.

8 PID Autotuning

8-10

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output.

For more information about setting the experiment parameters, see the Closed-Loop PID Autotuner
and Open-Loop PID Autotuner block reference pages.

Step 5. Run Model and Initiate Tuning Experiment
After you have configured all the parameters for tuning, run the model.

• If you have configured a manual start/stop signal, begin the experiment when your plant has
reached steady-state.

• If you have configured the start/stop signal to begin and end the tuning process at specific
times, allow the simulation to run long enough to begin the experiment.

Step 6. Stop Experiment and Examine Tuned Gains
The frequency-response estimation experiment ends when the start/stop signal falls.

• If you have configured a manual start/stop signal, end the experiment when the signal at the %
conv output stabilizes near 100%.

• If you have configured the start/stop signal to begin and end the tuning process at specific
times, allow the simulation to run through the end of the experiment.

In either case, a conservative estimate for the experiment time is 200/ωc for closed-loop tuning or
100/ωc for open-loop tuning, where ωc is your target bandwidth.

When you stop experiment, the block computes new PID gains based on the estimated frequency
response of the system and your specified tuning goals. Examine them for reasonableness. For
instance, if you have an initial PID controller, you might expect the tuned gains to be roughly the
same magnitude as the gains of the initial design. There are several ways to see the tuned gains:

• View the output of the pid gains port of the autotuner block. One way to view this output is to
connect the output to a Simulink Display block.

• In the block, in the Block tab, click Export to MATLAB. The block creates a structure in the
MATLAB workspace, OnlinePIDTuningResult. For more information about the contents of this
structure, see the Closed-Loop PID Autotuner or Open-Loop PID Autotuner block reference pages.

Step 7. Update PID Controller with Tuned Gains
The autotuner block can write tuned controller parameters directly to the PID controller block, if your
PID controller is either:

• A Simulink PID Controller block.
• A custom PID controller for which the following conditions are both true:

• The custom controller is a masked subsystem.
• The PID gains are mask parameters named P, I, D, and N. (You do not need to use all four

parameters. For example, if you use a custom PI controller, then you only need mask
parameters P and I.)

 PID Autotuning for a Plant Modeled in Simulink

8-11

To configure the autotuner block to write tuned gains to your controller, designate the controller as
the associated PID block in the PID autotuner block parameters. (For more information, see the see
the Closed-Loop PID Autotuner or Open-Loop PID Autotuner block reference pages.) Then, update
your controller by clicking Update PID Block. You can update the PID gains while the simulation is
running. Doing so is useful for immediately validating tuned PID gains.

Note At any time during simulation, you can change tuning or experiment parameters, start the
experiment again, and push the new tuned gains to the PID block. You can then observe the behavior
of your plant as simulation continues with the new gains.

Manual Update of PID Gains

If your custom PID controller does not satisfy the conditions for direct update, you must transfer the
tuned gains to your controller some other way, such as manually or with your own logic.

When you examine these gains and transfer them to your own controller, be aware of the meaning of
these gains in the PID autotuner blocks. In discrete time, the blocks assume the following PID
controller transfer function:

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

Fi(z) and Fd(z) depend on the values you specify for the Integrator method and Filter method
formulas, respectively. For more details, see the Closed-Loop PID Autotuner or Open-Loop PID
Autotuner block reference pages.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “When to Use PID Autotuning” on page 8-2
• “PID Autotuning in Real Time” on page 8-13
• “Control Real-Time PID Autotuning in Simulink” on page 8-20

8 PID Autotuning

8-12

PID Autotuning in Real Time
To use the PID autotuning algorithm in a standalone application for real-time tuning against your
physical plant, you must deploy the PID autotuner block into your own system. To do so, you create a
Simulink model for deployment. You can configure this model with the experiment and tuning
parameters. Or, you can configure it to supply such parameters externally from elsewhere in your
system. Once deployed to your own system, the autotuner model injects signals into your plant and
receives the plant response, without using Simulink to control the tuning process. Deploying the PID
autotuning algorithm requires a code-generation product such as Simulink Coder.

As an alternative, you can tune in real time against your physical plant while using Simulink to
control the experiment. For more information, see “Control Real-Time PID Autotuning in Simulink” on
page 8-20.

Workflow
In overview, the workflow for deploying a PID autotuning algorithm for real-time tuning is:

1 Create a Simulink model on page 8-13 for deploying a PID autotuner block into your system.
2 Configure the start/stop signal on page 8-16 that controls when the tuning experiment begins

and ends. After deployment, you can use this signal to initiate the PID autotuning process at any
time.

3 Specify controller parameters on page 8-16 such as controller type and the target bandwidth for
tuning.

4 Configure experiment parameters on page 8-17 such as the amplitudes of the perturbations
injected during the frequency-response experiment.

5 Deploy the model to your system, and initiate the autotuning process on page 8-18 against your
physical plant. You can validate closed-loop performance in real time.

In practice, for real-time tuning, you might want to specify some parameters at run time, such as the
target bandwidth or perturbation amplitudes. For information about specifying parameters in your
deployed application, see “Access Autotuning Parameters After Deployment” on page 8-18.

Step 1. Create Deployable Simulink Model with PID Autotuner Block
Using a PID autotuner block for real-time tuning requires creating a Simulink model for deployment.
There are several ways to do so.

Deployable Module with Autotuner Only

In the most basic form, a model for deploying real-time PID autotuning resembles the following
illustration, using either the Closed-Loop PID Autotuner or the Open-Loop PID Autotuner block. An
advantage of this approach is that it lets you switch between and tune different PID controllers at run
time.

 PID Autotuning in Real Time

8-13

Here, the blocks connected to the inputs and outputs of the PID autotuner block represent hardware
interfaces that read or write real-time data for your system. For example, the Read PID
controller output block can be an interface for receiving serial data, a UDP Receive block for
receiving UDP packets, or an interface for receiving other signals via wireless network. Similarly the
blocks for writing data, such as Write plant input, can be interfaces for serial, UDP, or other
interfaces for writing data to hardware.

The default ports of the autotuner block are:

• u — Receives the control signal.
• y — Receives the plant output.
• start/stop — Receives the signal that begins and ends the tuning process.
• u+Δu — Outputs the signal to feed to the plant input. When the experiment is not running, u+Δu

outputs the control signal as input at u. When the experiment is running the block and injects the
test signals at u+Δu. For open-loop tuning only, the block breaks the loop between u and u+Δu for
the duration of the experiment. When the experiment ends, the block restores the connection
between u and u+Δu.

• % conv — Outputs a numeric indicator of the progress of the frequency-response estimation
experiment.

• pid gains — Outputs the tuned PID gains when the tuning process stops.

In this configuration, the PID controller itself exists in another module of your system. When tuning is
complete, you use your own logic to write the tuned PID gains from the pid gains port of the
autotuning block to your PID controller.

8 PID Autotuning

8-14

Deployable Module with Controller

Alternatively, you can deploy a module that includes both the PID controller and the PID autotuning
algorithm, such as shown in the following illustration. An advantage of this approach is that it
facilitates retuning a specific controller in an individual system.

In this illustration, the PID controller is implemented as a Simulink PID Controller block. Because the
PID gains of that block are tunable, you can configure your system to write the tuned gains to the
deployed controller. Alternatively, you can also use your own custom PID controller subsystem in the
model that you deploy.

You can implement any logic appropriate to your application to determine whether and how to update
the PID controller with the tuned gains. In the illustrated system, the PID update logic subsystem
represents such a module. The External data block represents whatever other information your
logic requires to determine whether to update the controller.

Note When you are using the Closed-Loop PID Autotuner block, feeding the pid gains outputs
directly into the PID Controller gain inputs can introduce an algebraic loop that prevents code
generation. To avoid this problem, you can introduce a state in your PID update logic that breaks the
algebraic loop. For example, you can try one of the following approaches:

• Use a Unit Delay block to keep the controller output one time step ahead of the controller
inputs.

• Use a Data Store Memory block, as illustrated in “Tune PID Controller in Real Time Using Closed-
Loop PID Autotuner Block” on page 8-29.

Bumpless Transfer for Open-Loop Tuning

When you use the Open-Loop PID Autotuner, if your controller includes integrator action, consider
implementing signal tracking to avoid integrator windup during the tuning experiment. Signal
tracking enables the PID controller to continue to track the real plant input while it is out of the loop.
Without it, your system can experience a bump when the control loop is closed at the end of the
tuning process.

 PID Autotuning in Real Time

8-15

If your PID controller is a Simulink PID Controller block, you can use the Enable tracking mode
parameter of the controller block to avoid this bump. The following diagram illustrates a module
containing an Open-Loop PID Autotuner block and a PID Controller block with tracking mode
configured. The plant input feeds into the tracking input of the controller block.

Step 2. Configure Start/Stop Signal
To start and stop the autotuning process, use a signal at the start/stop port. When the experiment
is not running, the block passes signals unchanged from u to u+Δu. In this state, the block has no
impact on plant or controller behavior.

The frequency-response estimation experiment begins and ends with a rising or falling signal at the
start/stop port, respectively. Thus, after deployment, to begin the autotuning process, use a rising
signal at the start/stop port. After an appropriate time, or after the % conv signal settles near
100, use a falling signal to end the experiment. When the experiment ends, the algorithm generates
the tuned PID gains and returns them at the pid gains port. A conservative estimate for the
experiment time is 200/ωc for closed-loop tuning or 100/ωc for open-loop tuning, where ωc is your
target bandwidth. For more detailed information about how to configure the start-stop signal, see the
Closed-Loop PID Autotuner or Open-Loop PID Autotuner block reference pages.

Step 3. Set PID Tuning Parameters
To specify the configuration of the PID controller in your system, use the following parameters of the
autotuner block:

• Type
• Form
• Time Domain
• Controller sample time (sec)
• Integrator method
• Filter method

For Closed-Loop PID Autotuner, you can also specify a sample time for tuning that is different from
the Controller sample time (sec). The PID gain tuning algorithm is computationally intensive, and

8 PID Autotuning

8-16

when you want to deploy the block to hardware and tune a controller with a fast sample time, some
hardware might not complete PID gain calculation in a single time step. To reduce the hardware
throughput requirements, enable Tune at different sample time parameter, and then specify a
tuning sample time slower than the controller sample time using the Tuning sample time (sec)
parameter.

Then, specify the target bandwidth and phase margin for tuning with the Target bandwidth (rad/
sec) and Target phase margin (degrees) parameters, respectively.

The target bandwidth, specified in rad/sec, is the target value for the 0-dB gain crossover frequency
of the tuned open-loop response CP, where P is the plant response, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise-time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

The target phase margin sets the robustness of the tuned system. Typically, choose a value in the
range of about 45°– 60°. In general, higher phase margin improves overshoot, but can limit response
speed. The default value, 60°, tends to balance performance and robustness, yielding about 5-10%
overshoot, depending on the characteristics of your plant.

You can set most tuning parameters in your own application after deployment, instead of fixing them
in the PID autotuner block before deployment. See “Access Autotuning Parameters After Deployment”
on page 8-18.

For more details about the values to use for these parameters, see the Closed-Loop PID Autotuner or
Open-Loop PID Autotuner block reference pages.

Step 4. Set Experiment Parameters
The frequency-response estimation experiment injects sinusoidal signals at frequencies around the
target bandwidth ωc:

• [1/3, 1, 3, 10]ωc for the Open-Loop PID Autotuner block
• [1/10,1/3, 1, 3, 10]ωc for the Closed-Loop PID Autotuner block

Use the Sine Amplitudes parameter of the blocks to specify the amplitudes of these signals.

If your plant is asymptotically stable, the Open-Loop PID Autotuner block can estimate the plant DC
gain with a step perturbation. Specify the amplitude of this perturbation with the Step Amplitude
parameter. If your plant has a single integrator, clear the Estimate DC gain with step signal
parameter.

Caution

• Do not use either closed-loop or open-loop PID autotuning with an unstable plant.
• Do not use open-loop PID autotuning with a plant that has more than one integrator. You can use

closed-loop PID autotuning with a multiple-integrator plant.

All the perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level.

 PID Autotuning in Real Time

8-17

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output.

For more information about setting the experiment parameters, see the Closed-Loop PID Autotuner
and Open-Loop PID Autotuner block reference pages.

Step 5. Tune and Validate
After you deploy the autotuner module to your system, use a rising start/stop signal to begin the
autotuning process. The deployed module injects the test signals into your physical plant in real time.
After an appropriate time, or when the % conv signal stabilizes near 100%, use a falling start/
stop signal to end the experiment. A conservative estimate for the experiment time is 200/ωc for
closed-loop tuning or 100/ωc for open-loop tuning, where ωcc is your target bandwidth. When the
experiment stops, the module computes new PID gains based on the estimated frequency response at
the system and your specified tuning goals. You can examine the tuned PID gains using the pid
gains signal.

When you examine these gains and transfer them to your own controller, be aware of the meaning of
these gains in the PID autotuner blocks. In discrete time, the blocks assume the following PID
controller transfer function:

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

Fi(z) and Fd(z) depend on the values you specify for the Integrator method and Filter method
formulas, respectively. For more details, see the Closed-Loop PID Autotuner or Open-Loop PID
Autotuner block reference pages.

After you transfer the tuned gains to your PID controller, you can observe and validate the continued
performance of your system with the new gains.

Access Autotuning Parameters After Deployment
Some of the parameters that you set to configure the autotuner are tunable, such that you can access
them in the generated code. For the parameters that are not tunable, you must configure them in the
block before deployment.

Tunable Parameters

The following parameters of the PID autotuner blocks are tunable after deployment. For more
information about all these parameters, see the Closed-Loop PID Autotuner or Open-Loop PID
Autotuner block reference pages.

Parameter Description
Target bandwidth (rad/sec) Target crossover frequency of open-loop response

8 PID Autotuning

8-18

Parameter Description
Target phase margin (degrees) Target minimum phase margin of open-loop

response
Sine Amplitudes Amplitude of sinusoidal perturbations
Estimate DC gain with step signal Inject step signal into plant
Step Amplitude Amplitude of step perturbation
Type PID controller type (such as PI, PD, or PID)
Form PID controller form
Integrator method Discrete integration formula for integrator term
Filter method Discrete integration formula for derivative filter

term

Non-Tunable Parameters

The following parameters of the PID autotuner blocks are not tunable after deployment. You must
specify them in the block before code generation, and their values remain fixed in your application.
For more information about all these parameters, see the Closed-Loop PID Autotuner or Open-Loop
PID Autotuner block reference pages.

Parameter Description
Time Domain PID controller time domain
Controller sample time (sec) Sample time of PID controller (see “Modify

Sample Times After Deployment” on page 8-19)
Reduce memory and avoid task overrun
(external mode only)

Deploy tuning algorithm only

Data Type Floating-point precision

Modify Sample Times After Deployment

The Controller sample time (sec) parameter is not tunable. As a consequence, you cannot access it
directly in generated code when you deploy the block. To change the controller sample time in the
deployed block at run time:

1 Set Controller sample time (sec) to –1.
2 Put the autotuner block in a Triggered Subsystem.
3 Trigger the subsystem at the desired sample time.

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “Control Real-Time PID Autotuning in Simulink” on page 8-20
• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7

 PID Autotuning in Real Time

8-19

Control Real-Time PID Autotuning in Simulink
Deploying the PID autotuner blocks lets you tune your system in real time without Simulink in the
loop. However, it can be useful to run the autotuning algorithm on hardware while controlling the
experiment from Simulink.

One way to do so is to use a model that contains a PID controller and a PID autotuner block, and run
this model in external simulation mode. External mode allows communication between the Simulink
block diagram and the standalone program that is built from the generated code. In this mode,
Simulink serves as a real-time monitoring interface in which you can interact with the tuning
algorithm running on hardware. For instance, you can start and stop the experiment or change tuning
goals from the Simulink interface while the model is running.

When tuning in external mode, you can deploy the experiment algorithm only, such that the PID
tuning part of the calculation is performed in Simulink. Doing so can save memory on your target
hardware. Running the PID autotuning algorithm in external mode requires a code-generation
product such as Simulink Coder.

Simulink Model for External-Mode Tuning
A Simulink model for PID autotuning in external mode resembles the following illustration.

Here, the blocks marked Read plant output from hardware and Write plant input to
hardware represent hardware interfaces that read data from or write data to your physical plant.
When you are ready for tuning, you run this model in external simulation mode.

Bumpless Transfer for Open-Loop Tuning

When you use the Open-Loop PID Autotuner, if your controller includes integrator action, consider
implementing signal tracking to avoid integrator windup during the tuning experiment. Signal
tracking enables the PID controller to continue to track the real plant input while it is out of the loop.
Without it, your system can experience a bump when the control loop is closed at the end of the
tuning process.

8 PID Autotuning

8-20

If your PID controller is a Simulink PID Controller block, you can use the Enable tracking mode
parameter of the controller block to avoid this bump. The following diagram illustrates a module
containing an Open-Loop PID Autotuner block and a PID Controller block with tracking mode
configured. The plant input feeds into the tracking input of the controller block.

For external-mode tuning, you configure the start-stop signal as described in “PID Autotuning for
a Plant Modeled in Simulink” on page 8-7. The models illustrated here use a simple switch with a
binary signal to start and stop the experiment manually.

You also configure controller parameters, tuning goals, and experiment parameters as described in
“PID Autotuning for a Plant Modeled in Simulink” on page 8-7.

Run the Model and Tune the Controller Gains
After configuring the block parameters for the experiment, in the model, select external mode, set
the simulation time to infinite, and run the model.

Simulink compiles the model and deploys it to your connected hardware.

• If you have configured the start/stop signal to begin and end the tuning process at specific
times, allow the simulation to run through the end of the experiment.

 Control Real-Time PID Autotuning in Simulink

8-21

• If you have configured a manual start/stop signal, begin the experiment when your plant has
reached steady-state. Observe the signal at the % conv output, and stop the experiment when the
signal stabilizes near 100%.

When tuning is complete, examine and validate the tuned gains as described in “PID Autotuning for a
Plant Modeled in Simulink” on page 8-7.

For a more detailed example that illustrates the use of external mode to control the autotuning
process via Simulink, see “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block”
on page 8-23.

Reduce Memory Footprint When Using External Mode
The autotuner blocks contain two modules, one that performs the real-time frequency-response
estimation, and one that uses the resulting estimated response to tune the PID gains. When you run a
Simulink model containing the block in the external simulation mode, by default both modules are
deployed. You can save memory on the target hardware by deploying the estimation module only. In
this case, the tuning algorithm runs on the Simulink host computer instead of the target hardware. To
do so, use the Reduce memory and avoid task overrun option in the autotuner block. When this
option is selected, the deployed algorithm uses about a third as much memory as when the option is
cleared.

The PID gain calculation demands more computational load than the frequency-response estimation.
For fast controller sample times, some hardware might not finish the gain calculation within one
execution cycle. Therefore, when using hardware with limited computing power, selecting this option
lets you tune a PID controller with a fast sample time.

Additionally, when you enable this option, there can be a delay of several sampling periods between
when the tuning experiment ends and when the new PID gains arrive at the pid gains output port.
Before pushing gains to the controller, first confirm the change at the pid gains output port instead
of using start/stop signal as the trigger for the update.

Caution When you use this option, the model must be configured such that numeric block
parameters are tunable in generated code, not inlined. To specify tunable parameters:

• In the model editor: In Configuration Parameters, in Code Generation > Optimization, set
Default parameter behavior to Tunable.

• At the command line: Use set_param(mdl,'DefaultParameterBehavior','Tunable').

See Also
Closed-Loop PID Autotuner | Open-Loop PID Autotuner

More About
• “PID Autotuning in Real Time” on page 8-13
• “When to Use PID Autotuning” on page 8-2

8 PID Autotuning

8-22

Tune PID Controller in Real Time Using Open-Loop PID
Autotuner Block

This example shows how to use Open-Loop PID Autotuner block to tune a PI controller for an engine
speed control system in both simulation and real time.

Open-Loop PID Autotuner Block

The Open-Loop PID Autotuner block allows you to tune a single-loop PID controller in real time. It
carries out an open-loop experiment that injects perturbation signals to the plant and computes PID
gains based on the plant frequency responses estimated near the desired bandwidth.

The Open-Loop PID Autotuner block supports two typical PID tuning scenarios in real time
applications.

1 Deploy the block on hardware and use it in a standalone real-time application without the
presence of Simulink®.

2 Deploy the block on hardware but monitor and manage the real-time tuning process in Simulink,
using external mode. External mode allows communication between the Simulink block diagram
running on the host computer and the generated code running on the hardware.

This example focuses on the second scenario, where the Open-Loop PID Autotuner block is used to
tune an engine speed control system in real time using external mode.

Engine Speed Model

The Simulink model contains a PID block, an Open-Loop PID Autotuner block, and an engine model.

mdl = 'scdspeedctrlOnlinePIDTuning';
open_system(mdl)

The PI controller has initial gains of P = 0.01 and I = 0.01, provided externally to the PID block via
"P" and "I" inports. Having external P and I gains allows you to change them after new gains are
computed by the Open-Loop PID Autotuner block.

The Open-Loop PID Autotuner block is inserted between the PID block and the engine model. The
start/stop signal is used to start and stop an open-loop experiment. When no experiment is running,
the Open-Loop PID Autotuner block behaves like a unity gain block, where the "u" signal directly

 Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block

8-23

passes to "u+Δu". When the experiment ends, the block tunes PID gains and outputs them at the "pid
gains" port.

There are a few important considerations when using the Open-Loop PID Autotuner block with a
physical plant in real time.

• The plant must be asymptotically stable because an open-loop experiment is conducted during the
tuning process. If your plant has a single integrator, you can still use the block by choosing not to
estimate the plant DC gain. However, in both cases, you must closely monitor the plant behavior
during the tuning process and intervene promptly if the plant gets too close to an undesirable
operating condition.

• To help estimate plant frequency responses more accurately in real time, there should be
minimum load disturbance occurring during the tuning process. The block expects the plant
output to be the response to the injected perturbation signals only, and load disturbance distorts
this output.

• The "tracking mode" (the TR inport) in the PID block is turned on, which enables the PID block to
track the real plant input "u+Δu" during the tuning process. This feature should always be used to
provide a bumpless transfer when the loop is closed and PID block resumes control after the
tuning process is completed.

Configure Open-Loop PID Autotuner Block

After properly connecting the Open-Loop PID Autotuner block with the plant model and PID block,
open the block dialog and specify tuning and experiment settings.

On the Tuning tab, there are two main tuning settings.

• Target bandwidth: Determines how fast you want the controller to respond. In this example,
choose 2 rad/sec because the desired rise time is 1 sec.

• Target phase margin: Determines how robust you want the controller to be. In this example,
choose the default value of 60 degrees, which leads to about 5% overshoot in general.

On the Experiment tab, there are two main experiment settings.

8 PID Autotuning

8-24

• Sine Amplitudes: Specifies amplitudes of the injected sine waves. In this example, choose 0.1 for
all four sine waves, a fraction of the nominal plant input of 9. During the tuning process, the plant
output varies between 1900 and 2100 rpm, which is about +/- 5% of the nominal plant output of
2000. The goal is to keep the plant operating near the nominal operating point to avoid exciting
nonlinear plant behavior.

• Step Amplitude: Specifies the amplitude of the injected step signal. In this example, choose 0.1
as well. If the plant has a single integrator, you must not estimate DC gain. In this case, clear the
Estimate DC gain with step signal parameter. As a result, no step signal is injected to the plant.

Simulate Open-Loop PID Autotuner Block in Normal Mode

If you have a plant model built in Simulink, it is recommended to simulate the Open-Loop PID
Autotuner block against the plant model in normal mode before using the block in external mode for
real-time tuning. Simulation helps you identify issues in signal connection and block settings so that
you can adjust them before generating code.

sim(mdl);

 Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block

8-25

8 PID Autotuning

8-26

In this example, the engine speed reference signal goes from 2000 to 3000 rpm and then back to
2000 rpm in the first 20 seconds. The original gains of P = 0.01 and I = 0.01 cause strong oscillation
in the transient and must be retuned.

At 20 seconds, the plant is running at the nominal operating point of 2000 rpm and online PID tuning
starts. The experiment duration is 50 seconds, because a conservative guideline suggests that it takes
about 100/bandwidth seconds for online frequency response estimation to converge.

When PID tuning stops at 70 seconds, new gains P = 0.0026 and I = 0.0065 are immediately available
at the "pid gains" outport and sent to the external P and I port of PID block, overwriting the original
gains. There is almost no bump in transient when the loop is closed and the PID block resumes
control.

The engine speed reference signal goes from 2000 to 3000 rpm and then back to 2000 rpm again
between 80 and 100 seconds. The new PI gains provide a much better closed-loop response.

Using Open-Loop PID Autotuner Block in External Mode

To tune the PI controller against a physical engine in the external mode, you replace the Engine
Model section in the Simulink model with hardware interface blocks that provide the rpm
measurement as "y" and send throttle angle to the actuator as "u".

As an example, the following Simulink diagram is configured to tune in external mode, assuming your
PI controller is running on an Arduino® DUE board and communicating with your physical engine via
serial ports.

To make the original model work in external mode, the following changes were made (in order) to the
original Simulink model.

1 Have a host computer that runs Simulink and communicates with an Arduino DUE board via a
USB connection.

2 Install Simulink Support Package for Arduino Hardware software. You must install a different
hardware support package if your hardware is different.

3 In the Configuration Parameters dialog, in the Solver pane, select the "Fixed-Step" solver type.
In the Hardware Implementation pane, select the "Arduino DUE" hardware board.

4 Replace the engine model section in the original model with two serial interface blocks. In real
time, the Open-Loop PID Autotuner block running on the Arduino board collects plant output
from the Serial Receive block (from sensor) and sends the experiment signals to the engine using
the Serial Transmit block (to actuator).

 Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block

8-27

5 For more flexibility in real-time operation, start and stop the tuning process by flipping a manual
"Tuning Switch" instead of based on the simulation clock. Similarly, update the PI gains by
flipping a "Gain Switch" and change the reference signal by flipping a "Ref Switch".

6 Choose "External Mode" in the Simulink model and the set simulation time to "infinite".

Run the simulation. First, Simulink generates code for the whole model and downloads it to the
Arduino DUE board. After the program starts running on the board, you can monitor the plant input
and output from the scope in real time. When the plant reaches the nominal operating point of 2000
rpm, use the three manual switches to tune, update, and validate the controller.

Reduce Memory and Avoid Task Overrun in External Mode

On the Block tab, the Reduce memory and avoid task overrun (external mode only) option can
help deploy the generated code on hardware with limited memory resources or very fast sample time.

If your hardware has low memory on board, use this option when tuning in external mode. With this
option, Simulink only generates code for the online frequency response estimation functionality.
Because no code is deployed for the PID design functionality, the result is reduced memory usage on
the hardware. In this case, after the estimation is done, the PID gains are computed in Simulink on
the host computer and then sent back to the autotuner block.

The PID gain calculation at the end of the tuning process demands much more computation load than
the online frequency response estimation. If the controller sample time is very fast, some hardware
might not be able to finish the calculation within an execution cycle. Therefore, having the host
computer to perform the PID gain calculation also enables you to tune a PID controller with fast
sample time on hardware with limited computing power.

bdclose(mdl)

See Also
Open-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block” on page 8-29

8 PID Autotuning

8-28

Tune PID Controller in Real Time Using Closed-Loop PID
Autotuner Block

This example shows how to use the Closed-Loop PID Autotuner block to tune a PID controller for a
boost converter plant in both simulation and real time.

Closed-Loop PID Autotuner Block

The Closed-Loop PID Autotuner block allows you to tune a single-loop PID controller in both
simulation and real time. The block injects sinusoidal perturbation signals at the plant input and
measures the plant output during a closed-loop experiment. When the experiment stops, the block
computes PID gains based on the plant frequency responses estimated near the desired bandwidth.

The Closed-Loop PID Autotuner block supports two typical PID tuning scenarios in real-time
applications.

1 Deploy the block on hardware and use it in a standalone real-time application, without the
presence of Simulink®.

2 Deploy the block on hardware but monitor and manage the real-time tuning process in Simulink,
using external simulation mode. External mode allows communication between the Simulink
block diagram running on the host computer and the generated code running on the hardware.

This example focuses on the first scenario, deploying the block to perform the real-time tuning.

Simulink Control Design™ software also provides an Open-Loop PID Autotuner block for real-time
PID tuning. The main difference between the two autotuner blocks is that the Open-Loop PID
Autotuner block carries out the experiment with the feedback loop open (that is, the existing
controller is not in action). To decide which autotuner block is best for your application, consider the
following points:

• If you do not have an initial controller, use the Open-Loop PID Autotuner block to obtain one. You
can continue using it to retune the controller or replace it with the Closed-Loop PID Autotuner
block.

• If you have an initial controller, use the Closed-Loop PID Autotuner block for retuning. The major
benefits are: (1) if there is an unexpected disturbance during the experiment, it is rejected by the
existing controller to ensure safe operation; (2) the existing controller keeps the plant running
near its nominal operating point by suppressing the perturbation signals as well.

Voltage-Mode Controlled Boost Converter

In this example, a voltage-mode boost converter is modeled in Simulink using Simscape™ Electrical™
components. The parameters of these components are based on [1].

mdl = 'scdboostconverterPIDTuningMod';
open_system(mdl)

 Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block

8-29

A boost converter circuit converts a DC voltage to another, typically higher, DC voltage by controlled
chopping or switching of the source voltage. In this model, a MOSFET driven by a pulse-width
modulation (PWM) signal is used for switching. A digital PID controller adjusts the PWM duty cycle to
maintain the load voltage at its reference .

At the nominal operating point, the load voltage is 18 volts and the duty cycle is about 0.74. The duty
cycle can vary from 0.1 to 0.85 during boost converter operation.

The existing PID controller has gains of P = 0.02, I = 160, D = 0.00005, and N = 20000. These gains
are stored in a Data Store Memory block and provided externally to the PID Controller block. Having
external gain input ports allows you to change the values after new gains are computed by the
Closed-Loop PID Autotuner block.

Connect Autotuner Block with Plant and Controller

Insert the Closed-Loop PID Autotuner block between the PID Controller block and the plant, as shown
in the boost converter model. The start/stop signal starts and stops the closed-loop experiment. When
no experiment is running, the Closed-Loop PID Autotuner block behaves like a unity gain block,
where the u signal passes directly to u+Δu.

When using the Closed-Loop PID Autotuner block in either simulation or real-time applications,
consider the following points.

• The plant must be either asymptotically stable (all poles strictly stable) or integrating. The
autotuner block does not work with an unstable plant.

• The feedback loop with the existing controller must be stable.

• To estimate plant frequency responses more accurately in real time, minimize the occurrence of
any load disturbance in the plant during the experiment. The autotuner block expects the plant
output to be the response to the injected perturbation signals only, and load disturbances distort
this output.

• Because the feedback loop is closed during the experiment, the existing controller suppresses the
injected perturbation signals as well. The advantage of using closed-loop experiment is that the
controller keeps the plant running near the nominal operating point and maintains safe operation.
The disadvantage is that it reduces the accuracy of frequency response estimation if your target
bandwidth is far away from the current bandwidth.

8 PID Autotuning

8-30

Configure Autotuner Block

After properly connecting the Closed-Loop PID Autotuner block with the plant model and PID
Controller block, use the block parameters to specify tuning and experiment settings.

On the Tuning tab, there are two main tuning settings.

• Target bandwidth: Determines how fast you want the controller to respond. In this example,
choose 10000 rad/sec, which is typical for a boost converter.

• Target phase margin: Determines how robust you want the controller to be. In this example,
choose the default value of 60 degrees.

On the Experiment tab, there are three main experiment settings.

• Plant Type: Specifies whether the plant is asymptotically stable or integrating. In this example,
the boost converter plant is stable.

• Plant Sign: Specifies whether the plant has a positive or negative sign. The plant sign is positive
if a positive change in the plant input at the nominal operating point results in a positive change in
the plant output when the plant reaches a new steady state. Otherwise, the plant sign is negative.
If a plant is stable, plant sign is equivalent to the sign of its DC gain. If a plant is integrating, the
plant sign is positive or negative if the plant output keeps increasing or decreasing, respectively.
In this example, the boost converter plant has a positive plant sign.

• Sine Amplitudes: Specifies amplitudes of the injected sine waves. In this example, choose 0.03
for all five frequencies of the perturbation signal to ensure the plant is properly excited within the
saturation limit. If the excitation amplitude is too large, the boost converter operates in
discontinuous-current mode. If the input amplitude is too small, the sinusoidal signals are
indistinguishable from ripples in the power electronics circuits. Both situations produce
inaccurate frequency response estimation results.

 Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block

8-31

Simulate Autotuner Block in Normal Mode

If you have a plant model built in Simulink, it is recommended to simulate the Closed-Loop PID
Autotuner block against the plant model in normal mode before deploying it for real-time tuning.
Simulation helps you identify issues with signal connections and block settings so that you can adjust
them before generating code.

Simulation of the boost converter plant usually takes a few minutes because of the fast sample time of
the PWM generator. Vout is the plant output and Duty Cycle is the plant input.

sim(mdl)

8 PID Autotuning

8-32

In this example, it takes the PID controller about 0.04 seconds to bring the boost converter to the
nominal operating point of 18 volts. The initial transient contains strong oscillations, which indicates
that the existing controller must be retuned.

At 0.04 seconds, the autotuning process starts. The experiment lasts 0.02 seconds, because the
number of seconds it takes for the online frequency response estimation to converge is about 200
divided by the bandwidth.

For a different nominal operating point, it can take a longer time for the boost converter to reach the
reference voltage. You must modify the start/stop time signal such that the autotuning process always
starts from the nominal operating point.

When PID tuning stops at 0.06 seconds, the block calculates new gains, P = 0.04, I = 100, D =
0.00006, and N = 30000. The new gains are immediately written to the data store memory and sent
to the external gain input ports of the PID Controller block, which overwrites the original gains.

The model has a line disturbance (Vin from 5V to 10V) and a load current disturbance (Load from 6A
to 3A), which occur at 0.07 and 0.08 seconds, respectively. You can use these disturbances to examine
controller performance. The new set of PID gains provides an improved closed-loop response with
much less oscillation.

Use Autotuner Block in Standalone Application

To tune a PID controller against a physical boost converter in a standalone real-time application, you
must generate C/C++ code from the Closed-Loop PID Autotuner block and deploy it on your
hardware.

 Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block

8-33

You can change the following tunable parameters at run time.

• PID controller type
• PID controller form
• PID integrator and filter methods (discrete time only)
• Target bandwidth
• Target phase margin
• Plant type
• Plant sign
• Amplitudes of sine waves

The sample time of the Closed-Loop PID Autotuner block is not a tunable parameter. To use the
autotuner block with a different sample time without recompiling the model, set the Controller
sample time parameter of the block to -1 and put the autotuner block inside a triggered subsystem.
Doing so runs the autotuner at the sample time of the triggered subsystem.

close_system(mdl,0)

References

[1] Lee, S. W. "Practical Feedback Loop Analysis for Voltage-Mode Boost Converter." Application
Report No. SLVA633. Texas Instruments. January 2014. www.ti.com/lit/an/slva633/slva633.pdf

See Also
Closed-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23

8 PID Autotuning

8-34

BLDC Motor Speed Control with Cascade PI Controllers

This example shows one of several ways to tune a PID controller for an existing plant in Simulink.
Here, you use Closed-Loop PID Autotuner blocks to tune two PI controllers in a cascade
configuration. The Autotuner blocks perturb the plant and perform PID tuning based on the plant
frequency response estimated near the desired bandwidth. In contrast to the Open-Loop PID
Autotuner block, here the feedback loop remains closed and the initial controller gains do not change
during the autotuning process.

BLDC Motor Model

The model in this example uses a 3-phase BLDC motor coupled with a buck converter and a 3-phase
inverter power link. The buck converter is modeled with MOSFETs and the inverter with IGBTs rather
than ideal switches so that the device on-resistances and characteristics are represented properly.
Both the voltages of the DC-DC converter link and the inverter can be controlled by changing the
semiconductor gate triggers, which control the speed of the motor.

mdl = 'scdbldcspeedcontrol';
open_system(mdl)

The motor model parameters are as follows.

p = 4; % Number of pole pairs
Rs = 0.1; % Stator resistance per phase [Ohm]
Ls = 1e-4; % Stator self-inductance per phase, Ls [H]
Ms = 1e-5; % Stator mutual inductance, Ms [H]
psim = 0.0175; % Maximum permanent magnet flux linkage [Wb]
Jm = 0.0005; % Rotor inertia [Kg*m^2]

 BLDC Motor Speed Control with Cascade PI Controllers

8-35

Ts = 5e-6; % Fundamental sample time [s]
Tsc = 1e-4; % Sample time for inner control loop [s]
Vdc = 48; % Maximum DC link voltage [V]

The model is preconfigured to have stable closed-loop operation with two cascaded PI controllers,
one for the inner DC link voltage loop, and one for the outer motor-speed loop.

Kpw = 0.1; % Proportional gain for speed controller
Kiw = 15; % Integrator gain for speed controller
Kpv = 0.1; % Proportional gain for voltage controller
Kiv = 0.5; % Integrator gain for voltage controller

The signal for testing the tracking performance is a series of speed ramps from 0-500 RPM, 500-2000
RPM, and 2000-3000 RPM. Simulating the model with initial controller gains shows slow tracking
response, indicating that controller recalibration is needed.

open_system([mdl '/Visualization/RPM (Outer)'])
sim(mdl)

8 PID Autotuning

8-36

Configure Closed-Loop PID Autotuner Blocks

In this example, you improve the controller performance using Closed-Loop PID Autotuner blocks.
These blocks estimate the plant frequency response with the loop closed during the experiment and
then tune the controller gains. Examine the Control subsystem to see the Closed-Loop PID Autotuner
blocks in the Autotuning Speed and Autotuning Voltage subsystems.

open_system([mdl '/Control'])

 BLDC Motor Speed Control with Cascade PI Controllers

8-37

Following the typical cascade loop tuning practice, first tune the inner voltage loop with the outer
speed loop open. Then, tune the outer speed loop with the inner voltage loop closed.

To specify tuning requirements for the PID controllers, use the parameters on the Tuning tab of each
of the PID autotuner blocks. In this example, the controllers are parallel, discrete-time, PI controllers.
The controller sample time is 100 microseconds.

A Target Phase Margin of 60 degrees for both controllers gives a good balance between
performance and robustness.

For the outer-loop controller, choose a Target Bandwidth of 100 rad/sec. For the inner-loop
controller, choose an estimated target bandwidth of 400 rad/sec. These values ensure that the inner-
loop controller has a faster response than the outer-loop controller.

The Closed-Loop PID Autotuner block performs a closed-loop experiment to obtain the plant
frequency response. You specify parameters for this experiment on the Experiment tab of the block
parameters. Here, Plant Sign is Positive, as a positive change in the plant input at the nominal
operating point results in a positive change in the plant output, when the plant reaches a new steady
state. When the plant is stable, as in this example, the plant sign is equivalent to the sign of its DC
gain.

For the amplitude of the sine waves injected during the autotuning process, use 1 to ensure that the
plant is suitably excited while remaining within the plant saturation limit. If the amplitude you choose
is too small, the autotuner block has difficulty distinguishing the response signals from ripple in the
power electronics circuits.

Tune Inner-Loop PI Controller

For tuning cascade controllers, set up the model for tuning the inner voltage loop first, followed by
the outer speed loop.

To enable the tuning process for the inner-loop controller, in the Autotuning Voltage subsystem, set
the Tune Inner Voltage Loop constant block value to 1. Setting this value opens the outer loop and
configures the inner loop to uses a constant nominal voltage reference of 12.5 instead.

8 PID Autotuning

8-38

set_param([mdl '/Control/Tune Inner Voltage Loop'],'Value','1')

Also, to disable outer loop tuning, set the Tune Outer Speed Loop constant block value to 0.

set_param([mdl '/Control/Tune Outer Speed Loop'],'Value','0')

This setting enables the Closed-Loop PID Autotuner block which is configured to run a closed-loop
tuning experiment from 1 to 1.8 seconds of simulation time. The plant uses the first second to reach a
steady-state operating condition. A good estimate for a closed-loop experiment duration is ,
where is the target bandwidth. You can use the % conv output of the Closed-Loop PID Autotuner
block to monitor the progress of the experiment and stop it when the % conv signal stabilizes near
100%.

Run the simulation. When the experiment concludes, the Closed-Loop PID Autotuner block returns
the tuned PID controller gains for the inner voltage loop. The model sends them to the MATLAB
workspace as the array VoltageLoopGains.

close_system([mdl '/Visualization/RPM (Outer)'])
open_system([mdl '/Visualization/VDC (Inner)'])
sim(mdl)

 BLDC Motor Speed Control with Cascade PI Controllers

8-39

Update the inner loop PI controller with the new gains.

Kpv = VoltageLoopGains(1);
Kiv = VoltageLoopGains(2);

8 PID Autotuning

8-40

Tuning Outer Loop PI Controller

Next, tune the outer speed loop. In the Autotuning Voltage subsystem, change the value of the Tune
Inner Voltage Loop constant block value to 0, which disables the inner voltage loop tuning. The inner-
loop controller uses the newly tuned gains, Kpv and Kiv.

set_param([mdl '/Control/Tune Inner Voltage Loop'],'Value','0')

Similarly, in the Autotuning Speed subsystem, change the Tune Outer Speed Loop constant block
value to 1, which enables the outer speed loop tuning. For this loop, use a closed-loop autotuning
duration of 0.9 seconds, beginning at 1 second. The nominal speed for tuning is 2000 RPM.

set_param([mdl '/Control/Tune Outer Speed Loop'],'Value','1')

Run the simulation again. When the experiment concludes, the Closed-Loop PID Autotuner block
returns the tuned PID controller gains for the outer speed loop. The model sends them to the
MATLAB workspace as the array SpeedLoopGains.

close_system([mdl '/Visualization/VDC (Inner)'])
open_system([mdl '/Visualization/RPM (Outer)'])
sim(mdl)

 BLDC Motor Speed Control with Cascade PI Controllers

8-41

Update the outer-loop PI controller with the new gains.

Kpw = SpeedLoopGains(1);
Kiw = SpeedLoopGains(2);

Improved Tracking Performance After Autotuning

To check the tuned controller performance, disable tuning in both loops.

8 PID Autotuning

8-42

set_param([mdl '/Control/Tune Inner Voltage Loop'],'Value','0')
set_param([mdl '/Control/Tune Outer Speed Loop'],'Value','0')

The tuned gains result in better tracking of the test ramp signals.

sim(mdl)

See Also
Closed-Loop PID Autotuner

 BLDC Motor Speed Control with Cascade PI Controllers

8-43

More About
• “How PID Autotuning Works” on page 8-5
• “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23

8 PID Autotuning

8-44

Tune Field-Oriented Controllers Using Closed-Loop PID
Autotuner Block

This example shows how to use the Closed-Loop PID Autotuner block to tune Field-Oriented Control
(FOC) for a permanent magnet synchronous machine (PMSM) in just one simulation.

Introduction of Field-Oriented Control

In this example, field-oriented control (FOC) for a permanent magnet synchronous machine (PMSM)
is modeled in Simulink® using Simscape™ Electrical™ components.

mdl = 'scdfocmotorPIDTuning';
open_system(mdl)

Field-oriented control (FOC) controls 3-phase stator currents as a vector. FOC is based on
projections, which transform a 3-phase time- and speed-dependent system into a two coordinate time-
invariant system. These transformations are the Clarke Transformation, Park Transformation, and
their respective inverse transforms. These transformations are implemented as blocks within the
Controller_Algorithm subsystem.

 Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block

8-45

The advantages of using FOC to control AC motors include:

• Torque and flux controlled directly and separately
• Accurate transient and steady-state management
• Similar performance compared to DC motors

The Controller_Algorithm subsystem contains all three PI controllers. The outer-loop PI controller
regulates the speed of the motor. The two inner-loop PI controllers control the d-axis and q-axis
currents separately. The command from the outer loop PI controller directly feeds to the q-axis to
control torque. The command for the d-axis is zero for PMSM because the rotor flux is fixed with a
permanent magnet for this type of AC motor.

The existing speed PI controller has gains of P = 0.08655 and I = 0.1997. The current PI controllers
both have gains of P = 1 and I = 200.

The controller gains are stored in a Data Store Memory block and provided externally to each PID
block. When the tuning process for a controller is complete, the new tuned gains are written to the
Data Store Memory block. This configuration allows you to update your controller gains in real-time
during the simulation.

Closed-Loop PID Autotuner Block

The Closed-Loop PID Autotuner block allows you to tune one PID controller at a time. It injects
sinusoidal perturbation signals at the plant input and measures the plant output during a closed-loop
experiment. When the experiment stops, the block computes PID gains based on the plant frequency
responses estimated at a small number of points near the desired bandwidth. For this FOC PMSM
model, the Closed-Loop PID Autotuner block can be used for each of the three PI controllers.

This workflow applies when you have initial controllers that you want to retune using the Closed-Loop
PID Autotuner block. The benefits of this approach are:

8 PID Autotuning

8-46

1 If there is an unexpected disturbance during the experiment, it will be rejected by the existing
controller to ensure safe operation.

2 The existing controller will keep the plant running near its nominal operating point by
suppressing the perturbation signals.

When using the Closed-Loop PID Autotuner block for both simulations and real-time applications:

• The plant must be either asymptotically stable (all the poles are strictly stable) or integrating. The
autotuner block does not work with an unstable plant.

• The feedback loop with the existing controller must be stable.
• To estimate plant frequency responses more accurately in real time, minimize the occurrence of

any disturbance in the FOC PMSM model during the experiment. The autotuner block expects the
plant output to be the response to the injected perturbation signals only.

• Because the feedback loop is closed during the experiment, the existing controller suppresses the
injected perturbation signals as well. The advantage of using closed-loop experiment is that the
controller keeps the plant running near the nominal operating point and maintains safe operation.
The disadvantage is that it reduces the accuracy of frequency response estimation if your target
bandwidth is far away from the current bandwidth.

Connect Autotuner with Plant and Controller

Insert the Closed-Loop PID Autotuner block between the PID block and the plant for all three PI
controllers, as shown in the FOC PMSM model. The start/stop signal starts and stops the closed-
loop experiment. When no experiment is running, the Closed-Loop PID Autotuner block behaves like a
unity gain block, where the signal directly passes to .

To view the modified outer-loop control structure, open the Controller_Algorithm subsystem.

controlSubsystem = [mdl '/Controller_Algorithm'];
open_system(controlSubsystem)

 Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block

8-47

View the modified d-axis current controller. The modified q-axis controller has an identical structure.

open_system([controlSubsystem '/DQ_Current_Control/D_Current_Control'])

8 PID Autotuning

8-48

Configure Autotuner Block

After connecting the Closed-Loop PID Autotuner block with the plant model and PID block, configure
the tuning and experiment settings.

On the Tuning tab, there are two main tuning settings:

• Target bandwidth - Determines how fast you want the controller to respond. In this example,
choose 5000 rad/sec for current control and 100 rad/sec for speed control.

• Target phase margin - Determines how robust you want the controller to be. In this example,
choose 70 degrees for current control and 90 degree for speed control.

On the Experiment tab, there are three main experiment settings:

• Plant Type - Specifies whether the plant is asymptotically stable or integrating. In this example,
the FOC PMSM model is stable.

• Plant Sign - Specifies whether the plant has a positive or negative sign. The plant sign is positive
if a positive change in the plant input at the nominal operating point results in a positive change in
the plant output when the plant reaches a new steady state. Otherwise, the plant sign is negative.
If a plant is stable, the plant sign is equivalent to the sign of its dc gain. If a plant is integrating,
the plant sign is positive (or negative) if the plant output keeps increasing (or decreasing). In this
example, the FOC PMSM model has a positive plant sign.

• Sine Amplitudes - Specifies the amplitudes of the injected sine waves. In this example, choose
0.25 for the current controllers and 0.01 for the speed controller to ensure the plant is properly
excited within the saturation limit. If the excitation amplitude is either too large or too small, it
will produce inaccurate frequency response estimation results.

Tuning Cascaded Feedback Loops

Because the Closed-Loop PID Autotuner block only tunes one PI controller at a time, the three
controllers must be tuned separately in the FOC PMSM model. Tune the inner-loop controllers first,
and then tune the outer-loop controller.

• The d-axis current controller is tuned between 1.3 and 1.35 sec.
• The q-axis current controller is tuned between 1.4 and 1.45 sec.
• The speed controller is tuned between 1.5 and 3.5 sec.

After tuning each PI controller, the controller gains are updated through the Data Store Memory
block.

Simulating Autotuner Block in Normal Mode

In this example, the FOC PMSM model is built in Simulink. All three controllers are tuned in one
simulation. In addition, responses are compared between speed responses before and after tuning the
controllers.

Simulation of the FOC PMSM model usually takes a few minutes on your computer due to the small
sample time of the power electronics controller of the motor.

sim(mdl)
logsout_autotuned = logsout;
save('AutotunedSpeed','logsout_autotuned')

The following figure shows the overall simulation result.

 Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block

8-49

The following figure shows the current and speed responses during tuning, from 1.3 to 3.5 seconds.
The change in current is within 0.1 A and the change in motor speed is within 2 rad/sec (about 1%
deviation).

The three PI controllers are tuned with new gains.

• The speed PI controller has gains of P = 0.2785 and I = 2.678.
• The d-axis current PI controller has gains of P = 5.135 and I = 8663.
• The q-axis current PI controller has gains of P = 4.59 and I = 8026.

The same velocity commands are applied before and after the autotuning process. Plot the speed
responses before and after the controllers are tuned using the Closed-Loop PID Autotuner block. The
speed response curves are aligned in time to compare controller performances side-by-side.

scdfocmotorPIDTuningPlotSpeed

8 PID Autotuning

8-50

After tuning the controllers, the speed response of the AC motor has a faster transient response and
smaller steady-state error.

bdclose(mdl)

See Also
Closed-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23
• “Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID

Autotuner Block” on page 8-52
• “Tune Field-Oriented Controllers Using SYSTUNE” on page 7-161

 Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block

8-51

Tune Field-Oriented Controllers for an Asynchronous Machine
Using Closed-Loop PID Autotuner Block

This example shows how to use the Closed-Loop PID Autotuner block to tune Field-Oriented Control
(FOC) for an asynchronous machine (ASM) in just one simulation.

Introduction of Field-Oriented Control

In this example, field-oriented control (FOC) for an asynchronous machine (ASM) is modeled in
Simulink® using Simscape™ Electrical™ components. The model is based on the Simscape example
“Three-Phase Asynchronous Drive with Sensor Control” (Simscape Electrical).

mdl = 'scdfocasmPIDTuning';
open_system(mdl)

Field-oriented control controls 3-phase stator currents as a vector. FOC is based on projections,
which transform a 3-phase time-dependent and speed-dependent system into a two coordinate time-
invariant system. These transformations are the Clarke Transformation, Park Transformation, and
their respective inverse transforms. These transformations are implemented as blocks within the
Controls subsystem.

8 PID Autotuning

8-52

The advantages of using FOC to control AC motors include:

• Torque and flux controlled directly and separately
• Accurate transient and steady-state management
• Similar performance compared to DC motors

The Controls subsystem contains all four PI controllers. The outer-loop speed PI controller regulates
the speed of the motor. The outer-loop flux PI controller regulates the flux of stator. The two inner-
loop PI controllers control the d-axis and q-axis currents separately. The command from the outer-
loop speed PI controller directly feeds to the q-axis to control torque. The command for the d-axis is
nonzero for ASM and is a result of the outer-loop flux PI controller.

The existing PI controllers have the following gains:

• Speed PI controller has gains of P = 65.47 and I = 3134.24.
• Flux PI controller has gains of P = 52.22 and I = 2790.51.
• D-axis PI controller has gains of P = 1.08 and I = 207.58.
• Q-axis PI controller has gains of P = 1.08 and I = 210.02.

The controller gains are stored in a Data Store Memory block and provided externally to each PID
block. When the tuning process for a controller is complete, the new tuned gains are written to the
Data Store Memory block. This configuration allows you to update your controller gains in real-time
during the simulation.

Closed-Loop PID Autotuner Block

The Closed-Loop PID Autotuner block allows you to tune one PID controller at a time. It injects
sinusoidal perturbation signals at the plant input and measures the plant output during a closed-loop
experiment. When the experiment stops, the block computes PID gains based on the plant frequency
responses estimated at a small number of points near the desired bandwidth. For this FOC ASM
model, the Closed-Loop PID Autotuner block can be used for each of the four PI controllers.

 Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID Autotuner Block

8-53

This workflow applies when you have initial controllers that you want to retune using the Closed-Loop
PID Autotuner block. The benefits of this approach are:

1 If there is an unexpected disturbance during the experiment, it is rejected by the existing
controller to ensure safe operation.

2 The existing controller keeps the plant running near its nominal operating point by suppressing
the perturbation signals.

When using the Closed-Loop PID Autotuner block for both simulations and real-time applications:

• The plant must be either asymptotically stable (all the poles are strictly stable) or integrating. The
autotuner block does not work with an unstable plant.

• The feedback loop with the existing controller must be stable.
• To estimate plant frequency responses more accurately in real time, minimize the occurrence of

any disturbance in the FOC ASM model during the experiment. The autotuner block expects the
plant output to be the response to the injected perturbation signals only.

• Because the feedback loop is closed during the experiment, the existing controller suppresses the
injected perturbation signals as well. The advantage of using closed-loop experiment is that the
controller keeps the plant running near the nominal operating point and maintains safe operation.
The disadvantage is that it reduces the accuracy of frequency response estimation if your target
bandwidth is far away from the current bandwidth.

Connect Autotuner with Plant and Controller

Insert the Closed-Loop PID Autotuner block between the PID block and the plant for all four PI
controllers, as shown in the FOC ASM model. The start/stop signal starts and stops the closed-
loop experiment. When no experiment is running, the Closed-Loop PID Autotuner block behaves like a
unity gain block, where the signal directly passes to .

View the original control structure for the machine-side converter with four PI controllers.

To modify the control structure, incorporate the Closed-Loop PID Autotuner Block to each of the PI
controllers. View the modified control structure for the machine-side converter.

8 PID Autotuning

8-54

Configure Autotuner Block

After connecting the Closed-Loop PID Autotuner block with the plant model and PID block, configure
the tuning and experiment settings.

On the Tuning tab, there are two main tuning settings:

• Target bandwidth - Determines how fast you want the controller to respond. In this example,
choose 5000 rad/sec for inner-loop current control and 200 rad/sec for outer-loop control.

• Target phase margin - Determines how robust you want the controller to be. In this example,
choose 70 degrees for inner-loop current control and 90 degrees for outer-loop control.

On the Experiment tab, there are three main experiment settings:

• Plant Type - Specifies whether the plant is asymptotically stable or integrating. In this example,
the FOC ASM model is stable.

• Plant Sign - Specifies whether the plant has a positive or negative sign. The plant sign is positive
if a positive change in the plant input at the nominal operating point results in a positive change in
the plant output when the plant reaches a new steady state. Otherwise, the plant sign is negative.
If a plant is stable, the plant sign is equivalent to the sign of its dc gain. If a plant is integrating,
the plant sign is positive (or negative) if the plant output keeps increasing (or decreasing). In this
example, the FOC ASM model has a positive plant sign.

• Sine Amplitudes - Specifies the amplitudes of the injected sine waves. In this example, choose
0.25 for the inner-loop controllers and 0.01 for the outer-loop controllers to ensure the plant is
properly excited within the saturation limit. If the excitation amplitude is either too large or too
small, it will produce inaccurate frequency response estimation results.

Tuning Cascaded Feedback Loops

Because the Closed-Loop PID Autotuner block only tunes one PI controller at a time, the four
controllers must be tuned separately in the FOC ASM model. Tune the inner-loop controllers first,
and then tune the outer-loop controllers.

• The d-axis current controller is tuned between 3.5 and 3.55 sec.

 Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID Autotuner Block

8-55

• The q-axis current controller is tuned between 3.6 and 3.65 sec.
• The flux controller is tuned between 3.7 and 4.7 sec.
• The speed controller is tuned between 4.8 and 5.8 sec.

After tuning each PI controller, the controller gains are updated through the Data Store Memory
block.

Simulating Autotuner Block in Normal Mode

In this example, the FOC ASM model is built in Simulink. All four controllers are tuned in one
simulation. In addition, speed responses are compared before and after tuning the controllers.
Scenarios under test include the acceleration process and torque load changes (magnitude of 1 p.u.).

Simulation of the FOC ASM model usually takes a few minutes on your computer due to the small
sample time of the power electronics controller of the motor.

sim(mdl)
logsout_autotuned = logsout;
save('AutotunedSpeed','logsout_autotuned');

The following figure shows the overall simulation result.

8 PID Autotuning

8-56

The gray area in the previous figure shows the current and speed responses during tuning, from 3.5
to 5.8 seconds. The changes in current and in motor speed are very small. The motor speed reaches
the nominal 1600 rpm before the autotuning process begins.

The four PI controllers are tuned with new gains.

• The speed PI controller has gains of P = 158.8 and I = 2110.
• The flux PI controller has gains of P = 129.3 and I = 1732.
• The d-axis PI controller has gains of P = 1.611 and I = 627.6.
• The q-axis PI controller has gains of P = 2.029 and I = 829.9.

The same rotor speed references and torque loads are applied before and after the autotuning
process. Plot rotor speed errors with respect to the nominal 1600 rpm before and after the

 Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID Autotuner Block

8-57

controllers are tuned using the Closed-Loop PID Autotuner block. The speed error curves are aligned
in time to compare controller performances side-by-side.

scdfocasmPIDTuningPlotSpeed

8 PID Autotuning

8-58

After tuning the controllers, the speed response of the asynchronous motor has a faster transient
response and smaller steady-state error during acceleration and when torque load changes.

bdclose(mdl)

See Also
Closed-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23
• “Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block” on page 8-45

 Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID Autotuner Block

8-59

Tune Field-Oriented Controllers for a PMSM Using Closed-Loop
PID Autotuner Block

This example shows how to tune a field-oriented controller for a PMSM-based electrical-traction drive
in just one simulation using the Closed-Loop PID Autotuner block.

Field-Oriented Control

In this example, a field-oriented controller for a permanent magnet synchronous machine (PMSM)
based electrical-traction drive is modeled in Simulink® using Simscape™ Electrical™ components.
The model is based on the Simscape example “Three-Phase PMSM Traction Drive” (Simscape
Electrical).

mdl = 'scdfocpmsmPIDTuning';
open_system(mdl)

Field-oriented control (FOC) controls three-phase stator currents as a vector. FOC is based on
projections, which transform a three-phase time- and speed-dependent system into a two-coordinate
time-invariant system. These transformations are the Clarke Transformation, Park Transformation,
and their respective inverse transforms. These transformations are implemented as blocks within the
PMSM controller subsystem.

8 PID Autotuning

8-60

The advantages of using FOC to control AC motors include:

• Torque and flux controlled directly and separately
• Accurate transient and steady-state management
• Similar performance compared to DC motors

The PMSM controller subsystem contains all three PI controllers. The outer-loop PI controller
regulates the speed of the motor. The two inner-loop PI controllers control the d-axis and q-axis
currents separately. The command from the outer-loop PI controller directly feeds to the q-axis to
control torque. The command for the d-axis is zero for PMSM because the rotor flux is fixed with a
permanent magnet for this type of AC motor.

The existing PI controllers have the following gains:

• Speed PI controller has gains of P = 20 and I = 500.
• D-axis PI controller has gains of P = 0.8779 and I = 710.3.
• Q-axis PI controller has gains of P = 1.0744 and I = 1061.5.

The controller gains are stored in a Data Store Memory block and provided externally to each PID
block. When the tuning process for a controller is complete, the new tuned gains are written to the
Data Store Memory block. This configuration allows you to update your controller gains in real-time
during the simulation.

Closed-Loop PID Autotuner Block

The Closed-Loop PID Autotuner block allows you to tune one PID controller at a time. It injects
sinusoidal perturbation signals at the plant input and measures the plant output during a closed-loop
experiment. When the experiment stops, the block computes PID gains based on the plant frequency
responses estimated at a small number of points near the desired bandwidth. For this PMSM-based

 Tune Field-Oriented Controllers for a PMSM Using Closed-Loop PID Autotuner Block

8-61

electrical-traction drive model, the Closed-Loop PID Autotuner block can be used for each of the
three PI controllers.

This workflow applies when you have initial controllers that you want to retune using the Closed-Loop
PID Autotuner block. The benefits of this approach are:

1 If there is an unexpected disturbance during the experiment, it will be rejected by the existing
controllers to ensure safe operation.

2 The existing controllers will keep the plant running near its nominal operating point by
suppressing the perturbation signals.

When using the Closed-Loop PID Autotuner block for both simulations and real-time applications:

• The plant must be either asymptotically stable (all the poles are strictly stable) or integrating. The
autotuner block does not work with an unstable plant.

• The feedback loop with the existing controller must be stable.
• To estimate plant frequency responses more accurately in real time, minimize the occurrence of

any disturbance in the PMSM based electrical-traction drive model during the experiment. The
autotuner block expects the plant output to be the response to the injected perturbation signals
only.

• Because the feedback loop is closed during the experiment, the existing controller suppresses the
injected perturbation signals as well. The advantage of using closed-loop experiment is that the
controller keeps the plant running near the nominal operating point and maintains safe operation.
The disadvantage is that it reduces the accuracy of frequency response estimation if your target
bandwidth is far away from the current bandwidth.

Connect Autotuner with Plant and Controller

Insert the Closed-Loop PID Autotuner block between the PID block and the plant for all three PI
controllers, as shown in the PMSM-based electrical-traction drive model. The start/stop signal
starts and stops the closed-loop experiment. When no experiment is running, the Closed-Loop PID
Autotuner block behaves like a unity gain block, where the signal directly passes to .

To view the modified outer-loop control structure, open the Outer loop control subsystem in the
PMSM controller subsystem.

controlSubsystem = [mdl '/PMSM controller'];
open_system([controlSubsystem '/Outer loop control'])

8 PID Autotuning

8-62

View the modified current controllers in the Inner loop control subsystem.

open_system([controlSubsystem '/Inner loop control'])

 Tune Field-Oriented Controllers for a PMSM Using Closed-Loop PID Autotuner Block

8-63

Configure Autotuner Block

After connecting the Closed-Loop PID Autotuner block with the plant model and PID block, configure
the tuning and experiment settings.

On the Tuning tab, there are two main tuning settings:

• Target bandwidth - Determines how fast you want the controller to respond. In this example,
choose 300 rad/s for speed control, 2500 rad/s for d-axis current control and 2200 rad/s for q-axis
current control.

• Target phase margin - Determines how robust you want the controller to be. In this example,
choose 60 degrees for inner-loop current control and 70 degrees for outer-loop control.

On the Experiment tab, there are three main experiment settings:

• Plant Type - Specifies whether the plant is asymptotically stable or integrating. In this example,
the PMSM-based electrical-traction drive model is stable.

• Plant Sign - Specifies whether the plant has a positive or negative sign. The plant sign is positive
if a positive change in the plant input at the nominal operating point results in a positive change in
the plant output when the plant reaches a new steady state. Otherwise, the plant sign is negative.
If a plant is stable, the plant sign is equivalent to the sign of its dc gain. If a plant is integrating,

8 PID Autotuning

8-64

the plant sign is positive (or negative) if the plant output keeps increasing (or decreasing). In this
example, the PMSM-based electrical-traction drive model has a positive plant sign.

• Sine Amplitudes - Specifies the amplitudes of the injected sine waves. In this example, choose 5
for the inner-loop controllers and 5 for the outer-loop controller to ensure the plant is properly
excited within the saturation limit. If the excitation amplitude is either too large or too small, it
will produce inaccurate frequency response estimation results.

Tuning Cascaded Feedback Loops

Because the Closed-Loop PID Autotuner block only tunes one PI controller at a time, the three
controllers must be tuned separately in the PMSM-based electrical-traction drive model. Tune the
inner-loop controllers first, and then tune the outer-loop controller.

• The d-axis current controller is tuned between 1.0 and 1.2 sec.
• The q-axis current controller is tuned between 1.3 and 1.5 sec.
• The speed controller is tuned between 1.8 and 2.6 sec.

After tuning each PI controller, the controller gains are updated through the Data Store Memory
block.

Simulating Autotuner Block in Normal Mode

In this example, the PMSM-based electrical-traction drive model is built in Simulink. All three PI
controllers are tuned in one simulation. In addition, speed responses are compared before and after
tuning the controllers during acceleration processes.

Simulation of the PMSM-based electrical-traction drive model usually takes a few minutes on your
computer due to the small sample time of the power electronics controller of the motor.

sim(mdl);
save('AutotunedSpeed','SpeedData');

During the autotuning process from 1.0 to 2.6 seconds, the changes in current and in motor speed
are very small. The motor speed reaches the nominal 1000 rpm before the autotuning process begins.

The three PI controllers are tuned with new gains.

• The d-axis PI controller has gains of P = 0.6332 and I = 331.7.
• The q-axis PI controller has gains of P = 0.937 and I = 351.1.
• The speed PI controller has gains of P = 32.35 and I = 1322.

The same rotor speed reference is applied before and after the autotuning process. Plot the rotor
speed responses with respect to the nominal 1000 rpm before and after tuning the controllers. The
speed response curves are aligned in time to compare controller performances side-by-side.

scdfocpmsmPIDTuningPlotSpeed

 Tune Field-Oriented Controllers for a PMSM Using Closed-Loop PID Autotuner Block

8-65

After tuning the controllers, the speed response of the PMSM has a faster transient response during
acceleration.

bdclose(mdl)

See Also
Closed-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block” on page 8-23
• “Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID

Autotuner Block” on page 8-52
• “Tune Field-Oriented Controllers Using SYSTUNE” on page 7-161

8 PID Autotuning

8-66

Design PID Controllers for Three-Phase Rectifier Using Closed-
Loop PID Autotuner Block

This example shows how to use the Closed-Loop PID Autotuner block to tune the DC-link voltage, DQ
axis current, and voltage neutral controllers for a Vienna-rectifier-based power factor corrector.

Power Factor Correction Model

This example uses the power factor correction circuit described in “Vienna Rectifier Control”
(Simscape Electrical). Power factor correction preconverters correct the power factor of loads, which
increases the energy efficiency of the distribution system. This correction is useful when nonlinear
impedances, such as switched-mode power supplies, are connected to the AC grid.

This model uses a Vienna rectifier and a switched-mode power supply to convert a three-phase 120V
AC supply to a regulated 400V DC supply. To ensure that the device on-resistances are correctly
represented, the semiconductor components are modeled using MOSFETs rather than ideal switches.
The model simulation is configured to run in accelerator mode using the partitioning solver.

open_system('PWM_Rectifier_Vienna_SC')

DQ-Axis Current Control

For this example, the DQ-axis controller for the Vienna rectifier is modeled as shown in the following
diagram.

 Design PID Controllers for Three-Phase Rectifier Using Closed-Loop PID Autotuner Block

8-67

In DQ-axis control, the time-dependent, three-phase currents are transformed into a time-invariant,
two-coordinate vector using projections. These transformations are the Clarke Transformation, the
Park Transformation, and their respective inverse transformations. These transformations are
implemented as blocks within the Measurements subsystem. To maintain a power factor close to 1,
the reactive power being drawn from the grid should be close to zero. Therefore, commanding a zero
Q-axis current from the controller allows the power factor to be close to 1.

In the model, the controllers have the following gains:

• DC-link voltage PI controller: P = 2 and I = 20
• Both DQ-axis current PI controllers: P = 5 and I = 500
• Voltage neutral P controller: P = 0.001

The controller gains are stored in a Data Store Memory block and provided externally to each PID
block. When the tuning process for a controller is complete, the new tuned gains are written to the
Data Store Memory block. This configuration allows you to update your controller gains in real-time
during the simulation.

For this example, you retune these controllers using Closed-Loop PID Autotuner blocks.

8 PID Autotuning

8-68

Closed-Loop PID Autotuner Block

The Closed-Loop PID Autotuner block allows you to tune one PID controller at a time. It injects
sinusoidal perturbation signals at the plant input and measures the resulting plant output during a
closed-loop experiment. When the experiment stops, the block computes PID gains based on the plant
frequency responses estimated at a small number of points near the desired bandwidth. For this
Vienna rectifier model, the Closed-Loop PID Autotuner block can be used for each of the controllers,
as shown for the DC link voltage loop below.

This workflow applies when you have initial controllers that you want to retune using the Closed-Loop
PID Autotuner block. The benefits of this approach are:

1 If there is an unexpected disturbance during the experiment, it is rejected by the existing
controller to ensure safe operation.

2 The existing controller keeps the plant running near its nominal operating point by suppressing
the perturbation signals.

When using the Closed-Loop PID Autotuner block for both simulations and real-time applications:

• The plant must be either asymptotically stable (all the poles are strictly stable) or integrating. The
autotuner block does not work with an unstable plant.

• The feedback loop with the existing controller must be stable.

 Design PID Controllers for Three-Phase Rectifier Using Closed-Loop PID Autotuner Block

8-69

• To estimate plant frequency responses more accurately in real time, minimize the occurrence of
any disturbance in the Vienna rectifier model during the experiment. The autotuner block expects
the plant output to be the response to the injected perturbation signals only.

• Because the feedback loop is closed during the experiment, the existing controller suppresses the
injected perturbation signals as well, which reduces the accuracy of frequency response
estimation when your target bandwidth is far away from the current bandwidth.

Tuning Cascaded Feedback Loops

Since the Closed-Loop PID Autotuner block only tunes one PID controller at a time, the four
controllers must be tuned separately in the model. Therefore, you tune the inner current controllers
first, followed by the DC-link voltage controller, and then the voltage neutral controller.

During the model simulation:

• The D-axis current controller is tuned between 0.65 and 0.75 sec.
• The Q-axis current controller is tuned between 0.8 and 0.9 sec.
• The DC-link voltage controller is tuned between 0.95 and 1.45 sec.
• The voltage neutral controller is tuned between 1.7 and 1.72 sec.

After tuning each of the controllers, the controller gains are updated through the Data Store Memory
block.

Configure Autotuner Block

After connecting the Closed-Loop PID Autotuner blocks with the plant and the PID blocks, configure
the tuning and experiment settings for each of them. On the Tuning tab, there are two main tuning
settings:

• Target bandwidth - Determines how fast you want the controller to respond. In this example,
choose 3000 rad/sec for the current control, 400 rad/s for the DC-link voltage control, and 20000
rad/s for the voltage neutral control.

• Target Phase Margin - Determines how robust you want the controller to be. In this example,
choose 60 degrees for all the controllers.

On the Experiment tab, there are three main experiment settings:

• Plant Type - Specifies whether the plant is asymptotically stable or integrating. In this example,
the Vienna rectifier model is stable.

• Plant Sign - Specifies whether the plant has a positive or negative sign. The plant sign is positive
if a positive change in the plant input at the nominal operating point results in a positive change in
the plant output when the plant reaches a new steady state. Otherwise, the plant sign is negative.
If a plant is stable, the plant sign is equivalent to the sign of its DC gain. If a plant is integrating,
the plant sign is positive (or negative) if the plant output keeps increasing (or decreasing). In this
example, the Vienna rectifier model has a positive plant sign.

• Sine Amplitudes - Specifies the amplitudes of the injected sine waves. In this example, to ensure
that the plant is properly excited within the saturation limit, choose 0.6 for the D-axis controller,
0.19 for the Q-axis controller, 1 for the DC-link voltage controller, and 0.01 for the voltage
neutral controller. If the excitation amplitude is either too large or too small, it will produce
inaccurate frequency response estimation results for these experiments.

8 PID Autotuning

8-70

Simulate Autotuner Block in Accelerator Mode

In this example, the Vienna rectifier model is run in accelerator mode and all four controllers are
tuned in one simulation. The simulation of the model usually takes a few minutes due to the small
sample time of the power electronics controller.

To tune the controllers, simulate the model.

sim('PWM_Rectifier_Vienna_SC')

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [4000001x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

The graph below shows the DC-link voltage profile during the current and voltage controller tuning
from 0.65 to 1.45 seconds. It also shows the introduction of an unbalanced load at 1.5 seconds and
the subsequent voltage neutral controller tuning at 1.7 seconds.

open_system('PWM_Rectifier_Vienna_SC/Scopes/Scope')

The four controllers are tuned with the new gains.

 Design PID Controllers for Three-Phase Rectifier Using Closed-Loop PID Autotuner Block

8-71

• DC-link voltage PI controller: P = 0.7386 and I = 135.6
• D-axis current PI controllers: P = 8.407 and I = 1127
• Q-axis current PI controllers: P = 11.91 and I = 3706
• Voltage neutral P controller: P = 6.628

The graph below shows the DC-link voltage response in comparison to the reference before and after
tuning the controllers. The original controller (red) is unable to maintain the DC-link voltage after the
introduction of unbalanced loads at 0.7 and 1.1 seconds. On the other hand, the autotuned controller
decreases the rise time with minimal overshoot and a good settling time to the steady-state value.

See Also
Closed-Loop PID Autotuner

More About
• “How PID Autotuning Works” on page 8-5
• “Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID

Autotuner Block” on page 8-52

8 PID Autotuning

8-72

PID Autotuning for UAV Quadcopter

This example shows how to tune PID Controllers used in the attitude and position control of a small
quadcopter in only one simulation using the Closed-Loop PID Autotuner block.

UAV Package Delivery Model

In this example, a multirotor is modeled in Simulink® using UAV Toolbox components. This model is
based on the UAV Toolbox uavPackageDelivery model. For more information, see “UAV Package
Delivery” (UAV Toolbox).

To get started, set up and open the Simulink Project.

run('scdUAVPIDAutotuningStart.m')

Model Architecture and Conventions

The top model consists of the following subsystems and model references:

1 Ground Control Station — Used to control and monitor the aircraft while in flight.
2 External Sensors - Lidar & Camera — Used to connect to a previously-designed scenario or a

photorealistic simulation environment. These produce Lidar readings from the environment as
the aircraft flies through it.

3 On Board Computer — Used to implement algorithms meant to run in an onboard computer
independent from the Autopilot.

4 Multirotor — Includes a low-fidelity and mid-fidelity mode, as well as a flight controller
including its guidance logic.

The model's design data is contained in a Simulink data dictionary in the data folder
(uavPackageDeliveryDataDict.sldd). Additionally, the model uses “Implement Variations in
Separate Hierarchy Using Variant Subsystems” to manage different configurations of the model.

 PID Autotuning for UAV Quadcopter

8-73

Variables placed in the base workspace configure these variants without the need to modify the data
dictionary.

PID Controller Autotuning

This example uses the Closed-Loop PID Autotuner block from Simulink Control Design™ software to
tune eight controllers used in the attitude and position control of a multirotor. You can use many ways
to tune controllers, including manual tuning and empirical calculations. By using the Closed-Loop PID
Autotuner, you can set up the control system ahead of time and then perform tuning of all eight loops
with a one-click process. This makes the entire tuning process repeatable and easily adjustable for
future tuning. In this example, you use a six degree-of-freedom model of a multirotor in Simulink.
However, you can also use the Closed-Loop PID Autotuner on hardware to perform the same process
using a real multirotor. Most other tuning techniques are difficult to implement on actual multirotors,
can take a long time, and are not easily repeatable.

By using the Closed-Loop PID Autotuner for tuning the controllers in this example you do not need to
have advanced knowledge of control tuning techniques.

Modify UAV Package Delivery Model for PID Autotuning

To facilitate PID autotuning, the original UAV package delivery model is modified with these changes:

• Hover mode added to the Full Guidance Logic subsystem
• Third Mission variant added to the Ground Control Station subsystem
• Four Closed-Loop PID Autotuner blocks added to the Attitude Controller and Position Controller

subsystems in the High Fidelity Model
• PID Controllers in the Attitude Controller and Position Controller subsystems Controller

Parameters Source changed from internal to external
• Data Store Memory blocks added to the Multirotor subsystem
• Default controller gains changed
• To Workspace added to root level model

These changes allow for the multirotor to take off and remain at a fixed altitude while autotuning
takes place and to update the gains of the PID Controllers, all in a single simulation.

Following Example Steps

Use the Project Shortcuts to step through the example. Each shortcut sets up the required variables
for the project.

8 PID Autotuning

8-74

Getting Started

Click the Getting Started project shortcut, which sets up the model for a four-waypoint mission
using a high-fidelity multirotor plant model. Run the uavPIDAutotuning model, which shows the
multirotor takeoff, fly, and land in a 3-D plot.

The model uses UAV Path Manager block to determine which is the active waypoint throughout the
flight. The active waypoint is passed into the Guidance Mode Selector Stateflow® chart to
generate the necessary inner loop control commands.

 PID Autotuning for UAV Quadcopter

8-75

Use the Simulation Data Inspector to visualize the UAVState output of the multirotor model.

8 PID Autotuning

8-76

You can see that the multirotor takes almost 150 seconds to complete the four waypoint path with the
baseline set of gains. In order to improve this performance, retune the PID Controllers used in the
multirotor.

Run Autotuning Mission

Once you are able to fly a basic mission, you are ready to autotune the attitude and position control
loops to improve the performance of the multirotor. The control system for this example contains
eight PID Controllers. The system has four cascading control loops. Each loop contains two
controllers, one for each axis. This diagram shows how the eight controllers are set up with the
Closed-Loop PID Autotuner blocks in order to perform autotuning.

The Closed-Loop PID Autotuner blocks inject perturbation signals to the output of each of the eight
existing PID Controllers. The autotuners then use the feedback signals and the output of the PID
Controllers in order to perform the autotuning process. With the exception of the innermost control
loops, pitch and roll rate, the two axes being controlled are decoupled from each other. For example,
the x velocity and the y velocity loops are decoupled from each other. This allows you to tune these
two loops simultaneously which reduces the overall time to perform autotuning. For the pitch rate
and roll rate loops, tune the control loops sequentially because they are coupled. This results in the
following sequence for tuning the PID Controllers:

1 Pitch Rate
2 Roll Rate

 PID Autotuning for UAV Quadcopter

8-77

3 Pitch and Roll
4 X and Y Velocity
5 X and Y Position

Click the Autotune PID Controllers project shortcut, which sets up the model to hover at a low
altitude and automatically tune the four PID Controllers, then runs the same four-waypoint mission
from first step.

The Closed-Loop PID Autotuner blocks for each control loop are set up with different performance
criteria depending on the control loop. For cascaded control, such as that used in this example, the
inner loop should have a higher bandwidth than the outer loop to avoid instabilities. For this example,
that means the pitch and roll rate control loops have the highest bandwidth while the x and y position
control loops have the slowest bandwidths.

The settings used for the pitch and roll rate loops are:

• Bandwidth — 50 rad/sec
• Phase margin — 60 degrees
• Perturbation amplitude — 0.001

The settings used for the pitch and roll loops are:

• Bandwidth — 20 rad/sec
• Phase margin — 60 degrees
• Perturbation amplitude — 0.1

The settings used for the x and y velocity loops are:

• Bandwidth — 5 rad/sec
• Phase margin — 60 degrees
• Perturbation amplitude — 0.02

The settings used for the x and y position loops are:

• Bandwidth — 1 rad/sec
• Phase margin — 60 degrees
• Perturbation amplitude — 0.1

To maximize performance, the bandwidth for the pitch and roll rate loops is set to 50 rad/sec. The
sampling time Ts of the UAV control system is 0.005 seconds and the Closed-Loop PID Autotuner
requires that the bandwidth ω must satisfy ωTs ≤ 0 . 3, which means that bandwidth must be 60
rad/sec or less. Choose the bandwidth such that it is less than the required 60 rad/sec. The other
bandwidths are set to be as large as possible while not causing stability issues with inner loops.

The phase margin for each loop is set to 60 degrees as this value is typically a good compromise
between performance and damping. This margin is the default setting for the Closed-Loop PID
Autotuner block.

The perturbation amplitudes are set such that they are less than 5% of the maximum expected output
of the individual controllers. If the value for the perturbations is too high, it can cause the multirotor
to become unstable during tuning. If the value for the perturbations is too low, the autotuner might

8 PID Autotuning

8-78

not get an accurate estimate of the plant and the calculated gains might not meet the desired
bandwidth or phase margin.

The settings for the individual loops are contained in the data dictionary,
uavPackageDeliveryDataDict.sldd. The following images show a sample of how to enter these
settings in the Closed-Loop PID Autotuner blocks used to tune the pitch angular rate.

 PID Autotuning for UAV Quadcopter

8-79

Run the uavPIDAutotuning model, which shows the multirotor takeoff, hover, autotune the PID
Controllers, fly, and land in a 3-D plot.

8 PID Autotuning

8-80

Use the Simulation Data Inspector to visualize the UAVState output of the multirotor model.

 PID Autotuning for UAV Quadcopter

8-81

As you can see, the multirotor hovers for a period of time in order to perform autotuning. After the
autotuning process is complete, around 185 seconds into the simulation, the multirotor follows the
same four-waypoint path as in project first step, but the quadcopter is able to complete the path in a
much shorter time due to the tuned gains increasing performance.

8 PID Autotuning

8-82

 PID Autotuning for UAV Quadcopter

8-83

These plots show the position and attitude responses for the multirotor over the path. The blue line
shows the multirotor performance with the baseline set of gains while the red line shows the
multirotor performance with the tuned gains. With the tuned set of gains, the multirotor is able to
complete the path in about 45 seconds. Meanwhile, with the baseline set of gains, the multirotor
takes almost 150 seconds.

During the autotuning process the gains are updated for the eight controllers:

• Pitch rate — Kp = 0.00425, Ki = 0.01479, Kd = 0.0000045, N = 398
• Roll rate — Kp = 0.003477, Ki = 0.01215, Kd = 0.0000031, N = 398
• Pitch angle — Kp = 19.38
• Roll angle — Kp = 18.95
• X velocity — Kp = 0.5153, Ki = 0.2581
• Y velocity — Kp = 0.5201, Ki = 0.2979
• X position — Kp = 0.9365
• Y position — Kp = 0.9291

8 PID Autotuning

8-84

Autotuning Altitude and Heading/Yaw Control Loops

In this example you learned how to automatically tune the P, I, D and N gains for four separate paired
control loops used for the attitude and position control. However, this example model contains two
more control loops, one for altitude and one for the heading or yaw angle. Using the same
methodology for autotuning presented in this example, you can add the Closed-Loop PID Autotuner to
one or both of these other control loops and perform the autotuning process.

In order to tune the controllers for either of these loops, ensure that the tuning happens only when
the tuning is not running for the other controllers. You can either disable tuning of the other
controllers or you can tune these controllers after tuning has completed for position and attitude
controllers.

When you are done exploring the models, close the project file.

close(prj)

See Also
Closed-Loop PID Autotuner

Related Examples
• “How PID Autotuning Works” on page 8-5
• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “UAV Inflight Failure Recovery” on page 14-2

 PID Autotuning for UAV Quadcopter

8-85

Tune Gain-Scheduled Controller Using Closed-Loop PID
Autotuner Block

This example shows how to use the Closed-Loop PID Autotuner block to tune a gain-scheduled
controller in one simulation.

Water-Tank System Model

This example uses a gain-scheduled controller to control the water level of a nonlinear Water-Tank
System plant. The Water-Tank System plant is originally controlled by a single PI controller in the
watertank Simulink® model. For more details on the nonlinear Water-Tank System plant, see
“watertank Simulink Model”.

The following sections describe how to modify the watertank model for tuning and validating gain-
scheduled controller. Alternatively, use the watertank_gainscheduledcontrol model provided
with this example.

Connect Closed-Loop PID Autotuner Block with Plant and Controller

Insert the Closed-Loop PID Autotuner block between the controller and plant as shown in the
following diagram. The start/stop signal starts and stops the closed-loop experiment. When no
experiment is running, the Closed-Loop PID Autotuner block behaves like a unity gain block, where
the u signal passes directly to u+Δu.

8 PID Autotuning

8-86

Connect Blocks to Store Tuned Gains

To create a gain schedule, the autotuned gains are recorded at each operating point. In this example,
a triggered subsystem is used to write the reference heights and controller gains to the workspace
upon falling edges of the autotuner start/stop signal. Simulating this model produces an array of
tuned gains and breakpoints for easy use with dynamic lookup tables to test the controller.

Validate Performance of Gain-Scheduled Controller

After you obtain a set of breakpoints and tuned gains, test the tuned gain-scheduled controller with
the Water-Tank System plant. To do so, remove the autotuner block, change the source of the PID
Controller block to external, and insert Lookup Table Dynamic blocks as shown in the diagram.

 Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block

8-87

Integrate Both Tuning and Testing in Example Model

In this example, a gain-scheduled controller is tuned using the Closed-Loop PID Autotuner block and
its performance is then tested in the same model. The example model uses a variant subsystem to
organize the tuning and testing workflows.

To switch between Tuning and Testing modes, double-click the Variant Subsystem block.

8 PID Autotuning

8-88

Tune Controller at Single Operating Point

Before tuning the gain-scheduled controller at multiple operating points, tuning at single operating
point helps you configure the Closed-Loop PID Autotuner block. Open the example model
watertank_gainscheduledcontrol with controller gains used by the watertank Simulink
model.

mdl = 'watertank_gainscheduledcontrol';
Kp = 1.599340;
Ki = 0.079967;
open_system(mdl);
set_param([mdl,'/Variant Subsystem'],'SimMode','Tuning');

Configure Closed-Loop PID Autotuner Block

After connecting the Closed-Loop PID Autotuner block with the Water-Tank System plant model and
PID Controller block, use the block parameters to specify tuning and experiment settings. This
example uses the same design requirements found in the example “Design Compensator Using
Automated PID Tuning and Graphical Bode Design” on page 9-11. These design requirements are in
the form of closed-loop step response characteristics.

• Overshoot less than 5%
• Rise time less than 5 seconds

To tune the PID controller to meet the above design requirements, parameters of the Closed-Loop PID
Autotuner block are pre-populated. The Tuning tab has three main tuning settings.

• Target bandwidth — Determines how fast you want the controller to respond. The target
bandwidth is roughly 2/desired rise time. For a desired rise time of 4 seconds, set target
bandwidth = 2/4 = 0.5 rad/s.

• Target phase margin — Determines how robust you want the controller to be. In this example,
start with the default value of 60 degrees.

• Experiment sample time — Sample time for the experiment performed by the autotuner block.
Use the recommended 0.02/bandwidth for sample time = 0.02/0.5 = 0.04s.

The Experiment tab has three main experiment settings.

 Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block

8-89

• Plant Type — Specifies whether the plant is asymptotically stable or integrating. In this example,
the Water-Tank System plant is integrating.

• Plant Sign — Specifies whether the plant has a positive or negative sign. The plant sign is
positive if a positive change in the plant input at the nominal operating point results in a positive
change in the plant output when the plant reaches a new steady state. In this example, the Water-
Tank System plant has a positive plant sign.

• Sine Amplitudes — Specifies amplitudes of the injected sine wave perturbations. In this example,
specify a sine amplitude of 0.3.

Simulate at One Operating Point

Start the experiment at 140 seconds to ensure that the water level has reached steady-state H = 10.
The recommended experiment duration is 200/bandwidth seconds = 200/0.4 = 500s. With start time
of 140 seconds, the stop time is 640 seconds. The simulation stop time is further increased to capture
the full experiment.

set_param([mdl,'/Variant Subsystem/Tuning/Closed-Loop PID Autotuner1'],'TargetPM','60');
set_param([mdl,'/Signal Editor'],'ActiveScenario','TuningSignal_OnePoint');
simOut = sim(mdl,'StopTime','800');
simOut.Kp_tuned

ans = 1.8254

simOut.Ki_tuned

ans = 0.2037

In the watertank Simulink model, initial PI controller gains are Kp = 1.599340 and Ki = 0.079967.
After tuning, the controller gains are Kp = 1.82567 and Ki = 0.20373.

Check Tuning Result and Adjust Autotuning Parameters

Replace controller gains with the new autotuned gains and validate the design requirements.

Kp = simOut.Kp_tuned;
Ki = simOut.Ki_tuned;
simOut = sim(mdl,'StopTime','100');
figure;
plot(simOut.ScopeDataGS.time,simOut.ScopeDataGS.signals.values);
grid on
title('Step Response of Controller Tuned with 60-Degree Target Phase Margin');

8 PID Autotuning

8-90

StepPerformance_OnePoint = stepinfo(simOut.ScopeDataGS.signals.values(:), ...
 simOut.ScopeDataGS.time(:),10,1)

StepPerformance_OnePoint = struct with fields:
 RiseTime: 3.6254
 TransientTime: 22.5227
 SettlingTime: 22.5227
 SettlingMin: 9.1086
 SettlingMax: 10.7822
 Overshoot: 8.6912
 Undershoot: 0
 Peak: 9.7822
 PeakTime: 9.5500

The step response has a rise time of 3.6251 seconds and overshoot of 8.6895%. The overshoot is
larger than desired; increase target phase margin to 75 degrees to improve the closed-loop transient
response.

set_param([mdl,'/Variant Subsystem/Tuning/Closed-Loop PID Autotuner1'],'TargetPM','75');

Examine the simulation result. The system is at steady-state when experiment starts and returns to
steady-state after tuning is completed. As an indication of controller tuning performance, the Closed-
Loop PID Autotuner block reaches 100% convergence level sooner than the recommended 500
seconds. As a result, reduce experiment duration to 300 seconds, meaning a stop time of 440
seconds. Accordingly, decrease the simulation stop time from 800 seconds to 500 seconds.

 Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block

8-91

Kp = 1.599340;
Ki = 0.079967;
set_param([mdl,'/Signal Editor'],'ActiveScenario','TuningSignal_OnePointAdjusted');
simOut = sim(mdl,'StopTime','500');
simOut.Kp_tuned

ans = 1.9348

simOut.Ki_tuned

ans = 0.1142

Simulating with new experiment parameters produces tuned gains of Kp = 1.93514 and Ki =
0.11415. Examine the step response again using gains tuned with the increased target phase margin
value.

Kp = simOut.Kp_tuned;
Ki = simOut.Ki_tuned;
simOut = sim(mdl,'StopTime','100');
figure;
plot(simOut.ScopeDataGS.time,simOut.ScopeDataGS.signals.values);
grid on
title('Step Response of Controller Tuned with 75-Degree Target Phase Margin');

StepPerformance_OnePointAdjusted = stepinfo(simOut.ScopeDataGS.signals.values(:), ...
 simOut.ScopeDataGS.time(:),10,1)

StepPerformance_OnePointAdjusted = struct with fields:
 RiseTime: 4.1402

8 PID Autotuning

8-92

 TransientTime: 21.4152
 SettlingTime: 21.4152
 SettlingMin: 9.1041
 SettlingMax: 10.2832
 Overshoot: 3.1463
 Undershoot: 0
 Peak: 9.2832
 PeakTime: 12.1100

The step response has a rise time of 4.1398 seconds and overshoot of 3.1438%, both of which meet
the design requirements.

Simulate the model with tuned gains for multiple operating points H = [5, 10, 15, 20].

set_param([mdl,'/Signal Editor'],'ActiveScenario','TuningSignal_SinglePID');
simOut_single = sim(mdl,'StopTime','2400');

Tune Gain-Scheduled Controller at Multiple Operating Points

The set of tuned gains produces a desired response. You can now perform tuning at multiple
operating points to create a gain-scheduled controller.

Create Input Tuning Signal

The operating range of scheduling variable H from 1 to 20 is covered by the operating points for
autotuning. In this example, the gain-scheduled controller gains are tuned at four operating points
with H = [5, 10, 15, 20]. To tune at multiple operating points, use the Signal Editor block to create
the reference and autotuner start/stop signal

Simulate Multiple Operating Points

Using the input signal, simulate the watertank_gainscheduledcontrol model for the entire
length of the autotuning process. At the end of simulation, save both tuned gains and breakpoints as
vectors in the MATLAB® Workspace.

Kp = 1.599340;
Ki = 0.079967;
set_param([mdl,'/Signal Editor'],'ActiveScenario','TuningSignal');
simOut = sim(mdl,'StopTime','2400');
Kp_tuned = simOut.Kp_tuned

Kp_tuned = 4×1

 Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block

8-93

 1.9279
 1.9327
 1.9358
 1.9380

Ki_tuned = simOut.Ki_tuned

Ki_tuned = 4×1

 0.1277
 0.1183
 0.1122
 0.1078

breakpoints = simOut.breakpoints

breakpoints = 4×1

 5
 10
 15
 20

Performance Improvements of Gain-Scheduled Controller

To examine the performance of the gain-scheduled controller, set the Variant Subsystem to Testing
mode and simulate the model.

set_param([mdl,'/Variant Subsystem'],'SimMode','Testing');
simOut_GS = sim(mdl,'StopTime','2400');

Using the gain-scheduled controller, step responses of the water level in the Water-Tank System plant
are much faster and have less overshoot than the untuned controller used in “watertank Simulink
Model”.

Use the compareControllers_watertank script to compute the step-response characteristics for
the PID controller tuned at H = 10 and the gain-scheduled controller. The script generates two tables,
which contain the rise time (in seconds) and percentage overshoot for the gain-scheduled controller
and a single set of controller gains.

compareControllers_watertank

RiseTime=2×4 table
 H = 1 to 5 H = 5 to 10 H = 10 to 15 H = 15 to 20
 __________ ___________ ____________ ____________

 Single PID 4.6725 3.7822 3.7154 3.683
 Gain-Scheduled 4.5097 3.7557 3.7275 3.7208

Overshoot=2×4 table
 H = 1 to 5 H = 5 to 10 H = 10 to 15 H = 15 to 20
 __________ ___________ ____________ ____________

 Single PID 0.69826 5.258 5.8907 6.2264

8 PID Autotuning

8-94

 Gain-Scheduled 1.5212 5.5034 5.7731 5.8532

Compared to a single set of gains tuned at one operating point, the gain-scheduled controller:

• Leads to a larger overshoot and a faster rise time for the step H = 1 to 5.
• Achieves similar performance for the step H = 5 to 10 because the single set of gains were tuned

at H = 10.
• Leads to smaller overshoots and slower rise times for the steps H = 10 to 15 and H = 15 to 20.

This workflow is useful when you want to tune a gain-scheduled controller using the Closed-Loop PID
Autotuner block.

Close the model.

close_system(mdl,0);

See Also
Closed-Loop PID Autotuner | PID Controller | Signal Editor | Lookup Table Dynamic | Variant
Subsystem, Variant Model

Related Examples
• “watertank Simulink Model”
• “How PID Autotuning Works” on page 8-5
• “Design Compensator Using Automated PID Tuning and Graphical Bode Design” on page 9-11
• “Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block” on

page 8-96

 Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block

8-95

Tune Gain-Scheduled Controller for PMSM Model Using Closed-
Loop PID Autotuner Block

This example shows how to tune a gain-scheduled controller for a permanent magnet synchronous
motor (PMSM) in just one simulation using the Closed-Loop PID Autotuner block.

PMSM Model

The PMSM model is based on the Motor Control Blockset™ mcb_pmsm_foc_sim model. The model
includes:

• A subsystem to model inverter and PMSM dynamics
• Inner-loop (current) and outer-loop (speed) PI controllers to implement a field-oriented control

algorithm for motor speed control

You can examine this model for more details.

In this example, the original model is modified to use a gain-scheduled controller to control the
rotational speed of the motor. The gains of the gain-scheduled controller are updated in real-time
using dynamic lookup tables. The speed of the motor plant is originally controlled by a single PI
controller in the mcb_pmsm_foc_sim Simulink® model.

The following sections describe how to modify the mcb_pmsm_foc_sim model to tune and implement
a gain-scheduled PI controller. Alternatively, use the preconfigured
scd_pid_gs_mcb_pmsm_foc_sim model provided with this example.

Speed Control PI Controller with Gain Scheduling and Closed-Loop PID Autotuner

The Speed Control subsystem consists of a single PI Controller with external inputs for the
proportional and integral gains, integrator reset, and integrator initial condition. The PI Controller is
set up to use integral gain multiplied by sample time, I*Ts, instead of the integral gain I.

The Closed-Loop PID Autotuner block is located within the Autotuning subsystem. The block outputs
the perturbations used to estimate the plant required to tune the controller gains. The Closed-Loop
PID Autotuner block tunes gains for P and I but not for I*Ts. To properly update the gains used in the
PI Controller, multiply the integral gain by the sample time, as shown in the Closed-Loop PID
Autotuner with Gain Updates on page 8-97 section of this example.

8 PID Autotuning

8-96

The Gain Scheduling subsystem contains Lookup Table Dynamic blocks for both the proportional and
integral gains. For more details, see the Update PI Controller Gain-Scheduled Gains During
Simulation on page 8-99 section. The Speed Breakpoints constant block is a vector containing the
three breakpoints used in the gain-scheduling lookup tables; this vector is set to [0.2 0.5 0.8] for this
example. The Data Store Memory blocks are used to update the gain-scheduled controller gains and
pass them to the dynamic lookup tables and then to the controller.

Closed-Loop PID Autotuner with Gain Updates

The Autotuning subsystem contains the Closed-Loop PID Autotuner block, subsystems to update and
store the tuned gains, and a subsystem to determine which breakpoint to tune to properly update the
scheduled gains.

 Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block

8-97

Closed-Loop PID Autotuner Block Configuration

The design requirements used in this example are in the form of closed-loop step response
characteristics.

• Overshoot less than 5%
• Rise time less than 0.01 seconds

To tune the PI controller to meet the above design requirements, parameters of the Closed-Loop PID
Autotuner block are pre-populated. The Tuning tab has three main tuning settings.

• Target bandwidth — Determines how fast you want the controller to respond. The target
bandwidth is roughly 2/desired rise time. For a desired rise time of 0.01 seconds, set the target
bandwidth to 2/0.01 = 200 rad/s.

• Target phase margin — Determines how robust you want the controller to be. In this example,
start with a default value of 60 degrees.

• Experiment sample time — Sample time for the experiment performed by the autotuner block.
Use a value of –1 to inherit the sample time of the speed controller.

The Experiment tab has three main experiment settings.

8 PID Autotuning

8-98

• Plant Type — Specifies whether the plant is asymptotically stable or integrating. In this example,
the Inverter and Motor plant is stable.

• Plant Sign — Specifies whether the plant has a positive or negative sign. The plant sign is
positive if a positive change in the plant input at the nominal operating point results in a positive
change in the plant output when the plant reaches a new steady state. In this example, the
Inverter and Motor plant has a positive plant sign.

• Sine Amplitudes — Specifies amplitudes of the injected sine wave perturbations. In this example,
specify a sine amplitude of 0.01 to ensure less than 15% perturbation amplitude from the
setpoints.

These target bandwidth and phase margin are set to values comparable to the default set of gains in
the original model. The Closed-Loop PID Autotuner in this example is preconfigured with these
settings.

The Data Store Memory blocks used to update the gains are configured to update only a single
element at a time to tune individual setpoints and update them in the gain-scheduled controller.

To determine if the current operating point coincides with a breakpoint in the gain-scheduled lookup
tables, the current commanded speed reference, N_ref, is compared to the vector of breakpoints
used in the gain-scheduled lookup tables. If the current speed is equal to one of the breakpoints and
autotuning takes place, then the gains at that breakpoint are updated.

Update PI Controller Gain-Scheduled Gains During Simulation

Typically, the gain-scheduling workflow requires multiple simulations to run the system, tune the
gains, update the gains, and then run the system again to demonstrate how to tune gain-scheduled
controllers. This example performs all these steps in single a simulation using dynamic lookup tables.

 Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block

8-99

For this example, before 2 seconds, a static set of gains is used. These gains were tuned at the middle
breakpoint of the gain-scheduled lookup tables 0.5 N_ref and are used to demonstrate a typical
system response if not using gain scheduling. After 2 seconds the gain-scheduled controller gains are
used and tuned at three different breakpoints: 0.2, 0.5, and 0.8 N_ref. All breakpoints are tuned
using the same settings in the Closed-Loop PID Autotuner block.

Add Nonlinear Load Torque to Inverter and Motor Plant Model

To demonstrate how gain scheduling is used to increase performance in the presence of
nonlinearities, the load torque profile contains a nonlinear load torque instead of a static load torque.

8 PID Autotuning

8-100

In this example, the nonlinear load is τ = Kωm
2 , where τ is the load torque, K is the load torque

constant equal to 0 . 005 × pmsm . T_rated 2, and ωm is the mechanical speed of the motor. From this
equation you can see that the load torque and damping in this system increases by mechanical speed
squared. This relationship means that at low speed there is little damping, thus requiring smaller
controller gains compared to higher speeds wheremuch higher damping is required to achieve the
same level of performance.

Tune Gain-Scheduled Controller at Multiple Operating Points

With the model setup, you can now perform tuning at multiple operating points to create a gain-
scheduled controller and test the performance of these gains against the gains tuned at 0.5 N_ref in
a single simulation. The model is setup to perform a step change at the beginning of the simulation,
tune the controller at three operating points (0.2, 0.5, and 0.8 N_ref) and then perform the same
step change at the end. This figure shows the profile of the speed reference signal.

Simulate the model to tune the gains at the three operating points, update the gains in the lookup
tables, and test the performance of the tuned gains.

mdl = 'scd_pid_gs_mcb_pmsm_foc_sim';
simOut = sim(mdl);

Next, plot a comparison of the initial step response performed with gains tuned at 0.5 N_ref to the
response at the end of the simulation performed with gain scheduling.

idx = [0.5 0.75 9.5 9.75]./Ts;
Time_noGS = simOut.tout(idx(1):idx(2))-simOut.tout(idx(1));

 Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block

8-101

SpeedFdbk_noGS = simOut.logsout{2}.Values.Data(idx(1):idx(2));
Time_wGS = simOut.tout(idx(3):idx(4))-simOut.tout(idx(3));
SpeedFdbk_wGS = simOut.logsout{2}.Values.Data(idx(3):idx(4));
figure;
plot(Time_noGS,SpeedFdbk_noGS,Time_wGS,SpeedFdbk_wGS)
legend('No GS', 'With GS')
grid on
title({'Step Response Comparison of Speed Controller'; 'with and without Gain Scheduling'})
xlabel('Time [sec]')
ylabel('Speed Feedback [-]')

The gain-scheduled controller leads to larger overshoot for a smaller rise time and settling time,
compared to a single set of gains tuned at one operating point.

Tuned Gain-Scheduled Controller Performance Over Operating Range

You can achieve similar performance for a given step change using a static set of gains obtained at
0.8 N_ref instead of 0.5 N_ref.

8 PID Autotuning

8-102

However, using this single set of gains to step from 0 to 0.5 N_ref results in poor performance
compared to using a gain-scheduled controller.

 Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block

8-103

Gain-scheduling allows for a more consistent and an overall better performance over the operating
range compared to just using a static set of gains.

This workflow is useful when you want to tune a gain-scheduled controller using the Closed-Loop PID
Autotuner block.

Close the model.

close_system(mdl,0);

See Also
Closed-Loop PID Autotuner | Discrete PID Controller | Lookup Table Dynamic | Signal Editor

Related Examples
• “How PID Autotuning Works” on page 8-5
• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block” on page 8-86

8 PID Autotuning

8-104

Classical Control Design

• “Choose a Control Design Approach” on page 9-2
• “Control System Designer Tuning Methods” on page 9-4
• “What Blocks Are Tunable?” on page 9-8
• “Designing Compensators for Plants with Time Delays” on page 9-9
• “Design Compensator Using Automated PID Tuning and Graphical Bode Design” on page 9-11
• “Analyze Designs Using Response Plots” on page 9-28
• “Compare Performance of Multiple Designs” on page 9-34
• “Update Simulink Model and Validate Design” on page 9-38
• “Single Loop Feedback/Prefilter Compensator Design” on page 9-39
• “Cascaded Multiloop Feedback Design” on page 9-45
• “Tune Custom Masked Subsystems” on page 9-54
• “Tune Simulink Blocks Using Compensator Editor” on page 9-63
• “Reference Tracking of DC Motor with Parameter Variations” on page 9-68
• “Regulate Pressure in Drum Boiler” on page 9-73
• “Model Computational Delay and Sampling Effects” on page 9-80

9

Choose a Control Design Approach
Simulink Control Design lets you design and tune many types of control systems in Simulink. There
are also deployable PID autotuning tools that let you tune your controller in real time against a
physical plant.

Design in Simulink
Simulink Control Design provides several approaches to tuning Simulink blocks, such as Transfer Fcn
and PID Controller blocks. Use the following table to determine which approach best supports what
you want to do.

 Model-Based PID
Tuning

Classical Control
Design

Multiloop,
Multiobjective Tuning

Supported Blocks • PID Controller
• Discrete PID

Controller
• PID Controller

(2DOF)
• Discrete PID

Controller (2DOF)

Linear Blocks (see
“What Blocks Are
Tunable?” on page 9-
8)

Any blocks; only some
blocks are automatically
parameterized (See
“How Tuned Simulink
Blocks Are
Parameterized”)

Architecture 1-DOF and 2-DOF PID
loops

Control systems that
contain one or more
SISO compensators

Any structure, including
any number of SISO or
MIMO feedback loops

Control Design
Approach

Automatically tune PID
gains to balance
performance and
robustness

• Graphically tune
poles and zeros on
design plots, such as
Bode, root locus, and
Nichols

• Automatically tune
compensators using
response
optimization
(Simulink Design
Optimization), LQG
synthesis, or IMC
tuning

Automatically tune
controller parameters to
meet design
requirements you
specify, such as setpoint
tracking, stability
margins, disturbance
rejection, and loop
shaping (see “Tuning
Goals”)

Analysis of Control
System Performance

Time and frequency
responses for reference
tracking and
disturbance rejection

Any combination of
system responses

Any combination of
system responses

9 Classical Control Design

9-2

 Model-Based PID
Tuning

Classical Control
Design

Multiloop,
Multiobjective Tuning

Interface • Graphical tuning
using PID Tuner
(see “Introduction to
Model-Based PID
Tuning in Simulink”
on page 7-2)

• Tuning of plants that
do not linearize (see
“Frequency-
Response Based
Tuning” on page 7-
38)

• Programmatic
tuning using
pidtune (see “PID
Controller Design at
the Command Line”)

Graphical tuning using
Control System
Designer

• Graphical tuning
using Control
System Tuner

• Programmatic
tuning using
slTuner (see
“Programmatic
Tuning”)

Real-Time PID Autotuning
The real-time PID autotuning tools in Simulink Control Design let you deploy an automatic tuning
algorithm as a stand-alone application for PID tuning against a physical plant. Real-time PID
autotuning lets you tune a PID controller to achieve a specified bandwidth and phase margin without
a parametric plant model or an initial controller design.

The real-time PID autotuning algorithm can tune PID gains in Simulink PID Controller blocks or in
your own custom PID blocks. You can tune against your physical plant with or without Simulink in the
loop. Deploying the real-time PID autotuning algorithm requires a code-generation product such as
Simulink Coder.

For more information, see “When to Use PID Autotuning” on page 8-2.

See Also

More About
• “PID Controller Tuning”
• “Classical Control Design”
• “Tuning with Control System Tuner”
• “Programmatic Tuning”

 Choose a Control Design Approach

9-3

Control System Designer Tuning Methods
Using Control System Designer, you can tune compensators using various graphical and automated
tuning methods.

Graphical Tuning Methods
Use graphical tuning methods to interactively add, modify, and remove controller poles, zeros, and
gains.

Tuning Method Description Useful For
Bode Editor Tune your compensator to achieve a

specific open-loop frequency response
(loop shaping).

Adjusting open-loop bandwidth and
designing to gain and phase margin
specifications.

Closed-Loop Bode
Editor

Tune your prefilter to improve closed-
loop system response.

Improving reference tracking, input
disturbance rejection, and noise
rejection.

Root Locus Editor Tune your compensator to produce
closed-loop pole locations that satisfy
your design specifications.

Designing to time-domain design
specifications, such as maximum
overshoot and settling time.

Nichols Editor Tune your compensator to achieve a
specific open-loop response (loop
shaping), combining gain and phase
information on a Nichols plot.

Adjusting open-loop bandwidth and
designing to gain and phase margin
specifications.

When using graphical tuning, you can modify the compensator either directly from the editor plots or
using the compensator editor. A common design approach is to roughly tune your compensator using
the editor plots, and then use the compensator editor to fine-tune the compensator parameters. For
more information, see “Edit Compensator Dynamics”

The graphical tuning methods are not mutually exclusive. For example, you can tune your
compensator using both the Bode editor and root locus editor simultaneously. This option is useful
when designing to both time-domain and frequency-domain specifications.

For examples of graphical tuning, see the following:

• “Bode Diagram Design”
• “Root Locus Design”
• “Nichols Plot Design”

Automated Tuning Methods
Use automated tuning methods to automatically tune compensators based on your design
specifications.

9 Classical Control Design

9-4

Tuning Method Description Requirements and Limitations
PID Tuning Automatically tune PID gains to

balance performance and robustness or
tune controllers using classical PID
tuning formulas.

Classical PID tuning formulas require a
stable or integrating effective plant.

Optimization
Based Tuning

Optimize compensator parameters
using design requirements specified in
graphical tuning and analysis plots.

Requires Simulink Design Optimization
software.

Tunes the parameters of a previously
defined controller structure.

LQG Synthesis Design a full-order stabilizing feedback
controller as a linear-quadratic-
Gaussian (LQG) tracker.

Maximum controller order depends on
the effective plant dynamics.

Loop Shaping Find a full-order stabilizing feedback
controller with a specified open-loop
bandwidth or shape.

Requires Robust Control Toolbox
software.

Maximum controller order depends on
the effective plant dynamics.

Internal Model
Control (IMC)
Tuning

Obtain a full-order stabilizing feedback
controller using the IMC design
method.

Assumes that your control system uses
an IMC architecture that contains a
predictive model of your plant
dynamics.

Maximum controller order depends on
the effective plant dynamics.

A common design approach is to generate an initial compensator using PID tuning, LQG synthesis,
loop shaping, or IMC tuning. You can then improve the compensator performance using either
optimization-based tuning or graphical tuning.

For more information on automated tuning methods, see “Design Compensator Using Automated
Tuning Methods”.

Effective Plant for Tuning
An effective plant is the system controlled by a compensator that contains all elements of the open
loop in your model other than the compensator you are tuning. The following diagrams show
examples of effective plants:

 Control System Designer Tuning Methods

9-5

Knowing the properties of the effective plant seen by your compensator can help you understand
which tuning methods work for your system. For example, some automated tuning methods apply
only to compensators whose open loops (L = CP

∧
) have stable effective plants (P

∧
). Also, for tuning

methods such as IMC and loop shaping, the maximum controller order depends on the dynamics of
the effective plant.

Tuning Compensators In Simulink
If the compensator in your Simulink model has constraints on its poles, zeros, or gain, you cannot use
LQG synthesis, loop shaping, or IMC tuning. For example, you cannot tune the parameters of a PID
Controller block using these methods. If your application requires controller constraints, use an
alternative automated or graphical tuning method.

Also, any compensator constraints in your Simulink model limit the structure of your tuned
compensator. For example, if you are using PID tuning and you configure your PID Controller block as
a PI controller, your tuned compensator must have a zero derivative parameter.

Select a Tuning Method
To select a tuning method, in Control System Designer, click Tuning Methods.

9 Classical Control Design

9-6

See Also
Control System Designer

Related Examples
• “Bode Diagram Design”
• “Root Locus Design”
• “Nichols Plot Design”
• “Design Compensator Using Automated Tuning Methods”

 Control System Designer Tuning Methods

9-7

What Blocks Are Tunable?

You can tune parameters in the following Simulink blocks using Simulink Control Design software.
The block input and output signals for tunable blocks must have scalar, double-precision values.

Tunable Block Description
Gain Constant gain
LTI System Linear time-invariant system
Discrete Filter Discrete-time infinite impulse response filter
PID Controller One-degree-of-freedom PID controller
Discrete PID Controller Discrete-time one-degree-of-freedom PID controller
State-Space Continuous-time state-space model
Discrete State-Space Discrete-time state-space model
Zero-Pole Continuous-time zero-pole-gain transfer function
Discrete Zero-Pole Discrete-time zero-pole-gain transfer function
Transfer Fcn Continuous-time transfer function model
Discrete Transfer Fcn Discrete-time transfer function model

Additionally, you can tune the linear State-Space, Zero-Pole, and Transfer Fcn blocks in the Simulink
Extras Additional Linear library.

You can tune the following versions of the listed tunable blocks:

• Blocks with custom configuration functions associated with a masked subsystem
• Blocks discretized using the Simulink Model Discretizer

Note If your model contains Model blocks with normal-mode model references to other models, you
can select tunable blocks in the referenced models for compensator design.

See Also
Control System Designer

Related Examples
• “Control System Designer Tuning Methods” on page 9-4

9 Classical Control Design

9-8

Designing Compensators for Plants with Time Delays
You can design compensators for plants with time delays using Simulink Control Design software.
When opened from Simulink, Control System Designer creates a linear model of your plant. Within
this model, you can represent time delays using either Padé approximations or exact delays.

To represent time delays using Padé approximations, specify the Padé order in the Block Parameters
dialog box for each Simulink block with delays.

If you do not specify a Padé order for a block, Control System Designer uses exact delays by default
when possible.

However, the following design methods and plots do not support systems with exact time delays:

• Root locus plots
• Pole-zero maps
• PID automated tuning
• IMC automated tuning
• LQG automated tuning
• Loop shaping automated tuning

 Designing Compensators for Plants with Time Delays

9-9

For these design methods and plots, the app automatically computes a Padé approximation for any
exact delays in your model using a default Padé order.

To specify the default order, in Control System Designer, on the Control System tab, click
Preferences.

In the Control System Designer Preferences dialog box, on the Time Delays tab, specify one of the
following:

• Padé order — Specific Padé order.
• Bandwidth of accuracy — Highest frequency at which the approximated response matches the

exact response. The app computes and displays the corresponding Padé order.

For more information on designing compensators using Control System Designer, see “Control
System Designer Tuning Methods” on page 9-4.

See Also
pade

More About
• “Choose a Control Design Approach” on page 9-2
• “What Blocks Are Tunable?” on page 9-8

9 Classical Control Design

9-10

Design Compensator Using Automated PID Tuning and
Graphical Bode Design

This example shows how to design a compensator for a Simulink model using automated PID tuning
in the Control System Designer app. It then shows how to fine tune the compensator design using
the open-loop Bode editor.

Water Tank Model

Open the watertank_comp_design model.

open_system("watertank_comp_design")

This model contains a water-tank plant model and a PID controller in a single-loop feedback
configuration. To view the water tank model, open the Water-Tank System subsystem.

open_system("watertank_comp_design/Water-Tank System")

This model represents the following water tank system.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-11

Here:

• H is the height of water in the tank.
• Vol is the volume of water in the tank.
• V is the voltage applied to the pump.
• A is the cross-sectional area of the tank.
• b is a constant related to the flow rate into the tank.
• a is a constant related to the flow rate out of the tank.

Water enters the tank from the top at a rate proportional to the voltage applied to the pump. The
water leaves through an opening in the tank base at a rate that is proportional to the square root of
the water height in the tank. The presence of the square root in the water flow rate results in a
nonlinear plant. Based on these flow rates, the rate of change of the tank volume is:

d
dtVol = AdH

dt = bV − a H

Design Requirements
Tune the PID controller to meet the following closed-loop step response design requirements:

• Overshoot less than 5%
• Rise time less than five seconds

Open Control System Designer
To open Control System Designer, in the Simulink model window, in the Apps gallery, click Control
System Designer.

9 Classical Control Design

9-12

Control System Designer opens and automatically opens the Edit Architecture dialog box.

Specify Blocks to Tune
To specify the compensator to tune, in the Edit Architecture dialog box, click Add Blocks.

In the Select Blocks to Tune dialog box, in the left pane, click the Controller subsystem. In the Tune
column, check the box for the PID Controller.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-13

Click OK.

In the Edit Architecture dialog box, the app adds the selected controller block to the list of blocks to
tune on the Blocks tab. On the Signals tab, the app also adds the output of the PID Controller block
to the list of analysis point Locations.

9 Classical Control Design

9-14

When Control System Designer opens, it adds any analysis points previously defined in the
Simulink model to the Locations list. For the watertank_comp_design, there are two such signals.

• Desired Water Level block output — Reference signal for the closed-loop step response
• Water-Tank System block output — Output signal for the closed-loop step response

To linearize the Simulink model and set the control architecture, click OK.

By default, Control System Designer linearizes the plant model at the model initial conditions.

The app adds the PID controller to the data browser, in the Controllers and Fixed Blocks section.
The app also computes the open-loop transfer function at the output of the PID Controller block and
adds this response to the data browser.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-15

Plot Closed-Loop Step Response
To analyze the controller design, create a closed-loop transfer function of the system and plot its step
response.

On the Control System tab, click New Plot, and select New Step.

9 Classical Control Design

9-16

In the New Step dialog box, in the Select Response to Plot drop-down list, select New Input-
Output Transfer Response.

To add an input signal, under Specify input signals, in the Add signal drop-down list, select the
output of the Desired Water Level block.

To add an output signal, under Specify output signals, in the Add signal drop-down list, select the
output of the Water-Tank System block.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-17

To create the closed-loop transfer function and plot the step response, click Plot.

To view the maximum overshoot on the response plot, right-click the plot area, and select
Characteristics > Peak Response.

To view the rise time on the response plot, right-click the plot area, and select Characteristics >
Rise Time.

9 Classical Control Design

9-18

Mouse-over the characteristic indicators to view their values. The current design has a:

• Maximum overshoot of 47.9%.
• Rise time of 2.13 seconds.

This response does not satisfy the 5% overshoot design requirement.

Tune Compensator Using Automated PID Tuning
To tune the compensator using automated PID tuning, click Tuning Methods, and select PID
Tuning.

In the PID Tuning dialog box, in the Specifications section, select the following options:

• Tuning method — Robust response time
• Controller Type — PI

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-19

Click Update Compensator. The app updates the closed-loop response for the new compensator
settings and updates the step response plot.

9 Classical Control Design

9-20

To check the system performance, mouse over the response characteristic markers. The system
response with the tuned compensator has a:

• Maximum overshoot of 13.8%.
• Rise time of 51.2 seconds.

This response exceeds the maximum allowed overshoot of 5%. The rise time is much slower than the
required rise time of five seconds.

Tune Compensator Using Bode Graphical Tuning
To decrease the rise time, interactively increase the compensator gain using graphical Bode Tuning.

To open the open-loop Bode editor, click Tuning Methods, and select Bode Editor.

In the Select response to edit dialog box, the open-loop response at the output of the PID Controller
block is already selected. To open the Bode editor for this response, click Plot.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-21

Tip To view the Bode Editor and Step Response plots side-by-side, in the top-right corner of the
document area, click the arrow and select Tile All > Left/Right.

9 Classical Control Design

9-22

In the Bode Editor plot, drag the magnitude response up to increase the compensator gain. By
increasing the gain, you increase the bandwidth and speed up the response.

As you drag the Bode response upward, the app automatically updates the compensator and the
associated response plots. Also, when you release the plot, the updated gain value displays on the
right side of the app status bar.

Increase the compensator gain until the step response meets the design requirements. One potential
solution is to set the gain to about 1.7.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-23

At this gain value, the closed loop response has a:

• Maximum overshoot of around 4.74%.
• Rise time of around 4.4 seconds.

Fine Tune Controller Using Compensator Editor
To tune the parameters of your compensator directly, use the Compensator Editor. In the Bode
Editor, right-click the plot area, and select Edit Compensator.

In the Compensator Editor dialog box, on the Parameter tab, tune the PID controller gains. For more
information on editing compensator parameters, see “Tune Simulink Blocks Using Compensator
Editor” on page 9-63.

9 Classical Control Design

9-24

While the tuned compensator meets the design requirements, the settling time is over 30 seconds. To
improve the settling time, adjust the P and I parameters of the controller manually.

For example, set the compensator parameters to:

• P = 4
• I = 0.1

This compensator produces a closed-loop response with a:

• Maximum overshoot of 0.744%.
• Rise time of 2.14 seconds.
• Settling time of around three seconds.

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-25

Simulate Closed-Loop System in Simulink
Validate your compensator design by simulating the nonlinear Simulink model with the tuned
controller parameters.

To write the tuned compensator parameters to the PID Controller block, in Control System
Designer, on the Control System tab, click Update Blocks.

In the Simulink model window, run the simulation.

To view the closed-loop simulation output, open the Scope block.

9 Classical Control Design

9-26

The closed-loop response of the nonlinear system satisfies the design requirements with a rise time of
less than five seconds and minimal overshoot.

See Also
Control System Designer

More About
• “Control System Designer Tuning Methods” on page 9-4
• “Analyze Designs Using Response Plots” on page 9-28
• “Update Simulink Model and Validate Design” on page 9-38

 Design Compensator Using Automated PID Tuning and Graphical Bode Design

9-27

Analyze Designs Using Response Plots
This example shows how to analyze your control system designs using the plotting tools in Control
System Designer. There are two types of Control System Designer plots:

• Analysis plots — Use these plots to visualize your system performance and display response
characteristics.

• Editor plots — Use these plots to visualize your system performance and interactively tune your
compensator dynamics using graphical tuning methods.

Analysis Plots
Use analysis plots to visualize your system performance and display response characteristics. You can
also use these plots to compare multiple control system designs. For more information, see “Compare
Performance of Multiple Designs” on page 9-34.

To create a new analysis plot, in Control System Designer, on the Control System tab, click New
Plot, and select the type of plot to add.

In the new plot dialog box, specify an existing or new response to plot.

9 Classical Control Design

9-28

Note Using analysis plots, you can compare the performance of multiple designs stored in the Data
Browser. For more information, see “Compare Performance of Multiple Designs” on page 9-34.

Plot Existing Response

To plot an existing response, in the Select Response to Plot drop-down list, select an existing
response from the data browser. The details for the selected response are displayed in the text box.

To plot the selected response, click Plot.

Plot New Response

To plot a new response, specify the following:

• Select Response to Plot — Select the type of response to create.

• New input-output transfer response — Create a transfer function response for
specified input signals, output signals, and loop openings.

• New open-loop response — Create an open-loop transfer function response at a specified
location with specified loop openings.

• New sensitivity transfer response — Create a sensitivity response at a specified
location with specified loop openings.

• Response Name — Enter a name in the text box.
• Signal selection boxes — Specify signals as inputs, outputs, or loop openings using the Add signal

drop-down lists. If you open Control System Designer from:

• MATLAB — Select a signal using the Architecture block diagram for reference.
• Simulink — Select an existing signal from the current control system architecture, or add a

signal from the Simulink model.

Use , , and to reorder and delete signals.

To add the specified response to the data browser and create the selected plot, click Plot.

Editor Plots
Use editor plots to visualize your system performance and interactively tune your compensator
dynamics using graphical tuning methods.

To create a new editor plot, in Control System Designer, on the Control System tab, click Tuning
Methods, and select one of the Graphical Tuning methods.

 Analyze Designs Using Response Plots

9-29

For examples of graphical tuning using editor plots, see:

• “Bode Diagram Design”
• “Root Locus Design”
• “Nichols Plot Design”

For more information on interactively editing compensator dynamics, see “Edit Compensator
Dynamics”.

Plot Characteristics
On any analysis plot in Control System Designer:

• To see response information and data values, click a line on the plot.

• To view system characteristics, right-click anywhere on the plot, as described in “Frequency-
Domain Characteristics on Response Plots”.

9 Classical Control Design

9-30

Plot Tools
Mouse over any analysis plot to access plot tools at the upper right corner of the plot.

•
 and — Zoom in and zoom out. Click to activate, and drag the cursor over the region to

zoom. The zoom icon turns dark when zoom is active. Right-click while zoom is active to access
additional zoom options. Click the icon again to deactivate.

 Analyze Designs Using Response Plots

9-31

•
 — Pan. Click to activate, and drag the cursor across the plot area to pan. The pan icon turns

dark when pan is active. Right-click while pan is active to access additional pan options. Click the
icon again to deactivate.

•
 — Legend. By default, the plot legend is inactive. To toggle the legend on and off, click this

icon. To move the legend, drag it to a new location on the plot.

To change the way plots are tiled or sorted, click and drag the plots to the desired location.

Design Requirements
You can add graphical representations of design requirements to any editor or analysis plots. These
requirements define shaded exclusion regions in the plot area.

Use these regions as guidelines when analyzing and tuning your compensator designs. To meet a
design requirement, your response plots must remain outside of the corresponding shaded area.

9 Classical Control Design

9-32

To add design requirements to a plot, right-click anywhere on the plot and select Design
Requirements > New.

In the New Design Requirement dialog box, specify the Design requirement type, and define the
Design requirement parameters. Each type of design requirement has a different set of
parameters to configure. For more information on adding design requirements to analysis and editor
plots, see “Design Requirements”.

See Also

More About
• “Control System Designer Tuning Methods” on page 9-4
• “Compare Performance of Multiple Designs” on page 9-34
• “Design Requirements”

 Analyze Designs Using Response Plots

9-33

Compare Performance of Multiple Designs
This example shows how to compare the performance of two different control system designs. Such
comparison is useful, for example, to see the effects of different tuning methods or compensator
structures.

Store First Design

In this example, the first design is the compensator tuned graphically in “Bode Diagram Design”.

After tuning the compensator with this first tuning method, store the design in Control System
Designer.

On the Control System tab, in the Designs section, click Store. The stored design appears in the
Data Browser in the Designs area.

The stored design contains the tuned values of the controller and filter blocks. The app does not store
the values of any fixed blocks.

To rename the stored design, in the data browser, click the design, and specify a new name.

Compute New Design

On the Control System tab, tune the compensator using a different tuning method.

Under Tuning Methods, select PID Tuning.

To design a controller with the default Robust response time specifications, in the PID Tuning
dialog box, click Update Compensator.

9 Classical Control Design

9-34

Compare New Design with Stored Design

Update all plots to reflect both the new design and the stored design.

On the Control System tab, click Compare.

In the Compare Designs drop-down list, the current design is checked by default. To compare a
design with the current design, check the corresponding box. All analysis plots update to reflect the
checked designs. The blue trace corresponds to the current design. Refer to the plot legend to
identify the responses for other designs.

 Compare Performance of Multiple Designs

9-35

Tip To add the legend to the plot, hover over the plot and click the legend icon.

9 Classical Control Design

9-36

To compare a stored design with the current design, the sample times of the current design and
stored design must be the same. To modify the sample time of the current design to match that of a
stored design, on the Control System tab, click Edit Architecture. Then, in the Edit Architecture
dialog box, on the Linearization Options tab, specify the working domain and rate conversion
method.

Restore Previously Saved Design

Under some conditions, it is useful to restore a previously stored design. For example, when
designing a compensator for a Simulink model, you can write the current compensator values to the
model (see “Update Simulink Model and Validate Design” on page 9-38). To test a stored
compensator in your model, first restore the stored design as the current design.

To do so, in Control System Designer, click Retrieve. Select the stored design that you want to
make current.

As with design comparison, to retrieve a stored design, the sample times of the current design and
stored design must be the same.

Note The retrieved design overwrites the current design. If necessary, store the current design
before retrieving a previously stored design.

See Also

More About
• “Analyze Designs Using Response Plots” on page 9-28
• “Control System Designer Tuning Methods” on page 9-4

 Compare Performance of Multiple Designs

9-37

Update Simulink Model and Validate Design
This example shows how to update compensator blocks in a Simulink model and validate a control
system design.

To tune a control system for a nonlinear Simulink model, Control System Designer linearizes the
system. Therefore, it is good practice to validate your tuned control system in Simulink.

1 Tune your control system using Control System Designer.

For an example, see “Design Compensator Using Automated PID Tuning and Graphical Bode
Design” on page 9-11.

2 Insure that the control system satisfies the design requirements.

In Control System Designer, analyze the controller design. For more information, see “Analyze
Designs Using Response Plots” on page 9-28.

3 Write tuned compensator parameters to your Simulink model.

In Control System Designer, on the Control System tab, click Update Blocks.
4 Simulate the updated model.

In the Simulink model window, click .
5 Verify whether your compensator satisfies the design requirements when simulated with your

nonlinear Simulink model.

See Also
Control System Designer

More About
• “Design Compensator Using Automated PID Tuning and Graphical Bode Design” on page 9-11

9 Classical Control Design

9-38

Single Loop Feedback/Prefilter Compensator Design

This example shows how to tune multiple compensators (feedback and prefilter) to control a single
loop using Control System Designer.

Open the Model

Open the engine speed control model and take a few moments to explore it.

open_system('scdspeedctrl')

Design Overview

This example introduces the process of designing a single-loop control system with both feedback and
prefilter compensators. The goal of the design is to:

• Track the reference signal from a Simulink step block scdspeedctrl/Speed Reference. The
design requirement is to have a settling time of under 5 seconds and zero steady-state error to the
step reference input.

• Reject an unmeasured output disturbance specified in the subsystem scdspeedctrl/External
Disturbance. The design requirement is to reduce the peak deviation to 190 RPM and to have
zero steady-state error for a step disturbance input.

In this example, the stabilization of the feedback loop and the rejection of the output disturbance are
achieved by designing the PID compensator scdspeedctrl/PID Controller. The prefilter
scdspeedctrl/Reference Filter is used to tune the response of the feedback system to changes
in the reference tracking.

Open Control System Designer

This example uses Control System Designer to tune the compensators in the feedback system. To
open the Control System Designer

• Launch a pre-configured Control System Designer session by double-clicking the subsystem in
the lower left corner of the model.

• Configure Control System Designer using the following procedure.

 Single Loop Feedback/Prefilter Compensator Design

9-39

Start a New Design

To open Control System Designer, in the Simulink model window, in the Apps gallery, click Control
System Designer.

The Edit Architecture dialog box opens when the Control System Designer launches.

In the Edit Architecture dialog box, on the Blocks tab, click Add Blocks, and select the following
blocks to tune:

• scdspeedctrl/Reference Filter

• scdspeedctrl/PID Controller

On the Signals tab, the analysis points defined in the Simulink model are automatically added as
Locations.

9 Classical Control Design

9-40

• Input: scdspeedctrl/Speed Reference output port 1

• Input scdspeedctrl/External Disturbance/Step Disturbance output port 1

• Output scdspeedctrl/Speed Output output port 1

On the Linearization Options tab, in the Operating Point drop-down list, select Model Initial
Condition.

Create new plots to view the step responses while tuning the controllers. In Control System
Designer, click New Plot, and select New Step. In the Select Response to Plot drop-down menu,
select New Input-Output Transfer Response. Configure the response as follows:

 Single Loop Feedback/Prefilter Compensator Design

9-41

To view the response, click Plot.

Similarly, create a step response plot to show the disturbance rejection. In the New Step to plot
dialog box, configure the response as follows:

9 Classical Control Design

9-42

Tune Compensators

Control System Designer contains several methods tuning a control system:

• Manually tune the parameters of each compensator using the compensator editor. For more
information, see “Tune Simulink Blocks Using Compensator Editor” on page 9-63.

• Graphically tune the compensator poles, zeros, and gains using open/closed-loop Bode, root locus,
or Nichols editor plots. Click Tuning Methods, and select an editor under Graphical Tuning.

• Optimize compensator parameters using both time-domain and frequency-domain design
requirements (requires Simulink Design Optimization™ software). Click Tuning Methods, and
select Optimization based tuning. For more information, see “Enforcing Time and Frequency
Requirements on a Single-Loop Controller Design” (Simulink Design Optimization).

• Compute initial compensator parameters using automated tuning based on parameters such as
closed-loop time constants. Click Tuning Methods, and select either PID Tuning, Internal
Model Control (IMC) Tuning, Loop Shaping (requires Robust Control Toolbox™ software), or
LQG Synthesis.

Completed Design

The following compensator parameters satisfy the design requirements:

• scdspeedctrl/PID Controller has parameters:

 P = 0.0012191
 I = 0.0030038

• scdspeedctrl/Reference Filter:

 Numerator = 10
 Denominator = [1 10]

The responses of the closed-loop system are shown below:

 Single Loop Feedback/Prefilter Compensator Design

9-43

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks. You can then
test your design on the nonlinear model.

bdclose('scdspeedctrl')

See Also
Control System Designer

More About
• “Control System Designer Tuning Methods” on page 9-4
• “Analyze Designs Using Response Plots” on page 9-28

9 Classical Control Design

9-44

Cascaded Multiloop Feedback Design

This example shows how to tune two cascaded feedback loops in Simulink® Control Design™ using
Control System Designer.

This example designs controllers for two cascaded feedback loops in an airframe model such that the
acceleration component (az) tracks reference signals with a maximum rise time of 0.5 seconds. The
feedback loop structure in this example uses the body rate (q) as an inner feedback loop and the
acceleration (az) as an outer feedback loop.

Open the airframe model.

open_system('scdairframectrl')

The two feedback controllers are:

• scdairframectrl/q Control - A discrete-time integrator and a gain block stabilize the inner
loop.

open_system('scdairframectrl/q Control')

 Cascaded Multiloop Feedback Design

9-45

• scdairframectrl/az Control - A discrete-time integrator, a discrete transfer function, and a
gain block stabilize the outer loop.

open_system('scdairframectrl/az Control')

Decoupling Loops in Multiloop Systems

The typical design procedure for cascaded feedback systems is to first design the inner loop and then
the outer loop. In Control System Designer, it is possible to design both loops simultaneously; by
default, when designing a multi-loop feedback system the coupling effects between loops are taken
into account. However, when designing two feedback loops simultaneously, it can be necessary
decouple the feedback loops; that is, remove the effect of the outer loop when tuning the inner loop.
In this example, you design the inner feedback loop (q) with the effect of the outer loop (az) removed.

Configure Control System Designer

To design a controller using Control System Designer, you must:

• Select the controller blocks that you want to tune.
• Create the open-loop and closed-loop responses that you want to view.

For this example, you can:

• Launch a preconfigured Control System Designer session by double-clicking the subsystem in
the lower left corner of the model.

• Configure Control System Designer using the following procedure.

To open Control System Designer, in the Simulink model, in the Apps gallery, click Control
System Designer.

In the Edit Architecture dialog box, on the Blocks tab, click Add Blocks. In the Select Blocks to
Tune dialog box, select the following blocks, and click OK.

• scdairframectrl/q Control/q Gain
• scdairframectrl/az Control/az Gain
• scdairframectrl/az Control/az DTF

On the Signals tab, the analysis points defined in the Simulink model are automatically added as
Locations.

• Input: scdairframectrl/Step az - Output port 1
• Output: scdairframectrl/Airframe Model - Output port 1

9 Classical Control Design

9-46

To use the selected blocks and signals, click OK.

In Control System Designer, in the data browser on the, the Responses section contains the
following open-loop responses, which Control System Designer automatically recognizes as
potential feedback loops for open-loop design.

• Output port 1 of scdairframectrl/az Control/az DTF
• Output port 1 of scdairframectrl/az Control/az Gain
• Output port 1 of scdairframectrl/q Control/q Gain

Open graphical Bode editors for each of the following responses. In Control System Designer,
select Tuning Methods > Bode Editor. Then, in the Select response to edit dialog box, in the
Select response to plot drop-down list, select the corresponding open-loop responses, and click
Plot.

• Open Loop at outport 1 of scdairframectrl/az Control/az DTF

• Open Loop at outport 1 of scdairframectrl/q Control/q Gain

 Cascaded Multiloop Feedback Design

9-47

To view the closed-loop response of the feedback system, create a step plot for a new input-output
transfer function response. Select New Plot > New Step. Then, in the New Step dialog box, in the
Select response to plot drop-down list, select New input-output transfer response.

Add scdairframectrl/Step az/1 as an input signal and scdairframectrl/Airframe
Model/1 as an output signal.

Click Plot.

9 Classical Control Design

9-48

Remove Effect of Outer Feedback Loop

In the outer-loop bode editor plot, Bode Editor for
LoopTransfer_scdairframectrl_az_Control_az_DTF, increase the gain of the feedback loop by
dragging the magnitude response upward. The inner-loop bode editor plot, Bode Editor for
LoopTransfer_scdairframectrl_q_Control_q_Gain, also changes. This change is a result of the
coupling between the feedback loops. A more systematic approach is to first design the inner
feedback loop, with the outer loop open.

To remove the effect of the outer loop when designing the inner loop, add a loop opening to the open-
loop response of the inner loop.

In the data browser, in the Responses area, right-click the inner loop response, and select Open
Selection.

In the Open-Loop Transfer Function dialog box, specify scdairframectrl/az Control/az DTF/1
as the loop opening. Click OK.

 Cascaded Multiloop Feedback Design

9-49

In the outer-loop Bode editor plot, increase the gain by dragging the magnitude response. Since the
loops are decoupled, the inner-loop Bode editor plot does not change.

9 Classical Control Design

9-50

You can now complete the design of the inner loop without the effect of the outer loop and
simultaneously design the outer loop while taking the effect of the inner loop into account.

Tune Compensators

Control System Designer contains several methods tuning a control system:

• Manually tune the parameters of each compensator using the compensator editor. For more
information, see “Tune Simulink Blocks Using Compensator Editor” on page 9-63.

• Graphically tune the compensator poles, zeros, and gains using open/closed-loop Bode, root locus,
or Nichols editor plots. Click Tuning Methods, and select an editor under Graphical Tuning.

• Optimize compensator parameters using both time-domain and frequency-domain design
requirements (requires Simulink Design Optimization™ software). Click Tuning Methods, and
select Optimization based tuning. For more information, see “Enforcing Time and Frequency
Requirements on a Single-Loop Controller Design” (Simulink Design Optimization).

• Compute initial compensator parameters using automated tuning based on parameters such as
closed-loop time constants. Click Tuning Methods, and select either PID Tuning, Internal
Model Control (IMC) Tuning, Loop Shaping (requires Robust Control Toolbox™ software), or
LQG Design.

Complete Design

The following compensator parameters satisfy the design requirements:

 Cascaded Multiloop Feedback Design

9-51

• scdairframectrl/q Control/q Gain:

 K_q = 2.7717622

• scdairframectrl/az Control/az Gain:

 K_az = 0.00027507

• scdairframectrl/az Control/az DTF:

 Numerator = [100.109745 -99.109745]
 Denominator = [1 -0.88893]

The response of the closed-loop system is shown in the following figure.

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks. You can then
test your design on the nonlinear model.

See Also
Control System Designer

9 Classical Control Design

9-52

More About
• “Control System Designer Tuning Methods” on page 9-4
• “Analyze Designs Using Response Plots” on page 9-28
• “Design Multiloop Control System”

 Cascaded Multiloop Feedback Design

9-53

Tune Custom Masked Subsystems

This example shows how to enable custom masked subsystems in Control System Designer. Once
configured, you can tune a custom masked subsystem in the same way as any supported blocks in
Simulink® Control Design™. For more information, see “What Blocks Are Tunable?” on page 9-8

Lead-Lag Library Block

For this example, you tune the Lead-Lag Controller block in the scdexblks library.

open_system('scdexblks')

This block implements a compensator with a single zero, a single pole, and a gain. To configure the
controller, you can specify the following block parameters.

• Gain (K)
• Zero Frequency (Wz)
• Pole Frequency (Wp)

The Lead-Lag Controller block implements the following transfer function.

G(s) = K
s

Wz
+ 1

s
Wp

+ 1

Configure Subsystem for Control System Designer

To configure a masked subsystem for tuning with Control System Designer, you specify a
configuration function. In this example, the block uses the configuration function in
scdleadexample.m. To open this file, at the MATLAB® command line, type edit
scdleadexample.

This function returns a structure with the following fields.

• TunableParameters — Structure array with one element for each tunable parameter (gain,
zero, pole)

• EvalFcn — Handle to function that converts block parameters to zero-pole-gain form
• InvFcn — Handle to function that computes block parameters given zero-pole-gain values
• Constraints — Structure specifying constraints on the block, such as the number of poles and

zeros
• Inport — Port number for the controller input
• Outport — Port number for the controller output

The scdleadexample configuration function specifies the following constraints for the controller
block.

9 Classical Control Design

9-54

• There is only one pole allowed (MaxPoles constraint)
• There is only one zero allowed (MaxZeros constraint)
• The gain is tunable (isStaticGainTunable constraint)

To use a configuration function, specify it as the SCDConfigfcn callback function for the block. To do
so, right-click the Lead-Lag Controller block and select Properties. Then, in the Block Properties
dialog box, on the Callbacks tab, set SCDConfigFcn to scdleadexample.

Alternatively, you can set SCDConfigFcn using the set_param function.

set_param(blockpath,'SCDConfigFcn','scdleadexample')

Once you set the block configuration function, you can tune the controller using Control System
Designer.

 Tune Custom Masked Subsystems

9-55

Speed Control System

The scdspeedctrlleadlag model uses the Lead-Lag Controller block to tune the feedback loop in
“Single Loop Feedback/Prefilter Compensator Design” on page 9-39.

open_system('scdspeedctrlleadlag')

To open Control System Designer, in the Simulink model window, on the Apps tab, in the Apps
gallery, click Control System Designer.

In the Edit Architecture dialog box, on the Blocks tab, click Add Blocks. Then, in the Select Blocks
to Tune dialog box, click Feedback Controller, and select Lead-Lag Controller.

9 Classical Control Design

9-56

Click OK.

In the Edit Architecture dialog box, on the Signals tab, the analysis points defined in the Simulink
model are automatically added as Locations.

 Tune Custom Masked Subsystems

9-57

On the Linearization Options tab, in the Operating Point drop-down list, select Model Initial
Condition.

9 Classical Control Design

9-58

Click OK.

Create new plots to view the step responses while tuning the controllers. In Control System
Designer, select New Plot > New Step.

In the New Step dialog box, in the Select response to plot drop-down menu, select New input-
output transfer response. Configure the response as shown in the following figure.

 Tune Custom Masked Subsystems

9-59

To view the response, click Plot.

Tune Compensator

The Control System Designer app contains four methods to tune a control system.

• Manually tune the parameters of the Lead-Lag Controller using the Compensator Editor. For
more information, see “Tune Simulink Blocks Using Compensator Editor” on page 9-63.

9 Classical Control Design

9-60

• Graphically tune the compensator poles, zeros, and gains using open-loop/closed-loop Bode, root
locus, or Nichols editor plots. Click Tuning Methods, and select an editor under Graphical
Tuning.

• Optimize compensator parameters using both time-domain and frequency-domain design
requirements (requires Simulink Design Optimization™ software). Click Tuning Methods, and
select Optimization Based Tuning. For more information, see “Enforcing Time and Frequency
Requirements on a Single-Loop Controller Design” (Simulink Design Optimization).

• Compute initial compensator parameters using automated tuning based on parameters such as
closed-loop time constants. Click Tuning Methods, and select either PID Tuning, IMC Tuning,
Loop Shaping (requires Robust Control Toolbox™ software), or LQG Design.

Complete Design

The design requirements for the reference step response in “Single Loop Feedback/Prefilter
Compensator Design” on page 9-39 can be met with the following Lead-Lag Controller block
parameters.

• Gain = 0.0075426
• Zero Frequency (rad/s) = 2
• Pole Frequency (rad/s) = 103.59

The following figure shows the closed-loop system response for these controller parameters.

 Tune Custom Masked Subsystems

9-61

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks. You can then
test your design on the nonlinear model.

bdclose('scdexblks')
bdclose('scdspeedctrlleadlag')

See Also
Control System Designer

More About
• “Control System Designer Tuning Methods” on page 9-4
• “Tune Simulink Blocks Using Compensator Editor”
• “Single Loop Feedback/Prefilter Compensator Design” on page 9-39

9 Classical Control Design

9-62

Tune Simulink Blocks Using Compensator Editor

This example shows how to tune Simulink® blocks using the Compensator Editor dialog box in
Control System Designer.

Open the Model

This example uses a model of a speed control system for a sparking ignition engine. The initial
compensator has been designed in a fashion similar to the method shown in “Single Loop Feedback/
Prefilter Compensator Design” on page 9-39.

Open and explore the engine speed control model.

open_system('scdspeedctrl')

Introduction

This example uses the Compensator Editor to tune Simulink blocks. When tuning a block in
Simulink using Control System Designer, you can tune the block parameters directly or you can
tune a zero-pole-gain representation of the block. For example, in the speed control example there is
a PID controller with filtered derivative scdspeedctrl/PID Controller:

 Tune Simulink Blocks Using Compensator Editor

9-63

This block implements the traditional PID with filtered derivative as:

In this block P, I, D, and N are the parameters that are available for tuning. Another approach is to
reformulate the block transfer function to use zero-pole-gain format:

This formulation of poles, zeros, and gains allows for direct graphical tuning on design plots such as
Bode, root locus, and Nichols plots. Additionally, Control System Designer allows for both
representations to be tuned using the Compensator Editor. The tuning of both representations is
available for all supported blocks in Simulink Control Design™. For more information, see “What
Blocks Are Tunable?” on page 9-8.

Open Control System Designer

In this example, to tune the compensators in this feedback system, open a preconfigured Control
System Designer session by double clicking the subsystem in the lower left-hand corner of the
model.

9 Classical Control Design

9-64

Compensator Editor Dialog Box

You can view the representations of the PID compensator using the Compensator Editor dialog box.
To open the Compensator Editor, in the data browser, in the Controllers and Fixed Blocks section,
double-click scdspeedctrl_PID_Controller. In the Compensator Editor dialog box, in the
Compensator section, you can view and edit any of the compensators in your system.

On the Pole-Zero tab, you can add, delete, and edit compensator poles and zeros. Since the PID with
filtered derivative is fixed in structure, the number of poles and zeros is limited to having up to two
zeros, one pole, and an integrator at s = 0.

On the Parameter tab, you can independently tune the P, I, D, and N parameters.

 Tune Simulink Blocks Using Compensator Editor

9-65

Enter new parameters values in the Value column. To interactively tune the parameters, use the
sliders. You can change the slider limits using the Min Value and Max Value columns.

When you change parameter values, any associated editor and analysis plots automatically update.

Complete Design

The design requirements in “Single Loop Feedback/Prefilter Compensator Design” on page 9-39 can
be met with the following controller parameters:

• scdspeedctrl/PID Controller:

 P = 0.0012191
 I = 0.0030038

• scdspeedctrl/Reference Filter:

 Numerator = 10
 Denominator = [1 10]

In the Compensator Editor dialog box, specify these parameters. Then, in Control System Designer,
view the closed-loop responses.

9 Classical Control Design

9-66

Update Simulink Model

To write the compensator parameters back to the Simulink model, click Update Blocks. You can then
test your design on the nonlinear model.

bdclose('scdspeedctrl')

See Also
Control System Designer

More About
• “Edit Compensator Dynamics”
• “Update Simulink Model and Validate Design” on page 9-38
• “Control System Designer Tuning Methods” on page 9-4
• “Analyze Designs Using Response Plots” on page 9-28

 Tune Simulink Blocks Using Compensator Editor

9-67

Reference Tracking of DC Motor with Parameter Variations

This example shows how to generate an array of LTI models that represent the plant variations of a
control system from a Simulink® model. This array of models is used in Control System Designer
for control design.

DC Motor Model

In armature-controlled DC motors, the applied voltage Va controls the angular velocity of the shaft.
A simplified model of the DC motor is shown below.

Open the Simulink model for the DC motor.

mdl = 'scdDCMotor';
open_system(mdl)

9 Classical Control Design

9-68

Perform Batch Linearization

The goal of the controller is to provide tracking to step changes in reference angular velocity.

For this example, the physical constants for the motor are:

• R = 2.0 +/- 10% Ohms
• L = 0.5 Henrys
• Km = 0.1 Torque constant
• Kb = 0.1 Back emf constant
• Kf = 0.2 Nms
• J = 0.02 +/- .01 kg m^2

Note that parameters R and J are specified as a range of values.

To design a controller which will work for all physical parameter values, create a representative set of
plants by sampling these values.

For parameters R and J, use their nominal, minimum, and maximum values.

R = [2,1.8,2.2];
J = [.02,.03,.01];

To create an LTI array of plant models, batch linearize the DC motor plant. For each combination of
the sample values of R and J, linearize the Simulink model. To do so, specify a linearization input
point at the output of the controller block and a linearization output point with a loop opening at the
output of the load block as shown in the model.

Get the linearization analysis points specified in the model.

io = getlinio(mdl);

Vary the plant parameters R and J.

[R_grid,J_grid] = ndgrid(R,J);
params(1).Name = 'R';
params(1).Value = R_grid;
params(2).Name = 'J';
params(2).Value = J_grid;

Linearize the model for each parameter value combination.

sys = linearize(mdl,io,params);

 Reference Tracking of DC Motor with Parameter Variations

9-69

Open Control System Designer

Open Control System Designer, and import the array of plant models. using the following
command.

controlSystemDesigner(sys)

Using Control System Designer, you can design a controller for the nominal plant model while
simultaneously visualizing the effect on the other plant models as shown below.

The root locus editor displays the root locus for the nominal model and the closed-loop pole locations
associated with the other plant models.

The Bode editor displays both the nominal model response and the responses of the other plant
models.

To view the step responses for all the plant models, right-click the Step Response plot and select
Multimodel Display > Individual Responses. The step responses show that reference tracking is
not achieved for any of the plant models.

9 Classical Control Design

9-70

Design Controller

Using the tools in Control System Designer, design the following compensator for reference
tracking.

The resulting design is shown below. The closed-loop step response shows that the goal of reference
tracking is achieved with zero steady-state error for all models defined in the plant set. However, if a
zero percent overshoot requirement is necessary, not all responses would satisfy this requirement.

Export Design and Validate in Simulink Model

To export the designed controller to the MATLAB® workspace, click Export. In the Export Model
dialog box, select C, and click Export. Write the controller parameters to the Simulink model.

[Cnum,Cden] = tfdata(C,'v');
hws = get_param(mdl, 'modelworkspace');
assignin(hws,'Cnum',Cnum)
assignin(hws,'Cden',Cden)

 Reference Tracking of DC Motor with Parameter Variations

9-71

More Information

For more information on using the multimodel features of Control System Designer, see
“Multimodel Control Design”.

See Also
Control System Designer

Related Examples
• “Control System Designer Tuning Methods” on page 9-4
• “Analyze Designs Using Response Plots” on page 9-28

9 Classical Control Design

9-72

Regulate Pressure in Drum Boiler

This example shows how to use Simulink® Control Design™ software, using a drum boiler as an
example application. Using the operating point search function, the example illustrates model
linearization as well as subsequent state observer and LQR design. In this drum-boiler model, the
control problem is to regulate boiler pressure in the face of random heat fluctuations from the
furnace by adjusting the feed water flow rate and the nominal heat applied. For this example, 95% of
the random heat fluctuations are less than 50% of the nominal heating value, which is not unusual for
a furnace-fired boiler.

Open the Model

Open the Simulink model.

mdl = 'Boiler_Demo';
open_system(mdl)

When you open boiler control model the software initializes the controller sizes. u0 and y0 are set
after the operating point computation and are therefore initially set to zero. The observer and
regulator are computed during the controller design step and are also initially set to zero.

Find Nominal Operating Point and Linearize Model

The model initial state values are defined in the Simulink model. Using these state values, find the
steady-state operating point using the findop function.

Create an operating point specification where the state values are known.

opspec = operspec(mdl);
opspec.States(1).Known = 1;
opspec.States(2).Known = 1;
opspec.States(3).Known = [1;1];

 Regulate Pressure in Drum Boiler

9-73

Adjust the operating point specification to indicate that the inputs must be computed and that they
are lower-bounded.

opspec.Inputs(1).Known = [0;0]; % Inputs unknown
opspec.Inputs(1).Min = [0;0]; % Input minimum value

Add an output specification to the operating point specification; this is necessary to ensure that the
output operating point is computed during the solution process.

opspec = addoutputspec(opspec,[mdl '/Boiler'],1);
opspec.Outputs(1).Known = 0; % Outputs unknown
opspec.Outputs(1).Min = 0; % Output minimum value

Compute the operating point, and generate an operating point search report.

[opSS,opReport] = findop(mdl,opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model Boiler_Demo.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) Boiler_Demo/Boiler/Steam volume
 5.6 5.6 5.6 0 7.8501e-13 0
(2.) Boiler_Demo/Boiler/Temperature
 180 180 180 0 -5.9262e-14 0
(3.) Boiler_Demo/Observer/Internal
 0 0 0 0 0 0
 0 0 0 0 0 0

Inputs:

 Min u Max
___________ ___________ ___________

(1.) Boiler_Demo/Input
 0 241069.0782 Inf
 0 100.1327 Inf

Outputs:

 Min y Max
________ ________ ________

(1.) Boiler_Demo/Boiler
 0 1002.381 Inf

9 Classical Control Design

9-74

Before linearizing the model around this point, specify the input and output signals for the linear
model. First, specify the input points for linearization.

Boiler_io(1) = linio([mdl '/Sum'],1,'input');
Boiler_io(2) = linio([mdl '/Demux'],2,'input');

Next, specify the open-loop output points for linearization.

Boiler_io(3) = linio([mdl '/Boiler'],1,'openoutput');
setlinio(mdl,Boiler_io);

Find a linear model around the chosen operating point.

Lin_Boiler = linearize(mdl,opSS,Boiler_io);

Finally, using the minreal function, make sure that the model is a minimum realization.

Lin_Boiler = minreal(Lin_Boiler);

1 state removed.

Design Regulator and State Observer

Using this linear model, design an LQR regulator and Kalman filter state observer. First, find the
controller offsets to make sure that the controller is operating around the chosen linearization point
by retrieving the computed operating point.

u0 = opReport.Inputs.u;
y0 = opReport.Outputs.y;

Now, design the regulator using the lqry function. Tight regulation of the output is required while
input variation should be limited.

Q = diag(1e8); % Output regulation
R = diag([1e2,1e6]); % Input limitation
[K,S,E] = lqry(Lin_Boiler,Q,R);

Design the Kalman state observer using the kalman function. For this example, the main noise source
is process noise. The noise enters the system only through one input, hence the form of G and H.

[A,B,C,D] = ssdata(Lin_Boiler);
G = B(:,1);
H = 0;
QN = 1e4;
RN = 1e-1;
NN = 0;
[Kobsv,L,P] = kalman(ss(A,[B G],C,[D H]),QN,RN);

Simulate Model

Simulate the model for the designed controller.

sim(mdl)

Plot the process input and output signals. The following figure shows the feed water actuation signal
in kg/s.

plot(FeedWater.time/60,FeedWater.signals.values)
title('Feedwater flow rate [kg/s]');

 Regulate Pressure in Drum Boiler

9-75

ylabel('Flow [kg/s]')
xlabel('time [min]')
grid on

The following plot shows the heat actuation signal in kJ.

plot(Heat.time/60,Heat.signals.values/1000)
title('Applied heat [kJ]');
ylabel('Heat [kJ]')
xlabel('time [min]')
grid on

9 Classical Control Design

9-76

The next figure shows the heat disturbance in kJ. The disturbance varies by as much as 50% of the
nominal heat value.

plot(HeatDist.time/60,HeatDist.signals.values/1000)
title('Heat disturbance [kJ]');
ylabel('Heat [kJ]')
xlabel('time [min]')
grid on

 Regulate Pressure in Drum Boiler

9-77

The figure below shows the corresponding drum pressure in kPa. The pressure varies by about 1% of
the nominal value even though the disturbance is relatively large.

plot(DrumPressure.time/60,DrumPressure.signals.values)
title('Drum pressure [kPa]');
ylabel('Pressure [kPa]')
xlabel('time [min]')
grid on

bdclose(mdl)

9 Classical Control Design

9-78

See Also
kalman | lqry | findop | linearize

Related Examples
• “Kalman Filtering”
• “Linear-Quadratic-Gaussian (LQG) Design”

 Regulate Pressure in Drum Boiler

9-79

Model Computational Delay and Sampling Effects

This example shows how to model computational delay and sampling effects using Simulink® Control
Design™ software.

Computational delays and sampling effects can critically effect the performance of a control system.
Typically, the closed-loop responses of a system become oscillatory and unstable if these factors are
not taken into account. Therefore, when modeling a control system, you should include computational
delays and sampling effects to accurately design and simulate a closed-loop system.

There are two approaches for designing compensators with the effects of computational delay and
sampling. The first approach is to design a controller in the discrete domain to capture the effects of
sampling by discretizing the plant. The second approach is to design a controller in the continuous
domain. This approach is sometimes more convenient, but in this case you must account for the
effects of computational delay and sampling. In this example, you apply both approaches to redesign
a control system using Simulink Control Design software.

Simulate Discrete and Continuous Controllers

In the following example model, the initial compensator has the following gains from the compensator
in the example “Single Loop Feedback/Prefilter Compensator Design” on page 9-39.

P = 0.0018222
I = 0.0052662

The first model has a discrete implementation of the control system.

mdl = 'scdspeed_compdelay';
open_system(mdl)

In this model, the Computational Delay block models the effects of the computational delay. The delay
is equal to the sample time of the controller, which is the worst case. The Zero-Order Hold block
models the effect of sampling on the response of the system. Finally, the speed controller, which is
implemented using a PID Controller block, is discretized using a Forward Euler sampling method.

You can see the effect of the sampling by simulating the response of the system.

First, discretize the controller with a sample time of Ts = 0.1 seconds and simulate the model.

9 Classical Control Design

9-80

Ts = 0.1;
sim(mdl);
T2 = simout.time;
Y2 = simout.signals.values;

Next, simulate the model with an increased sample time of Ts = 0.25 seconds.

Ts = 0.25;
sim(mdl);
T3 = simout.time;
Y3 = simout.signals.values;

The second model is a continuous model.

mdl_continuous = 'scdspeed_contcomp';
open_system(mdl_continuous)

Simulate the response of the continuous model.

sim(mdl_continuous);
T1 = simout.time;
Y1 = simout.signals.values;

Plot the simulation of both the discrete and continuous models. The response becomes more
oscillatory as the sample time increases.

plot(T1,Y1,'k',T2,Y2,'r',T3,Y3,'g')
xlabel('Time (sec.)')
ylabel('Engine Speed Response')
legend('Continuous Controller','Ts = 0.1','Ts = 0.25')
grid

 Model Computational Delay and Sampling Effects

9-81

Design Compensator in Discrete Domain

To remove the oscillatory effects of the closed-loop system with the slowest sample time of Ts = 0.25,
you must redesign the compensator.

First, redesign the controller using a discretized version of the plant. You can redesign the
compensator in a fashion similar to “Single Loop Feedback/Prefilter Compensator Design” on page 9-
39. The tuned compensator has the following gains.

P = 0.00066155
I = 0.0019118795

set_param('scdspeed_compdelay/PID Controller','P','0.00066155')
set_param('scdspeed_compdelay/PID Controller','I','0.0019118795')

Simulate the resulting closed-loop system with a sample time of Ts = 0.25 seconds. You examine
these results later in the example.

Ts = 0.25;
sim(mdl);
Td = simout.time;
Yd = simout.signals.values;

Account for Delays and Sampling in Continuous Domain

As a second approach, redesign the controller with the continuous equivalents of the unit delay and
zero-order hold.

9 Classical Control Design

9-82

For this example, use the following zero-order hold dynamics.

To specify these dynamics in the model, right-click the Zero-Order Hold block and select Linear
Analysis > Specify Selected Block Linearization. In the Block Linearization dialog box, specify
the expression for the zero-order hold dynamics.

Equivalently, you can specify the block linearization using the following code.

zohblk = 'scdspeed_compdelay/Zero-Order Hold';
set_param(zohblk,'SCDEnableBlockLinearizationSpecification','on')
rep = struct('Specification','(1-ss(1,''InputDelay'',Ts))*ss(0,1,1,0)/Ts',...
 'Type','Expression',...
 'ParameterNames','',...
 'ParameterValues','');
set_param(zohblk,'SCDBlockLinearizationSpecification',rep)

Specify the linearization of the Computational Delay using a continuous transport delay.

Specify the linearization for the delay block using the following code.

delayblk = 'scdspeed_compdelay/Computational Delay';
set_param(delayblk,'SCDEnableBlockLinearizationSpecification','on')
rep = struct('Specification','ss(1,''InputDelay'',Ts)',...
 'Type','Expression',...
 'ParameterNames','',...
 'ParameterValues','');
set_param(delayblk,'SCDBlockLinearizationSpecification',rep)

With the continuous-time models for the delay and sampling effects, the analysis of the controller
design then remains in the continuous domain.

Next, you linearize the model with delays of Ts = 0.1 and 0.25 seconds. To do so, first set the input
and output linear analysis points.

io(1) = linio('scdspeed_compdelay/PID Controller',1,'input');
io(2) = linio('scdspeed_compdelay/Zero-Order Hold',1,'openoutput');

Linearize the model at Ts = 0.1.

Ts = 0.1;
sys2 = linearize(mdl,io);

Linearize the model at Ts = 0.25.

 Model Computational Delay and Sampling Effects

9-83

Ts = 0.25;
sys3 = linearize(mdl,io);

Finally, linearize the model without the effects of sampling and the computational delay.

io(1) = linio('scdspeed_contcomp/PID Controller',1,'input');
io(2) = linio('scdspeed_contcomp/rad//s to rpm',1,'openoutput');
sys1 = linearize(mdl_continuous,io);

You can use the linear models of the engine to examine the effects of the computational delay on the
frequency response. In this case, the phase response of the system is significantly reduced due to the
delay introduced by sampling.

p = bodeoptions('cstprefs');
p.Grid = 'on';
p.PhaseMatching = 'on';
bodeplot(sys1,'k',sys2,'r',sys3,'g', {1e-2,1e2},p)
legend('Continuous Model','Ts = 0.1','Ts = 0.25','Location','southwest')

Using the model with the slowest sample time, redesign the compensator using the techniques in
“Single Loop Feedback/Prefilter Compensator Design” on page 9-39. Doing so gives the following PI
Gains.

P = 0.00065912
I = 0.001898342

Set these gains in the controller.

9 Classical Control Design

9-84

set_param('scdspeed_compdelay/PID Controller','P','0.00065912')
set_param('scdspeed_compdelay/PID Controller','I','0.001898342')

Simulate the resulting closed-loop system with a sample time Ts = 0.25.

sim(mdl)
Tc = simout.time;
Yc = simout.signals.values;

Compare Responses

Plot the responses of the design. The redesign of the control system using both approaches yields
similar controllers. This example shows the effects of the computational delay and discretization.
These effects reduce the stability margins of the system, but when you properly model a control
system you can achieve the desired closed-loop behavior.

plot(T1,Y1,'k',T3,Y3,'b',Td,Yd,'m',Tc,Yc,'r')
xlabel('Time (sec.)')
ylabel('Engine Speed Response')
legend('Continuous compensator (original)','Discrete compensator (original)', ...
 'Discrete compensator (discrete redesign)',...
 'Discrete compensator (continuous redesign)',...
 'Location','southeast')
grid

 Model Computational Delay and Sampling Effects

9-85

bdclose('scdspeed_contcomp')
bdclose('scdspeed_compdelay')

See Also
Control System Designer

Related Examples
• “Designing Compensators for Plants with Time Delays” on page 9-9
• “Control System Designer Tuning Methods” on page 9-4
• “Single Loop Feedback/Prefilter Compensator Design” on page 9-39

9 Classical Control Design

9-86

Control System Tuning

• “Automated Tuning Overview” on page 10-3
• “Choosing an Automated Tuning Approach” on page 10-4
• “Automated Tuning Workflow” on page 10-6
• “Specify Control Architecture in Control System Tuner” on page 10-7
• “Open Control System Tuner for Tuning Simulink Model” on page 10-10
• “Specify Operating Points for Tuning in Control System Tuner” on page 10-11
• “Specify Blocks to Tune in Control System Tuner” on page 10-17
• “View and Change Block Parameterization in Control System Tuner” on page 10-19
• “Setup for Tuning Control System Modeled in MATLAB” on page 10-25
• “How Tuned Simulink Blocks Are Parameterized” on page 10-26
• “Specify Goals for Interactive Tuning” on page 10-28
• “Quick Loop Tuning of Feedback Loops in Control System Tuner” on page 10-33
• “Quick Loop Tuning” on page 10-41
• “Step Tracking Goal” on page 10-44
• “Step Rejection Goal” on page 10-49
• “Transient Goal” on page 10-53
• “LQR/LQG Goal” on page 10-58
• “Gain Goal” on page 10-62
• “Variance Goal” on page 10-66
• “Reference Tracking Goal” on page 10-70
• “Overshoot Goal” on page 10-75
• “Disturbance Rejection Goal” on page 10-79
• “Sensitivity Goal” on page 10-84
• “Weighted Gain Goal” on page 10-88
• “Weighted Variance Goal” on page 10-91
• “Minimum Loop Gain Goal” on page 10-95
• “Maximum Loop Gain Goal” on page 10-100
• “Loop Shape Goal” on page 10-105
• “Margins Goal” on page 10-110
• “Passivity Goal” on page 10-114
• “Conic Sector Goal” on page 10-118
• “Weighted Passivity Goal” on page 10-123
• “Poles Goal” on page 10-127
• “Controller Poles Goal” on page 10-131
• “Manage Tuning Goals” on page 10-134

10

• “Generate MATLAB Code from Control System Tuner for Command-Line Tuning” on page 10-135
• “Interpret Numeric Tuning Results” on page 10-138
• “Visualize Tuning Goals” on page 10-141
• “Create Response Plots in Control System Tuner” on page 10-147
• “Examine Tuned Controller Parameters in Control System Tuner” on page 10-152
• “Compare Performance of Multiple Tuned Controllers” on page 10-154
• “Create and Configure slTuner Interface to Simulink Model” on page 10-157
• “Stability Margins in Control System Tuning” on page 10-161
• “Tune Control System at the Command Line” on page 10-166
• “Speed Up Tuning with Parallel Computing Toolbox Software” on page 10-167
• “Validate Tuned Control System” on page 10-168
• “Extract Responses from Tuned MATLAB Model at the Command Line” on page 10-171

10 Control System Tuning

10-2

Automated Tuning Overview
The control system tuning tools such as systune and Control System Tuner automatically tune
control systems from high-level tuning goals you specify, such as reference tracking, disturbance
rejection, and stability margins. The software jointly tunes all the free parameters of your control
system regardless of control system architecture or the number of feedback loops it contains. For
example, the model of the following illustration represents a multiloop control system for a helicopter.

This control system includes a number of fixed elements, such as the helicopter model itself and the
roll-off filters. The inner control loop provides static output feedback for decoupling. The outer loop
includes PI controllers for setpoint tracking. The tuning tools jointly optimize the gains in the SOF and
PI blocks to meet setpoint tracking, stability margin, and other requirements that you specify. These
tools allow you to specify any control structure and designate which blocks in your system are
tunable.

Control systems are tuned to meet your specific performance and robustness goals subject to
feasibility constraints such as actuator limits, sensor accuracy, computing power, or energy
consumption. The library of tuning goals lets you capture these objectives in a form suitable for fast
automated tuning. This library includes standard control objectives such as reference tracking,
disturbance rejection, loop shapes, closed-loop damping, and stability margins. Using these tools, you
can perform multi-objective tuning of control systems having any structure.

See Also
systune | Control System Designer

More About
• “Choosing an Automated Tuning Approach” on page 10-4
• “Automated Tuning Workflow” on page 10-6

 Automated Tuning Overview

10-3

Choosing an Automated Tuning Approach
You can tune control systems at the MATLAB command line or using the Control System Tuner app.

Control System Tuner provides an interactive graphical interface for specifying your tuning goals
and validating the performance of the tuned control system.

Use Control System Tuner to tune control systems consisting of any number of feedback loops, with
tunable components having any structure (such as PID, gain block, or state-space). You can represent
your control architecture in MATLAB as a tunable generalized state-space (genss) model. If you have
Simulink Control Design software, you can tune a control system represented by a Simulink model.
Use the graphical interface to configure your tuning goals, examine response plots, and validate your
controller design.

The systune command can perform all the same tuning tasks as Control System Tuner. Tuning at
the command line allows you to write scripts for repeated tuning tasks. systune also provides
advanced techniques such as tuning a controller for multiple plants, or designing gain-scheduled
controllers. To use the command-line tuning tools, you can represent your control architecture in
MATLAB as a tunable generalized state-space (genss) model. If you have Simulink Control Design
software, you can tune a control system represented by a Simulink model using an slTuner
interface. Use the TuningGoal requirement objects to configure your tuning goals. Analysis
commands such as getIOTransfer and viewGoal let you examine and validate the performance of
your tuned system.

10 Control System Tuning

10-4

See Also
systune | Control System Designer

More About
• “Automated Tuning Workflow” on page 10-6

 Choosing an Automated Tuning Approach

10-5

Automated Tuning Workflow
Whether you are tuning a control system at the command line or using Control System Tuner, the
basic workflow includes the following steps:

1 Define your control architecture, by building a model of your control system from fixed-value
blocks and blocks with tunable parameters. You can do so in one of several ways:

• Create a Simulink model of your control system. (Tuning a Simulink model requires Simulink
Control Design software.)

• Use a predefined control architecture available in Control System Tuner.
• At the command line, build a tunable genss model of your control system out of numeric LTI

models and tunable control design blocks.

For more information, see “Specify Control Architecture in Control System Tuner” on page 10-
7.

2 Set up your model for tuning.

• In Control System Tuner, identify which blocks of the model you want to tune. See Model
Setup for Control System Tuner.

• If tuning a Simulink model at the command line, create and configure the slTuner interface
to the model. See Model Setup for Tuning at the Command Line.

3 Specify your tuning goals. Use the library of tuning goals to capture requirements such as
reference tracking, disturbance rejection, stability margins, and more.

• In Control System Tuner, use the graphical interface to specify tuning goals. See Tuning
Goals (Control System Tuner).

• At the command-line, use the TuningGoal requirement objects to specify your tuning goals.
See Tuning Goals (programmatic tuning).

4 Tune the model. Use the systune command or Control System Tuner to optimize the tunable
parameters of your control system to best meet your specified tuning goals. Then, analyze the
tuned system responses and validate the design. Whether at the command line or in Control
System Tuner, you can plot system responses to examine any aspects of system performance
you need to validate your design.

• For tuning and validating in Control System Tuner, see Tuning, Analysis, and Validation
(Control System Tuner).

• For tuning at the command line, see Tuning, Analysis, and Validation (programmatic tuning).

10 Control System Tuning

10-6

Specify Control Architecture in Control System Tuner
About Control Architecture
Control System Tuner lets you tune a control system having any architecture. Control system
architecture defines how your controllers interact with the system under control. The architecture
comprises the tunable control elements of your system, additional filter and sensor components, the
system under control, and the interconnections among all these elements. For example, a common
control system architecture is the single-loop feedback configuration of the following illustration:

G is the plant model, and H the sensor dynamics. These are usually the fixed components of the
control system. The prefilter F and feedback controller C are the tunable elements. Because control
systems are so conveniently expressed in this block diagram form, these elements are referred to as
fixed blocks and tunable blocks.

Control System Tuner gives you several ways to define your control system architecture:

• Use the predefined feedback structure of the illustration.
• Model any control system architecture in MATLAB by building a generalized state-space (genss)

model from fixed LTI components and tunable control design blocks.
• Model your control system in Simulink and specify the blocks to tune in Control System Tuner

(requires Simulink Control Design software).

Predefined Feedback Architecture
If your control system has the single-loop feedback configuration of the following illustration, use the
predefined feedback structure built into Control System Tuner.

For example, suppose you have a DC motor for which you want to tune a PID controller. The response
of the motor is modeled as G(s) = 1/(s + 1)2. Create a fixed LTI model representing the plant, and a
tunable PID controller model.

Gmot = zpk([],[-1,-1],1);
Cmot = tunablePID('Cmot','PID');

Open Control System Tuner.

controlSystemTuner

Control System Tuner opens, set to tune this default architecture. Next, specify the values of the

blocks in the architecture. Click to open the Standard feedback configuration dialog box.

 Specify Control Architecture in Control System Tuner

10-7

Enter the values for C and G that you created. Control System Tuner reads these values from the
MATLAB workspace. Click OK.

The default value for the sensor dynamics is a fixed unity-gain transfer function. The default value for
the filter F is a tunable gain block.

You can now select blocks to tune, create tuning goals, and tune the control system.

Arbitrary Feedback Control Architecture
If your control architecture does not match the predefined control architecture of Control System
Tuner, you can create a generalized state-space (genss) model with tunable components
representing your controller elements. For example, suppose you want to tune the cascaded control
system of the following illustration, that includes two tunable PID controllers.

.

Create tunable control design blocks for the controllers, and fixed LTI models for the plant
components, G1 and G2. Also include optional loop-opening locations x1 and x2. These locations
indicate where you can open loops or inject signals for the purpose of specifying requirements for
tuning the system.

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

10 Control System Tuning

10-8

C20 = tunablePID('C2','pi');
C10 = tunablePID('C1','pid');

X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');

Connect these components to build a model of the entire closed-loop control system.

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and output channels allows you to
identify them when you specify tuning requirements for the system.

Open Control System Tuner to tune this model.

controlSystemTuner(CL0)

You can now select blocks to tune, create tuning goals, and tune the control system.

Control System Architecture in Simulink
If you have Simulink Control Design software, you can model an arbitrary control system architecture
in a Simulink model and tune the model in Control System Tuner.

See “Open Control System Tuner for Tuning Simulink Model” on page 10-10.

See Also

More About
• “Building Tunable Models”
• “Specify Blocks to Tune in Control System Tuner” on page 10-17
• “Specify Goals for Interactive Tuning” on page 10-28

 Specify Control Architecture in Control System Tuner

10-9

Open Control System Tuner for Tuning Simulink Model
To open Control System Tuner for tuning a Simulink model, open the model. In the Simulink model
window, in the Apps gallery, click Control System Tuner.

Each instance of Control System Tuner is linked to the Simulink model from which it is opened. The
title bar of the Control System Tuner window reflects the name of the associated Simulink model.

Command-Line Equivalents
At the MATLAB command line, use the controlSystemTuner command to open Control System
Tuner for tuning a Simulink model. For example, the following command opens Control System
Tuner for the model rct_helico.slx.

controlSystemTuner('rct_helico')

If SLT0 is an slTuner interface to the Simulink model, the following command opens Control
System Tuner using the information in the interface, such as blocks to tune and analysis points.

controlSystemTuner(SLT0)

See Also

Related Examples
• “Specify Operating Points for Tuning in Control System Tuner” on page 10-11
• “Specify Blocks to Tune in Control System Tuner” on page 10-17

More About
• “Automated Tuning Workflow” on page 10-6

10 Control System Tuning

10-10

Specify Operating Points for Tuning in Control System Tuner

About Operating Points in Control System Tuner
When you use Control System Tuner with a Simulink model, the software computes system
responses and tunes controller parameters for a linearization of the model. That linearization can
depend on model operating conditions.

By default, Control System Tuner linearizes at the operating point specified in the model, which
comprises the initial state values in the model (the model initial conditions). You can specify one or
more alternate operating points for tuning the model. Control System Tuner lets you compute two
types of alternate operating points:

• Simulation snapshot time. Control System Tuner simulates the model for the amount of time you
specify, and linearizes using the state values at that time. Simulation snapshot linearization is
useful, for instance, when you know your model reaches an equilibrium state after a certain
simulation time.

• Steady-state operating point. Control System Tuner finds a steady-state operating point at which
some specified condition is met (trimming). For example, if your model represents an automobile
motor, you can compute an operating point at which the motor operates steadily at 2000 rpm.

For more information on finding steady-state operating points, see “About Operating Points” on page
1-2 and “Compute Steady-State Operating Points” on page 1-5.

Linearize at Simulation Snapshot Times
This example shows how to compute linearizations at one or more simulation snapshot times.

In the Control System tab, in the Operating Point menu, select Linearize At.

In the Enter snapshot times to linearize dialog box, specify one or more simulation snapshot
times. Click OK.

 Specify Operating Points for Tuning in Control System Tuner

10-11

When you are ready to analyze system responses or tune your model, Control System Tuner
computes linearizations at the specified snapshot times. If you enter multiple snapshot times,
Control System Tuner computes an array of linearized models, and displays analysis plots that
reflect the multiple linearizations in the array. In this case, Control System Tuner also takes into
account all linearizations when tuning parameters. This helps to ensure that your tuned controller
meets your design requirements at a variety of operating conditions.

Compute Operating Points at Simulation Snapshot Times
This example shows how to compute operating points at one or more simulation snapshot times.
Doing so stores the operating point within Control System Tuner. When you later want to analyze
or tune the model at a stored operating point, you can select the stored operating point from the
Operating Point menu.

In the Control System tab, in the Operating Point menu, select Take simulation snapshot.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field,
enter one or more simulation snapshot times. Enter multiple snapshot times as a vector.

10 Control System Tuning

10-12

Click Take Snapshots. Control System Tuner simulates the model and computes the snapshot
operating points.

Compute additional snapshot operating points if desired. Enter additional snapshot times and click

 Take Snapshots. Close the dialog box when you are done.

When you are ready to analyze responses or tune your model, select the operating point at which you
want to linearize the model. In the Control System tab, in the Operating Point menu, stored
operating points are available.

 Specify Operating Points for Tuning in Control System Tuner

10-13

If you entered a vector of snapshot times, all the resulting operating points are stored together in an
operating-point vector. You can use this vector to tune a control system at several operating points
simultaneously.

Compute Steady-State Operating Points
This example shows how to compute a steady-state operating point with specified conditions. Doing
so stores the operating point within Control System Tuner. When you later want to analyze or tune
the model at a stored operating point, you can select the stored operating point from the Operating
Point menu.

In the Control System tab, in the Operating Point menu, select Trim model.

10 Control System Tuning

10-14

In the Trim the model dialog box, enter the specifications for the steady-state state values at which
you want to find an operating point.

For an example showing how to use the Trim the model dialog box to specify the conditions for a
steady-state operating point search, see “Compute Operating Points from Specifications Using Model
Linearizer” on page 1-30.

When you have entered your state specifications, click Start trimming. Control System Tuner
finds an operating point that meets the state specifications and stores it.

When you are ready to analyze responses or tune your model, select the operating point at which you
want to linearize the model. In the Control System tab, in the Operating Point menu, stored
operating points are available.

 Specify Operating Points for Tuning in Control System Tuner

10-15

See Also

Related Examples
• “Specify Blocks to Tune in Control System Tuner” on page 10-17
• “Robust Tuning Approaches” (Robust Control Toolbox)

10 Control System Tuning

10-16

Specify Blocks to Tune in Control System Tuner

To select which blocks of your Simulink model to tune in Control System Tuner:

1 In the Tuning tab, click Select Blocks. The Select tuned Blocks dialog opens.
2 Click Add Blocks. Control System Tuner analyzes your model to find blocks that can be tuned.
3 In the Select Blocks to Tune dialog box, use the nodes in the left panel to navigate through

your model structure to the subsystem that contains blocks you want to tune. Check Tune? for
the blocks you want to tune. The parameters of blocks you do not check remain constant when
you tune the model.

Tip To find a block in your model, select the block in the Block Name list and click Highlight
Selected Block.

4 Click OK. The Select tuned blocks dialog box now reflects the blocks you added.

To import the current value of a block from your model into the current design in Control System
Tuner, select the block in the Blocks list and click Sync from Model. Doing so is useful when you
have tuned a block in Control System Tuner, but wish to restore that block to its original value. To
store the current design before restoring a block value, in the Control System tab, click Store.

See Also

Related Examples
• “View and Change Block Parameterization in Control System Tuner” on page 10-19

 Specify Blocks to Tune in Control System Tuner

10-17

More About
• “How Tuned Simulink Blocks Are Parameterized” on page 10-26

10 Control System Tuning

10-18

View and Change Block Parameterization in Control System
Tuner

Control System Tuner parameterizes every block that you designate for tuning.

• When you tune a Simulink model, Control System Tuner automatically assigns a default
parameterization to tunable blocks in the model. The default parameterization depends on the
type of block. For example, a PID Controller block configured for PI structure is parameterized by
proportional gain and integral gain as follows:

u = Kp + Ki
1
s .

Kp and Ki are the tunable parameters whose values are optimized to satisfy your specified tuning
goals.

• When you tune a predefined control architecture or a MATLAB (generalized state-space) model,
you define the parameterization of each tunable block when you create it at the MATLAB
command line. For example, you can use tunablePID to create a tunable PID block.

Control System Tuner lets you view and change the parameterization of any block to be tuned.
Changing the parameterization can include changing the structure or current parameter values. You
can also designate individual block parameters fixed (non-tunable) or limit their tuning range.

View Block Parameterization
To access the parameterization of a block that you have designated as a tuned block, in the Data
Browser, in the Tuned Blocks area, double-click the name of a block. The Tuned Block Editor dialog
box opens, displaying the current block parameterization.

 View and Change Block Parameterization in Control System Tuner

10-19

The fields of the Tuned Block Editor display the type of parameterization, such as PID, State-

Space, or Gain. For more specific information about the fields, click .

Note To find a tuned block in the Simulink model, right-click the block name in the Data Browser
and select Highlight.

Fix Parameter Values or Limit Tuning Range
You can change the current value of a parameter, fix its current value (make the parameter
nontunable), or limit the parameter’s tuning range.

To change a current parameter value, type a new value in its text box. Alternatively, click to use a
variable editor to change the current value. If you attempt to enter an invalid value, the parameter
returns to its previous value.

Click to access and edit additional properties of each parameter.

10 Control System Tuning

10-20

• Minimum — Minimum value that the parameter can take when the control system is tuned.
• Maximum — Maximum value that the parameter can take when the control system is tuned.
• Free — When the value is true, Control System Toolbox tunes the parameter. To fix the value of

the parameter, set Free to false.

For array-valued parameters, you can set these properties independently for each entry in the array.
For example, for a vector-valued gain of length 3, enter [1 10 100] to set the current value of the

three gains to 1, 10, and 100 respectively. Alternatively, click to use a variable editor to specify
such values.

For vector or matrix-valued parameters, you can use the Free parameter to constrain the structure of
the parameter. For example, to restrict a matrix-valued parameter to be a diagonal matrix, set the
current values of the off-diagonal elements to 0, and set the corresponding entries in Free to false.

Custom Parameterization
When tuning a control system represented by a Simulink model or by a “Predefined Feedback
Architecture” on page 10-7, you can specify a custom parameterization for any tuned block using a
generalized state-space (genss) model. To do so, create and configure a genss model in the MATLAB
workspace that has the desired parameterization, initial parameter values, and parameter properties.
In the Change parameterization dialog box, select Custom. In the Parameterization area, the
variable name of the genss model.

For example, suppose you want to specify a tunable low-pass filter, F = a/(s +a), where a is the
tunable parameter. First, at the MATLAB command line, create a tunable genss model that
represents the low-pass filter structure.

a = realp('a',1);
F = tf(a,[1 a]);

F =

 View and Change Block Parameterization in Control System Tuner

10-21

 Generalized continuous-time state-space model with 1 outputs, 1 inputs,
 1 states, and the following blocks:
 a: Scalar parameter, 2 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and
"F.Blocks" to interact with the blocks.

Then, in the Tuned Block Editor, enter F in the Parameterization area.

When you specify a custom parameterization for a Simulink block, you might not be able to write the
tuned block value back to the Simulink model. When writing values to Simulink blocks, Control
System Tuner skips blocks that cannot represent the tuned value in a straightforward and lossless
manner. For example, if you reparameterize a PID Controller Simulink block as a third-order state-
space model, Control System Tuner will not write the tuned value back to the block.

Block Rate Conversion
When Control System Tuner writes tuned parameters back to the Simulink model, each tuned block
value is automatically converted from the sample time used for tuning, to the sample time of the
Simulink block. When the two sample times differ, the Tuned Block Editor contains additional rate
conversion options that specify how this resampling operation is performed for the corresponding
block.

10 Control System Tuning

10-22

By default, Control System Tuner performs linearization and tuning in continuous time (sample
time = 0). You can specify discrete-time linearization and tuning and change the sample time. To do
so, on the Control System tab, click Linearization Options. Sample time for tuning reflects the
sample time specified in the Linearization Options dialog box.

The remaining rate conversion options depend on the parameterized block.

Rate Conversion for Parameterized PID Blocks

For parameterization of continuous-time PID Controller and PID Controller (2-DOF) blocks, you can
independently specify the rate-conversion methods as discretization formulas for the integrator and
derivative filter. Each has the following options:

• Trapezoidal (default) — Integrator or derivative filter discretized as (Ts/2)*(z+1)/(z-1),
where Ts is the target sample time.

• Forward Euler — Ts/(z-1).
• Backward Euler — Ts*z/(z-1).

For more information about PID discretization formulas, see “Discrete-Time Proportional-Integral-
Derivative (PID) Controllers”.

 View and Change Block Parameterization in Control System Tuner

10-23

For discrete-time PID Controller and PID Controller (2-DOF) blocks, you set the integrator and
derivative filter methods in the block dialog box. You cannot change them in the Tuned Block Editor.

Rate Conversion for Other Parameterized Blocks

For blocks other than PID Controller blocks, the following rate-conversion methods are available:

• Zero-order hold — Zero-order hold on the inputs. For most dynamic blocks this is the default
rate-conversion method.

• Tustin — Bilinear (Tustin) approximation.
• Tustin with prewarping — Tustin approximation with better matching between the original

and rate-converted dynamics at the prewarp frequency. Enter the frequency in the Prewarping
frequency field.

• First-order hold — Linear interpolation of inputs.
• Matched (SISO only) — Zero-pole matching equivalents.

For more detailed information about these rate-conversion methods, see “Continuous-Discrete
Conversion Methods”.

Blocks with Fixed Rate Conversion Methods

For the following blocks, you cannot set the rate-conversion method in the Tuned Block Editor.

• Discrete-time PID Controller and PID Controller (2-DOF) block. Set the integrator and derivative
filter methods in the block dialog box.

• Gain block, because it is static.
• Transfer Fcn Real Zero block. This block can only be tuned at the sample time specified in the

block.
• Block that has been discretized using the Model Discretizer. Sample time for this block is specified

in the Model Discretizer itself.

See Also

Related Examples
• “Specify Blocks to Tune in Control System Tuner” on page 10-17

More About
• “How Tuned Simulink Blocks Are Parameterized” on page 10-26

10 Control System Tuning

10-24

Setup for Tuning Control System Modeled in MATLAB
To model your control architecture in MATLAB for tuning in Control System Tuner, construct a
tunable model of the control system that identifies and parameterizes its tunable elements. You do so
by combining numeric LTI models of the fixed elements with parametric models of the tunable
elements. The result is a tunable generalized state-space genss model.

Building a tunable genss model for Control System Tuner is the same as building such a model for
tuning at the command line. For information about building such models, “Setup for Tuning MATLAB
Models”.

When you have a tunable genss model of your control system, use the controlSystemTuner
command to open Control System Tuner. For example, if T0 is the genss model, the following
command opens Control System Tuner for tuning T0:

controlSystemTuner(T0)

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28

 Setup for Tuning Control System Modeled in MATLAB

10-25

How Tuned Simulink Blocks Are Parameterized

Blocks With Predefined Parameterization
When you tune a Simulink model, either with Control System Tuner or at the command line through
an slTuner interface, the software automatically assigns a predefined parameterization to certain
Simulink blocks. For example, for a PID Controller block set to the PI controller type, the software
automatically assigns the parameterization Kp + Ki/s, where Kp and Ki are the tunable parameters.
For blocks that have a predefined parameterization, you can write tuned values back to the Simulink
model for validating the tuned controller.

Blocks that have a predefined parameterization include the following:

Simulink Library Blocks with Predefined Parameterization
Math Operations Gain
Continuous • State-Space

• Transfer Fcn
• Zero-Pole
• PID Controller
• PID Controller (2DOF)

Discrete • Discrete State-Space
• Discrete Transfer Fcn
• Discrete Zero-Pole
• Discrete Filter
• Discrete PID Controller
• Discrete PID Controller (2DOF)

Lookup Tables • 1-D Lookup Table
• 2-D Lookup Table
• n-D Lookup Table

Control System Toolbox LTI System
Discretizing (Model Discretizer Blocks) • Discretized State-Space

• Discretized Transfer Fcn
• Discretized Zero-Pole
• Discretized LTI System
• Discretized Transfer Fcn (with initial states)

Simulink Extras/Additional Linear State-Space (with initial outputs)

Scalar Expansion

The following tunable blocks support scalar expansion:

• Discrete Filter
• Gain

10 Control System Tuning

10-26

• 1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table
• PID Controller, PID Controller (2DOF)

Scalar expansion means that the block parameters can be scalar values even when the input and
output signals are vectors. For example, you can use a Gain block to implement y = k*u with scalar
k and vector u and y. To do so, you set the Multiplication mode of the block to Element-
wise(K.*u), and set the gain value to the scalar k.

When a tunable block uses scalar expansion, its default parameterization uses tunable scalars. For
example, in the y = k*u Gain block, the software parameterizes the scalar k as a tunable real scalar
(realp of size [1 1]). If instead you want to tune different gain values for each channel, replace the
scalar gain k by a N-by-1 gain vector in the block dialog, where N is the number of channels, the
length of the vectors u and y. The software then parameterizes the gain as a realp of size [N 1].

Blocks Without Predefined Parameterization
You can specify blocks for tuning that do not have a predefined parameterization. When you do so,
the software assigns a state-space parameterization to such blocks based upon the block
linearization. For blocks that do not have a predefined parameterization, the software cannot write
tuned values back to the block, because there is no clear mapping between the tuned parameters and
the block. To validate a tuned control system that contains such blocks, you can specify a block
linearization in your model using the value of the tuned parameterization. (See “Specify Linear
System for Block Linearization Using MATLAB Expression” on page 2-125 for more information about
specifying block linearization.)

View and Change Block Parameterization
You can view and edit the current parameterization of every block you designate for tuning.

• In Control System Tuner, see “View and Change Block Parameterization in Control System
Tuner” on page 10-19.

• At the command line, use getBlockParam to view the current block parameterization. Use
setBlockParam to change the block parameterization.

 How Tuned Simulink Blocks Are Parameterized

10-27

Specify Goals for Interactive Tuning
This example shows how to specify your tuning goals for automated tuning in Control System
Tuner.

Use the New Goal menu to create a tuning goal such as a tracking requirement, disturbance
rejection specification, or minimum stability margins. Then, when you are ready to tune your control
system, use Manage Goals to designate which goals to enforce.

This example creates tuning goals for tuning the sample model rct_helico.

Choose Tuning Goal Type

In Control System Tuner, in the Tuning tab, click New Goal. Select the type of goal you want to
create. A tuning goal dialog box opens in which you can provide the detailed specifications of your
goal. For example, select Tracking of step commands to make a particular step response of your
control system match a desired response.

10 Control System Tuning

10-28

Choose Signal Locations for Evaluating Tuning Goal

Specify the signal locations in your control system at which the tuning goal is evaluated. For example,
the step response goal specifies that a step signal applied at a particular input location yields a
desired response at a particular output location. Use the Step Response Selection section of the
dialog box to specify these input and output locations. (Other tuning goal types, such as loop-shape or
stability margins, require you to specify only one location for evaluation. The procedure for specifying
the location is the same as illustrated here.)

Under Specify step-response inputs, click Add signal to list. A list of available input locations
appears.

If the signal you want to designate as a step-response input is in the list, click the signal to add it to
the step-response inputs. If the signal you want to designate does not appear, and you are tuning a
Simulink model, click Select signal from model.

In the Select signals dialog box, build a list of the signals you want. To do so, click signals in the
Simulink model editor. The signals that you click appear in the Select signals dialog box. Click one
signal to create a SISO tuning goal, and click multiple signals to create a MIMO tuning goal.

Click Add signal(s). The Select signals dialog box closes, returning you to the new tuning-goal
specification dialog box.

 Specify Goals for Interactive Tuning

10-29

The signals you selected now appear in the list of step-response inputs in the tuning goal dialog box.

Similarly, specify the locations at which the step response is measured to the step-response outputs
list. For example, the following configuration constrains the response to a step input applied at
theta-ref and measured at theta in the Simulink model rct_helico.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and .

Specify Loop Openings

Most tuning goals can be enforced with loops open at one or more locations in the control system.
Click Add loop opening location to list to specify such locations for the tuning goal.

10 Control System Tuning

10-30

Define Other Specifications of the Tuning Goal

The tuning goal dialog box prompts you to specify other details about the tuning goal. For example, to
create a step response requirement, you provide details of the desired step response in the Desired
Response area of the Step Response Goal dialog box. Some tuning goals have additional options in
an Options section of the dialog box.

For information about the fields for specifying a particular tuning goal, click in the tuning goal
dialog box.

Store the Tuning Goal for Tuning

When you have finished specifying the tuning goal, click OK in the tuning goal dialog box. The new
tuning goal appears in the Tuning Goals section of the Data Browser. A new figure opens displaying
a graphical representation of the tuning goal. When you tune your control system, you can refer to
this figure to evaluate graphically how closely the tuned system satisfies the tuning goal.

Tip To edit the specifications of the tuning goal, double-click the tuning goal in the Data Browser.

Activate the Tuning Goal for Tuning

When you have saved your tuning goal, click New Goal to create additional tuning goals.

When you are ready to tune your control system, click Manage Goals to select which tuning
goals are active for tuning. In the Manage Tuning Goals dialog box, Active is checked by default for
any new goals. Clear Active for any tuning goal that you do not want enforced.

 Specify Goals for Interactive Tuning

10-31

You can also designate one or more tuning goals as Hard goals. Control System Tuner attempts to
satisfy hard requirements, and comes as close as possible to satisfying remaining (soft) requirements
subject to the hard constraints. By default, new goals are designated soft goals. Check Hard for any
goal to designate it a hard goal.

For example, if you tune with the following configuration, Control System Tuner optimizes
StepRespGoal1, subject to MarginsGoal1. The tuning goal PolesGoal1 is ignored.

Deactivating tuning goals or designating some goals as soft requirements can be useful when
investigating the tradeoffs between different tuning requirements. For example, if you do not obtain
satisfactory performance with all your tuning goals active and hard, you might try another design in
which less crucial goals are designated as soft or deactivated entirely.

See Also

Related Examples
• “Manage Tuning Goals” on page 10-134
• “Quick Loop Tuning of Feedback Loops in Control System Tuner” on page 10-33
• “Create Response Plots in Control System Tuner” on page 10-147

10 Control System Tuning

10-32

Quick Loop Tuning of Feedback Loops in Control System Tuner
This example shows how to tune a Simulink model of a control system to meet a specified bandwidth
and specified stability margins in Control System Tuner, without explicitly creating tuning goals
that capture these requirements. You can use a similar approach for quick loop tuning of control
systems modeled in MATLAB.

This example demonstrates how the Quick Loop Tuning option of Control System Tuner generates
tuning goals from your crossover frequency and gain and phase margin specifications. This option
lets you quickly set up SISO or MIMO feedback loops for tuning using a loop-shaping approach. The
example also shows how to add further tuning requirements to the control system after using the
Quick Loop Tuning option.

Quick Loop Tuning is the Control System Tuner equivalent of the looptune command.

Set up the Model for Tuning

Open the Simulink model.

open_system('rct_distillation')

This model represents a distillation column, captured in the two-input, two-output plant G. The
tunable elements are the decoupling gain matrix DM, and the two PI controllers, PI_L and PI_V. (For
more information about this model, see “Decoupling Controller for a Distillation Column”.)

Suppose your goal is to tune the MIMO feedback loop between r and y to a bandwidth between 0.1
and 0.5 rad/s. Suppose you also require a gain margin of 7 dB and a phase margin of 45 degrees. You
can use the Quick Loop Tuning option to quickly configure Control System Tuner for these goals.

Open Control System Tuner. In the Simulink model window, in the Apps gallery, click Control
System Tuner.

Designate the blocks you want to tune. In the Tuning tab of Control System Tuner, click Select
Blocks. In the Select tuned blocks dialog box, click Add blocks. Then, select DM, PI_L, and PI_V
for tuning. (For more information about selecting tuned blocks, see “Specify Blocks to Tune in Control
System Tuner” on page 10-17.)

The model is now ready to tune to the target bandwidth and stability margins.

 Quick Loop Tuning of Feedback Loops in Control System Tuner

10-33

Specify the Goals for Quick Loop Tuning

In the Tuning tab, select New Goal > Quick Loop Tuning.

For Quick Loop Tuning, you need to identify the actuator signals and sensor signals that separate the
plant portion of the control system from the controller, which for the purpose of Quick Loop Tuning is
the rest of the control system. The actuator signals are the controller outputs that drive the plant, or
the plant inputs. The sensor signals are the measurements of plant output that feed back into the
controller. In this control system, the actuator signals are represented by the vector signal u, and the
sensor signals by the vector signal y.

In the Quick Loop Tuning dialog box, under Specify actuator signals (controls), add the actuator
signal, u. Similarly, under Specify sensor signals (measurements), add the sensor signal, y (For
more information about specifying signals for tuning, see “Specify Goals for Interactive Tuning” on
page 10-28.)

Under Desired Goals, in the Target gain crossover region field, enter the target bandwidth range,
[0.1 0.5]. Enter the desired gain margin and phase margin in the corresponding fields.

10 Control System Tuning

10-34

Click OK. Control System Tuner automatically generates tuning goals that capture the desired
goals you entered in the dialog box.

 Quick Loop Tuning of Feedback Loops in Control System Tuner

10-35

Examine the Automatically-Created Tuning Goals

In this example, Control System Tuner creates a Loop Shape Goal and a Margins Goal. If you had
changed the pole-location settings in the Quick Loop Tuning dialog box, a Poles goal would also
have been created.

Click Manage Goals to examine the automatically-created goals. By default, the goals are active
and designated as soft tuning goals.

10 Control System Tuning

10-36

You can double-click the tuning goals to examine their parameters, which are automatically computed
and populated. You can also examine the graphical representations of the tuning goals. In the Tuning
tab, examine the LoopTuning1_LoopShapeGoal plot.

The target crossover range is expressed as a Loop Shape goal with an integrator open-loop gain
profile. The shaded areas of the graph show that the permitted crossover range is [0.1 0.5] rad/s,
as you specified in the Quick Loop Tuning dialog box.

 Quick Loop Tuning of Feedback Loops in Control System Tuner

10-37

Similarly, your margin requirements are captured in the LoopTuning1_MarginsGoal plot.

Tune the Model

Click Tune to tune the model to meet the automatically-created tuning goals. In the tuning goal
plots, you can see that the requirements are satisfied.

To create additional plots for examining other system responses, see “Create Response Plots in
Control System Tuner” on page 10-147.

Change Design Requirements

If you want to change your design requirements after using Quick Loop Tuning, you can edit the
automatically-created tuning goals and tune the model again. You can also create additional tuning
goals.

For example, add a requirement that limits the response to a disturbance applied at the plant inputs.
Limit the response to a step command at dL and dV at the outputs, y, to be well damped, to settle in
less than 20 seconds, and not exceed 4 in amplitude. Select New Goal > Rejection of step
disturbances and enter appropriate values in the Step Rejection Goal dialog box. (For more
information about creating tuning goals, see “Specify Goals for Interactive Tuning” on page 10-28.)

10 Control System Tuning

10-38

You can now retune the model to meet all these tuning goals.

See Also
looptune (for slTuner)

 Quick Loop Tuning of Feedback Loops in Control System Tuner

10-39

Related Examples
• “Specify Operating Points for Tuning in Control System Tuner” on page 10-11
• “Manage Tuning Goals” on page 10-134
• “Setup for Tuning Control System Modeled in MATLAB” on page 10-25
• “Stability Margins in Control System Tuning”

10 Control System Tuning

10-40

Quick Loop Tuning

Purpose
Tune SISO or MIMO feedback loops using a loop-shaping approach in Control System Tuner.

Description
Quick Loop Tuning lets you tune your system to meet open-loop gain crossover and stability margin
requirements without explicitly creating tuning goals that capture these requirements. You specify
the feedback loop whose open-loop gain you want to shape by designating the actuator signals
(controls) and sensor signals (measurements) that form the loop. Actuator signals are the signals that
drive the plant. The sensor signals are the plant outputs that feed back into the controller.

You enter the target loop bandwidth and desired gain and phase margins. You can also specify
constraints on pole locations of the tuned system, to eliminate fast dynamics. Control System Tuner
automatically creates Tuning Goals that capture your specifications and ensure integral action at
frequencies below the target loop bandwidth.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Quick Loop Tuning to specify
loop-shaping requirements.

Command-Line Equivalent

When tuning control systems at the command line, use looptune (for slTuner) or looptune for
tuning feedback loops using a loop-shaping approach.

Feedback Loop Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for evaluating
the tuning goal.

• Specify actuator signals (controls)

Designate one or more signals in your model as actuator signals. These are the input signals that
drive the plant. To tune a SISO feedback loop, select a single-valued input signal. To tune MIMO
loop, select multiple signals or a vector-valued signal.

• Specify sensor signals (measurements)

Designate one or more signals in your model as sensor signals. These are the plant outputs that
provide feedback into the controller. To tune a SISO feedback loop, select a single-valued input
signal. To tune MIMO loop, select multiple signals or a vector-valued signal.

• Compute the response with the following loops open

Designate additional locations at which to open feedback loops for the purpose of tuning the loop
defined by the control and measurement signals.

Quick Loop Tuning tunes the open-loop response of the loop defined by the control and
measurement signals. If you want your specifications for that loop to apply with other feedback

 Quick Loop Tuning

10-41

loops in the system opened, specify loop-opening locations in this section of the dialog box. For
example, if you are tuning a cascaded-loop control system with an inner loop and an outer loop,
you might want to tune the inner loop with the outer loop open.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Desired Goals
Use this section of the dialog box to specify desired characteristics of the tuned system. Control
System Tuner converts these into Loop Shape, Margin, and Poles goals.

• Target gain crossover region

Specify a frequency range in which the open-loop gain should cross 0 dB. Specify the frequency
range as a row vector of the form [min,max], expressed in frequency units of your model.
Alternatively, if you specify a single target frequency, wc, the target range is taken as [wc/
10^0.1,wc*10^0.1], or wc ± 0.1 decade.

• Gain margin (db)

Specify the desired gain margin in decibels. For MIMO feedback loops, this requirement
guarantees stability for gain variations across all feedback channels. The gain can change in all
feedback channels simultaneously, and by a different amount in each channel. For information
about disk margins, see “Stability Analysis Using Disk Margins” (Robust Control Toolbox).

• Phase margin (degrees)

Specify the desired phase margin in degrees. For MIMO feedback loops, this requirement
guarantees stability for phase variations across all feedback channels. The phase can change in all
feedback channels simultaneously, and by a different amount in each channel. For information
about disk margins, see “Stability Analysis Using Disk Margins” (Robust Control Toolbox).

• Keep poles inside the following region

Specify minimum decay rate and maximum natural frequency for the closed-loop poles of the
tuned system. While the other Quick Loop Tuning options specify characteristics of the open-loop
response, these specifications apply to the closed-loop dynamics.

The minimum decay rate you enter constrains the closed-loop pole locations to:

• Re(s) < -mindecay, for continuous-time systems.
• log(|z|) < -mindecay*Ts, for discrete-time systems with sample time Ts.

The maximum frequency you enter constrains the closed-loop poles to satisfy |s| < maxfreq for
continuous time, or |log(z)| < maxfreq*Ts for discrete-time systems with sample time Ts.
This constraint prevents fast dynamics in the closed-loop system.

10 Control System Tuning

10-42

Options
Use this section of the dialog box to specify additional characteristics.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Control System Tuner uses looptuneSetup (for slTuner) or looptuneSetup to convert
Quick Loop Tuning specifications into tuning goals.

See Also

Related Examples
• “Quick Loop Tuning of Feedback Loops in Control System Tuner” on page 10-33
• “Specify Goals for Interactive Tuning” on page 10-28
• “Visualize Tuning Goals” on page 10-141
• “Manage Tuning Goals” on page 10-134
• “Stability Margins in Control System Tuning”

 Quick Loop Tuning

10-43

Step Tracking Goal

Purpose
Make the step response from specified inputs to specified outputs closely match a target response,
when using Control System Tuner.

Description
Step Tracking Goal constrains the step response between the specified signal locations to match the
step response of a stable reference system. The constraint is satisfied when the relative difference
between the tuned and target responses falls within the tolerance you specify. You can use this goal to
constrain a SISO or MIMO response of your control system.

You can specify the reference system for the target step response in terms of first-order system
characteristics (time constant) or second-order system characteristics (natural frequency and percent
overshoot). Alternatively, you can specify a custom reference system as a numeric LTI model.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Tracking of step commands to
create a Step Tracking Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.StepTracking to specify a
step response goal.

10 Control System Tuning

10-44

Step Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for evaluating
the tuning goal.

• Specify step-response inputs

Select one or more signal locations in your model at which to apply the step input. To constrain a
SISO response, select a single-valued input signal. For example, to constrain the step response
from a location named 'u' to a location named 'y', click Add signal to list and select 'u'.
To constrain a MIMO response, select multiple signals or a vector-valued signal.

• Specify step-response outputs

Select one or more signal locations in your model at which to measure the response to the step
input. To constrain a SISO response, select a single-valued output signal. For example, to
constrain the step response from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain a MIMO response, select multiple signals or a vector-
valued signal. For MIMO systems, the number of outputs must equal the number of inputs.

• Compute step response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Desired Response
Use this section of the dialog box to specify the shape of the desired step response.

• First-order characteristics

Specify the desired step response (the reference model Href) as a first-order response with time
constant τ:

Href = 1/τ
s + 1/τ .

Enter the desired value for τ in the Time Constant text box. Specify τ in the time units of your
model.

• Second-order characteristics

Specify the desired step response as a second-order response with time constant τ, and natural
frequency 1/τ.

 Step Tracking Goal

10-45

Enter the desired value for τ in the Time Constant text box. Specify τ in the time units of your
model.

Enter the target overshoot percentage in the Overshoot text box.

The second-order reference system has the form:

Href = 1/τ 2

s2 + 2 ζ /τ s + 1/τ 2 .

The damping constant ζ is related to the overshoot percentage by ζ = cos(atan2(pi,-
log(overshoot/100))).

• Custom reference model

Specify the reference system for the desired step response as a dynamic system model, such as a
tf, zpk, or ss model.

Enter the name of the reference model in the MATLAB workspace in the LTI model to match text
field. Alternatively, enter a command to create a suitable reference model, such as tf(1,[1
1.414 1]).

The reference model must be stable and must have DC gain of 1 (zero steady-state error). The
model can be continuous or discrete. If the model is discrete, it can include time delays which are
treated as poles at z = 0.

The reference model can be MIMO, provided that it is square and that its DC singular value
(sigma) is 1. Then number of inputs and outputs of the reference model must match the
dimensions of the inputs and outputs specified for the step response goal.

For best results, the reference model should also include intrinsic system characteristics such as
non-minimum-phase zeros (undershoot).

If your selected inputs and outputs define a MIMO system and you apply a SISO reference system,
the software attempts to match the diagonal channels of the MIMO system. In that case, cross-
couplings tend to be minimized.

Options
Use this section of the dialog box to specify additional characteristics of the step response goal.

• Keep % mismatch below

Specify the relative matching error between the actual (tuned) step response and the target step
response. Increase this value to loosen the matching tolerance. The relative matching error, erel, is
defined as:

erel =
y t − yref t 2
1 − yref t 2

.

y(t) – yref(t) is the response mismatch, and 1 – yref(t) is the step-tracking error of the target model.
⋅ 2 denotes the signal energy (2-norm).

• Adjust for step amplitude

10 Control System Tuning

10-46

For a MIMO tuning goal, when the choice of units results in a mix of small and large signals in
different channels of the response, this option allows you to specify the relative amplitude of each
entry in the vector-valued step input. This information is used to scale the off-diagonal terms in
the transfer function from reference to tracking error. This scaling ensures that cross-couplings
are measured relative to the amplitude of each reference signal.

For example, suppose that tuning goal is that outputs 'y1' and 'y2' track reference signals
'r1'and 'r2'. Suppose further that you require the outputs to track the references with less
than 10% cross-coupling. If r1 and r2 have comparable amplitudes, then it is sufficient to keep
the gains from r1 to y2 and r2 and y1 below 0.1. However, if r1 is 100 times larger than r2, the
gain from r1 to y2 must be less than 0.001 to ensure that r1 changes y2 by less than 10% of the
r2 target. To ensure this result, set Adjust for step amplitude to Yes. Then, enter [100,1] in
the Amplitudes of step commands text box. Doing so tells Control System Tuner to take into
account that the first reference signal is 100 times greater than the second reference signal.

The default value, No , means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Step Response Goal, f(x) is given by:

f x =
1
s T s, x − Href s 2

erel
1
s Href s − I 2

.

T(s,x) is the closed-loop transfer function between the specified inputs and outputs, evaluated with
parameter values x. Href(s) is the reference model. erel is the relative error (see “Options” on page 10-
46). ⋅ 2 denotes the H2 norm (see norm).

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning
goal. The Minimum decay rate and Maximum natural frequency tuning options control the lower
and upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use
Tuning Options to change the defaults.

 Step Tracking Goal

10-47

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-48

Step Rejection Goal

Purpose
Set a minimum standard for rejecting step disturbances, when using Control System Tuner.

Description
Use Step Rejection Goal to specify how a step disturbance injected at a specified location in your
control system affects the signal at a specified output location.

You can specify the desired response in time-domain terms of peak value, settling time, and damping
ratio. Control System Tuner attempts to make the actual rejection at least as good as the desired
response. Alternatively, you can specify the response as a stable reference model having DC-gain. In
that case, the tuning goal is to reject the disturbance as well as or better than the reference model.

To specify disturbance rejection in terms of a frequency-domain attenuation profile, use Disturbance
Rejection Goal.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated. The dotted
line shows the target step response you specify. The solid line is the current corresponding response
of your system.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Rejection of step disturbance to
create a Step Rejection Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.StepRejection to specify a
step response goal.

 Step Rejection Goal

10-49

Step Disturbance Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for evaluating
the tuning goal.

• Specify step disturbance inputs

Select one or more signal locations in your model at which to apply the input. To constrain a SISO
response, select a single-valued input signal. For example, to constrain the step-disturbance
response from a location named 'u' to a location named 'y', click Add signal to list and
select 'u'. To constrain a MIMO response, select multiple signals or a vector-valued signal.

• Specify step response outputs

Select one or more signal locations in your model at which to measure the response to the step
disturbance. To constrain a SISO response, select a single-valued output signal. For example, to
constrain the transient response from a location named 'u' to a location named 'y', click
Add signal to list and select 'y'. To constrain a MIMO response, select multiple signals or a
vector-valued signal. For MIMO systems, the number of outputs must equal the number of inputs.

• Compute the response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Desired Response to Step Disturbance
Use this section of the dialog box to specify the shape of the desired response to the step disturbance.
Control System Tuner attempts to make the actual response at least as good as the desired
response.

• Response Characteristics

Specify the desired response in terms of time-domain characteristics. Enter the maximum
amplitude, maximum settling time, and minimum damping constant in the text boxes.

• Reference Model

Specify the desired response in terms of a reference model.

Enter the name of the reference model in the MATLAB workspace in the Reference Model text
field. Alternatively, enter a command to create a suitable reference model, such as tf([1 0],[1
1.414 1]).

10 Control System Tuning

10-50

The reference model must be stable and must have zero DC gain. The model can be continuous or
discrete. If the model is discrete, it can include time delays which are treated as poles at z = 0.

For best results, the reference model and the open-loop response from the disturbance to the
output should have similar gains at the frequency where the reference model gain peaks.

Options
Use this section of the dialog box to specify additional characteristics of the step rejection goal.

• Adjust for amplitude of input signals and Adjust for amplitude of output signals

For a MIMO tuning goal, when the choice of units results in a mix of small and large signals in
different channels of the response, this option allows you to specify the relative amplitude of each
entry in the vector-valued signals. This information is used to scale the off-diagonal terms in the
transfer function from the tuning goal inputs to outputs. This scaling ensures that cross-couplings
are measured relative to the amplitude of each reference signal.

When these options are set to No, the closed-loop transfer function being constrained is not scaled
for relative signal amplitudes. When the choice of units results in a mix of small and large signals,
using an unscaled transfer function can lead to poor tuning results. Set the option to Yes to
provide the relative amplitudes of the input signals and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function. Suppose
further that second input signal to the transfer function tends to be about 100 times greater than
the first signal. In that case, select Yes and enter [1,100] in the Amplitudes of input signals
text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled transfer function
Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are diagonal matrices with the
Amplitudes of output signals and Amplitudes of input signals values on the diagonal,
respectively.

The default value, No, means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then

 Step Rejection Goal

10-51

adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning requirement is a
hard constraint.

Step Rejection Goal aims to keep the gain from disturbance to output below the gain of the
reference model. The scalar value of the requirement f(x) is given by:

f x = WF s Tdy s, x ∞,

or its discrete-time equivalent. Here, Tdy(s,x) is the closed-loop transfer function of the constrained
response, and ⋅ ∞ denotes the H∞ norm (see norm). WF is a frequency weighting function derived
from the step-rejection profile you specify in the tuning goal. The gain of WF roughly matches the
inverse of the reference model for gain values within 60 dB of the peak gain. For numerical reasons,
the weighting function levels off outside this range, unless you specify a reference model that
changes slope outside this range. This adjustment is called regularization. Because poles of WF close
to s = 0 or s = Inf might lead to poor numeric conditioning for tuning, it is not recommended to
specify reference models with very low-frequency or very high-frequency dynamics. For more
information about regularization and its effects, see “Visualize Tuning Goals” on page 10-141.

Implicit Constraints

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning
goal. The Minimum decay rate and Maximum natural frequency tuning options control the lower
and upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use
Tuning Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-52

Transient Goal

Purpose
Shape how the closed-loop system responds to a specific input signal when using Control System
Tuner. Use a reference model to specify the desired transient response.

Description
Transient Goal constrains the transient response from specified input locations to specified output
locations. This requirement specifies that the transient response closely match the response of a
reference model. The constraint is satisfied when the relative difference between the tuned and
target responses falls within the tolerance you specify.

You can constrain the response to an impulse, step, or ramp input signal. You can also constrain the
response to an input signal that is given by the impulse response of an input filter you specify.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Transient response matching to
create a Transient Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Transient to specify a step
response goal.

 Transient Goal

10-53

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for evaluating
the tuning goal.

• Specify response inputs

Select one or more signal locations in your model at which to apply the input. To constrain a SISO
response, select a single-valued input signal. For example, to constrain the transient response
from a location named 'u' to a location named 'y', click Add signal to list and select 'u'.
To constrain a MIMO response, select multiple signals or a vector-valued signal.

• Specify response outputs

Select one or more signal locations in your model at which to measure the transient response. To
constrain a SISO response, select a single-valued output signal. For example, to constrain the
transient response from a location named 'u' to a location named 'y', click Add signal to
list and select 'y'. To constrain a MIMO response, select multiple signals or a vector-valued
signal. For MIMO systems, the number of outputs must equal the number of inputs.

• Compute the response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Initial Signal Selection
Select the input signal shape for the transient response you want to constrain in Control System
Tuner.

• Impulse — Constrain the response to a unit impulse.
• Step — Constrain the response to a unit step. Using Step is equivalent to using a Step Tracking

Goal.
• Ramp — Constrain the response to a unit ramp, u = t.
• Other — Constrain the response to a custom input signal. Specify the custom input signal by

entering a transfer function (tf or zpkmodel) in the Use impulse response of filter field. The
custom input signal is the response of this transfer function to a unit impulse.

This transfer function represents the Laplace transform of the desired custom input signal. For
example, to constrain the transient response to a unit-amplitude sine wave of frequency w, enter
tf(w,[1,0,w^2]). This transfer function is the Laplace transform of sin(wt).

10 Control System Tuning

10-54

The transfer function you enter must be continuous, and can have no poles in the open right-half
plane. The series connection of this transfer function with the reference system for the desired
transient response must have no feedthrough term.

Desired Transient Response
Specify the reference system for the desired transient response as a dynamic system model, such as a
tf, zpk, or ss model. The Transient Goal constrains the system response to closely match the
response of this system to the input signal you specify in Initial Signal Selection.

Enter the name of the reference model in the MATLAB workspace in the Reference Model field.
Alternatively, enter a command to create a suitable reference model, such as tf(1,[1 1.414 1]).
The reference model must be stable, and the series connection of the reference model with the input
shaping filter must have no feedthrough term.

Options
Use this section of the dialog box to specify additional characteristics of the transient response goal.

• Keep % mismatch below

Specify the relative matching error between the actual (tuned) transient response and the target
response. Increase this value to loosen the matching tolerance. The relative matching error, erel, is
defined as:

gap =
y t − yref t 2

yref (tr) t 2
.

y(t) – yref(t) is the response mismatch, and 1 – yref(tr)(t) is the transient portion of yref (deviation
from steady-state value or trajectory). ⋅ 2 denotes the signal energy (2-norm). The gap can be
understood as the ratio of the root-mean-square (RMS) of the mismatch to the RMS of the
reference transient.

• Adjust for amplitude of input signals and Adjust for amplitude of output signals

For a MIMO tuning goal, when the choice of units results in a mix of small and large signals in
different channels of the response, this option allows you to specify the relative amplitude of each
entry in the vector-valued signals. This information is used to scale the off-diagonal terms in the
transfer function from the tuning goal inputs to outputs. This scaling ensures that cross-couplings
are measured relative to the amplitude of each reference signal.

When these options are set to No, the closed-loop transfer function being constrained is not scaled
for relative signal amplitudes. When the choice of units results in a mix of small and large signals,
using an unscaled transfer function can lead to poor tuning results. Set the option to Yes to
provide the relative amplitudes of the input signals and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function. Suppose
further that second input signal to the transfer function tends to be about 100 times greater than
the first signal. In that case, select Yes and enter [1,100] in the Amplitudes of input signals
text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled transfer function
Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are diagonal matrices with the

 Transient Goal

10-55

Amplitudes of output signals and Amplitudes of input signals values on the diagonal,
respectively.

The default value, No, means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Tips
• When you use this requirement to tune a control system, Control System Tuner attempts to

enforce zero feedthrough (D = 0) on the transfer that the requirement constrains. Zero
feedthrough is imposed because the H2 norm, and therefore the value of the tuning goal (see
“Algorithms” on page 10-56), is infinite for continuous-time systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. Control System Tuner returns an error when fixing these
tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the
requirement or the control structure, or manually fix some tunable parameters of your system to
values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s
approach of zeroing all parameters that contribute to the overall feedthrough might be
conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you
want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of
the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 10-19.

• This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this
tuning goal. The Minimum decay rate and Maximum natural frequency tuning options control
the lower and upper bounds on these implicitly constrained dynamics. If the optimization fails to
meet the default bounds, or if the default bounds conflict with other requirements, on the Tuning
tab, use Tuning Options to change the defaults.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning requirement is a
hard constraint.

10 Control System Tuning

10-56

For Transient Goal, f(x) is based upon the relative gap between the tuned response and the target
response:

gap =
y t − yref t 2

yref (tr) t 2
.

y(t) – yref(t) is the response mismatch, and 1 – yref(tr)(t) is the transient portion of yref (deviation from
steady-state value or trajectory). ⋅ 2 denotes the signal energy (2-norm). The gap can be
understood as the ratio of the root-mean-square (RMS) of the mismatch to the RMS of the reference
transient.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

 Transient Goal

10-57

LQR/LQG Goal

Purpose
Minimize or limit Linear-Quadratic-Gaussian (LQG) cost in response to white-noise inputs, when
using Control System Tuner.

Description
LQR/LQG Goal specifies a tuning requirement for quantifying control performance as an LQG cost. It
is applicable to any control structure, not just the classical observer structure of optimal LQG control.

The LQG cost is given by:

J = E(z(t)′ QZ z(t)).

z(t) is the system response to a white noise input vector w(t). The covariance of w(t) is given by:

E(w(t)w(t)′) = QW.

The vector w(t) typically consists of external inputs to the system such as noise, disturbances, or
command. The vector z(t) includes all the system variables that characterize performance, such as
control signals, system states, and outputs. E(x) denotes the expected value of the stochastic variable
x.

The cost function J can also be written as an average over time:

J = lim
T ∞

E 1
T∫0 T

z t ′ QZ z t dt .

Creation

In the Tuning tab of Control System Tuner, select New Goal > LQR/LQG objective to create an
LQR/LQG Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.LQG to specify an LQR/LQG
goal.

Signal Selection
Use this section of the dialog box to specify noise input locations and performance output locations.
Also specify any locations at which to open loops for evaluating the tuning goal.

• Specify noise inputs (w)

Select one or more signal locations in your model as noise inputs. To constrain a SISO response,
select a single-valued input signal. For example, to constrain the LQG cost for a noise input 'u'
and performance output 'y', click Add signal to list and select 'u'. To constrain the LQG
cost for a MIMO response, select multiple signals or a vector-valued signal.

10 Control System Tuning

10-58

• Specify performance outputs (z)

Select one or more signal locations in your model as performance outputs. To constrain a SISO
response, select a single-valued output signal. For example, to constrain the LQG cost for a noise
input 'u' and performance output 'y', click Add signal to list and select 'y'. To constrain
the LQG cost for a MIMO response, select multiple signals or a vector-valued signal.

• Evaluate LQG objective with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

LQG Objective
Use this section of the dialog box to specify the noise covariance and performance weights for the
LQG goal.

• Performance weight Qz

Performance weights, specified as a scalar or a matrix. Use a scalar value to specify a multiple of
the identity matrix. Otherwise specify a symmetric nonnegative definite matrix. Use a diagonal
matrix to independently scale or penalize the contribution of each variable in z.

The performance weights contribute to the cost function according to:

J = E(z(t)′ Qz z(t)).

When you use the LQG goal as a hard goal, the software tries to drive the cost function J < 1.
When you use it as a soft goal, the cost function J is minimized subject to any hard goals and its
value is contributed to the overall objective function. Therefore, select Qz values to properly scale
the cost function so that driving it below 1 or minimizing it yields the performance you require.

• Noise Covariance Qw

Covariance of the white noise input vector w(t), specified as a scalar or a matrix. Use a scalar
value to specify a multiple of the identity matrix. Otherwise specify a symmetric nonnegative
definite matrix with as many rows as there are entries in the vector w(t). A diagonal matrix means
the entries of w(t) are uncorrelated.

The covariance of w(t is given by:

E(w(t)w(t)′) = QW.

 LQR/LQG Goal

10-59

When you are tuning a control system in discrete time, the LQG goal assumes:

E(w[k]w[k]′) = QW/Ts.

Ts is the model sample time. This assumption ensures consistent results with tuning in the
continuous-time domain. In this assumption, w[k] is discrete-time noise obtained by sampling
continuous white noise w(t) with covariance QW. If in your system w[k] is a truly discrete process
with known covariance QWd, use the value Ts*QWd for the QW value.

Options
Use this section of the dialog box to specify additional characteristics of the LQG goal.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Tips
When you use this requirement to tune a control system, Control System Tuner attempts to enforce
zero feedthrough (D = 0) on the transfer that the requirement constrains. Zero feedthrough is
imposed because the H2 norm, and therefore the value of the tuning goal, is infinite for continuous-
time systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. Control System Tuner returns an error when fixing these
tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the
requirement or the control structure, or manually fix some tunable parameters of your system to
values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s approach
of zeroing all parameters that contribute to the overall feedthrough might be conservative. In that
case, it is sufficient to zero the feedthrough term of one of the blocks. If you want to control which
block has feedthrough fixed to zero, you can manually fix the feedthrough of the tuned block of your
choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block Parameterization
in Control System Tuner” on page 10-19.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then

10 Control System Tuning

10-60

adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For LQR/LQG Goal, f(x) is given by the cost function J:

J = E(z(t)′ Qz z(t)).

When you use the LQG requirement as a hard goal, the software tries to drive the cost function J < 1.
When you use it as a soft goal, the cost function J is minimized subject to any hard goals and its value
is contributed to the overall objective function. Therefore, select Qz values to properly scale the cost
function so that driving it below 1 or minimizing it yields the performance you require.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134

 LQR/LQG Goal

10-61

Gain Goal

Purpose
Limit gain of a specified input/output transfer function, when using Control System Tuner.

Description
Gain Goal limits the gain from specified inputs to specified outputs. If you specify multiple inputs and
outputs, Gain Goal limits the largest singular value of the transfer matrix. (See sigma for more
information about singular values.) You can specify a constant maximum gain at all frequencies.
Alternatively, you can specify a frequency-dependent gain profile.

Use Gain Goal, for example, to enforce a custom roll-off rate in a particular frequency band. To do so,
specify a maximum gain profile in that band. You can also use Gain Goal to enforce disturbance
rejection across a particular input/output pair by constraining the gain to be less than 1.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated. The dotted
line shows the gain profile you specify. The shaded area on the plot represents the region in the
frequency domain where the gain goal is not satisfied.

By default, Gain Goal constrains a closed-loop gain. To constrain a gain computed with one or more
loops open, specify loop-opening locations in the I/O Transfer Selection section of the dialog box.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Gain limits to create a Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Gain to specify a maximum
gain goal.

10 Control System Tuning

10-62

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer function that the
tuning goal constrains. Also specify any locations at which to open loops for evaluating the tuning
goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function that the tuning
goal constrains. To constrain a SISO response, select a single-valued input signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to
list and select 'u'. To constrain the largest singular value of a MIMO response, select multiple
signals or a vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function that the
tuning goal constrains. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the gain from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain the largest singular value of a MIMO response, select
multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Options
Use this section of the dialog box to specify additional characteristics of the gain goal.

• Limit gain to

Enter the maximum gain in the text box. You can specify a scalar value or a frequency-dependent
gain profile. To specify a frequency-dependent gain profile, enter a SISO numeric LTI model. For
example, you can specify a smooth transfer function (tf, zpk, or ss model). Alternatively, you can
sketch a piecewise maximum gain using an frd model. When you do so, the software
automatically maps the profile to a smooth transfer function that approximates the desired
minimum disturbance rejection. For example, to specify a gain profile that rolls off at –40dB/
decade in the frequency band from 8 to 800 rad/s, enter frd([0.8 8 800],[10 1 1e-4]).

You must specify a SISO transfer function. If you specify multiple input signals or output signals,
the gain profile applies to all I/O pairs between these signals.

 Gain Goal

10-63

If you are tuning in discrete time, you can specify the maximum gain profile as a discrete-time
model with the same sampling time as you use for tuning. If you specify the gain profile in
continuous time, the tuning software discretizes it. Specifying the gain profile in discrete time
gives you more control over the gain profile near the Nyquist frequency.

• Stabilize I/O transfer

By default, the tuning goal imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain constraint. If stability is not required
or cannot be achieved, select No to remove the stability requirement. For example, if the gain
constraint applies to an unstable open-loop transfer function, select No.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Adjust for signal amplitude

When this option is set to No, the closed-loop transfer function being constrained is not scaled for
relative signal amplitudes. When the choice of units results in a mix of small and large signals,
using an unscaled transfer function can lead to poor tuning results. Set the option to Yes to
provide the relative amplitudes of the input signals and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function. Suppose
further that second input signal to the transfer function tends to be about 100 times greater than
the first signal. In that case, select Yes and enter [1,100] in the Amplitude of input signals
text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled transfer function
Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are diagonal matrices with the
Amplitude of output signals and Amplitude of input signals values on the diagonal,
respectively.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then

10 Control System Tuning

10-64

adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Gain Goal, f(x) is given by:

f x = WF s Do
−1T s, x Di ∞,

or its discrete-time equivalent. Here, T(s,x) is the closed-loop transfer function between the specified
inputs and outputs, evaluated with parameter values x. Do and Di are the scaling matrices described
in “Options” on page 10-63. ⋅ ∞ denotes the H∞ norm (see getPeakGain).

The frequency weighting function WF is the regularized gain profile, derived from the maximum gain
profile you specify. The gain of WF roughly matches the inverse of the gain profile you specify, inside
the frequency band you set in the Enforce goal in frequency range field of the tuning goal. WF is
always stable and proper. Because poles of WF(s) close to s = 0 or s = Inf might lead to poor numeric
conditioning for tuning, it is not recommended to specify maximum gain profiles with very low-
frequency or very high-frequency dynamics. For more information about regularization and its
effects, see “Visualize Tuning Goals” on page 10-141.

Implicit Constraints

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning
goal. The Minimum decay rate and Maximum natural frequency tuning options control the lower
and upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use
Tuning Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

 Gain Goal

10-65

Variance Goal

Purpose
Limit white-noise impact on specified output signals, when using Control System Tuner.

Description
Variance Goal imposes a noise attenuation constraint that limits the impact on specified output
signals of white noise applied at specified inputs. The noise attenuation is measured by the ratio of
the noise variance to the output variance.

For stochastic inputs with a nonuniform spectrum (colored noise), use “Weighted Variance Goal” on
page 10-91 instead.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Signal variance attenuation to
create a Variance Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Variance to specify a
constraint on noise amplification.

I/O Transfer Selection
Use this section of the dialog box to specify noise input locations and response outputs. Also specify
any locations at which to open loops for evaluating the tuning goal.

• Specify stochastic inputs

Select one or more signal locations in your model as noise inputs. To constrain a SISO response,
select a single-valued input signal. For example, to constrain the gain from a location named 'u'
to a location named 'y', click Add signal to list and select 'u'. To constrain the noise
amplification of a MIMO response, select multiple signals or a vector-valued signal.

• Specify stochastic outputs

Select one or more signal locations in your model as outputs for computing response to the noise
inputs. To constrain a SISO response, select a single-valued output signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to
list and select 'y'. To constrain the noise amplification of a MIMO response, select multiple
signals or a vector-valued signal.

• Compute output variance with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

10 Control System Tuning

10-66

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Options
Use this section of the dialog box to specify additional characteristics of the variance goal.

• Attenuate input variance by a factor

Enter the desired noise attenuation from the specified inputs to outputs. This value specifies the
maximum ratio of noise variance to output variance.

When you tune a control system in discrete time, this requirement assumes that the physical plant
and noise process are continuous, and interprets the desired noise attenuation as a bound on the
continuous-time H2 norm. This assumption ensures that continuous-time and discrete-time tuning
give consistent results. If the plant and noise processes are truly discrete, and you want to bound
the discrete-time H2 norm instead, divide the desired attenuation value by Ts, where Ts is the
sample time of the model you are tuning.

• Adjust for signal amplitude

When this option is set to No, the closed-loop transfer function being constrained is not scaled for
relative signal amplitudes. When the choice of units results in a mix of small and large signals,
using an unscaled transfer function can lead to poor tuning results. Set the option to Yes to
provide the relative amplitudes of the input signals and output signals of your transfer function.

For example, suppose the tuning goal constrains a 2-input, 2-output transfer function. Suppose
further that second input signal to the transfer function tends to be about 100 times greater than
the first signal. In that case, select Yes and enter [1,100] in the Amplitude of input signals
text box.

Adjusting signal amplitude causes the tuning goal to be evaluated on the scaled transfer function
Do

–1T(s)Di, where T(s) is the unscaled transfer function. Do and Di are diagonal matrices with the
Amplitude of output signals and Amplitude of input signals values on the diagonal,
respectively.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

 Variance Goal

10-67

Tips
• When you use this requirement to tune a control system, Control System Tuner attempts to

enforce zero feedthrough (D = 0) on the transfer that the requirement constrains. Zero
feedthrough is imposed because the H2 norm, and therefore the value of the tuning goal (see
“Algorithms” on page 10-68), is infinite for continuous-time systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. Control System Tuner returns an error when fixing these
tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the
requirement or the control structure, or manually fix some tunable parameters of your system to
values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s
approach of zeroing all parameters that contribute to the overall feedthrough might be
conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you
want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of
the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 10-19.

• This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this
tuning goal. The Minimum decay rate and Maximum natural frequency tuning options control
the lower and upper bounds on these implicitly constrained dynamics. If the optimization fails to
meet the default bounds, or if the default bounds conflict with other requirements, on the Tuning
tab, use Tuning Options to change the defaults.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Variance Goal, f(x) is given by:

f x = Attenuation ⋅ T s, x 2 .

T(s,x) is the closed-loop transfer function from Input to Output. ⋅ 2 denotes the H2 norm (see
norm).

For tuning discrete-time control systems, f(x) is given by:

f x = Attenuation
Ts

T z, x
2

.

Ts is the sample time of the discrete-time transfer function T(z,x).

10 Control System Tuning

10-68

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

 Variance Goal

10-69

Reference Tracking Goal

Purpose
Make specified outputs track reference inputs with prescribed performance and fidelity, when using
Control System Tuner. Limit cross-coupling in MIMO systems.

Description
Reference Tracking Goal constrains tracking between the specified signal locations. The constraint is
satisfied when the maximum relative tracking error falls below the value you specify at all
frequencies. The relative error is the gain from reference input to tracking error as a function of
frequency.

You can specify the maximum error profile directly as a function of frequency. Alternatively, you can
specify the tracking goal a target DC error, peak error, and response time. These parameters are
converted to the following transfer function that describes the maximum frequency-domain tracking
error:

MaxError =
PeakError s + ωc DCError

s + ωc
.

Here, ωc is 2/(response time). The following plot illustrates these relationships for an example set of
values.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated. The dotted
line shows the error profile you specify. The shaded area on the plot represents the region in the
frequency domain where the tuning goal is not satisfied.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Reference Tracking to create a
Reference Tracking Goal.

10 Control System Tuning

10-70

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Tracking to specify a tracking
goal.

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for evaluating
the tuning goal.

• Specify reference inputs

Select one or more signal locations in your model as reference signals. To constrain a SISO
response, select a single-valued reference signal. For example, to constrain the response from a
location named 'u' to a location named 'y', click Add signal to list and select 'u'. To
constrain a MIMO response, select multiple signals or a vector-valued signal.

• Specify reference-tracking outputs

Select one or more signal locations in your model as reference-tracking outputs. To constrain a
SISO response, select a single-valued output signal. For example, to constrain the step response
from a location named 'u' to a location named 'y', click Add signal to list and select 'y'.
To constrain a MIMO response, select multiple signals or a vector-valued signal. For MIMO
systems, the number of outputs must equal the number of inputs.

• Evaluate tracking performance with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Tracking Performance
Use this section of the dialog box to specify frequency-domain constraints on the tracking error.

Response time, DC error, and peak error

Select this option to specify the tracking error in terms of response time, percent steady-state error,
and peak error across all frequencies. These parameters are converted to the following transfer
function that describes the maximum frequency-domain tracking error:

MaxError =
PeakError s + ωc DCError

s + ωc
.

 Reference Tracking Goal

10-71

When you select this option, enter the following parameters in the text boxes:

• Response Time — Enter the target response time. The tracking bandwidth is given by ωc = 2/
Response Time. Express the target response time in the time units of your model.

• Steady-state error (%) — Enter the maximum steady-state fractional tracking error, expressed in
percent. For MIMO tracking goals, this steady-state error applies to all I/O pairs. The steady-state
error is the DC error expressed as a percentage, DCError/100.

• Peak error across frequency (%) — Enter the maximum fractional tracking error across all
frequencies, expressed in percent.

Maximum error as a function of frequency

Select this option to specify the maximum tracking error profile as a function of frequency.

Enter a SISO numeric LTI model in the text box. For example, you can specify a smooth transfer
function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise error profile using an frd
model. When you do so, the software automatically maps the error profile to a smooth transfer
function that approximates the desired error profile. For example, to specify a maximum error of 0.01
below about 1 rad/s, gradually rising to a peak error of 1 at 100 rad/s, enter frd([0.01 0.01 1],
[0 1 100]).

For MIMO tracking goals, this error profile applies to all I/O pairs.

If you are tuning in discrete time, you can specify the maximum error profile as a discrete-time model
with the same sampling time as you use for tuning. If you specify the attenuation profile in continuous
time, the tuning software discretizes it. Specifying the error profile in discrete time gives you more
control over the profile near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the tracking goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Adjust for step amplitude

For a MIMO tuning goal, when the choice of units results in a mix of small and large signals in
different channels of the response, this option allows you to specify the relative amplitude of each
entry in the vector-valued step input. This information is used to scale the off-diagonal terms in
the transfer function from reference to tracking error. This scaling ensures that cross-couplings
are measured relative to the amplitude of each reference signal.

For example, suppose that tuning goal is that outputs 'y1' and 'y2' track reference signals
'r1'and 'r2'. Suppose further that you require the outputs to track the references with less
than 10% cross-coupling. If r1 and r2 have comparable amplitudes, then it is sufficient to keep
the gains from r1 to y2 and r2 and y1 below 0.1. However, if r1 is 100 times larger than r2, the
gain from r1 to y2 must be less than 0.001 to ensure that r1 changes y2 by less than 10% of the
r2 target. To ensure this result, set Adjust for step amplitude to Yes. Then, enter [100,1] in

10 Control System Tuning

10-72

the Amplitudes of step commands text box. Doing so tells Control System Tuner to take into
account that the first reference signal is 100 times greater than the second reference signal.

The default value, No , means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Tracking Goal, f(x) is given by:

f x = WF s T s, x − I ∞,

or its discrete-time equivalent. Here, T(s,x) is the closed-loop transfer function between the specified
inputs and outputs, and ⋅ ∞ denotes the H∞ norm (see getPeakGain). WF is a frequency weighting
function derived from the error profile you specify in the tuning goal. The gain of WF roughly matches
the inverse of the error profile for gain values between –20 dB and 60 dB. For numerical reasons, the
weighting function levels off outside this range, unless you specify a reference model that changes
slope outside this range. This adjustment is called regularization. Because poles of WF close to s = 0
or s = Inf might lead to poor numeric conditioning of the systune optimization problem, it is not
recommended to specify error profiles with very low-frequency or very high-frequency dynamics. For
more information about regularization and its effects, see “Visualize Tuning Goals” on page 10-141.

Implicit Constraints

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning
goal. The Minimum decay rate and Maximum natural frequency tuning options control the lower
and upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use
Tuning Options to change the defaults.

 Reference Tracking Goal

10-73

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Visualize Tuning Goals” on page 10-141
• “Manage Tuning Goals” on page 10-134

10 Control System Tuning

10-74

Overshoot Goal

Purpose
Limit overshoot in the step response from specified inputs to specified outputs, when using Control
System Tuner.

Description
Overshoot Goal limits the overshoot in the step response between the specified signal locations. The
constraint is satisfied when the overshoot in the tuned response is less than the target overshoot

The software maps the maximum overshoot to a peak gain constraint, assuming second-order system
characteristics. Therefore, for tuning higher-order systems, the overshoot constraint is only
approximate. In addition, the Overshoot Goal cannot reliably reduce the overshoot below 5%.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated. The
shaded area on the plot represents the region in the frequency domain where the tuning goal is not
satisfied.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Maximum overshoot to create an
Overshoot Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Overshoot to specify a step
response goal.

 Overshoot Goal

10-75

Response Selection
Use this section of the dialog box to specify input, output, and loop-opening locations for evaluating
the tuning goal.

• Specify step-response inputs

Select one or more signal locations in your model at which to apply the step input. To constrain a
SISO response, select a single-valued input signal. For example, to constrain the step response
from a location named 'u' to a location named 'y', click Add signal to list and select 'u'.
To constrain a MIMO response, select multiple signals or a vector-valued signal.

• Specify step-response outputs

Select one or more signal locations in your model at which to measure the response to the step
input. To constrain a SISO response, select a single-valued output signal. For example, to
constrain the step response from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain a MIMO response, select multiple signals or a vector-
valued signal. For MIMO systems, the number of outputs must equal the number of inputs.

• Evaluate overshoot with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Options
Use this section of the dialog box to specify additional characteristics of the overshoot goal.

• Limit % overshoot to

Enter the maximum percent overshoot. Overshoot Goal cannot reliably reduce the overshoot
below 5%

• Adjust for step amplitude

For a MIMO tuning goal, when the choice of units results in a mix of small and large signals in
different channels of the response, this option allows you to specify the relative amplitude of each
entry in the vector-valued step input. This information is used to scale the off-diagonal terms in
the transfer function from reference to tracking error. This scaling ensures that cross-couplings
are measured relative to the amplitude of each reference signal.

For example, suppose that tuning goal is that outputs 'y1' and 'y2' track reference signals
'r1'and 'r2'. Suppose further that you require the outputs to track the references with less

10 Control System Tuning

10-76

than 10% cross-coupling. If r1 and r2 have comparable amplitudes, then it is sufficient to keep
the gains from r1 to y2 and r2 and y1 below 0.1. However, if r1 is 100 times larger than r2, the
gain from r1 to y2 must be less than 0.001 to ensure that r1 changes y2 by less than 10% of the
r2 target. To ensure this result, set Adjust for step amplitude to Yes. Then, enter [100,1] in
the Amplitudes of step commands text box. Doing so tells Control System Tuner to take into
account that the first reference signal is 100 times greater than the second reference signal.

The default value, No , means no scaling is applied.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Overshoot Goal, f(x) reflects the relative satisfaction or violation of the goal. The percent
deviation from f(x) = 1 roughly corresponds to the percent deviation from the specified overshoot
target. For example, f(x) = 1.2 means the actual overshoot exceeds the target by roughly 20%, and
f(x) = 0.8 means the actual overshoot is about 20% less than the target.

Overshoot Goal uses T ∞ as a proxy for the overshoot, based on second-order model
characteristics. Here, T is the closed-loop transfer function that the requirement constrains. The
overshoot is tuned in the range from 5% (T ∞ = 1) to 100% (T ∞). Overshoot Goal is ineffective at
forcing the overshoot below 5%.

This tuning goal also imposes an implicit stability constraint on the closed-loop transfer function
between the specified inputs to outputs, evaluated with loops opened at the specified loop-opening
locations. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning
goal. The Minimum decay rate and Maximum natural frequency tuning options control the lower
and upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the
default bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use
Tuning Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28

 Overshoot Goal

10-77

• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-78

Disturbance Rejection Goal

Purpose
Attenuate disturbances at particular locations and in particular frequency bands, when using Control
System Tuner.

Description
Disturbance Rejection Goal specifies the minimum attenuation of a disturbance injected at a specified
location in a control system.

When you use this tuning goal, the software attempts to tune the system so that the attenuation of a
disturbance at the specified location exceeds the minimum attenuation factor you specify. This
attenuation factor is the ratio between the open- and closed-loop sensitivities to the disturbance, and
is a function of frequency.

The following diagram illustrates how the attenuation factor is calculated. Suppose you specify a
location in your control system, y, which is the output of a block A. In that case, the software
calculates the closed-loop sensitivity at out to a signal injected at in. The software also calculates
the sensitivity with the control loop opened at the location z.

To specify a Disturbance Rejection Goal, you specify one or more locations at which to attenuate
disturbance. You also provide the frequency-dependent minimum attenuation factor as a numeric LTI
model. You can achieve disturbance attenuation only inside the control bandwidth. The loop gain
must be larger than one for the disturbance to be attenuated (attenuation factor > 1).

 Disturbance Rejection Goal

10-79

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated. The dotted
line shows the gain profile you specify. The shaded area on the plot represents the region in the
frequency domain where the tuning goal is not satisfied. The solid line is the current corresponding
response of your system.

If you prefer to specify sensitivity to disturbance at a location, rather than disturbance attenuation,
you can use “Sensitivity Goal” on page 10-84.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Disturbance rejection to create a
Disturbance Rejection Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Rejection to specify a
disturbance rejection goal.

Disturbance Scenario
Use this section of the dialog box to specify the signal locations at which to inject the disturbance.
You can also specify loop-opening locations for evaluating the tuning goal.

• Inject disturbances at the following locations

Select one or more signal locations in your model at which to measure the disturbance
attenuation. To constrain a SISO response, select a single-valued location. For example, to
attenuate disturbance at a location named 'y', click Add signal to list and select 'y'. To
constrain a MIMO response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop

10 Control System Tuning

10-80

configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Rejection Performance
Specify the minimum disturbance attenuation as a function of frequency.

Enter a SISO numeric LTI model whose magnitude represents the desired attenuation profile as a
function of frequency. For example, you can specify a smooth transfer function (tf, zpk, or ss
model). Alternatively, you can sketch a piecewise minimum disturbance rejection using an frd model.
When you do so, the software automatically maps the profile to a smooth transfer function that
approximates the desired minimum disturbance rejection. For example, to specify an attenuation
factor of 100 (40 dB) below 1 rad/s, that gradually drops to 1 (0 dB) past 10 rad/s, enter frd([100
100 1 1],[0 1 10 100]).

If you are tuning in discrete time, you can specify the attenuation profile as a discrete-time model
with the same sampling time as you use for tuning. If you specify the attenuation profile in continuous
time, the tuning software discretizes it. Specifying the attenuation profile in discrete time gives you
more control over the profile near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the disturbance rejection
goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

Regardless of the limits you enter, a disturbance rejection goal can only be enforced within the
control bandwidth.

• Equalize cross-channel effects

For multiloop or MIMO disturbance rejection requirements, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms in the open-loop
transfer function. Select Off to disable such scaling and shape the unscaled open-loop response.

• Apply goal to

 Disturbance Rejection Goal

10-81

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Disturbance Rejection Goal, f(x) is given by:

f x = max
ω ∈ Ω

WS jω S jω, x ∞,

or its discrete-time equivalent. Here, S(jω,x) is the closed-loop sensitivity function measured at the
disturbance location. Ω is the frequency interval over which the requirement is enforced, specified in
the Enforce goal in frequency range field. WS is a frequency weighting function derived from the
attenuation profile you specify. The gains of WS and the specified profile roughly match for gain
values ranging from –20 dB to 60 dB. For numerical reasons, the weighting function levels off outside
this range, unless the specified gain profile changes slope outside this range. This adjustment is
called regularization. Because poles of WS close to s = 0 or s = Inf might lead to poor numeric
conditioning for tuning, it is not recommended to specify loop shapes with very low-frequency or very
high-frequency dynamics. For more information about regularization and its effects, see “Visualize
Tuning Goals” on page 10-141.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at the specified, evaluated with loops opened at the specified loop-opening locations. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the lower and
upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the default
bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use Tuning
Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134

10 Control System Tuning

10-82

• “Visualize Tuning Goals” on page 10-141

 Disturbance Rejection Goal

10-83

Sensitivity Goal

Purpose
Limit sensitivity of feedback loops to disturbances, when using Control System Tuner.

Description
Sensitivity Goal limits the sensitivity of a feedback loop to disturbances. You specify the maximum
sensitivity as a function of frequency. Constrain the sensitivity to be smaller than one at frequencies
where you need good disturbance rejection.

To specify a Sensitivity Goal, you specify one or more locations at which to limit sensitivity. You also
provide the frequency-dependent maximum sensitivity as a numeric LTI model whose magnitude
represents the desired sensitivity as a function of frequency.

When you create a tuning goal in Control System Tuner, a tuning-goal plot is generated. The dotted
line shows the gain profile you specify. The shaded area on the plot represents the region in the
frequency domain where the tuning goal is not satisfied.

If you prefer to specify disturbance attenuation at a particular location, rather than sensitivity to
disturbance, you can use “Disturbance Rejection Goal” on page 10-79.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Sensitivity of feedback loops to
create a Sensitivity Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Sensitivity to specify a
disturbance rejection goal.

10 Control System Tuning

10-84

Sensitivity Evaluation
Use this section of the dialog box to specify the signal locations at which to compute the sensitivity to
disturbance. You can also specify loop-opening locations for evaluating the tuning goal.

• Measure sensitivity at the following locations

Select one or more signal locations in your model at which to measure the sensitivity to
disturbance. To constrain a SISO response, select a single-valued location. For example, to limit
sensitivity at a location named 'y', click Add signal to list and select 'y'. To constrain a
MIMO response, select multiple signals or a vector-valued signal.

• Evaluate disturbance rejection with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Sensitivity Bound
Specify the maximum sensitivity as a function of frequency.

Enter a SISO numeric LTI model whose magnitude represents the desired sensitivity bound as a
function of frequency. For example, you can specify a smooth transfer function (tf, zpk, or ss
model). Alternatively, you can sketch a piecewise maximum sensitivity using an frd model. When you
do so, the software automatically maps the profile to a smooth transfer function that approximates
the desired sensitivity. For example, to specify a sensitivity that rolls up at 20 dB per decade and
levels off at unity above 1 rad/s, enter frd([0.01 1 1],[0.001 0.1 100]).

If you are tuning in discrete time, you can specify the maximum sensitivity profile as a discrete-time
model with the same sampling time as you use for tuning. If you specify the sensitivity profile in
continuous time, the tuning software discretizes it. Specifying the profile in discrete time gives you
more control over the profile near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the sensitivity goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For

 Sensitivity Goal

10-85

example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Equalize cross-channel effects

For multiloop or MIMO sensitivity requirements, the feedback channels are automatically rescaled
to equalize the off-diagonal (loop interaction) terms in the open-loop transfer function. Select Off
to disable such scaling and shape the unscaled open-loop response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Sensitivity Goal, f(x) is given by:

f x = WS s S s, x ∞,

or its discrete-time equivalent. Here, S(s,x) is the closed-loop sensitivity function measured at the
location specified in the tuning goal. ⋅ ∞ denotes the H∞ norm (see norm). WS is a frequency
weighting function derived from the sensitivity profile you specify. The gain of WS roughly matches
the inverse of the specified profile for gain values ranging from –20 dB to 60 dB. For numerical
reasons, the weighting function levels off outside this range, unless the specified gain profile changes
slope outside this range. This adjustment is called regularization. Because poles of WS close to s = 0
or s = Inf might lead to poor numeric conditioning for tuning, it is not recommended to specify
sensitivity profiles with very low-frequency or very high-frequency dynamics. For more information
about regularization and its effects, see “Visualize Tuning Goals” on page 10-141.

Implicit Constraint

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at the specified, evaluated with loops opened at the specified loop-opening locations. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the lower and
upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the default
bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use Tuning
Options to change the defaults.

10 Control System Tuning

10-86

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

 Sensitivity Goal

10-87

Weighted Gain Goal

Purpose
Frequency-weighted gain limit for tuning with Control System Tuner.

Description
Weighted Gain Goal limits the gain of the frequency-weighted transfer function WL(s)H(s)WR(s),
where H(s) is the transfer function between inputs and outputs you specify. WL(s) and WR(s) are
weighting functions that you can use to emphasize particular frequency bands. Weighted Gain Goal
constrains the peak gain of WL(s)H(s)WR(s) to values less than 1. If H(s) is a MIMO transfer function,
Weighted Gain Goal constrains the largest singular value of H(s).

By default, Weighted Gain Goal constrains a closed-loop gain. To constrain a gain computed with one
or more loops open, specify loop-opening locations in the I/O Transfer Selection section of the
dialog box.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Frequency-weighted gain limit
to create a Weighted Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.WeightedGain to specify a
weighted gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer function that the
tuning goal constrains. Also specify any locations at which to open loops for evaluating the tuning
goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function that the tuning
goal constrains. To constrain a SISO response, select a single-valued input signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to
list and select 'u'. To constrain the largest singular value of a MIMO response, select multiple
signals or a vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function that the
tuning goal constrains. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the gain from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain the largest singular value of a MIMO response, select
multiple signals or a vector-valued signal.

• Compute input/output gain with the following loops open

10 Control System Tuning

10-88

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the frequency-weighting
functions for the tuning goal. The tuning goal ensures that the gain H(s) from the specified input to
output satisfies the inequality:

||WL(s)H(s)WR(s)||∞ < 1.

WL provides the weighting for the output channels of H(s), and WR provides the weighting for the
input channels. You can specify scalar weights or frequency-dependent weighting. To specify a
frequency-dependent weighting, use a numeric LTI model whose magnitude represents the desired
weighting function. For example, enter tf(1,[1 0.01]) to specify a high weight at low frequencies
that rolls off above 0.01 rad/s.

If the tuning goal constrains a MIMO transfer function, scalar or SISO weighting functions
automatically expand to any input or output dimension. You can specify different weights for each
channel by specifying matrices or MIMO weighting functions. The dimensions H(s) must be
commensurate with the dimensions of WL and WR. For example, if the constrained transfer function
has two inputs, you can specify diag([1 10]) as WR.

If you are tuning in discrete time, you can specify the weighting functions as discrete-time models
with the same sampling time as you use for tuning. If you specify the weighting functions in
continuous time, the tuning software discretizes them. Specifying the weighting functions in discrete
time gives you more control over the weighting functions near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the weighted gain goal.

• Stabilize I/O transfer

By default, the tuning goal imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain constraint. If stability is not required
or cannot be achieved, select No to remove the stability requirement. For example, if the gain
constraint applies to an unstable open-loop transfer function, select No.

• Enforce goal in frequency range

 Weighted Gain Goal

10-89

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Weighted Gain Goal, f(x) is given by:

f x = WL H s, x WR ∞ .

H(s,x) is the closed-loop transfer function between the specified inputs and outputs, evaluated with
parameter values x. Here, ⋅ ∞ denotes the H∞ norm (see getPeakGain).

This tuning goal also imposes an implicit stability constraint on the weighted closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the specified loop-
opening locations. The dynamics affected by this implicit constraint are the stabilized dynamics for
this tuning goal. The Minimum decay rate and Maximum natural frequency tuning options
control the lower and upper bounds on these implicitly constrained dynamics. If the optimization fails
to meet the default bounds, or if the default bounds conflict with other requirements, on the Tuning
tab, use Tuning Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Visualize Tuning Goals” on page 10-141
• “Manage Tuning Goals” on page 10-134

10 Control System Tuning

10-90

Weighted Variance Goal

Purpose
Frequency-weighted limit on noise impact on specified output signals for tuning with Control
System Tuner.

Description
Weighted Variance Goal limits the noise impact on the outputs of the frequency-weighted transfer
function WL(s)H(s)WR(s), where H(s) is the transfer function between inputs and outputs you specify.
WL(s) and WR(s) are weighting functions you can use to model a noise spectrum or emphasize
particular frequency bands. Thus, you can use Weighted Variance Goal to tune the system response to
stochastic inputs with a nonuniform spectrum such as colored noise or wind gusts.

Weighted Variance minimizes the response to noise at the inputs by minimizing the H2 norm of the
frequency-weighted transfer function. The H2 norm measures:

• The total energy of the impulse response, for deterministic inputs to the transfer function.
• The square root of the output variance for a unit-variance white-noise input, for stochastic inputs

to the transfer function. Equivalently, the H2 norm measures the root-mean-square of the output
for such input.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Frequency-weighted variance
attenuation to create a Weighted Variance Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.WeightedVariance to specify
a weighted gain goal.

I/O Transfer Selection
Use this section of the dialog box to specify noise input locations and response outputs. Also specify
any locations at which to open loops for evaluating the tuning goal.

• Specify stochastic inputs

Select one or more signal locations in your model as noise inputs. To constrain a SISO response,
select a single-valued input signal. For example, to constrain the gain from a location named 'u'
to a location named 'y', click Add signal to list and select 'u'. To constrain the noise
amplification of a MIMO response, select multiple signals or a vector-valued signal.

• Specify stochastic outputs

Select one or more signal locations in your model as outputs for computing response to the noise
inputs. To constrain a SISO response, select a single-valued output signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to

 Weighted Variance Goal

10-91

list and select 'y'. To constrain the noise amplification of a MIMO response, select multiple
signals or a vector-valued signal.

• Compute output variance with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the frequency-weighting
functions for the tuning goal.

WL provides the weighting for the output channels of H(s), and WR provides the weighting for the
input channels.

You can specify scalar weights or frequency-dependent weighting. To specify a frequency-dependent
weighting, use a numeric LTI model whose magnitude represents the desired weighting as a function
of frequency. For example, enter tf(1,[1 0.01]) to specify a high weight at low frequencies that
rolls off above 0.01 rad/s. To limit the response to a nonuniform noise distribution, enter as WR an LTI
model whose magnitude represents the noise spectrum.

If the tuning goal constrains a MIMO transfer function, scalar or SISO weighting functions
automatically expand to any input or output dimension. You can specify different weights for each
channel by specifying MIMO weighting functions. The dimensions H(s) must be commensurate with
the dimensions of WL and WR. For example, if the constrained transfer function has two inputs, you
can specify diag([1 10]) as WR.

If you are tuning in discrete time, you can specify the weighting functions as discrete-time models
with the same sampling time as you use for tuning. If you specify the weighting functions in
continuous time, the tuning software discretizes them. Specifying the weighting functions in discrete
time gives you more control over the weighting functions near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the weighted variance goal.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of

10 Control System Tuning

10-92

models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Tips
• When you use this requirement to tune a control system, Control System Tuner attempts to

enforce zero feedthrough (D = 0) on the transfer that the requirement constrains. Zero
feedthrough is imposed because the H2 norm, and therefore the value of the tuning goal (see
“Algorithms” on page 10-93), is infinite for continuous-time systems with nonzero feedthrough.

Control System Tuner enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. Control System Tuner returns an error when fixing these
tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the
requirement or the control structure, or manually fix some tunable parameters of your system to
values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s
approach of zeroing all parameters that contribute to the overall feedthrough might be
conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you
want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of
the tuned block of your choice.

To fix parameters of tunable blocks to specified values, see “View and Change Block
Parameterization in Control System Tuner” on page 10-19.

• This tuning goal also imposes an implicit stability constraint on the weighted closed-loop transfer
function between the specified inputs to outputs, evaluated with loops opened at the specified
loop-opening locations. The dynamics affected by this implicit constraint are the stabilized
dynamics for this tuning goal. The Minimum decay rate and Maximum natural frequency
tuning options control the lower and upper bounds on these implicitly constrained dynamics. If the
optimization fails to meet the default bounds, or if the default bounds conflict with other
requirements, on the Tuning tab, use Tuning Options to change the defaults.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Weighted Variance Goal, f(x) is given by:

f x = WL H s, x WR 2 .

H(s,x) is the closed-loop transfer function between the specified inputs and outputs, evaluated with
parameter values x. ⋅ 2 denotes the H2 norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

 Weighted Variance Goal

10-93

f x = 1
Ts

WL z H z, x WR z 2 .

Ts is the sample time of the discrete-time transfer function H(z,x).

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Visualize Tuning Goals” on page 10-141
• “Manage Tuning Goals” on page 10-134

10 Control System Tuning

10-94

Minimum Loop Gain Goal

Purpose
Boost gain of feedback loops at low frequency when using Control System Tuner.

Description
Minimum Loop Gain Goal enforces a minimum loop gain in a particular frequency band. This tuning
goal is useful, for example, for improving disturbance rejection at a particular location.

Minimum Loop Gain Goal imposes a minimum gain on the open-loop frequency response (L) at a
specified location in your control system. You specify the minimum open-loop gain as a function of
frequency (a minimum gain profile). For MIMO feedback loops, the specified gain profile is
interpreted as a lower bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to a minimum gain constraint
on the inverse of the sensitivity function, inv(S) = (I + L).

The following figure shows a typical specified minimum gain profile (dashed line) and a resulting
tuned loop gain, L (blue line). The green region represents gain profile values that are forbidden by
this requirement. The figure shows that when L is much larger than 1, imposing a minimum gain on
inv(S) is a good proxy for a minimum open-loop gain.

 Minimum Loop Gain Goal

10-95

Minimum Loop Gain Goal is a constraint on the open-loop gain of the specified control loop. Thus, the
loop gain is computed with the loop open at the specified location. To compute the gain with loop
openings at other points in the control system, use the Compute response with the following
loops open option in the Open-Loop Response Selection section of the dialog box.

Minimum Loop Gain Goal and Maximum Loop Gain Goal specify only low-gain or high-gain
constraints in certain frequency bands. When you use these requirements, the software determines
the best loop shape near crossover. When the loop shape near crossover is simple or well understood
(such as integral action), you can use “Loop Shape Goal” on page 10-105 to specify that target loop
shape.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Minimum gain for open-loop
response to create a Minimum Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.MinLoopGain to specify a
minimum loop gain goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to compute the open-loop
gain. You can also specify additional loop-opening locations for evaluating the tuning goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute and constrain the open-
loop gain. To constrain a SISO response, select a single-valued location. For example, to constrain
the open-loop gain at a location named 'y', click Add signal to list and select 'y'. To
constrain a MIMO response, select multiple signals or a vector-valued signal.

• Compute response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Desired Loop Gain
Use this section of the dialog box to specify the target minimum loop gain.

10 Control System Tuning

10-96

• Pure integrator K/s

Check to specify a pure integrator shape for the target minimum loop gain. The software chooses
the integrator constant, K, based on the values you specify for a target minimum gain and
frequency. For example, to specify an integral gain profile with crossover frequency 10 rad/s, enter
1 in the Choose K to keep gain above text box. Then, enter 10 in the at the frequency text box.
The software chooses the integrator constant such that the minimum loop gain is 1 at 10 rad/s.

• Other gain profile

Check to specify the minimum gain profile as a function of frequency. Enter a SISO numeric LTI
model whose magnitude represents the desired gain profile. For example, you can specify a
smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise target
loop gain using an frd model. When you do so, the software automatically maps the profile to a
smooth transfer function that approximates the desired minimum loop gain. For example, to
specify minimum gain of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/dec at higher
frequencies, enter frd([100 100 10],[0 1e-1 1]).

If you are tuning in discrete time, you can specify the minimum gain profile as a discrete-time
model with the same sampling time as you use for tuning. If you specify the gain profile in
continuous time, the tuning software discretizes it. Specifying the profile in discrete time gives
you more control over the profile near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the minimum loop gain goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Stabilize closed loop system

By default, the tuning goal imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain constraint. If stability is not required
or cannot be achieved, select No to remove the stability requirement. For example, if the gain
constraint applies to an unstable open-loop transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are automatically rescaled to
equalize the off-diagonal (loop interaction) terms in the open-loop transfer function. Select Off to
disable such scaling and shape the unscaled open-loop response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and

 Minimum Loop Gain Goal

10-97

fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Minimum Loop Gain Goal, f(x) is given by:

f x = WS D−1SD
∞

.

D is a diagonal scaling (for MIMO loops). S is the sensitivity function at Location. WS is a frequency-
weighting function derived from the minimum loop gain profile you specify. The gain of this function
roughly matches the specified loop gain for values ranging from –20 dB to 60 dB. For numerical
reasons, the weighting function levels off outside this range, unless the specified gain profile changes
slope outside this range. This adjustment is called regularization. Because poles of WS close to s = 0
or s = Inf might lead to poor numeric conditioning for tuning, it is not recommended to specify gain
profiles with very low-frequency or very high-frequency dynamics. For more information about
regularization and its effects, see “Visualize Tuning Goals” on page 10-141.

Although S is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing a lower bound
on the open-loop transfer function, L, in a frequency band where the gain of L is greater than 1. To
see why, note that S = 1/(1 + L). For SISO loops, when |L| >> 1, |S | ≈ 1/|L|. Therefore, enforcing the
open-loop minimum gain requirement, |L| > |WS|, is roughly equivalent to enforcing |WsS| < 1. For
MIMO loops, similar reasoning applies, with ||S|| ≈ 1/σmin(L), where σmin is the smallest singular
value.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at the specified, evaluated with loops opened at the specified loop-opening locations. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the lower and
upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the default
bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use Tuning
Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134

10 Control System Tuning

10-98

• “Visualize Tuning Goals” on page 10-141

 Minimum Loop Gain Goal

10-99

Maximum Loop Gain Goal

Purpose
Suppress gain of feedback loops at high frequency when using Control System Tuner.

Description
Maximum Loop Gain Goal enforces a maximum loop gain in a particular frequency band. This tuning
goal is useful, for example, for increasing system robustness to unmodeled dynamics.

Maximum Loop Gain Goal imposes a maximum gain on the open-loop frequency response (L) at a
specified location in your control system. You specify the maximum open-loop gain as a function of
frequency (a maximum gain profile). For MIMO feedback loops, the specified gain profile is
interpreted as an upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted to a maximum gain
constraint on the complementary sensitivity function, T = L/(I + L).

The following figure shows a typical specified maximum gain profile (dashed line) and a resulting
tuned loop gain, L (blue line). The shaded region represents gain profile values that are forbidden by
this requirement. The figure shows that when L is much smaller than 1, imposing a maximum gain on
T is a good proxy for a maximum open-loop gain.

10 Control System Tuning

10-100

Maximum Loop Gain Goal is a constraint on the open-loop gain of the specified control loop. Thus, the
loop gain is computed with the loop open at the specified location. To compute the gain with loop
openings at other points in the control system, use the Compute response with the following
loops open option in the Open-Loop Response Selection section of the dialog box.

Maximum Loop Gain Goal and Minimum Loop Gain Goal specify only high-gain or low-gain
constraints in certain frequency bands. When you use these requirements, the software determines
the best loop shape near crossover. When the loop shape near crossover is simple or well understood
(such as integral action), you can use “Loop Shape Goal” on page 10-105 to specify that target loop
shape.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Maximum gain for open-loop
response to create a Maximum Gain Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.MaxLoopGain to specify a
maximum loop gain goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to compute the open-loop
gain. You can also specify additional loop-opening locations for evaluating the tuning goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute and constrain the open-
loop gain. To constrain a SISO response, select a single-valued location. For example, to constrain
the open-loop gain at a location named 'y', click Add signal to list and select 'y'. To
constrain a MIMO response, select multiple signals or a vector-valued signal.

• Compute response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Desired Loop Gain
Use this section of the dialog box to specify the target maximum loop gain.

 Maximum Loop Gain Goal

10-101

• Pure integrator K/s

Check to specify a pure integrator shape for the target maximum loop gain. The software chooses
the integrator constant, K, based on the values you specify for a target maximum gain and
frequency. For example, to specify an integral gain profile with crossover frequency 10 rad/s, enter
1 in the Choose K to keep gain below text box. Then, enter 10 in the at the frequency text box.
The software chooses the integrator constant such that the maximum loop gain is 1 at 10 rad/s.

• Other gain profile

Check to specify the maximum gain profile as a function of frequency. Enter a SISO numeric LTI
model whose magnitude represents the desired gain profile. For example, you can specify a
smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise target
loop gain using an frd model. When you do so, the software automatically maps the profile to a
smooth transfer function that approximates the desired maximum loop gain. For example, to
specify maximum gain of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/dec at higher
frequencies, enter frd([100 100 10],[0 1e-1 1]).

If you are tuning in discrete time, you can specify the maximum gain profile as a discrete-time
model with the same sampling time as you use for tuning. If you specify the gain profile in
continuous time, the tuning software discretizes it. Specifying the profile in discrete time gives
you more control over the profile near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the maximum loop gain goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Stabilize closed loop system

By default, the tuning goal imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain constraint. If stability is not required
or cannot be achieved, select No to remove the stability requirement. For example, if the gain
constraint applies to an unstable open-loop transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are automatically rescaled to
equalize the off-diagonal (loop interaction) terms in the open-loop transfer function. Select Off to
disable such scaling and shape the unscaled open-loop response.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and

10 Control System Tuning

10-102

fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Maximum Loop Gain Goal, f(x) is given by:

f x = WT D−1TD
∞

.

Here, D is a diagonal scaling (for MIMO loops). T is the complementary sensitivity function at the
specified location. WT is a frequency-weighting function derived from the maximum loop gain profile
you specify. The gain of this function roughly matches the inverse of the specified loop gain for values
ranging from –60 dB to 20 dB. For numerical reasons, the weighting function levels off outside this
range, unless the specified gain profile changes slope outside this range. This adjustment is called
regularization. Because poles of WT close to s = 0 or s = Inf might lead to poor numeric conditioning
for tuning, it is not recommended to specify gain profiles with very low-frequency or very high-
frequency dynamics. For more information about regularization and its effects, see “Visualize Tuning
Goals” on page 10-141.

Although T is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing an upper
bound on the open-loop transfer, L, in a frequency band where the gain of L is less than one. To see
why, note that T = L/(I + L). For SISO loops, when |L| << 1, |T| ≈ |L|. Therefore, enforcing the open-
loop maximum gain requirement, |L| < 1/|WT|, is roughly equivalent to enforcing |WTT| < 1. For
MIMO loops, similar reasoning applies, with ||T|| ≈ σmax(L), where σmax is the largest singular value.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at the specified, evaluated with loops opened at the specified loop-opening locations. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the lower and
upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the default
bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use Tuning
Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134

 Maximum Loop Gain Goal

10-103

• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-104

Loop Shape Goal

Purpose
Shape open-loop response of feedback loops when using Control System Tuner.

Description
Loop Shape Goal specifies a target gain profile (gain as a function of frequency) of an open-loop
response. Loop Shape Goal constrains the open-loop, point-to-point response (L) at a specified
location in your control system.

When you tune a control system, the target open-loop gain profile is converted into constraints on the
inverse sensitivity function inv(S) = (I + L) and the complementary sensitivity function T = 1–S.
These constraints are illustrated for a representative tuned system in the following figure.

Where L is much greater than 1, a minimum gain constraint on inv(S) (green shaded region) is
equivalent to a minimum gain constraint on L. Similarly, where L is much smaller than 1, a maximum
gain constraint on T (red shaded region) is equivalent to a maximum gain constraint on L. The gap

 Loop Shape Goal

10-105

between these two constraints is twice the crossover tolerance, which specifies the frequency band
where the loop gain can cross 0 dB.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater than 1 are
interpreted as minimum performance requirements. Such values are lower bounds on the smallest
singular value of the open-loop response. Gain profile values less than one are interpreted as
minimum roll-off requirements, which are upper bounds on the largest singular value of the open-loop
response. For more information about singular values, see sigma.

Use Loop Shape Goal when the loop shape near crossover is simple or well understood (such as
integral action). To specify only high gain or low gain constraints in certain frequency bands, use
“Minimum Loop Gain Goal” on page 10-95 or “Maximum Loop Gain Goal” on page 10-100. When you
do so, the software determines the best loop shape near crossover.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Target shape for open-loop
response to create a Loop Shape Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.LoopShape to specify a loop-
shape goal.

Open-Loop Response Selection
Use this section of the dialog box to specify the signal locations at which to compute the open-loop
gain. You can also specify additional loop-opening locations for evaluating the tuning goal.

• Shape open-loop response at the following locations

Select one or more signal locations in your model at which to compute and constrain the open-
loop gain. To constrain a SISO response, select a single-valued location. For example, to constrain
the open-loop gain at a location named 'y', click Add signal to list and select 'y'. To
constrain a MIMO response, select multiple signals or a vector-valued signal.

• Compute response with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

10 Control System Tuning

10-106

Desired Loop Shape
Use this section of the dialog box to specify the target loop shape.

• Pure integrator wc/s

Check to specify a pure integrator and crossover frequency for the target loop shape. For
example, to specify an integral gain profile with crossover frequency 10 rad/s, enter 10 in the
Crossover frequency wc text box.

• Other gain profile

Check to specify the target loop shape as a function of frequency. Enter a SISO numeric LTI model
whose magnitude represents the desired gain profile. For example, you can specify a smooth
transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise target loop
shape using an frd model. When you do so, the software automatically maps the profile to a
smooth transfer function that approximates the desired loop shape. For example, to specify a
target loop shape of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/decade at higher
frequencies, enter frd([100 100 10],[0 1e-1 1]).

If you are tuning in discrete time, you can specify the loop shape as a discrete-time model with the
same sample time that you are using for tuning. If you specify the loop shape in continuous time,
the tuning software discretizes it. Specifying the loop shape in discrete time gives you more
control over the loop shape near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the loop shape goal.

• Enforce loop shape within

Specify the tolerance in the location of the crossover frequency, in decades. For example, to allow
gain crossovers within half a decade on either side of the target crossover frequency, enter 0.5.
Increase the crossover tolerance to increase the ability of the tuning algorithm to enforce the
target loop shape for all loops in a MIMO control system.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Stabilize closed loop system

By default, the tuning goal imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain constraint. If stability is not required
or cannot be achieved, select No to remove the stability requirement. For example, if the gain
constraint applies to an unstable open-loop transfer function, select No.

• Equalize loop interactions

For multi-loop or MIMO loop gain constraints, the feedback channels are automatically rescaled to
equalize the off-diagonal (loop interaction) terms in the open-loop transfer function. Select Off to
disable such scaling and shape the unscaled open-loop response.

 Loop Shape Goal

10-107

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
Evaluating Tuning Goals

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Loop Shape Goal, f(x) is given by:

f x =
WSS
WTT ∞

.

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. (If Equalize loop interactions is set to Off, then
D = I.)

T = S – I is the complementary sensitivity function.

WS and WT are frequency weighting functions derived from the specified loop shape. The gains of
these functions roughly match your specified loop shape and its inverse, respectively, for values
ranging from –20 dB to 60 dB. For numerical reasons, the weighting functions level off outside this
range, unless the specified gain profile changes slope outside this range. Because poles of WS or WT
close to s = 0 or s = Inf might lead to poor numeric conditioning for tuning, it is not recommended
to specify loop shapes with very low-frequency or very high-frequency dynamics. For more
information about regularization and its effects, see “Visualize Tuning Goals” on page 10-141.

Implicit Constraints

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at the specified, evaluated with loops opened at the specified loop-opening locations. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the lower and
upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the default
bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use Tuning
Options to change the defaults.

10 Control System Tuning

10-108

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

 Loop Shape Goal

10-109

Margins Goal

Purpose
Enforce specified gain and phase margins when using Control System Tuner.

Description
Margins Goal uses the notion of disk margin to enforce specified gain and phase margins on SISO or
MIMO feedback loops. Disk margins provide a more complete picture of robust stability as they take
into account all frequency and loop interactions. Therefore, disk-based margins provide a stronger
guarantee of stability than the classical gain and phase margins.

• For SISO feedback loops, the disk-based gain and phase margins are typically smaller but similar
to the classical gain and phase margins.

• For MIMO feedback loops, the disk-based margins account for loop interactions and can be much
smaller than classical loop-at-a-time gain and phase margins. The disk-based margins guarantee
stability against gain or phase variations across all feedback channels. The gain or phase can
change in all channels simultaneously, and by a different amount in each channel.

For information about disk margins, see “Stability Analysis Using Disk Margins” (Robust Control
Toolbox).

In Control System Tuner, the shaded area on the plot represents the region in the frequency
domain where the margins goal is not met. For more information about interpreting this plot, see
“Stability Margins in Control System Tuning” on page 10-161.

10 Control System Tuning

10-110

Creation

In the Tuning tab of Control System Tuner, select New Goal > Minimum stability margins to
create a Margins Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Margins to specify a stability
margin goal.

Feedback Loop Selection
Use this section of the dialog box to specify the signal locations at which to measure stability
margins. You can also specify additional loop-opening locations for evaluating the tuning goal.

• Measure stability margins at the following locations

Select one or more signal locations in your model at which to compute and constrain the stability
margins. To constrain a SISO loop, select a single-valued location. For example, to constrain the
stability margins at a location named 'y', click Add signal to list and select 'y'. To
constrain a MIMO loop, select multiple signals or a vector-valued signal.

• Measure stability margins with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Desired Margins
Use this section of the dialog box to specify the minimum gain and phase margins for the feedback
loop.

• Gain margin (dB)

Enter the required minimum gain margin for the feedback loop, specified as a scalar value in dB.
The tuning goal uses disk-based gain and phase margins, which provide a stronger guarantee of
stability than the classical gain and phase margins. (For details about disk margins, see “Stability
Analysis Using Disk Margins” (Robust Control Toolbox).)

The gain margin indicates how much the gain of the open-loop response can increase or decrease
without loss of stability. For instance,

 Margins Goal

10-111

• For a SISO system, entering 3 specifies a requirement that the closed-loop system remain
stable for changes in the open-loop gain of up to ±3 dB.

• For a MIMO system, entering 3 specifies a requirement that the closed-system remain stable
for gain changes up to ±3 dB in each feedback channel. The gain can change in all channels
simultaneously, and by a different amount in each channel.

• Phase margin (degrees)

Required minimum phase margin for the feedback loop, specified as a scalar value in degrees. The
tuning goal uses disk-based gain and phase margins, which provide a stronger guarantee of
stability than the classical gain and phase margins. (For details about disk margins, see “Stability
Analysis Using Disk Margins” (Robust Control Toolbox).)

The phase margin indicates how much the phase of the open-loop response can increase or
decrease without loss of stability. For instance,

• For a SISO system, entering 45 specifies a requirement that the closed-loop system remain
stable for changes of up to ±45° in the phase of the open-loop response.

• For a MIMO system, entering 45 specifies a requirement that the closed-system remain stable
for phase changes up to ±45° in each feedback channel. The phase can change in all channels
simultaneously, and by a different amount in each channel.

Options
Use this section of the dialog box to specify additional characteristics of the stability margin goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

For best results with stability margin requirements, pick a frequency band extending about one
decade on each side of the gain crossover frequencies.

• D scaling order

This value controls the order (number of states) of the scalings involved in computing MIMO
stability margins. Static scalings (scaling order 0) are used by default. Increasing the order may
improve results at the expense of increased computations. If the stability margin plot shows a
large gap between the optimized and actual margins, consider increasing the scaling order. See
“Stability Margins in Control System Tuning” on page 10-161.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

10 Control System Tuning

10-112

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Margins Goal, f(x) is given by:

f x = 2αS− αI ∞ .

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. For more information about D, see “Stability
Margins in Control System Tuning” on page 10-161.

α is a scalar parameter computed from the specified gain and phase margin. For more information
about α, see “Stability Analysis Using Disk Margins” (Robust Control Toolbox).

This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at the specified, evaluated with loops opened at the specified loop-opening locations. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
Minimum decay rate and Maximum natural frequency tuning options control the lower and
upper bounds on these implicitly constrained dynamics. If the optimization fails to meet the default
bounds, or if the default bounds conflict with other requirements, on the Tuning tab, use Tuning
Options to change the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141
• “Stability Margins in Control System Tuning” on page 10-161

 Margins Goal

10-113

Passivity Goal

Purpose
Enforce passivity of specific input/output map when using Control System Tuner.

Description
Passivity Goal enforces passivity of the response of the transfer function between the specified signal
locations. A system is passive if all its I/O trajectories (u(t),y(t)) satisfy:

∫0 T
y t Tu t dt > 0,

for all T > 0. Equivalently, a system is passive if its frequency response is positive real, which means
that for all ω > 0,

G jω + G jω H > 0

Passivity Goal creates a constraint that enforces:

∫0 T
y t Tu t dt > ν∫0 T

u t Tu t dt + ρ∫0 T
y t Ty t dt,

for all T > 0. To enforce the overall passivity condition, set the minimum input passivity index (ν) and
the minimum output passivity index (ρ) to zero. To enforce an excess of passivity at the inputs or
outputs, set ν or ρ to a positive value. To permit a shortage of passivity, set ν or ρ to a negative value.
See “About Passivity and Passivity Indices” for more information about these indices.

In Control System Tuner, the shaded area on the plot represents the region in the frequency
domain in which the tuning goal is not met. The plot shows the value of the index described in
“Algorithms” on page 10-116.

10 Control System Tuning

10-114

Creation

In the Tuning tab of Control System Tuner, select New Goal > Passivity Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Passivity to specify a
passivity constraint.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer function that the
tuning goal constrains. Also specify any locations at which to open loops for evaluating the tuning
goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function that the tuning
goal constrains. To constrain a SISO response, select a single-valued input signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to
list and select 'u'. To constrain the passivity of a MIMO response, select multiple signals or a
vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function that the
tuning goal constrains. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the gain from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain the passivity of a MIMO response, select multiple
signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Options
Use this section of the dialog box to specify additional characteristics of the passivity goal.

• Minimum input passivity index

 Passivity Goal

10-115

Enter the target value of ν in the text box. To enforce an excess of passivity at the specified inputs,
set ν > 0. To permit a shortage of passivity, set ν < 0. By default, the passivity goal enforces ν = 0,
passive at the inputs with no required excess of passivity.

• Minimum output passivity index

Enter the target value of ρ in the text box. To enforce an excess of passivity at the specified
outputs, set ρ > 0. To permit a shortage of passivity, set ρ < 0. By default, the passivity goal
enforces ρ = 0, passive at the outputs with no required excess of passivity.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Passivity Goal, for a closed-loop transfer function G(s,x) from the specified inputs to the
specified outputs, f(x) is given by:

f x = R
1 + R/Rmax

, Rmax = 106 .

R is the relative sector index (see getSectorIndex) of [G(s,x); I], for the sector represented by:

Q =
2ρ −I
−I 2ν

,

where ρ is the minimum output passivity index and ν is the minimum input passivity index specified in
the dialog box. Rmax is fixed at 106, included to avoid numeric errors for very large R.

This tuning goal imposes an implicit minimum-phase constraint on the transfer function G + I. The
transmission zeros of G + I are the stabilized dynamics for this tuning goal. The Minimum decay
rate and Maximum natural frequency tuning options control the lower and upper bounds on these

10 Control System Tuning

10-116

implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default
bounds conflict with other requirements, on the Tuning tab, use Tuning Options to change the
defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141
• “Passive Control of Water Tank Level”
• “About Passivity and Passivity Indices”

 Passivity Goal

10-117

Conic Sector Goal

Purpose
Enforce sector bound on specific input/output map when using Control System Tuner.

Description
Conic Sector Goal creates a constraint that restricts the output trajectories of a system. If for all
nonzero input trajectories u(t), the output trajectory z(t) = (Hu)(t) of a linear system H satisfies:

∫0 T
z t TQ z t dt < 0,

for all T ≥ 0, then the output trajectories of H lie in the conic sector described by the symmetric
indefinite matrix Q. Selecting different Q matrices imposes different conditions on the system
response. When you create a Conic Sector Goal, you specify the input signals, output signals, and the
sector geometry.

In Control System Tuner, the shaded area on the plot represents the region in the frequency
domain in which the tuning goal is not met. The plot shows the value of the R-index described in
“About Sector Bounds and Sector Indices”.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Conic Sector Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.ConicSector to specify a step
response goal.

10 Control System Tuning

10-118

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer function that the
tuning goal constrains. Also specify any locations at which to open loops for evaluating the tuning
goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function that the tuning
goal constrains. To constrain a SISO response, select a single-valued input signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to
list and select 'u'. To constrain the passivity of a MIMO response, select multiple signals or a
vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function that the
tuning goal constrains. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the gain from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain the passivity of a MIMO response, select multiple
signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Options
Specify additional characteristics of the conic sector goal using this section of the dialog box.

• Conic Sector Matrix

Enter the sector geometry Q, specified as:

• A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny on a side,
where ny is the number of output signals you specify for the goal. The matrix Q must be
indefinite to describe a well-defined conic sector. An indefinite matrix has both positive and
negative eigenvalues. In particular, Q must have as many negative eigenvalues as there are
input signals specified for the tuning goal (the size of the vector input signal u(t)).

• An LTI model, for frequency-dependent sector geometry. Q satisfies Q(s)’ = Q(–s). In other
words, Q(s) evaluates to a Hermitian matrix at each frequency.

 Conic Sector Goal

10-119

For more information, see “About Sector Bounds and Sector Indices”.
• Regularization

Regularization parameter, specified as a real nonnegative scalar value. Regularization keeps the
evaluation of the tuning goal numerically tractable when other tuning goals tend to make the
sector bound ill-conditioned at some frequencies. When this condition occurs, set Regularization
to a small (but not negligible) fraction of the typical norm of the feedthrough term in H. For
example, if you anticipate the norm of the feedthrough term of H to be of order 1 during tuning,
try setting Regularization to 0.001.

For more information about the conditions that require regularization, see the Regularization
property of TuningGoal.ConicSector.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Tips
Constraining Input and Output Trajectories to Conic Sector

Consider the following control system.

Suppose that the signal u is marked as an analysis point in the model you are tuning. Suppose also
that G is the closed-loop transfer function from u to y. A common application is to create a tuning
goal that constrains all the I/O trajectories {u(t),y(t)} of G to satisfy:

∫0 T y t
u t

T
Q

y t
u t

dt < 0,

10 Control System Tuning

10-120

for all T ≥ 0. Constraining the I/O trajectories of G is equivalent to restricting the output trajectories
z(t) of the system H = [G;I] to the sector defined by:

∫0 T
z t TQ z t dt < 0.

(See “About Sector Bounds and Sector Indices” for more details about this equivalence.) To specify a
constraint of this type using Conic Sector Goal, specify u as the input signal, and specify y and u as
output signals. When you specify u as both input and output, Conic Sector Goal sets the
corresponding transfer function to the identity. Therefore, the transfer function that the goal
constrains is H = [G;I] as intended. This treatment is specific to Conic Sector Goal. For other tuning
goals, when the same signal appears in both inputs and outputs, the resulting transfer function is
zero in the absence of feedback loops, or the complementary sensitivity at that location otherwise.
This result occurs because when the software processes analysis points, it assumes that the input is
injected after the output. See “Mark Signals of Interest for Control System Analysis and Design” on
page 2-38 for more information about how analysis points work.

Algorithms
Let

Q = W1W1
T−W2W2

T

be an indefinite factorization of Q, where W1
TW2 = 0. If W2

TH s is square and minimum phase, then
the time-domain sector bound

∫0 T
z t TQ z t dt < 0,

is equivalent to the frequency-domain sector condition,

H − jω QH jω < 0

for all frequencies. Conic Sector Goal uses this equivalence to convert the time-domain
characterization into a frequency-domain condition that Control System Tuner can handle in the
same way it handles gain constraints. To secure this equivalence, Conic Sector Goal also makes
W2

TH s minimum phase by making all its zeros stable. The transmission zeros affected by this
minimum-phase condition are the stabilized dynamics for this tuning goal. The Minimum decay rate
and Maximum natural frequency tuning options control the lower and upper bounds on these
implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default
bounds conflict with other requirements, on the Tuning tab, use Tuning Options to change the
defaults.

For sector bounds, the R-index plays the same role as the peak gain does for gain constraints (see
“About Sector Bounds and Sector Indices”). The condition

H − jω QH jω < 0

is satisfied at all frequencies if and only if the R-index is less than one. The plot that Control System
Tuner displays for Conic Sector Goal shows the R-index value as a function of frequency (see
sectorplot).

When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x), where x is the vector of free (tunable) parameters in the control system. The software then

 Conic Sector Goal

10-121

adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Conic Sector Goal, for a closed-loop transfer function H(s,x) from the specified inputs to the
specified outputs, f(x) is given by:

f x = R
1 + R/Rmax

, Rmax = 106 .

R is the relative sector index (see getSectorIndex) of H(s,x), for the sector represented by Q.

See Also

Related Examples
• “About Sector Bounds and Sector Indices”
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-122

Weighted Passivity Goal

Purpose
Enforce passivity of a frequency-weighted transfer function when tuning in Control System Tuner.

Description
Weighted Passivity Goal enforces the passivity of H(s) = WL(s)T(s)WR(s), where T(s) is the transfer
function from specified inputs to outputs. WL(s) and WR(s) are frequency weights used to emphasize
particular frequency bands. A system is passive if all its I/O trajectories (u(t),y(t)) satisfy:

∫0 T
y t Tu t dt > 0,

for all T > 0. Weighted Passivity Goal creates a constraint that enforces:

∫0 T
y t Tu t dt > ν∫0 T

u t Tu t dt + ρ∫0 T
y t Ty t dt,

for the trajectories of the weighted transfer function H(s), for all T > 0. To enforce the overall
passivity condition, set the minimum input passivity index (ν) and the minimum output passivity index
(ρ) to zero. To enforce an excess of passivity at the inputs or outputs of the weighted transfer
function, set ν or ρ to a positive value. To permit a shortage of passivity, set ν or ρ to a negative value.
See getPassiveIndex for more information about these indices.

In Control System Tuner, the shaded area on the plot represents the region in the frequency
domain in which the tuning goal is not met. The plot shows the value of the index described in
“Algorithms” on page 10-126.

 Weighted Passivity Goal

10-123

Creation

In the Tuning tab of Control System Tuner, select New Goal > Weighted Passivity Goal.

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.WeightedPassivity to
specify a step response goal.

I/O Transfer Selection
Use this section of the dialog box to specify the inputs and outputs of the transfer function that the
tuning goal constrains. Also specify any locations at which to open loops for evaluating the tuning
goal.

• Specify input signals

Select one or more signal locations in your model as inputs to the transfer function that the tuning
goal constrains. To constrain a SISO response, select a single-valued input signal. For example, to
constrain the gain from a location named 'u' to a location named 'y', click Add signal to
list and select 'u'. To constrain the passivity of a MIMO response, select multiple signals or a
vector-valued signal.

• Specify output signals

Select one or more signal locations in your model as outputs of the transfer function that the
tuning goal constrains. To constrain a SISO response, select a single-valued output signal. For
example, to constrain the gain from a location named 'u' to a location named 'y', click Add
signal to list and select 'y'. To constrain the passivity of a MIMO response, select multiple
signals or a vector-valued signal.

• Compute input/output gain with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Weights
Use the Left weight WL and Right weight WR text boxes to specify the frequency-weighting
functions for the tuning goal. H(s) = WL(s)T(s)WR(s), where T(s) is the transfer function from specified
inputs to outputs.

10 Control System Tuning

10-124

WL provides the weighting for the output channels of H(s), and WR provides the weighting for the
input channels. You can specify scalar weights or frequency-dependent weighting. To specify a
frequency-dependent weighting, use a numeric LTI model whose magnitude represents the desired
weighting function. For example, enter tf(1,[1 0.01]) to specify a high weight at low frequencies
that rolls off above 0.01 rad/s.

If the tuning goal constrains a MIMO transfer function, scalar or SISO weighting functions
automatically expand to any input or output dimension. You can specify different weights for each
channel by specifying matrices or MIMO weighting functions. The dimensions H(s) must be
commensurate with the dimensions of WL and WR. For example, if the constrained transfer function
has two inputs, you can specify diag([1 10]) as WR.

If you are tuning in discrete time, you can specify the weighting functions as discrete-time models
with the same sampling time as you use for tuning. If you specify the weighting functions in
continuous time, the tuning software discretizes them. Specifying the weighting functions in discrete
time gives you more control over the weighting functions near the Nyquist frequency.

Options
Use this section of the dialog box to specify additional characteristics of the step response goal.

• Minimum input passivity index

Enter the target value of ν in the text box. To enforce an excess of passivity at the specified inputs,
set ν > 0. To permit a shortage of passivity, set ν < 0. By default, the passivity goal enforces ν = 0,
passive at the inputs with no required excess of passivity.

• Minimum output passivity index

Enter the target value of ρ in the text box. To enforce an excess of passivity at the specified
outputs, set ρ > 0. To permit a shortage of passivity, set ρ < 0. By default, the passivity goal
enforces ρ = 0, passive at the outputs with no required excess of passivity.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

 Weighted Passivity Goal

10-125

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Weighted Passivity Goal, for a closed-loop transfer function T(s,x) from the specified inputs to
the specified outputs, and the weighted transfer function H(s,x) = WL(s)T(s,x)WR(s), f(x) is given by:

f x = R
1 + R/Rmax

, Rmax = 106 .

R is the relative sector index (see getSectorIndex) of [H(s,x); I], for the sector represented by:

Q =
2ρ −I
−I 2ν

,

where ρ is the minimum output passivity index and ν is the minimum input passivity index specified in
the dialog box. Rmax is fixed at 106, included to avoid numeric errors for very large R.

This tuning goal imposes an implicit minimum-phase constraint on the weighted transfer function H
+ I. The transmission zeros of H + I are the stabilized dynamics for this tuning goal. The Minimum
decay rate and Maximum natural frequency tuning options control the lower and upper bounds
on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, on the Tuning tab, use Tuning Options to change
the defaults.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141
• “About Passivity and Passivity Indices”

10 Control System Tuning

10-126

Poles Goal

Purpose
Constrain the dynamics of the closed-loop system, specified feedback loops, or specified open-loop
configurations, when using Control System Tuner.

Description
Poles Goal constrains the dynamics of your entire control system or of specified feedback loops of
your control system. Constraining the dynamics of a feedback loop means constraining the dynamics
of the sensitivity function measured at a specified location in the control system.

Using Poles Goal, you can specify finite minimum decay rate or minimum damping for the poles in the
control system or specified loop. You can specify a maximum natural frequency for these poles, to
eliminate fast dynamics in the tuned control system.

In Control System Tuner, the shaded area on the plot represents the region in the frequency
domain where the pole location constraints are not met.

To constrain dynamics or ensure stability of a single tunable component of the control system, use
“Controller Poles Goal” on page 10-131.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Constraint on closed-loop
dynamics to create a Poles Goal.

 Poles Goal

10-127

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.Poles to specify a disturbance
rejection goal.

Feedback Configuration
Use this section of the dialog box to specify the portion of the control system for which you want to
constrain dynamics. You can also specify loop-opening locations for evaluating the tuning goal.

• Entire system

Select this option to constrain the locations of closed-loop poles of the control system.
• Specific feedback loop(s)

Select this option to specify one or more feedback loops to constrain. Specify a feedback loop by
selecting a signal location in your control system. Poles Goal constrains the dynamics of the
sensitivity function measured at that location. (See getSensitivity for information about
sensitivity functions.)

To constrain the dynamics of a SISO loop, select a single-valued location. For example, to
constrain the dynamics of the sensitivity function measured at a location named 'y', click Add
signal to list and select 'y'. To constrain the dynamics of a MIMO loop, select multiple signals
or a vector-valued signal.

• Compute poles with the following loops open

Select one or more signal locations in your model at which to open a feedback loop for the
purpose of evaluating this tuning goal. The tuning goal is evaluated against the open-loop
configuration created by opening feedback loops at the locations you identify. For example, to
evaluate the tuning goal with an opening at a location named 'x', click Add signal to list and
select 'x'.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and . For more information on how to specify signal locations for a tuning goal, see “Specify
Goals for Interactive Tuning” on page 10-28.

Pole Location
Use this section of the dialog box to specify the limits on pole locations.

• Minimum decay rate

Enter the target minimum decay rate for the system poles. Closed-loop system poles that depend
on the tunable parameters are constrained to satisfy Re(s) < -MinDecay for continuous-time
systems, or log(|z|) < -MinDecay*Ts for discrete-time systems with sample time Ts. This
constraint helps ensure stable dynamics in the tuned system.

Enter 0 to impose no constraint on the decay rate.

10 Control System Tuning

10-128

• Minimum damping

Enter the target minimum damping of closed-loop poles of tuned system, as a value between 0 and
1. Closed-loop system poles that depend on the tunable parameters are constrained to satisfy
Re(s) < -MinDamping*|s|. In discrete time, the damping ratio is computed using s =
log(z)/Ts.

Enter 0 to impose no constraint on the damping ratio.
• Maximum natural frequency

Enter the target maximum natural frequency of poles of tuned system, in the units of the control
system model you are tuning. When you tune the control system using this requirement, closed-
loop system poles that depend on the tunable parameters are constrained to satisfy |s|
 < MaxFrequency for continuous-time systems, or |log(z)| < MaxFrequency*Ts for
discrete-time systems with sample time Ts. This constraint prevents fast dynamics in the control
system.

Enter Inf to impose no constraint on the natural frequency.

Options
Use this section of the dialog box to specify additional characteristics of the poles goal.

• Enforce goal in frequency range

Limit the enforcement of the tuning goal to a particular frequency band. Specify the frequency
band as a row vector of the form [min,max], expressed in frequency units of your model. For
example, to create a tuning goal that applies only between 1 and 100 rad/s, enter [1,100]. By
default, the tuning goal applies at all frequencies for continuous time, and up to the Nyquist
frequency for discrete time.

The Poles Goal applies only to poles with natural frequency within the range you specify.
• Apply goal to

Use this option when tuning multiple models at once, such as an array of models obtained by
linearizing a Simulink model at different operating points or block-parameter values. By default,
active tuning goals are enforced for all models. To enforce a tuning requirement for a subset of
models in an array, select Only Models. Then, enter the array indices of the models for which the
goal is enforced. For example, suppose you want to apply the tuning goal to the second, third, and
fourth models in a model array. To restrict enforcement of the requirement, enter 2:4 in the Only
Models text box.

For more information about tuning for multiple models, see “Robust Tuning Approaches” (Robust
Control Toolbox).

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

 Poles Goal

10-129

For Poles Goal, f(x) reflects the relative satisfaction or violation of the goal. For example, if your
Poles Goal constrains the closed-loop poles of a feedback loop to a minimum damping of ζ = 0.5, then:

• f(x) = 1 means the smallest damping among the constrained poles is ζ = 0.5 exactly.
• f(x) = 1.1 means the smallest damping ζ = 0.5/1.1 = 0.45, roughly 10% less than the target.
• f(x) = 0.9 means the smallest damping ζ = 0.5/0.9 = 0.55, roughly 10% better than the target.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-130

Controller Poles Goal

Purpose
Constrain the dynamics of a specified tunable block in the tuned control system, when using Control
System Tuner.

Description
Controller Poles Goal constrains the dynamics of a tunable block in your control system model.
Controller Poles Goal can impose a stability constraint on the specified block. You can also specify a
finite minimum decay rate, a minimum damping rate, or a maximum natural frequency for the poles
of the block. These constraints allow you to eliminate fast dynamics and control ringing in the
response of the tunable block.

In Control System Tuner, the shaded area on the plot represents the region in the frequency
domain where the pole location constraints are not met. The constraint applies to all poles in the
block except fixed integrators, such as the I term of a PID controller.

To constrain dynamics or ensure stability of an entire control system or a feedback loop in the control
system, use “Poles Goal” on page 10-127.

Creation

In the Tuning tab of Control System Tuner, select New Goal > Constraint on controller
dynamics to create a Controller Poles Goal.

 Controller Poles Goal

10-131

Command-Line Equivalent

When tuning control systems at the command line, use TuningGoal.ControllerPoles to specify a
controller poles goal.

Constrain Dynamics of Tuned Block
From the drop-down menu, select the tuned block in your control system to which to apply the
Controller Poles Goal.

If the block you want to constrain is not in the list, add it to the Tuned Blocks list. In Control System
Tuner, in the Tuning tab, click Select Blocks. For more information about adding tuned blocks,
see “Specify Blocks to Tune in Control System Tuner” on page 10-17.

Keep Poles Inside the Following Region
Use this section of the dialog box to specify the limits on pole locations.

• Minimum decay rate

Enter the desired minimum decay rate for the poles of the tunable block. Poles of the block are
constrained to satisfy Re(s) < -MinDecay for continuous-time blocks, or log(|z|) < -
MinDecay*Ts for discrete-time blocks with sample time Ts.

Specify a nonnegative value to ensure that the block is stable. If you specify a negative value, the
tuned block can include unstable poles.

• Minimum damping

Enter the desired minimum damping ratio of poles of the tunable block, as a value between 0 and
1. Poles of the block that depend on the tunable parameters are constrained to satisfy Re(s) < -
MinDamping*|s|. In discrete time, the damping ratio is computed using s=log(z)/Ts.

• Maximum natural frequency

Enter the target maximum natural frequency of poles of the tunable block, in the units of the
control system model you are tuning. Poles of the block are constrained to satisfy |s|
 < MaxFrequency for continuous-time blocks, or |log(z)| < MaxFrequency*Ts for discrete-
time blocks with sample time Ts. This constraint prevents fast dynamics in the tunable block.

Algorithms
When you tune a control system, the software converts each tuning goal into a normalized scalar
value f(x). Here, x is the vector of free (tunable) parameters in the control system. The software then
adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning goal is a hard
constraint.

For Controller Poles Goal, f(x) reflects the relative satisfaction or violation of the goal. For example,
if your Controller Poles Goal constrains the pole of a tuned block to a minimum damping of ζ = 0.5,
then:

• f(x) = 1 means the damping of the pole is ζ = 0.5 exactly.
• f(x) = 1.1 means the damping is ζ = 0.5/1.1 = 0.45, roughly 10% less than the target.

10 Control System Tuning

10-132

• f(x) = 0.9 means the damping is ζ = 0.5/0.9 = 0.55, roughly 10% better than the target.

See Also

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “Manage Tuning Goals” on page 10-134
• “Visualize Tuning Goals” on page 10-141

 Controller Poles Goal

10-133

Manage Tuning Goals

Control System Tuner lets you designate one or more tuning goals as hard goals. This designation
gives you a way to differentiate must-have goals from nice-to-have goals. Control System Tuner
attempts to satisfy hard requirements by driving their associated cost functions below 1. Subject to
that constraint, the software comes as close as possible to satisfying remaining (soft) requirements.
For best results, make sure you can obtain a reasonable design with all goals treated as soft goals
before attempting to enforce any goal as a hard constraint.

By default, new goals are designated soft goals. In the Tuning tab, click Manage Goals to open
the Manage tuning goals dialog box. Check Hard for any goal to designate it a hard goal.

You can also designate any tuning goal as inactive for tuning. In this case the software ignores the
tuning goal entirely. Use this dialog box to select which tuning goals are active when you tune the
control system. Active is selected by default for any new goals. Clear Active for any design goal that
you do not want enforced.

For example, if you tune with the following configuration, Control System Tuner optimizes
StepRespGoal1, subject to MarginsGoal1. The tuning goal PolesGoal1 is ignored.

All tuning goals you have created in the Control System Tuner session are listed in the dialog box.
To edit an existing tuning goal, select it in the list and click Edit. To delete a tuning goal from the list,
select it and click Remove.

To add more tuning goals to the list, in Control System Tuner, in the Tuning tab, click New
Goal. For more information about creating tuning goals, see “Specify Goals for Interactive Tuning”
on page 10-28.

10 Control System Tuning

10-134

Generate MATLAB Code from Control System Tuner for
Command-Line Tuning

You can generate a MATLAB script in Control System Tuner for tuning a control system at the
command line. Generated scripts are useful when you want to programmatically reproduce a result
you obtained interactively. A generated MATLAB script also enables you to programmatically perform
multiple tuning operations with variations in tuning goals, system parameters, or model conditions
such as operating point.

Tip You can also save a Control System Tuner session to reproduce within Control System Tuner.

To do so, in the Control System tab, click Save Session.

To generate a MATLAB script in Control System Tuner, in the Tuning tab, click Tune . Select
Script with current values.

The MATLAB Editor displays the generated script, which script reproduces programmatically the
current tuning configuration of Control System Tuner.

For example, suppose you generate a MATLAB script after completing all steps in the example
“Control of a Linear Electric Actuator Using Control System Tuner”. The generated script computes
the operating point used for tuning, designates the blocks to tune, creates the tuning goals, and
performs other operations to reproduce the result at the command line.

The first section of the script creates the slTuner interface to the Simulink model (rct_linact in
this example). The slTuner interface stores a linearization of the model and parameterizations of the
blocks to tune.
%% Create system data with slTuner interface
TunedBlocks = {'rct_linact/Current Controller/Current PID'; ...
 'rct_linact/Speed Controller/Speed PID'};
AnalysisPoints = {'rct_linact/Speed Demand (rpm)/1'; ...
 'rct_linact/Current Sensor/1'; ...
 'rct_linact/Hall Effect Sensor/1'; ...
 'rct_linact/Speed Controller/Speed PID/1'; ...
 'rct_linact/Current Controller/Current PID/1'};
OperatingPoints = 0.5;
% Specify the custom options
Options = slTunerOptions('AreParamsTunable',false);

 Generate MATLAB Code from Control System Tuner for Command-Line Tuning

10-135

% Create the slTuner object
CL0 = slTuner('rct_linact',TunedBlocks,AnalysisPoints,OperatingPoints,Options);

The slTuner interface also specifies the operating point at which the model is linearized, and marks
as analysis points all the signal locations required to specify the tuning goals for the example. (See
“Create and Configure slTuner Interface to Simulink Model” on page 10-157.)

If you are tuning a control system modeled in MATLAB instead of Simulink, the first section of the
script constructs a genss model that has equivalent dynamics and parameterization to the genss
model of the control system that you specified Control System Tuner.

Next, the script creates the three tuning goals specified in the example. The script uses TuningGoal
objects to capture these tuning goals. For instance, the script uses TuningGoal.Tracking to
capture the Tracking Goal of the example.
%% Create tuning goal to follow reference commands with prescribed performance
% Inputs and outputs
Inputs = {'rct_linact/Speed Demand (rpm)/1'};
Outputs = {'rct_linact/Hall Effect Sensor/1[rpm]'};
% Tuning goal specifications
ResponseTime = 0.1; % Approximately reciprocal of tracking bandwidth
DCError = 0.001; % Maximum steady-state error
PeakError = 1; % Peak error across frequency
% Create tuning goal for tracking
TR = TuningGoal.Tracking(Inputs,Outputs,ResponseTime,DCError,PeakError);
TR.Name = 'TR'; % Tuning goal name

After creating the tuning goals, the script sets any algorithm options you had set in Control System
Tuner. The script also designates tuning goals as soft or hard goals, according to the configuration of
tuning goals in Control System Tuner. (See “Manage Tuning Goals” on page 10-134.)

%% Create option set for systune command
Options = systuneOptions();

%% Set soft and hard goals
SoftGoals = [TR ; ...
 MG1 ; ...
 MG2];
HardGoals = [];

In this example, all the goals are designated as soft goals when the script is generated. Therefore,
HardGoals is empty.

Finally, the script tunes the control system by calling systune on the slTuner interface using the
tuning goals and options.

%% Tune the parameters with soft and hard goals
[CL1,fSoft,gHard,Info] = systune(CL0,SoftGoals,HardGoals,Options);

The script also includes an optional call to viewGoal, which displays graphical representations of the
tuning goals to aid you in interpreting and validating the tuning results. Uncomment this line of code
to generate the plots.

%% View tuning results
% viewGoal([SoftGoals;HardGoals],CL1);

10 Control System Tuning

10-136

You can add calls to functions such getIOTransfer to make the script generate additional analysis
plots.

See Also

Related Examples
• “Create and Configure slTuner Interface to Simulink Model” on page 10-157
• “Tune Control System at the Command Line” on page 10-166
• “Validate Tuned Control System” on page 10-168

 Generate MATLAB Code from Control System Tuner for Command-Line Tuning

10-137

Interpret Numeric Tuning Results

When you tune a control system with systune or Control System Tuner, the software provides
reports that give you an overview of how well the tuned control system meets your design
requirements. Interpreting these reports requires understanding how the tuning algorithm optimizes
the system to satisfy your tuning goals. (The software also provides visualizations of the tuning goals
and system responses to help you see where and by how much your requirements are not satisfied.
For information about using these plots, see “Visualize Tuning Goals” on page 10-141.)

Tuning-Goal Scalar Values
The tuning software converts each tuning goal into a normalized scalar value which it then constrains
(hard goals) or minimizes (soft goals). Let fi(x) and gj(x) denote the scalar values of the soft and hard
goals, respectively. Here, x is the vector of tunable parameters in the control system to tune. The
tuning algorithm solves the minimization problem:

Minimize max
i

f i x subject to max
j

g j x < 1, for xmin < x < xmax.

xmin and xmax are the minimum and maximum values of the free parameters of the control system. (For
information about the specific functions used to evaluate each type of requirement, see the reference
pages for each tuning goal.)

When you use both soft and hard tuning goals, the software solves the optimization as a sequence of
subproblems of the form:

min
x

max αf x , g x .

The software adjusts the multiplier α so that the solution of the subproblems converges to the
solution of the original constrained optimization problem.

The tuning software reports the final scalar values for each tuning goal. When the final value of fi(x)
or gj(x) is less than 1, the corresponding tuning goal is satisfied. Values greater than 1 indicate that
the tuning goal is not satisfied for at least some conditions. For instance, a tuning goal that describes
a frequency-domain constraint might be satisfied at some frequencies and not at others. The closer
the value is to 1, the closer the tuning goal is to being satisfied. Thus these values give you an
overview of how successfully the tuned system meets your requirements.

The form in which the software presents the optimized tuning-goal values depends on whether you
are tuning with Control System Tuner or at the command line.

Tuning Results at the Command Line
The systune command returns the control system model or slTuner interface with the tuned
parameter values. systune also returns the best achieved values of each fi(x) and gj(x) as the vector-
valued output arguments fSoft and gHard, respectively. See the systune reference page for more
information. (To obtain the final tuning goal values on their own, use evalGoal.)

By default, systune displays the best achieved final values of the tuning goals in the command
window. For instance, in the example “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”,
systune is called with one soft requirement, R1, and two hard requirements R2 and R3.

10 Control System Tuning

10-138

T1 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.12, Hard = 0.99988, Iterations = 143

This display indicates that the largest optimized value of the hard tuning goals is less than 1, so both
hard goals are satisfied. The soft goal value is slightly greater than one, indicating that the soft goal
is nearly satisfied. You can use tuning-goal plots to see in what regimes and by how much the tuning
goals are violated. (See “Visualize Tuning Goals” on page 10-141.)

You can obtain additional information about the optimization progress and values using the info
output of systune. To make systune display additional information during tuning, use
systuneOptions.

Tuning Results in Control System Tuner

In Control System Tuner, when you click , the app compiles a Tuning Report summarizing the
best achieved values of fi(x) and gj(x). To view the tuning report immediately after tuning a control
system, click Tuning Report at the bottom-right corner of Control System Tuner.

The tuning report displays the final fi(x) and gj(x) values obtained by the algorithm.

The Hard Goals area shows the minimized gi(x) values and indicates which are satisfied. The Soft
Goals area highlights the largest of the minimized fi(x) values as Worst Value, and lists the values
for all the requirements. In this example, the hard goal is satisfied, while the soft goals are nearly
satisfied. As in the command-line case, you can use tuning-goal plots to see where and by how much
tuning goals are violated. (See “Visualize Tuning Goals” on page 10-141.)

 Interpret Numeric Tuning Results

10-139

Tip You can view a report from the most recent tuning run at any time. In the Tuning tab, click Tune
, and select Tuning Report.

Improve Tuning Results
If the tuning results do not adequately meet your design requirements, adjust your set of tuning goals
to improve the results. For example:

• Designate tuning goals that are must-have requirements as hard goals. Or, relax tuning goals that
are not absolute requirements by designating them as soft goals.

• Limit the frequency range in which frequency-domain goals are enforced.

• In Control System Tuner, use the Enforce goal in frequency range field of the tuning goal
dialog box.

• At the command line, use the Focus property of the TuningGoal object.

If the tuning results do satisfy your design requirements, you can validate the tuned control system as
described in “Validate Tuned Control System” on page 10-168.

See Also
systune | systune (for slTuner) | viewGoal | evalGoal

Related Examples
• “Visualize Tuning Goals” on page 10-141
• “Validate Tuned Control System” on page 10-168

10 Control System Tuning

10-140

Visualize Tuning Goals
When you tune a control system with systune or Control System Tuner, use tuning-goal plots to
visualize your design requirements against the tuned control system responses. Tuning-goal plots
show graphically where and by how much tuning goals are satisfied or violated. This visualization lets
you examine how close your control system is to ideal performance. It can also help you identify
problems with tuning and provide clues on how to improve your design.

Tuning-Goal Plots
How you obtain tuning-goal plots depends on your work environment.

• At the command line, use viewGoal.
• In Control System Tuner, each tuning goal that you create generates a tuning-goal plot. When

you tune the control system, these plots update to reflect the tuned design.

The form of the tuning-goal plot depends on the specific tuning goal you use.

Time-Domain Goals

For time-domain tuning goals, the tuning-goal plot is a time-domain plot of the relevant system
response. The following plot, adapted from the example “MIMO Control of Diesel Engine”, shows a
typical tuning-goal plot for a time-domain disturbance-rejection goal. The dashed lines represent the
worst acceptable step response specified in the tuning goal. The solid line shows the corresponding
response of the tuned system.

 Visualize Tuning Goals

10-141

Frequency-Domain Goals

The plots for frequency-domain tuning goals show the target response and the tuned response in the
frequency domain. The following plot, adapted from the example “Fixed-Structure Autopilot for a
Passenger Jet”, shows a plot for a gain goal (TuningGoal.Gain at the command line). This tuning
goal limits the gain between a specified input and output to a frequency-dependent profile. In the
plot, the dashed line shows the gain profile specified in the tuning goal. If the tuned system response
(solid line) enters the shaded region, the tuning goal is violated. In this case, the tuning goal is
satisfied at all frequencies.

Margin Goals

For information about interpreting tuning-goal plots for stability-margin goals, see “Stability Margins
in Control System Tuning” on page 10-161.

Difference Between Dashed Line and Shaded Region
With some frequency-domain tuning goals, there might be a difference between the gain profile you
specify in the tuning goal, and the profile the software uses for tuning. In this case, the shaded region
of the plot reflects the profile that the software uses for tuning. The gain profile you specify and the
gain profile used for tuning might differ if:

• You tune a control system in discrete time, but specify the gain profile in continuous time.
• The software modifies the asymptotes of the specified gain profile to improve numeric stability.

10 Control System Tuning

10-142

Continuous-Time Gain Profile for Discrete-Time Tuning

When you tune a discrete-time control system, you can specify frequency-dependent tuning goals
using discrete-time or continuous-time transfer functions. If you use a continuous-time transfer
function, the tuning algorithm discretizes the transfer function before tuning. For instance, suppose
that you specify a tuning goal as follows.

W = zpk([],[0 -150 -150],1125000);
Req = TuningGoal.MaxLoopGain('Xloc',W);

Suppose further that you use the tuning goal with systune to tune a discrete-time genss model or
slTuner interface. CL is the resulting tuned control system. To examine the result, generate a
tuning-goal plot.

viewGoal(Req,CL)

The plot shows W, the continuous-time maximum loop gain that you specified, as a dashed line. The
shaded region shows the discretized version of W that systune uses for tuning. The discretized
maximum loop gain cuts off at the Nyquist frequency corresponding to the sample time of CL. Near
that cutoff, the shaded region diverges from the dashed line.

The plot highlights that sometimes it is preferable to specify tuning goals for discrete-time tuning
using discrete-time gain profiles. In particular, specifying a discrete-time profile gives you more
control over the behavior of the gain profile near the Nyquist frequency.

 Visualize Tuning Goals

10-143

Modifications for Numeric Stability

When you use a tuning goal with a frequency-dependent specification, the tuning algorithm uses a
frequency-weighting function to compute the normalized value of the tuning goal. This weighting
function is derived from the gain profile that you specify. For numeric tractability, weighting functions
must be stable and proper. For numeric stability, their dynamics must be in the same frequency range
as the control system dynamics. For these reasons, the software might adjust the specified gain
profile to eliminate undesirable low-frequency or high-frequency dynamics or asymptotes. The
process of modifying the tuning goal for better numeric conditioning is called regularization.

For example, consider the following tracking goal.

R1 = TuningGoal.Tracking('r','y',tf([1 0 0],[1 2 1]));
viewGoal(R1)

Here the control bandwidth is about 1 rad/s and the gain profile has two zeros at s = 0, which
become unstable poles in the weighting function (see TuningGoal.Tracking for details). The
regularization moves these zeros to about 0.01 rad/s, and the maximum tracking error levels off at
about 10–3 (0.1%). If you need better tracking accuracy, you can explicitly specify the cutoff frequency
in the error profile.

R2 = TuningGoal.Tracking('r','y',tf([1 0 5e-8],[1 2 1]));
viewGoal(R2)
set(gca,'Ylim',[1e-4,10])

10 Control System Tuning

10-144

However, for numeric safety, the regularized weighting function always levels off at very low and very
high frequencies, regardless of the specified gain profile.

Access the Regularized Functions

When you are working at the command line, you can obtain the regularized gain profile using the
getWeight or getWeights commands. For details, see the reference pages for the individual tuning
goals for which the tuning algorithm performs regularization:

• TuningGoal.Gain
• TuningGoal.LoopShape
• TuningGoal.MaxLoopGain
• TuningGoal.MinLoopGain
• TuningGoal.Rejection
• TuningGoal.Sensitivity
• TuningGoal.StepRejection
• TuningGoal.Tracking

In Control System Tuner, you cannot view the regularized weighting functions directly. Instead, use
the tuning-goal commands to generate an equivalent tuning goal, and use getWeight or
getWeights to access the regularized functions.

 Visualize Tuning Goals

10-145

Improve Tuning Results
If the tuning results do not adequately meet your design requirements, adjust your set of tuning goals
to improve the results. For example:

• Designate tuning goals that are must-have requirements as hard goals. Or, relax tuning goals that
are not absolute requirements by designating them as soft goals.

• Limit the frequency range in which frequency-domain goals are enforced.

• In Control System Tuner, use the Enforce goal in frequency range field of the tuning goal
dialog box.

• At the command line, use the Focus property of the TuningGoal object.

If the tuning results do satisfy your design requirements, you can validate the tuned control system as
described in “Validate Tuned Control System” on page 10-168.

See Also
viewGoal

Related Examples
• “Interpret Numeric Tuning Results” on page 10-138
• “Create Response Plots in Control System Tuner” on page 10-147
• “Validate Tuned Control System” on page 10-168

10 Control System Tuning

10-146

Create Response Plots in Control System Tuner
This example shows how to create response plots for analyzing system performance in Control
System Tuner. Control System Tuner can generate many types of response plots in the time and
frequency domains. You can view responses of SISO or MIMO transfer functions between inputs and
outputs at any location in your model. When you tune your control system, Control System Tuner
updates the response plots to reflect the tuned design. Use response plots to validate the
performance of the tuned control system.

This example creates response plots for analyzing the sample model rct_helico.

Choose Response Plot Type

In Control System Tuner, in the Control System tab, click New Plot. Select the type of plot you
want to create.

A new plot dialog box opens in which you specify the inputs and outputs of the portion of your control
system whose response you want to plot. For example, select New step to create a step response plot
from specified inputs to specified outputs of your system.

Specify Transfer Function

Choose which transfer function associated with the specified inputs and outputs you want to analyze.

For most response plots types, the Select Response to Plot menu lets you choose one of the
following transfer functions:

 Create Response Plots in Control System Tuner

10-147

• New Input-Output Transfer Response — Transfer function between specified inputs and
outputs, computed with loops open at any additionally specified loop-opening locations.

• New Sensitivity Transfer Response — Sensitivity function computed at the specified
location and with loops open at any specified loop-opening locations.

• New Open-Loop Response — Open loop point-to-point transfer function computed at the
specified location and with loops open at any additionally specified loop-opening locations.

• Entire System Response — For Pole/Zero maps and I/O Pole/Zero maps only. Plot the pole and
zero locations for the entire closed-loop control system.

• Response of Tuned Block — For Pole/Zero maps and I/O Pole/Zero maps only. Plot the pole
and zero locations of tuned blocks.

Name the Response

Type a name for the response in the Response Name text box. Once you have specified signal
locations defining the response, Control System Tuner stores the response under this name. When
you create additional new response plots, the response appears by this name in Select Response to
Plot menu.

Choose Signal Locations for Evaluating System Response

Specify the signal locations in your control system at which to evaluate the selected response. For
example, the step response plot displays the response of the system at one or more output locations
to a unit step applied at one or more input locations. Use the Specify input signals and Specify
output signals sections of the dialog box to specify these locations. (Other tuning goal types, such as
loop-shape or stability margins, require you to specify only one location for evaluation. The procedure
for specifying the location is the same as illustrated here.)

Under Specify input signals, click Add signal to list. A list of available input locations appears.

If the signal you want to designate as a step-response input is in the list, click the signal to add it to
the step-response inputs. If the signal you want to designate does not appear, and you are tuning a
Simulink model, click Select signal from model.

10 Control System Tuning

10-148

In the Select signals dialog box, build a list of the signals you want. To do so, click signals in the
Simulink model editor. The signals that you click appear in the Select signals dialog box. Click one
signal to create a SISO response, and click multiple signals to create a MIMO response.

Click Add signal(s). The Select signals dialog box closes.

The signal or signals you selected now appear in the list of step-response inputs in the new-plot
dialog box.

Similarly, specify the locations at which the step response is measured to the step-response outputs
list. For example, the following configuration plots the MIMO response to a step input applied at
theta-ref and phi-ref and measured at theta and phi in the Simulink model rct_helico.

Tip To highlight any selected signal in the Simulink model, click . To remove a signal from the

input or output list, click . When you have selected multiple signals, you can reorder them using

 and .

 Create Response Plots in Control System Tuner

10-149

Specify Loop Openings

You can evaluate most system responses with loops open at one or more locations in the control
system. Click Add loop opening location to list to specify such locations for the response.

Store and Plot the Response

When you have finished specifying the response, click Plot in the new plot dialog box. The new
response appears in the Responses section of the Data Browser. A new figure opens displaying the
response plot. When you tune your control system, you can refer to this figure to evaluate the
performance of the tuned system.

Tip To edit the specifications of the response, double-click the response in the Data Browser. Any
plots using that response update to reflect the edited response.

View response characteristics such as rise-times or peak values by right-clicking on the plot. Other
options for managing and organizing multiple plots are available in the View tab.

10 Control System Tuning

10-150

See Also

Related Examples
• “Compare Performance of Multiple Tuned Controllers” on page 10-154
• “Examine Tuned Controller Parameters in Control System Tuner” on page 10-152
• “Visualize Tuning Goals” on page 10-141

 Create Response Plots in Control System Tuner

10-151

Examine Tuned Controller Parameters in Control System Tuner
After you tune your control system, Control System Tuner gives you two ways to view the current
values of the tuned block parameters:

• In the Data Browser, in the Tuned Blocks area, select the block whose parameters you want to
view. A text summary of the block and its current parameter values appears in the Data Browser
in the Data Preview area.

• In the Data Browser, in the Tuned Blocks area, double-click the block whose parameters you
want to view. The Tuned Block Editor opens, displaying the current values of the parameters. For

array-valued parameters, click to open a variable editor displaying values in the array.

Note To find a tuned block in the Simulink model, right-click the block name in the Data Browser
and select Highlight.

10 Control System Tuning

10-152

See Also

Related Examples
• “View and Change Block Parameterization in Control System Tuner” on page 10-19

 Examine Tuned Controller Parameters in Control System Tuner

10-153

Compare Performance of Multiple Tuned Controllers
Control System Tuner lets you compare the performance of a control system tuned with two
different sets of tuning goals. Such comparison is useful, for example, to see the effect on
performance of changing a tuning goal from hard goal to soft goal. Comparing performance is also
useful to see the effect of adding an additional tuning goal when an initial design fails to satisfy all
your performance requirements either in the linearized system or when validated against a full
nonlinear model.

This example compares tuning results for the sample model rct_linact.

Store First Design

After tuning a control system with a first set of design requirements, store the design in Control
System Tuner.

In the Control System tab, click Store. The stored design appears in the Data Browser in the
Designs area.

Change the name of the stored design, if desired, by right-clicking on the data browser entry.

Compute New Design

In the Tuning tab, make any desired changes to the tuning goals for the second design. For example,

add new tuning goals or edit existing tuning goals to change specifications. Or, in Manage
Goals, change which tuning goals are active and which are designated hard constraints or soft
requirements.

10 Control System Tuning

10-154

When you are ready, retune the control system with the new set of tuning goals. Click Tune.
Control System Tuner updates the current design (the current set of controller parameters) with
the new tuned design. All existing plots, which by default show the current design, are updated to
reflect the new current design.

Compare New Design with Stored Design

Update all plots to reflect both the new design and the stored design. In the Control System tab,
click Compare. The Compare Designs dialog box opens.

In the Compare Designs dialog box, the current design is checked by default. Check the box for the
design you want to compare to the current design. All response plots and tuning goal plots update to
reflect the checked designs. The solid trace corresponds to the current design. Other designs are
identified by name in the plot legend.

Use the same procedure save and compare as many designs as you need.

 Compare Performance of Multiple Tuned Controllers

10-155

Restore Previously Saved Design

Under some conditions, it is useful to restore the tuned parameter values from a previously saved
design as the current design. For example, clicking Update Blocks writes the current parameter
values to the Simulink model. If you decide to test a stored controller design in your full nonlinear
model, you must first restore those stored values as the current design.

To do so, click Retrieve. Select the stored design that you want to make the current design.

See Also

Related Examples
• “Create Response Plots in Control System Tuner” on page 10-147

10 Control System Tuning

10-156

Create and Configure slTuner Interface to Simulink Model

This example shows how to create and configure an slTuner interface for a Simulink® model. The
slTuner interface parameterizes blocks in your model that you designate as tunable and allows you
to tune them using systune. The slTuner interface generates a linearization of your Simulink
model, and also allows you to extract linearized system responses for analysis and validation of the
tuned control system.

For this example, create and configure an slTuner interface for tuning the Simulink model
rct_helico, a multiloop controller for a rotorcraft. Open the model.

open_system('rct_helico');

The control system consists of two feedback loops. The inner loop (static output feedback) provides
stability augmentation and decoupling. The outer loop (PI controllers) provides the desired setpoint
tracking performance.

Suppose that you want to tune this model to meet the following control objectives:

• Track setpoint changes in theta, phi, and r with zero steady-state error, specified rise times,
minimal overshoot, and minimal cross-coupling.

• Limit the control bandwidth to guard against neglected high-frequency rotor dynamics and
measurement noise.

• Provide strong multivariable gain and phase margins (robustness to simultaneous gain/phase
variations at the plant inputs and outputs).

The systune command can jointly tune the controller blocks SOF and the PI controllers to meet
these design requirements. The slTuner interface sets up this tuning task.

 Create and Configure slTuner Interface to Simulink Model

10-157

Create the slTuner interface.

ST0 = slTuner('rct_helico',{'PI1','PI2','PI3','SOF'});

This command initializes the slTuner interface with the three PI controllers and the SOF block
designated as tunable. Each tunable block is automatically parameterized according to its type and
initialized with its value in the Simulink model.

To configure the slTuner interface, designate as analysis points any signal locations of relevance to
your design requirements. First, add the outputs and reference inputs for the tracking requirements.

addPoint(ST0,{'theta-ref','theta','phi-ref','phi','r-ref','r'});

When you create a TuningGoal.Tracking object that captures the tracking requirement, this
object references the same signals.

Configure the slTuner interface for the stability margin requirements. Designate as analysis points
the plant inputs and outputs (control and measurement signals) where the stability margins are
measured.

addPoint(ST0,{'u','y'});

Display a summary of the slTuner interface configuration in the command window.

ST0

slTuner tuning interface for "rct_helico":

4 Tuned blocks: (Read-only TunedBlocks property)

Block 1: rct_helico/PI1
Block 2: rct_helico/PI2
Block 3: rct_helico/PI3
Block 4: rct_helico/SOF

8 Analysis points:

Point 1: 'Output Port 1' of rct_helico/theta-ref
Point 2: Signal "theta", located at 'Output Port 1' of rct_helico/Demux1
Point 3: 'Output Port 1' of rct_helico/phi-ref
Point 4: Signal "phi", located at 'Output Port 2' of rct_helico/Demux1
Point 5: 'Output Port 1' of rct_helico/r-ref
Point 6: Signal "r", located at 'Output Port 3' of rct_helico/Demux1
Point 7: Signal "u", located at 'Output Port 1' of rct_helico/Mux3
Point 8: Signal "y", located at 'Output Port 1' of rct_helico/Helicopter

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.SlTunerOptions]
 Ts : 0

In the command window, click on any highlighted signal to see its location in the Simulink model.

10 Control System Tuning

10-158

In addition to specifying design requirements, you can use analysis points for extracting system
responses. For example, extract and plot the step responses between the reference signals and
'theta', 'phi', and 'r'.

T0 = getIOTransfer(ST0,{'theta-ref','phi-ref','r-ref'},{'theta','phi','r'});
stepplot(T0,1)

All the step responses are unstable, including the cross-couplings, because this model has not yet
been tuned.

After you tune the model, you can similarly use the designated analysis points to extract system
responses for validating the tuned system. If you want to examine system responses at locations that
are not needed to specify design requirements, add these locations to the slTuner interface as well.
For example, plot the sensitivity function measured at the output of the block roll-off 2.

addPoint(ST0,'dc')
dcS0 = getSensitivity(ST0,'dc');
bodeplot(dcS0)

 Create and Configure slTuner Interface to Simulink Model

10-159

Suppose you want to change the parameterization of tunable blocks in the slTuner interface. For
example, suppose that after tuning the model, you want to test whether changing from PI to PID
controllers yields improved results. Change the parameterization of the three PI controllers to PID
controllers.

PID0 = pid(0,0.001,0.001,.01); % initial value for PID controllers
PID1 = tunablePID('C1',PID0);
PID2 = tunablePID('C2',PID0);
PID3 = tunablePID('C3',PID0);

setBlockParam(ST0,'PI1',PID1,'PI2',PID2,'PI3',PID3);

After you configure the slTuner interface to your Simulink model, you can create tuning goals and
tune the model using systune or looptune.

See Also
slTuner | addBlock | addPoint | setBlockParam | getIOTransfer | getSensitivity

Related Examples
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-38
• “Multiloop Control of a Helicopter”
• “Control of a Linear Electric Actuator”

10 Control System Tuning

10-160

Stability Margins in Control System Tuning
In control system tuning, you specify target gain and phase margins using “Margins Goal” on page
10-110 (for Control System Tuner) or TuningGoal.Margins (for systune). The software provides
tools to help you visualize and interpret the gain and phase margins in your tuned system.

Gain and Phase Margins
Gain and phase margins measure the tolerance of a control loop to variations in the open-loop system
response. The Margins Goal and TuningGoal.Margins rely on the notion of a disk margin to
compute gain and phase margins. Like classical gain and phase margins, disk margins quantify the
stability of a closed-loop system against gain or phase variations in the open-loop response. Disk
margins also take into account all frequencies and loop interactions. Therefore, disk-based margin
analysis provides a stronger guarantee of stability than the classical gain and phase margins. For
more information about disk margins, see “Stability Analysis Using Disk Margins” (Robust Control
Toolbox).

For a SISO system, the gain and phase margins indicate how much the gain or phase of the open-loop
response L can change without loss of stability.

For MIMO systems, gain and phase margins are interpreted as follows:

• Gain margin — Stability is preserved when the gain changes up to the gain margin value in each
feedback channel. The gain can change in all channels simultaneously, and by a different amount
in each channel.

• Phase margin — Stability is preserved when the phase changes up to the phase margin value in
each feedback channel. The phase can change in all channels simultaneously, and by a different
amount in each channel.

Gain and phase margins typically vary across frequencies. For example, in a SISO loop, a gain margin
of 5 dB at 2 rad/s indicates that closed-loop stability is maintained when the loop gain increases or
decreases by as much as 5 dB at this frequency. For control system tuning, you specify target values
for the minimum (worst) margins across all frequencies. The margin tuning goal assumes symmetric
ranges of variation, such as ±5 dB or ±30°.

Interpret Gain and Phase Margin Plots
For control system tuning, visualize system stability margins to help evaluate the performance of the
tuned system.

• In Control System Tuner, use a “Margins Goal” on page 10-110 or “Quick Loop Tuning” on page
10-41.

• At the command line, use viewGoal. For instance, if S is the control system, and Req is a
TuningGoal.Margins goal, enter the following.

viewGoal(Req,S)

viewGoal produces a plot with a yellow shaded region where the target margins are not met. The
plot also shows the gain and phase margins for the current values of the tunable parameters in the
control system. These margins appear as a blue trace that typically varies across frequencies. For
instance, the following plot shows a typical result.

 Stability Margins in Control System Tuning

10-161

The plot shows that the frequency of the gain or phase variation can affect how large a perturbation
the system can tolerate without going unstable. The minimum (worst) gain and phase margins occur
at about 2 rad/s. At this frequency, the system can tolerate changes in open-loop gain of about ±14
dB, or changes in phase of about ±66°. For this system, the margins at all frequencies are well above
the target margins used for tuning, shown in yellow.

Simultaneous Gain and Phase Variations
In general, gain margins are determined assuming no phase variation, and phase margins are
determined assuming no gain variation. In practice, your system can experience simultaneous gain
and phase variations. Disk-based margin analysis also gives you a range of simultaneous gain and
phase variations that the system can tolerate. For instance, suppose that your system has a disk-
based gain margin of 5 dB. This system remains stable for gain changes of ±5 dB, assuming no phase
variation. Use the diskmarginplot command to visualize the region of simultaneous gain and phase
variations that the system can tolerate.

diskmarginplot(db2mag(5))

10 Control System Tuning

10-162

The shaded region shows the stable range of combined gain and phase variations for a disk-based
gain margin of 5 dB. With no phase variation, the system can tolerate the full range of gain variation,
–5 dB to 5 dB, or gain that changes by a factor within the range DGM = [0.56,1.8]. Adding in
phase variation reduces the tolerable gain variation. For instance, If the phase is allowed to vary by
±25°, the tolerable gain variation drops to a range of about ±3 dB. The disk-based phase margin is
the allowable phase variation when there is no gain variation, in this case about ±31°, shown in the
plot as DPM.

For more information about disk margins, see “Stability Analysis Using Disk Margins” (Robust
Control Toolbox).

Algorithm
The gain and phase margin values are both derived from the disk margin. The disk margin measures
the radius of a circular exclusion region centered near the critical point. (See “Stability Analysis
Using Disk Margins” (Robust Control Toolbox).) For a system with open-loop response L(jω), this
radius ɑ is a function of the scaled norm:

1
α = min

D diagonal
D jω −1 I − L jω I + L jω −1D jω ∞ .

Unlike classical gain and phase margins, the disk margins and associated gain and phase margins
guarantee that the open-loop response stays at a safe distance from the critical point at all
frequencies.

 Stability Margins in Control System Tuning

10-163

Impact of Scaling

The frequency dependence of the gain and phase margins can be obtained by an exact calculation
involving μ-analysis. However, for computational efficiency, the tuning algorithm uses an approximate
calculation with a constant scaling D instead of the frequency-dependent scaling D(jω):

1
α = min

D diagonal
D−1 I − L jω I + L jω −1D ∞ .

This approximation is an upper bound on 1/ɑ, or a lower bound on ɑ. It can therefore yield smaller
margins in parts of the frequency range, especially at frequencies away from the frequency at which
the minimum margin occurs. The smaller margin is still a guaranteed margin, but it might be more
conservative than the true margin. To see the lower bound used by the tuning algorithm, right-click
on the stability-margins plot and select Systems > Tuned lower bound.

If you see a significant gap between the actual margins of the tuned system (blue curve) and the
lower-bound approximation used for tuning (black curve), try increasing the D-scaling order to
introduce some frequency dependence into the scaling. For tuning in Control System Tuner, set the
D-scaling order in the Margins Goal dialog box. For command-line tuning, set this value using the
ScalingOrder property of TuningGoal.Margins. The default order is zero (static scaling).

See Also
TuningGoal.Margins | diskmargin | viewGoal

10 Control System Tuning

10-164

More About
• “Loop Shape and Stability Margin Specifications” on page 13-34
• “Margins Goal” on page 10-110
• “Stability Analysis Using Disk Margins” (Robust Control Toolbox)

 Stability Margins in Control System Tuning

10-165

Tune Control System at the Command Line
After specifying your tuning goals using TuningGoal objects (see “Tuning Goals”), use systune to
tune the parameters of your model.

The systune command lets you designate one or more design goals as hard goals. This designation
gives you a way to differentiate must-have goals from nice-to-have tuning goals.systune attempts to
satisfy hard requirements by driving their associated cost functions below 1. Subject to that
constraint, the software comes as close as possible to satisfying remaining (soft) requirements. For
best results, make sure you can obtain a reasonable design with all goals treated as soft goals before
attempting to enforce any goal as a hard constraint.

Organize your TuningGoal objects into a vector of soft requirements and a vector of hard
requirements. For example, suppose you have created a tracking requirement, a rejection
requirement, and stability margin requirements at the plant inputs and outputs. The following
commands tune the control system represented by T0, treating the stability margins as hard goals,
the tracking and rejection requirements as soft goals. (T0 is either a genss model or an slTuner
interface previously configured for tuning.)

SoftReqs = [Rtrack,Rreject];
HardReqs = [RmargIn,RmargOut];
[T,fSoft,gHard] = systune(T0,SoftReqs,HardReqs);

systune converts each tuning requirement into a normalized scalar value, f for the soft constraints
and g for the hard constraints. The command adjusts the tunable parameters of T0 to minimize the f
values, subject to the constraint that each g < 1. systune returns the vectors fSoft and gHard that
contain the final normalized values for each tuning goal in SoftReqs and HardReqs.

Use systuneOptions to configure additional options for the systune algorithm, such as the
number of independent optimization runs, convergence tolerance, and output display options.

See Also
systune | systune (for slTuner) | systuneOptions

More About
• “Interpret Numeric Tuning Results” on page 10-138

10 Control System Tuning

10-166

Speed Up Tuning with Parallel Computing Toolbox Software
Commands for tuning fixed-structure control systems such as systune, looptune, hinfstruct, or
musyn, you can use the RandomStart option to run multiple optimization starts using randomized
initial parameter values. Doing so decreases the chances of falling into a local minimum in parameter
space and obtaining a controller that does not perform as well as it could. However, additional
optimization runs take time. If you have a Parallel Computing Toolbox license, you can use parallel
computing to speed up tuning by distributing these independent optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing Toolbox
preferences (Parallel Computing Toolbox), manually start a parallel pool using parpool. For
example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you do not need to
manually start a pool.

Next, create an options set that specifies multiple random starts and sets the UseParallel flag to
true. For example, the following options set specifies 20 random restarts to run in parallel for tuning
with systune:

options = systuneOptions('RandomStart',20,'UseParallel',true);

Use the options set when you call the tuning command. For example, if you have already created a
tunable control system model, CL0, and tunable controller, and tuning requirement vectors SoftReqs
and HardReqs, the following command uses parallel computing to tune the control system of CL0
with systune.

[CL,fSoft,gHard,info] = systune(CL0,SoftReq,Hardreq,options);

To learn more about configuring a parallel pool, see the Parallel Computing Toolbox documentation.

See Also
parpool | systuneOptions | looptuneOptions | hinfstructOptions | musynOptions

More About
• “Specify Your Parallel Preferences” (Parallel Computing Toolbox)

 Speed Up Tuning with Parallel Computing Toolbox Software

10-167

Validate Tuned Control System
When you tune a control system using systune or Control System Tuner, you must validate the
results of tuning. The tuning results provide numeric and graphical indications of how well your
tuning goals are satisfied. (See “Interpret Numeric Tuning Results” on page 10-138 and “Visualize
Tuning Goals” on page 10-141.) Often, you want to examine other system responses using the tuned
controller parameters. If you are tuning a Simulink model, you must also validate the tuned controller
against the full nonlinear system. At the command line and in Control System Tuner, there are
several tools to help you validate the tuned control system.

Extract and Plot System Responses
In addition to the system responses corresponding to your tuning goals (see “Visualize Tuning Goals”
on page 10-141), you can evaluate the tuned system performance by plotting other system responses.
For instance, evaluate reference tracking or overshoot performance by plotting the step response of
transfer function from the reference input to the controlled output. Or, evaluate stability margins by
examining an open-loop transfer function. You can extract any transfer function you need for analysis
from the tuned model of your control system.

Extract System Responses at the Command Line

The tuning tools include analysis functions that let you extract responses from your tuned control
system.

For generalized state-space (genss) models, use:

• getIOTransfer
• getLoopTransfer
• getSensitivity
• getCompSensitivity

For an slTuner interface, use:

• getIOTransfer (for slTuner)
• getLoopTransfer (for slTuner)
• getSensitivity (for slTuner)
• getCompSensitivity (for slTuner)

In either case, the extracted responses are represented by state-space (ss) models. You can analyze
these models using commands such as step, bode, sigma, or margin.

For instance, suppose that you are tuning the control system of the example “Multiloop Control of a
Helicopter”. You have created an slTuner interface ST0 for the Simulink model. You have also
specified tuning goals TrackReq, MarginReq1, MarginReq2, and PoleReq. You tune the control
system using systune.

AllReqs = [TrackReq,MarginReq1,MarginReq2,PoleReq];
ST1 = systune(ST0,AllReqs);

Final: Soft = 1.12, Hard = -Inf, Iterations = 71

10 Control System Tuning

10-168

Suppose also that ST0 has analysis points that include signals named theta-ref, theta, phi-ref,
and phi. Use getIOTransfer to extract the tuned transfer functions from theta-ref and phi-ref
to theta and phi.

T1 = getIOTransfer(ST1,{'theta-ref','phi-ref'},{'theta','phi'});
step(T1,5)

The step plot shows that the extracted transfer function is the 2-input, 2-output response from the
specified reference inputs to the specified outputs.

For an example that shows how to extract responses from a tuned genss model, see “Extract
Responses from Tuned MATLAB Model at the Command Line” on page 10-171.

For additional examples, see “Validating Results” on page 13-42.

System Responses in Control System Tuner

For information about extracting and plotting system responses in Control System Tuner, see
“Create Response Plots in Control System Tuner” on page 10-147.

Validate Design in Simulink Model
When you tune a Simulink model, the software evaluates tuning goals for a linearization of the model.
Similarly, analysis commands such as getIOTransfer extract linearized system responses.
Therefore, you must validate the tuned controller parameters by simulating the full nonlinear model

 Validate Tuned Control System

10-169

with the tuned controller parameters, even if the tuned linear system meets all your design
requirements. To do so, write the tuned parameter values to the model.

Tip If you tune the Simulink model at an operating point other than the model initial condition,
initialize the model at the same operating point before validating the tuned controller parameters.
See “Simulate Simulink Model at Specific Operating Point” on page 1-95.

Write Parameters at the Command Line

To write tuned block values from a tuned slTuner interface to the corresponding Simulink model,
use the writeBlockValue command. For example, suppose ST1 is the tuned slTuner interface
returned by systune. The following command writes the tuned parameters from ST1 to the
associated Simulink model.

writeBlockValue(ST1)

Simulate the Simulink model to evaluate system performance with the tuned parameter values.

Write Parameters in Control System Tuner

To write tuned block parameters to a Simulink model, in the Control System tab, click Update
Blocks.

Control System Tuner transfers the current values of the tuned block parameters to the
corresponding blocks in the Simulink model. Simulate the model to evaluate system performance
using the tuned parameter values.

To update Simulink model with parameter values from a previous design stored in Control System
Tuner, click Retrieve and select the stored design that you want to make the current design.
Then click Update Blocks.

See Also

Related Examples
• “Extract Responses from Tuned MATLAB Model at the Command Line” on page 10-171
• “Create Response Plots in Control System Tuner” on page 10-147
• “Visualize Tuning Goals” on page 10-141

10 Control System Tuning

10-170

Extract Responses from Tuned MATLAB Model at the Command
Line

This example shows how to analyze responses of a tuned control system by using getIOTransfer to
compute responses between various inputs and outputs of a closed-loop model of the system. You can
obtain other responses using similar functions such as getLoopTransfer and getSensitivity.

Consider the following control system.

Suppose you have used systune to tune a genss model of this control system. The result is a genss
model, T, which contains tunable blocks representing the controller elements C1 and C2. The tuned
model also contains AnalysisPoint blocks that represent the analysis-point locations, X1 and X2.

Analyze the tuned system performance by examining various system responses extracted from T. For
example, examine the response at the output, y, to a disturbance injected at the point d1.

H1 = getIOTransfer(T,'X1','y');

H1 represents the closed-loop response of the control system to a disturbance injected at the implicit
input associated with the AnalysisPoint block X1, which is the location of d1:

H1 is a genss model that includes the tunable blocks of T. H1 allows you to validate the disturbance
response of your tuned system. For example, you can use analysis commands such as bodeplot or
stepplot to analyze H1. You can also use getValue to obtain the current value of H1, in which all
the tunable blocks are evaluated to their current numeric values.

Similarly, examine the response at the output to a disturbance injected at the point d2.

H2 = getIOTransfer(T,'X2','y');

You can also generate a two-input, one-output model representing the response of the control system
to simultaneous disturbances at both d1 and d2. To do so, provide getIOTransfer with a cell array
that specifies the multiple input locations.

 Extract Responses from Tuned MATLAB Model at the Command Line

10-171

H = getIOTransfer(T,{'X1','X2'},'y');

See Also
getIOTransfer | getLoopTransfer | getSensitivity | getCompSensitivity |
AnalysisPoint

Related Examples
• “Interpret Numeric Tuning Results” on page 10-138

10 Control System Tuning

10-172

Gain-Scheduled Controllers

11

Gain Scheduling Basics
Gain scheduling is an approach to control of nonlinear systems using a family of linear controllers,
each providing satisfactory control for a different operating point of the system. Gain-scheduled
control is typically implemented using a controller whose gains are automatically adjusted as a
function of scheduling variables that describe the current operating point. Such variables can include
time, external operating conditions, or system states such as orientation or velocity.

Gain-scheduled control systems are often designed by choosing a small set of operating points, the
design points, and designing a suitable linear controller for each point. In operation, the system
switches or interpolates between these controllers according to the current values of the scheduling
variables.

Gain scheduling is most suitable when the scheduling variables are external parameters that vary
slowly compared to the control bandwidth, such as the ambient temperature of a chemical reaction or
the speed of a cruising aircraft. Gain scheduling is most challenging when the scheduling variables
depend on fast-varying states of the system. Because local linear performance near operating points
is no guarantee of global performance in nonlinear systems, extensive simulation-based validation is
required. See [1] for an overview of gain scheduling and its challenges.

To design a gain-scheduled control system, you need:

• An operating range, defined as a set of ranges within which the values of relevant system
parameters remain during operation. For instance, if your system is a cruising aircraft, then the
operating range might be an incidence angle between –20° and 20° and airspeed in the range
200-250 m/s.

• Some measurable variables that indicate where in the operating range the system is at a given
time. These signals are the scheduling variables. For the aircraft system, the scheduling variables
might be the incidence angle and the airspeed.

• A gain schedule, which comprises the formulas or data tables that return the appropriate
controller gains for given values of the scheduling variables. For the aircraft system, the gain
schedule gives appropriate controller gains for any combination of incidence angle and airspeed
within the operating range.

Gain Scheduling in Simulink
Control System Toolbox provides blocks that help you model gain-scheduled control systems in
Simulink. These blocks let you implement common control-system elements with variable parameters.
For instance, the Varying PID Controller block accepts PID gains as inputs. In your model, you use
blocks such as n-D Lookup Table or MATLAB Function blocks to implement the gain schedule. For
more information and examples, see “Model Gain-Scheduled Control Systems in Simulink” on page
11-4.

Tune Gain Schedules
You can use systune to tune gain schedules to achieve a control system that meets performance
objectives across the entire operating range. For more information, see “Tune Gain Schedules in
Simulink” on page 11-12.

11 Gain-Scheduled Controllers

11-2

References
[1] Rugh, W.J., and J.S. Shamma, “Research on Gain Scheduling”, Automatica, 36 (2000), pp.

1401-1425.

See Also

More About
• “Model Gain-Scheduled Control Systems in Simulink” on page 11-4
• “Tune Gain Schedules in Simulink” on page 11-12

 Gain Scheduling Basics

11-3

Model Gain-Scheduled Control Systems in Simulink
In Simulink, you can model gain-scheduled control systems in which controller gains or coefficients
depend on scheduling variables such as time, operating conditions, or model parameters. The library
of linear parameter-varying blocks in Control System Toolbox lets you implement common control-
system elements with variable gains. Use blocks such as lookup tables or MATLAB Function blocks to
implement the gain schedule, which gives the dependence of these gains on the scheduling variables.

To model a gain-scheduled control system in Simulink:

1 Identify the scheduling variables and the signals that represent them in your model. For instance,
if your system is a cruising aircraft, then the scheduling variables might be the incidence angle
and the airspeed of the aircraft.

2 Use a lookup table block or a MATLAB Function block to implement a gain or coefficient that
depends on the scheduling variables. If you do not have lookup table values or MATLAB
expressions for gain schedules that meet your performance requirements, you can use systune
to tune them. See “Tune Gain Schedules in Simulink” on page 11-12.

3 Replace ordinary control elements with gain-scheduled elements. For instance, instead of a fixed-
coefficient PID controller, use a Varying PID Controller block, in which the gain schedules
determine the PID gains.

4 Add scheduling logic and safeguards to your model as needed.

Model Scheduled Gains
A gain schedule converts the current values of the scheduling variables into controller gains. There
are several ways to implement a gain schedule in Simulink.

Available blocks for implementing lookup tables include:

• Lookup tables — A lookup table is a list of breakpoints and corresponding gain values. When the
scheduling variables fall between breakpoints, the lookup table interpolates between the
corresponding gains. Use the following blocks to implement gain schedules as lookup tables.

• 1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table — For a scalar gain that depends on
one, two, or more scheduling variables.

• Matrix Interpolation — For a matrix-valued gain that depends on one, two, or three scheduling
variables. (This block is in the Simulink Extras library.)

• MATLAB Function block — When you have a functional expression relating the gains to the
scheduling variables, use a MATLAB Function block. If the expression is a smooth function, using
a MATLAB function can result in smoother gain variations than a lookup table. Also, if you use a
code-generation product such as Simulink Coder to implement the controller in hardware, a
MATLAB function can result in a more memory-efficient implementation than a lookup table.

You can use systune to tune gain schedules implement as either lookup tables or MATLAB functions.
See “Tune Gain Schedules in Simulink” on page 11-12.

Scheduled Gain in Controller

As an example, the model rct_CSTR includes a PI controller and a lead compensator in which the
controller gains are implemented as lookup tables using 1-D Lookup Table blocks. For more
information on this model, see “Gain-Scheduled Control of a Chemical Reactor”.

11 Gain-Scheduled Controllers

11-4

Copy the example files and open the rct_CSTR model.
openExample("control/GainScheduledProcessExample",...
 supportingFile="rct_CSTR.slx")

Both the Concentration controller and Temperature controller blocks take the CSTR plant
output, Cr, as an input. This value is both the controlled variable of the system and the scheduling
variable on which the controller action depends. Double-click the Concentration controller
block.

 Model Gain-Scheduled Control Systems in Simulink

11-5

This block is a PI controller in which the proportional gain Kp and integrator gain Ki are determined
by feeding the scheduling parameter Cr into a 1-D Lookup Table block. Similarly, the Temperature
controller block contains three gains implemented as lookup tables.

Gain-Scheduled Equivalents for Commonly Used Control Elements
Use the Linear Parameter Varying block library of Control System Toolbox to implement common
control elements with variable parameters or coefficients. These blocks provide common elements in
which the gains or parameters are available as external inputs. The following table lists some
applications of these blocks.

Block Application
• Varying Lowpass Filter
• Discrete Varying Lowpass

Use these blocks to implement a Butterworth
lowpass filter in which the cutoff frequency varies
with scheduling variables.

• Varying Notch Filter
• Discrete Varying Notch

Use these blocks to implement a notch filter in
which the notch frequency, width, and depth vary
with scheduling variables.

• Varying PID Controller
• Discrete Varying PID
• Varying 2DOF PID
• Discrete Varying 2DOF PID

These blocks are preconfigured versions of the
PID Controller and PID Controller (2DOF) blocks.
Use them to implement PID controllers in which
the PID gains vary with scheduling variables.

• Varying Transfer Function
• Discrete Varying Transfer Function

Use these blocks to implement a transfer function
of any order in which the polynomial coefficients
of the numerator and denominator vary with
scheduling variables.

11 Gain-Scheduled Controllers

11-6

Block Application
• Varying State Space
• Discrete Varying State Space

Use these blocks to implement a state-space
controller in which the A, B, C, and D matrices
vary with the scheduling variables.

• Varying Observer Form
• Discrete Varying Observer Form

Use these blocks to implement a gain-scheduled
observer-form state-space controller, such as an
LQG controller. In such a controller, the A, B, C, D
matrices and the state-feedback and state-
observer gain matrices vary with the scheduling
variables.

Caution When using the Varying State Space block, avoid scheduling the C and D matrices based on
the system output y. If you have such dependence, the resulting state-space equation y = C(y)x +
D(y)u creates an algebraic loop, because computing the output value y requires knowing the output
value. This algebraic loop is prone to instability and divergence. Instead, try expressing C and D in
terms of the time t, the block input u, and the state outputs x.

For similar reasons, avoid scheduling A and B based on the dx output. Note that it is safe to for A and
B to depend on y when y is a fixed combination of states and inputs, (in other words, when y = Cx +
Du where C and D are constant matrices).

Similarly, in the Discrete Varying State Space block, use xk instead of yk when scheduling C and D,
and avoid using xk+1 to schedule A and B. You can use yk to schedule A and B when yk is a fixed
combination of states and inputs.

Gain-Scheduled Notch Filter

For example, the subsystem in the following illustration uses a Varying Notch Filter block to
implement a filter whose notch frequency varies as a function of two scheduling variables. The
relationship between the notch frequency and the scheduling variables is implemented in a MATLAB
function.

 Model Gain-Scheduled Control Systems in Simulink

11-7

Gain-Scheduled PI Controller

As another example, the following subsystem is a gain-scheduled discrete-time PI controller in which
both the proportional and integral gains depend on the same scheduling variable. This controller uses
1-D Lookup Table blocks to implement the gain schedules.

Matrix-Valued Gain Schedules

You can also implement matrix-valued gain schedules Simulink. A matrix-valued gain schedule takes
one or more scheduling variables and returns a matrix rather than a scalar value. For instance,
suppose that you want to implement a time-varying LQG controller of the form:

dxe = Axe + Bu + L y − Cxe− Du
u = − Kxe,

where, in general, the state-space matrices A, B, C, and D, the state-feedback matrix K, and the
observer-gain matrix L all vary with time. In this case, time is the scheduling variable, and the gain
schedule determines the values of the matrices at a given time.

In your Simulink model, you can implement matrix-valued gain schedules using:

• MATLAB Function block — Specify a MATLAB function that takes scheduling variables and returns
matrix values.

• Matrix Interpolation block — Specify a lookup table to associate a matrix value with each
scheduling-variable breakpoint. Between breakpoints, the block interpolates the matrix elements.
(This block is in the Simulink Extras library.)

For the LQG controller, use either MATLAB Function blocks or Matrix Interpolation blocks to
implement the time-varying matrices as inputs to a Varying Observer Form block. For example:

11 Gain-Scheduled Controllers

11-8

In this implementation, the time-varying matrices are each implemented as a MATLAB Function block
in which the associated function takes the simulation time and returns a matrix of appropriate
dimensions.

You can tune matrix-valued gain schedules implemented as either MATLAB Function blocks or as
Matrix Interpolation blocks. However, to tune a Matrix Interpolation block, you must set Simulate
using to Interpreted execution. See the Matrix Interpolation block reference page for
information about simulation modes.

Custom Gain-Scheduled Control Structures
You can also use the scheduled gains to build your own control elements. For example, the model
rct_CSTR includes a gain-scheduled lead compensator with three coefficients that depend on the
scheduling variable, CR. To see how this compensator is implemented, open the model and examine
the Temperature controller subsystem.

 Model Gain-Scheduled Control Systems in Simulink

11-9

Here, the overall gain Kt, the zero location a, and the pole location b are each implemented as a 1-D
lookup table that takes the scheduling variable as input. The lookup tables feed directly into product
blocks.

Tunability of Gain Schedules
For a lookup table or MATLAB Function block that implements a gain schedule to be tunable with
systune, it must ultimately feed into either:

• A block in the Linear Parameter Varying block library.
• A Product block that applies the gain to a given signal. For instance, if the Product block takes as

inputs a scheduled gain g(α) and a signal u(t), then the output signal of the block is y(t) = g(α)u(t).

There can be one or more of the following blocks between the lookup table or MATLAB Function
block and the Product block or parameter-varying block:

• Gain
• Bias
• Blocks that are equivalent to a unit gain in the linear domain, including:

• Transport Delay, Variable Transport Delay
• Saturate, Deadzone

11 Gain-Scheduled Controllers

11-10

• Rate Limiter, Rate Transition
• Quantizer, Memory, Zero-Order Hold
• MinMax
• Data Type Conversion
• Signal Specification

• Switch blocks, including:

• Switch
• Multiport Switch
• Manual Switch

Inserting such blocks can be useful, for example, to constrain the gain value to a certain range, or to
specify how often the gain schedule is updated.

See Also

Related Examples
• “Tune Gain Schedules in Simulink” on page 11-12
• “Gain-Scheduled Control of a Chemical Reactor”

 Model Gain-Scheduled Control Systems in Simulink

11-11

Tune Gain Schedules in Simulink
Typically, gain-scheduled controllers are fixed single-loop or multiloop control structures in which
controller gains vary with operating condition. A gain schedule converts the scheduling variables that
describe the current operating condition into appropriate controller gains. In Simulink, you can
implement gain schedules using lookup tables or MATLAB functions. (See “Model Gain-Scheduled
Control Systems in Simulink” on page 11-4.)

You can use systune to tune these gain schedules so that the full nonlinear system meets your
design requirements. Tuning gain schedules amounts to identifying appropriate values for lookup-
table data or finding the right function to embed in a MATLAB Function block. For systune, you
parameterize the gain schedules as functions of the scheduling variables with tunable coefficients.

Workflow for Tuning Gain Schedules
The general workflow for tuning gain-scheduled control systems is:

1 Select a set of design points that adequately covers the operating range over which you are
tuning. A design point is a set of scheduling-variable values that describe a particular operating
condition. The set of design points can be a regular grid of values or a scattered set. Typically,
you start with a few design points. If the performance that your tuned system achieves at the
design points is not maintained between design points, add more design points and retune.

2 Obtain a collection of linear models describing the linearized plant dynamics at the selected
design points. Ways to obtain the array of linear models include:

• Linearize a Simulink model at each operating condition represented in the grid of design
points. For example, if each design point corresponds to a steady-state operating condition,
you can trim the plant at each design point and linearize at the resulting operating point. Or,
if your scheduling variable is time, you can linearize at a series of simulation snapshots.

• Sample an LPV model of the plant at the design points.

For more information, see “Plant Models for Gain-Scheduled Controller Tuning” on page 11-14.
3 Create an slTuner interface for tuning the Simulink. When you do so, you substitute the array of

linear models for the plant, so that the slTuner interface contains a set of closed-loop tunable
models corresponding to each design point. For more information, see “Multiple Design Points in
slTuner Interface” on page 11-20.

4 Model the gain schedules as parametric gain surfaces. A parametric gain surface is a basis-
function expansion with tunable coefficients. For a vector σ of scheduling variables, such
expansion is of the form:

K σ = K0 + K1F1 n σ + … + KMFM n σ .

n(σ) is a normalization function. For tuning with systune, you use tunableSurface to
represent the parametric gain surface K(σ). In the slTuner interface you create for tuning, use
setBlockParam to associate the resulting gain surface with the block that represents the gain
schedule. systune tunes the coefficients K0,...,KM over all the design points.

For more information, see “Parameterize Gain Schedules” on page 11-24.
5 Specify your tuning goals using TuningGoal objects. You can specify tuning goals that apply at

all design points or at a subset of design points. You can also specify tuning goals that vary from

11 Gain-Scheduled Controllers

11-12

design point to design point. For example, you might define a minimum gain margin that
becomes increasingly stringent as a particular scheduling variable increases in magnitude.

For information about specifying tuning goals that vary with design point, see “Change
Requirements with Operating Condition” on page 11-33.

For information about specifying tuning goals generally, see “Tuning Goals”.
6 Use systune to tune the control system. systune tunes the set of parameters, K0,...,KM, against

all plant models in the design grid simultaneously (multimodel tuning).
7 Validate the tuning results. You can examine the tuned gain surfaces and validate the

performance of the linearized system at each design point. However, local linear performance
does not guarantee global performance in nonlinear systems. Therefore, it is important to
perform simulation-based validation using the tuned gain schedules.

For more information, see “Validate Gain-Scheduled Control Systems” on page 11-36.

See Also

More About
• “Model Gain-Scheduled Control Systems in Simulink” on page 11-4
• “Gain-Scheduled Control of a Chemical Reactor”
• “Tuning of Gain-Scheduled Three-Loop Autopilot”

 Tune Gain Schedules in Simulink

11-13

Plant Models for Gain-Scheduled Controller Tuning
Gain scheduling is a control approach for controlling a nonlinear plant. To tune a gain-scheduled
control system, you need a collection of linear models that approximate the nonlinear dynamics near
selected design points. Generally, the dynamics of the plant are described by nonlinear differential
equations of the form:

ẋ = f x, u, σ
y = g x, u, σ .

Here, x is the state vector, u is the plant input, and y is the plant output. These nonlinear differential
equations can be known explicitly for a particular system. More commonly, they are specified
implicitly, such as by a Simulink model.

You can convert these nonlinear dynamics into a family of linear models that describe the local
behavior of the plant around a family of operating points (x(σ),u(σ)), parameterized by the scheduling
variables, σ. Deviations from the nominal operating condition are defined as:

δx = x− x σ , δu = u− u σ .

These deviations are governed, to first order, by linear parameter-varying dynamics:

δ̇x = A σ δx + B σ δu, δy = C σ δx + D σ δu,

A σ = ∂ f
∂x x σ , u σ B σ = ∂ f

∂u x σ , u σ

C σ = ∂g
∂x x σ , u σ D σ = ∂g

∂u x σ , u σ .

This continuum of linear approximations to the nonlinear dynamics is called a linear parameter-
varying (LPV) model:

dx
dt = A σ x + B σ u

y = C σ x + D σ u .

The LPV model describes how the linearized plant dynamics vary with time, operating condition, or
any other scheduling variable. For example, the pitch axis dynamics of an aircraft can be
approximated by an LPV model that depends on incidence angle, α, air speed, V, and altitude, h.

In practice, you replace this continuum of plant models by a finite set of linear models obtained for a
suitable grid of σ values This replacement amounts to sampling the LPV dynamics over the operating
range and selecting a representative set of σ values, your design points.

11 Gain-Scheduled Controllers

11-14

Gain-scheduled controllers yield best results when the plant dynamics vary smoothly between design
points.

Obtaining the Family of Linear Models
If you do not have this family of linear models, there are several approaches to obtaining it, including:

• If you have a Simulink model, trim and linearize the model at the design points on page 11-15.
• Linearize the Simulink model using parameter variation on page 11-18.
• If the scheduling variable is time, linearize the model at a series of simulation snapshots on page

11-18.
• If you have nonlinear differential equations that describe the plant, linearize them at the design

points.

For tuning gain schedules, after you obtain the family of linear models, you must associate it with an
slTuner interface to build a family of tunable closed-loop models. To do so, use block substitution, as
described in “Multiple Design Points in slTuner Interface” on page 11-20.

Set Up for Gain Scheduling by Linearizing at Design Points

This example shows how to linearize a plant model at a set of design points for tuning of a gain-
scheduled controller. The example then uses the resulting linearized models to configure an slTuner
interface for tuning the gain schedule.

Open the rct_CSTR model.

mdl = 'rct_CSTR';
open_system(mdl)

 Plant Models for Gain-Scheduled Controller Tuning

11-15

In this model, the Concentration controller and Temperature controller both depend on
the output concentration Cr. To set up this gain-scheduled system for tuning, you linearize the plant
at a set of steady-state operating points that correspond to different values of the scheduling
parameter Cr. Sometimes, it is convenient to use a separate model of the plant for trimming and
linearization under various operating conditions. For example, in this case, the most straightforward
way to obtain these linearizations is to use a separate open-loop model of the plant, rct_CSTR_OL.

mdl_OL = 'rct_CSTR_OL';
open_system(mdl_OL)

11 Gain-Scheduled Controllers

11-16

Trim Plant at Design Points

Suppose that you want to control this plant at a range of Cr values from 4 to 8. Trim the model to find
steady-state operating points for a set of values in this range. These values are the design points for
tuning.

Cr = (4:8)'; % concentrations
for k=1:length(Cr)
 opspec = operspec(mdl_OL);
 % Set desired residual concentration
 opspec.Outputs(1).y = Cr(k);
 opspec.Outputs(1).Known = true;
 % Compute equilibrium condition
 [op(k),report(k)] = findop(mdl_OL,opspec,findopOptions('DisplayReport','off'));
end

op is an array of steady-state operating points. For more information about steady-state operating
points, see “About Operating Points” on page 1-2.

Linearize at Design Points

Linearizing the plant model using op returns an array of LTI models, each linearized at the
corresponding design point.

G = linearize(mdl_OL,'rct_CSTR_OL/CSTR',op);

Create slTuner Interface with Block Substitution

To tune the control system rct_CSTR, create an slTuner interface that linearizes the system at
those design points. Use block substitution to replace the plant in rct_CSTR with the linearized
plant-model array G.

blocksub.Name = 'rct_CSTR/CSTR';
blocksub.Value = G;
tunedblocks = {'Kp','Ki'};
ST0 = slTuner(mdl,tunedblocks,blocksub);

 Plant Models for Gain-Scheduled Controller Tuning

11-17

For this example, only the PI coefficients in the Concentration controller are designated as
tuned blocks. In general, however, tunedblocks lists all the blocks to tune.

For more information about using block substitution to configure an slTuner interface for gain-
scheduled controller tuning, see “Multiple Design Points in slTuner Interface”.

For another example that illustrates using trimming and linearization to generate a family of linear
models for gain-scheduled controller tuning, see “Trimming and Linearization of the HL-20 Airframe”.

Sample System at Simulation Snapshots
If you are controlling the system around a reference trajectory (x(σ),u(σ)), use snapshot linearization
to sample the system at various points along the σ trajectory. Use this approach for time-varying
systems where the scheduling variable is time.

To linearize a system at a set of simulation snapshots, use a vector of positive scalars as the op input
argument of linearize, slLinearizer, or slTuner. These scalars are the simulation times at
which to linearize the model. Use the same set of time values as the design points in tunable surfaces
for the system.

Sample System at Varying Parameter Values
If the scheduling variable is a parameter in the Simulink model, you can use parameter variation to
sample the control system over a parameter grid. For example, suppose that you want to tune a
model named suspension_gs that contains two parameters, Ks and Bs. These parameters each can
vary over some known range, and a controller gain in the model varies as a function of both
parameters.

To set up such a model for tuning, create a grid of parameter values. For this example, let Ks vary
from 1 – 5, and let Bs vary from 0.6 – 0.9.

Ks = 1:5;
Bs = [0.6:0.1:0.9];
[Ksgrid,Bsgrid] = ndgrid(Ks,Bs);

These values are the design points at which to sample and tune the system. For example, create an
slTuner interface to the model, assuming one tunable block, a Lookup Table block named K that
models the parameter-dependent gain.

params(1) = struct('Name','Ks','Value',Ksgrid);
params(2) = struct('Name','Bs','Value',Bsgrid);
STO = slTuner('suspension_gs','K',params);

slTuner samples the model at all (Ksgrid,Bsgrid) values specified in params.

Next, use the same design points to create a tunable gain surface for parameterizing K.

design = struct('Ks',Ksgrid,'Bs',Bsgrid);
shapefcn = @(Ks,Bs)[Ks,Bs,Ks*Bs];
K = tunableSurface('K',1,design,shapefcn);
setBlockParam(ST0,'K',K);

After you parameterize all the scheduled gains, you can create your tuning goals and tune the system
with systune.

11 Gain-Scheduled Controllers

11-18

Eliminate Samples at Unneeded Design Points
Sometimes, your sampling grid includes points that represent irrelevant or unphysical design points.
You can eliminate such design points from the model grid entirely, so that they do not contribute to
any stage of tuning or analysis. To do so, use voidModel, which replaces specified models in a model
array with NaN. voidModel replaces specified models in a model array with NaN. Using voidModel
lets your design over a grid of design points that is almost regular.

There are other tools for controlling which models contribute to design and analysis. For instance,
you might want to:

• Keep a model in the grid for analysis, but exclude it from tuning.
• Keep a model in the grid for tuning, but exclude it from a particular design goal.

For more information, see “Change Requirements with Operating Condition” on page 11-33.

LPV Plants in MATLAB
In MATLAB, you can use an array of LTI plant models to represent an LPV system sampled at varying
values of σ. To associate each linear model in the set with the underlying design points, use the
SamplingGrid property of the LTI model array σ. One way to obtain such an array is to create a
parametric generalized state-space (genss) model of the system and sample the model with
parameter variation to generate the array. For an example, see “Study Parameter Variation by
Sampling Tunable Model”.

See Also
slTuner | findop | voidModel

Related Examples
• “Parameterize Gain Schedules” on page 11-24
• “Tune Gain Schedules in Simulink” on page 11-12
• “Multiple Design Points in slTuner Interface” on page 11-20

 Plant Models for Gain-Scheduled Controller Tuning

11-19

Multiple Design Points in slTuner Interface
For tuning a gain-scheduled control system, you must make your Simulink model linearize to an array
of LTI models corresponding to the various operating conditions that are your design points. Thus,
after you obtain a family of linear plant models as described in “Plant Models for Gain-Scheduled
Controller Tuning” on page 11-14, you must associate it with the slTuner interface to your Simulink
model. To do so, you use block substitution to cause slTuner replace the plant subsystem of the
model with the array of linear models. This process builds a family of tunable closed-loop models
within the slTuner interface.

Block Substitution for Plant
Suppose that you have an array of linear plant models obtained at each operating point in your design
grid. In the most straightforward case, the following conditions are met:

• The linear models in the array correspond exactly to the plant subsystem in your model.
• Other than the elements you want to tune, nothing else in the model varies with the scheduling

variables.

For a Simulink model mdl containing plant subsystem G, and a linear model array Garr that
represents the plant at a grid of design points, the following commands create an slTuner interface:

BlockSubs = struct('Name','mdl/G','Value',Garr);
st0 = slTuner('mdl',{'Kp','Ki'},BlockSubs);

st0 contains a family of closed-loop linear models, each linearized at a design point, and each with
the corresponding linear plant inserted for G. If 'Kp'and 'Ki' are the gain schedules you want to
tune (such as lookup tables), you can parameterize them with tunable gain surfaces, as described in
“Parameterize Gain Schedules” on page 11-24, and tune them.

Multiple Block Substitutions
In other cases, the linearized array of plant models you have might not correspond exactly to the
plant subsystem in your Simulink model. Or, you might need to replace other parts of the model that
vary with operating condition. In such cases, more care is needed in constructing the correct block
substitution. The following sections highlight several such cases.

For instance, consider the model of the following illustration.

11 Gain-Scheduled Controllers

11-20

This model has an inner loop with a proportional-only gain-scheduled controller. The controller is
represented by the lookup table Kp_in and the product block prod. The outer loop includes a PI
controller with gain-scheduled proportional and integral coefficients represented by the lookup tables
Kp and Ki. All the gain schedules depend on the same scheduling variable alpha.

Suppose you want to tune the inner-loop gain schedule Kp_in with the outer loop open. To that end,
you obtain an array of linear models G_in from input u to outputs {q,alpha}. This model array has
the wrong I/O dimensions to use as a block substitution for G. Therefore, you must "pad" G_in with
an extra output dimension.

Garr = [0; G_in];
BlockSubs1 = struct('Name','mdl/G','Value',Garr);

In addition, you can remove all effect of the outer loop by replacing the Varying PID Controller block
with a system that linearizes to zero at all operating conditions. Because this block has three inputs,
replace it with a 3-input, one-output zero system.
BlockSubs2 = struct('Name','mdl/Varying PID Controller','Value',ss([0 0 0]));

With those block substitutions, the following commands create an slTuner interface that you might
use to tune the inner-loop gain schedule.

st0 = slTuner('mdl','Kp_in');
st0.BlockSubstitutions = [BlockSubs1; BlockSubs2];

See the example “Angular Rate Control in the HL-20 Autopilot” on page 11-75 for a another case in
which several elements other than the plant itself are replaced by block substitution.

Substituting Blocks that Depend on the Scheduling Variables
Next, suppose that you have already tuned the inner-loop gain schedule, and have obtained an array
Kp_in_tuned, of values of Kp_in that correspond to each design point (each value of alpha at

 Multiple Design Points in slTuner Interface

11-21

which you linearized the plant). Suppose also that you have a new Garr that is the full plant from u to
{y,q,alpha} linearized with the tuned inner loop closed. To tune the outer-loop gain schedules, you
must replace the product block with the array Kp_in_tuned. It is important to note that you replace
the injection point, the product block prod, rather than the lookup table Kp_in. Replacing the
product block effectively converts it to a varying gain. Also, you must zero out the first input of the
product block to remove the effect of the lookup table Kp_in.

prodsub = [0 ss(Kp_in_tuned)];
BlockSubs1 = struct('Name','mdl/prod','Value',prodsub);
BlockSubs2 = struct('Name','mdl/G','Value',Garr);

st0 = slTuner('mdl',{'Kp','Ki'});
st0.BlockSubstitutions = [BlockSubs1; BlockSubs2];

For another example that shows this kind of substitution for a previously-tuned lookup table, see
“Attitude Control in the HL-20 Autopilot - SISO Design” on page 11-81.

The following illustration of a portion of a model highlights another scenario in which you might need
to replace blocks that vary with the scheduling variable. Suppose the scheduling variable is alpha,
and somewhere in your model, an signal u gets divided by alpha.

To ensure that slTuner linearizes this block correctly at all values of alpha in the design grid, you
must replace it by an array of linear models, one for each alpha value. This block is equivalent to
sending u through a gain of 1/alpha:

Therefore, you can use the following block substitution in your slTuner interface, where alphagrid
is an array of alpha values at your design points.

divsub = ss[(1/alphagrid), 0]
BlockSubs = struct('Name','mdl/div-by-alpha','Value',divsub);
st0.BlockSubstitutions = [st0.BlockSubstitutions; BlockSubs]

Each entry in model array divsub divides its first input by the corresponding entry in alphagrid,
and zeros out its second input. Thus, this substitution gives the desired result y = u/alpha.

Resolving Mismatches Between a Block and its Substitution
Sometimes, the linear model array you have is not an exact replacement for the part of the model you
want to replace. For example, consider the following illustration of a three-input, one-output
subsystem.

11 Gain-Scheduled Controllers

11-22

Suppose you have an array of linearized models Garr corresponding to G. You can configure a block
substitution for the entire subsystem G_full by constructing a substitution model that reproduces
the effect of averaging the three inputs, as follows:

Gsub = Garr*[1/3 1/3 1/3];
BlockSubs = struct('Name','mdl/G_full','Value',Gsub);

Sometimes, you can resolve a mismatch in I/O dimensions by padding inputs or outputs with zeros, as
shown in “Multiple Block Substitutions” on page 11-20. In still other cases, you might need to
perform other model arithmetic, using commands like series, feedback, or connect to build a
suitable replacement.

Block Substitution for LPV Blocks
If the plant in your Simulink model is represented by an LPV System , you must still perform block
substitution when creating the slTuner interface for tuning gain schedules. slTuner cannot read
the linear model array directly from the LPV System block. However, you can use the linear model
array specified in the block for the block substitution, if it corresponds to the design points for which
you are tuning. For instance, suppose your plant is an LPV System block, LPVPlant, that specifies a
model array PlantArray. You can configure a block substitution for LPVPlant as follows:

BlockSubs = struct('Name','mdl/LPVPlant','Value',PlantArray);

See Also
slTuner

More About
• “Tune Gain Schedules in Simulink” on page 11-12
• “Plant Models for Gain-Scheduled Controller Tuning” on page 11-14
• “Parameterize Gain Schedules” on page 11-24

 Multiple Design Points in slTuner Interface

11-23

Parameterize Gain Schedules
Typically, gain-scheduled control systems in Simulink use lookup tables or MATLAB Function blocks
to specify gain values as a function of the scheduling variables. For tuning, you replace these blocks
by parametric gain surfaces. A parametric gain surface is a basis-function expansion whose
coefficients are tunable. For example, you can model a time-varying gain k(t) as a cubic polynomial in
t:

k(t) = k0 + k1t + k2t2 + k3t3.

Here, k0,...,k3 are tunable coefficients. When you parameterize scheduled gains in this way, systune
can tune the gain-surface coefficients to meet your control objectives at a representative set of
operating conditions. For applications where gains vary smoothly with the scheduling variables, this
approach provides explicit formulas for the gains, which the software can write directly to MATLAB
Function blocks. When you use lookup tables, this approach lets you tune a few coefficients rather
than many individual lookup-table entries, drastically reducing the number of parameters and
ensuring smooth transitions between operating points.

Basis Function Parameterization
In a gain-scheduled controller, the scheduled gains are functions of the scheduling variables, σ. For
example, a gain-scheduled PI controller has the form:

C s, σ = Kp σ +
Ki σ

s .

Tuning this controller requires determining the functional forms Kp(σ) and Ki(σ) that yield the best
system performance over the operating range of σ values. However, tuning arbitrary functions is
difficult. Therefore, it is necessary either to consider the function values at only a finite set of points,
or restrict the generality of the functions themselves.

In the first approach, you choose a collection of design points, σ, and tune the gains Kp and Ki
independently at each design point. The resulting set of gain values is stored in a lookup table driven
by the scheduling variables, σ. A drawback of this approach is that tuning might yield substantially
different values for neighboring design points, causing undesirable jumps when transitioning from
one operating point to another.

Alternatively, you can model the gains as smooth functions of σ, but restrict the generality of such
functions by using specific basis function expansions. For example, suppose σ is a scalar variable. You
can model Kp(σ) as a quadratic function of σ:

Kp σ = k0 + k1σ + k2σ2 .

After tuning, this parametric gain might have a profile such as the following (the specific shape of the
curve depends on the tuned coefficient values and range of σ):

11 Gain-Scheduled Controllers

11-24

Or, suppose that σ consists of two scheduling variables, α and V. Then, you can model Kp(σ) as a
bilinear function of α and V:

Kp α, V = k0 + k1α + k2V + k3αV .

After tuning, this parametric gain might have a profile such as the following. Here too, the specific
shape of the curve depends on the tuned coefficient values and ranges of σ values:

 Parameterize Gain Schedules

11-25

For tuning gain schedules with systune, you use a parametric gain surface that is a particular
expansion of the gain in basis functions of σ:

K σ = K0 + K1F1 n σ + … + KMFM n σ .

The basis functions F1,...,FM are user-selected and fixed. These functions operate on n(σ), where n is a
function that scales and normalizes the scheduling variables to the interval [–1,1] (or an interval you
specify). The coefficients of the expansion, K0,...,KM, are the tunable parameters of the gain surface.
K0,...,KM can be scalar or matrix-valued, depending on the I/O size of the gain K(σ). The choice of
basis function is problem-dependent, but in general, try low-order polynomial expansions first.

Tunable Gain Surfaces
Use the tunableSurface command to construct a tunable model of a gain surface sampled over a
grid of design points (σ values). For example, consider the gain with bilinear dependence on two
scheduling variables, α and V:

Kp α, V = K0 + K1α + K2V + K3αV .

Suppose that α is an angle of incidence that ranges from 0° to 15°, and V is a speed that ranges from
300 m/s to 700 m/s. Create a grid of design points that span these ranges. These design points must
match the parameter values at which you sample your varying or nonlinear plant. (See “Plant Models
for Gain-Scheduled Controller Tuning” on page 11-14.)

[alpha,V] = ndgrid(0:5:15,300:100:700);
domain = struct('alpha',alpha,'V',V);

11 Gain-Scheduled Controllers

11-26

Specify the basis functions for the parameterization of this surface, α, V, and αV. The
tunableSurface command expects the basis functions to be arranged as a vector of functions of
two input variables. You can use an anonymous function to express the basis functions.

shapefcn = @(alpha,V)[alpha,V,alpha*V];

Alternatively, use polyBasis, fourierBasis, or ndBasis to generate basis functions of as many
scheduling variables as you need.

Create the tunable surface using the design points and basis functions.

Kp = tunableSurface('Kp',1,domain,shapefcn);

Kp is a tunable model of the gain surface. tunableSurface parameterizes the surface as:

Kp α, V = K0 + K1α + K2V + K3αV,

where

α = α− 7.5
7.5 , V = V − 500

200 .

The surface is expressed in terms of the normalized variables, α, V ∈ −1, 1 2 rather than in terms of
α and V. This normalization, which tunableSurface performs by default, improves the conditioning
of the optimization performed by systune. If needed, you can change the default scaling and
normalization. (See tunableSurface).

The second input argument to tunableSurface specifies the initial value of the constant coefficient,
K0. By default, K0 is the gain when all the scheduling variables are at the center of their ranges.
tunableSurface takes the I/O dimensions of the gain surface from K0. Therefore, you can create
array-valued tunable gains by providing an array for that input.

Karr = tunableSurface('Karr',ones(2),domain,shapefcn);

Karr is a 2-by-2 matrix in which each entry is a bilinear function of the scheduling variables with
independent coefficients.

Tunable Gain with Two Independent Scheduling Variables

This example shows how to model a scalar gain K with a bilinear dependence on two scheduling
variables. You do so by creating a grid of design points representing the independent dependence of
the two variables.

Suppose that the first variable α is an angle of incidence that ranges from 0 to 15 degrees, and the
second variable V is a speed that ranges from 300 to 600 m/s. By default, the normalized variables
are:

x = α− 7 . 5
7 . 5 , y = V − 450

150 .

The gain surface is modeled as:

K α, V = K0 + K1x + K2y + K3xy,

 Parameterize Gain Schedules

11-27

where K0, . . . , K3 are the tunable parameters.

Create a grid of design points, (α,V), that are linearly spaced in α and V. These design points are the
scheduling-variable values used for tuning the gain-surface coefficients. They must correspond to
parameter values at which you have sampled the plant.

[alpha,V] = ndgrid(0:3:15,300:50:600);

These arrays, alpha and V, represent the independent variation of the two scheduling variables, each
across its full range. Put them into a structure to define the design points for the tunable surface.

domain = struct('alpha',alpha,'V',V);

Create the basis functions that describe the bilinear expansion.

shapefcn = @(x,y) [x,y,x*y]; % or use polyBasis('canonical',1,2)

In the array returned by shapefcn, the basis functions are:

F1 x, y = x
F2 x, y = y

F3 x, y = xy .

Create the tunable gain surface.

K = tunableSurface('K',1,domain,shapefcn);

You can use the tunable surface as the parameterization for a lookup table block or a MATLAB
Function block in a Simulink model. Or, use model interconnection commands to incorporate it as a
tunable element in a control system modeled in MATLAB. After you tune the coefficients, you can
examine the resulting gain surface using the viewSurf command. For this example, instead of
tuning, manually set the coefficients to non-zero values and view the resulting gain.

Ktuned = setData(K,[100,28,40,10]);
viewSurf(Ktuned)

11 Gain-Scheduled Controllers

11-28

viewSurf displays the gain surface as a function of the scheduling variables, for the ranges of values
specified by domain and stored in the SamplingGrid property of the gain surface.

Tunable Surfaces in Simulink
In your Simulink model, you model gain schedules using lookup table blocks, MATLAB Function
blocks, or Matrix Interpolation blocks, as described in “Model Gain-Scheduled Control Systems in
Simulink” on page 11-4. To tune these gain surfaces, use tunableSurface to create a gain surface
for each block. In the slTuner interface to the model, designate each gain schedule as a block to
tune, and set its parameterization to the corresponding gain surface. For instance, the rct_CSTR
model includes a gain-scheduled PI controller, the Concentration controller subsystem, in
which the gains Kp and Ki vary with the scheduling variable Cr.

 Parameterize Gain Schedules

11-29

To tune the lookup tables Kp and Ki, create a tunable surface for each one. Suppose that CrEQ is the
vector of design points, and that you expect the gains to vary quadratically with Cr.

TuningGrid = struct('Cr',CrEQ);
ShapeFcn = @(Cr) [Cr , Cr^2];

Kp = tunableSurface('Kp',0,TuningGrid,ShapeFcn);
Ki = tunableSurface('Ki',-2,TuningGrid,ShapeFcn);

Suppose that you have an array Gd of linearizations of the plant subsystem, CSTR, at each of the
design points in CrEQ. (See “Plant Models for Gain-Scheduled Controller Tuning” on page 11-14).
Create an slTuner interface that substitutes this array for the plant subsystem and designates the
two lookup-table blocks for tuning.

BlockSubs = struct('Name','rct_CSTR/CSTR','Value',Gd);
ST0 = slTuner('rct_CSTR',{'Kp','Ki'},BlockSubs);

Finally, use the tunable surfaces to parameterize the lookup tables.

ST0.setBlockParam('Kp',Kp);
ST0.setBlockParam('Ki',Ki);

When you tune STO, systune tunes the coefficients of the tunable surfaces Kp and Ki, so that each
tunable surface represents the tuned relationship between Cr and the gain. When you write the
tuned values back to the block for validation, setBlockParam automatically generates tuned lookup-
table data by evaluating the tunable surfaces at the breakpoints you specify in the corresponding
blocks.

For more details about this example, see “Gain-Scheduled Control of a Chemical Reactor”.

11 Gain-Scheduled Controllers

11-30

Tunable Surfaces in MATLAB
For a control system modeled in MATLAB, use tunable surfaces to construct more complex gain-
scheduled control elements, such as gain-scheduled PID controllers, filters, or state-space controllers.
For example, suppose that you create two gain surfaces Kp and Ki using tunableSurface. The
following command constructs a tunable gain-scheduled PI controller.

C0 = pid(Kp,Ki);

Similarly, suppose that you create four matrix-valued gain surfaces A, B, C, D. The following command
constructs a tunable gain-scheduled state-space controller.

C1 = ss(A,B,C,D);

You then incorporate the gain-scheduled controller into a generalized model of your entire control
system. For example, suppose G is an array of models of your plant sampled at the design points that
are specified in Kp and Ki. Then, the following command builds a tunable model of a gain-scheduled
single-loop PID control system.

T0 = feedback(G*C0,1);

When you interconnect a tunable surface with other LTI models, the resulting model is an array of
tunable generalized genss models. The design points in the tunable surface determine the
dimensions of the array. Thus, each entry in the array represents the system at the corresponding
scheduling variable value. The SamplingGrid property of the array stores those design points.

T0 = feedback(G*Kp,1)

T0 =

 4x5 array of generalized continuous-time state-space models.
 Each model has 1 outputs, 1 inputs, 3 states, and the following blocks:
 Kp: Parametric 1x4 matrix, 1 occurrences.

Type "ss(T0)" to see the current value, "get(T0)" to see all properties, and
"T0.Blocks" to interact with the blocks.

The resulting generalized model has tunable blocks corresponding to the gain surfaces used to create
the model. In this example, the system has one gain surface, Kp, which has the four tunable
coefficients corresponding to K0, K1, K2, and K3. Therefore, the tunable block is a vector-valued realp
parameter with four entries.

When you tune the control system with systune, the software tunes the coefficients for each of the
design points specified in the tunable surface.

For an example illustrating the entire workflow in MATLAB, see the section "Controller Tuning in
MATLAB" in “Gain-Scheduled Control of a Chemical Reactor”.

See Also
tunableSurface

Related Examples
• “Model Gain-Scheduled Control Systems in Simulink” on page 11-4
• “Multiple Design Points in slTuner Interface” on page 11-20

 Parameterize Gain Schedules

11-31

• “Tune Gain Schedules in Simulink” on page 11-12

11 Gain-Scheduled Controllers

11-32

Change Requirements with Operating Condition
When tuning a gain-scheduled control system, it is sometimes useful to enforce different design
requirements at different points in the design grid. For instance, you might want to:

• Specify a variable tuning goal that depends explicitly or implicitly on the design point.
• Enforce a tuning goal at a subset of design points, but ignore it at other design points.
• Exclude a design point from a particular run of systune, but retain it for analysis or other tuning

operations.
• Eliminate a design point from all stages of design and analysis.

Define Variable Tuning Goal
There are several ways to define a tuning goal that changes across design points.

Create Varying Goals

The varyingGoal command lets you construct tuning goals that depend implicitly or explicitly on
the design point.

For example, create a tuning goal that specifies variable gain and phase margins across a grid of
design points. Suppose that you use the following 5-by-5 grid of design points to tune your controller.

[alpha,V] = ndgrid(linspace(0,20,5),linspace(700,1300,5));

Suppose further that you have 5-by-5 arrays of target gain margins and target phase margins
corresponding to each of the design points, such as the following.

[GM,PM] = ndgrid(linspace(7,20,5),linspace(45,70,5));

To enforce the specified margins at each design point, first create a template for the margins goal.
The template is a function that takes gain and phase margin values and returns a
TuningGoal.Margins object with those margins.

FH = @(gm,pm) TuningGoal.Margins('u',gm,pm);

Use the template and the margin arrays to create the varying goal.

VG = varyingGoal(FH,GM,PM);

To make it easier to trace which goal applies to which design point, use the SamplingGrid property
to attach the design-point information to VG.

VG.SamplingGrid = struct('alpha',alpha,'V',V);

Use VG with systune as you would use any other tuning goal. Use viewGoal to visualize the tuning
goal and identify design points that fail to meet the target margins. For varying tuning goals, the
viewGoal plot includes sliders that let you examine the goal and system performance for particular
design points. See “Validate Gain-Scheduled Control Systems” on page 11-36.

The template function allows great flexibility in constructing the design goals. For example, you can
write a function, goalspec(a,b), that constructs the target overshoot as a nontrivial function of the
parameters (a,b), and save the function in a MATLAB file. Your template function then calls
goalspec:

 Change Requirements with Operating Condition

11-33

FH = @(a,b) TuningGoal.Overshoot('r',y',goalspec(a,b));

For more information about configuring varying goals, see the varyingGoal reference page.

Create Separate Requirement for Each Design Point

Another way to enforce a requirement that varies with design point is to create a separate instance of
the requirement for each design point. This approach can be useful when you have a goal that only
applies to a few of models in the design array. For example, suppose that you want to enforce a 1/s
loop shape on the first five design points only, with a crossover frequency that depends on the
scheduling variables. Suppose also that you have created a vector, wc, that contains the target
bandwidth for each design point. Then you can construct one TuningGoal.LoopShape requirement
for each design point. Associate each TuningGoal.LoopShape requirement with the corresponding
design point using the Models property of the requirement.

for ct = 1:length(wc)
 R(ct) = TuningGoal.LoopShape('u',wc(ct));
 R(ct).Model = ct;
end

If wc covers all the design points in your grid, this approach is equivalent to using a varyingGoal
object. It is a useful alternative to varyingGoal when you only want to constrain a few design
points.

Build Variation into the Model

Instead of creating varying requirements, you can incorporate the varying portion of the requirement
into the closed-loop model of the control system. This approach is a form of goal normalization that
makes it possible to cover all design points with a single uniform goal.

For example, suppose that you want to limit the gain from d to y to a quantity that depends on the
scheduling variables. Suppose that T0 is an array of models of the closed-loop system at each design
point. Suppose further that you have created a table, gmax, of the maximum gain values for each
design point, σ. Then you can add another output ys = y/gmax to the closed-loop model, as follows.

% Create array of scalar gains 1/gmax
yScaling = reshape(1./gmax,[1 1 size(gmax)]);
yScaling = ss(yScaling,'InputName','y','OutputName','ys');

% Connect these gains in series to y output of T0
T0 = connect(T0,yScaling,T0.InputName,[T0.OutputName ; {'ys'}]);

The maximum gain changes at each design point according to the table gmax. You can then use a
single requirement that limits to 1 the gain from d to the scaled output ys.

R = TuningGoal.Gain('d','ys',1);

Such effective normalization of requirements moves the requirement variability from the requirement
object, R, to the closed-loop model, T0.

In Simulink, you can use a similar approach by feeding the relevant model inputs and outputs through
a gain block. Then, when you linearize the model, change the gain value of the block with the
operating condition. For example, set the gain to a MATLAB variable, and use the Parameters
property in slLinearizer to change the variable value with each linearization condition.

11 Gain-Scheduled Controllers

11-34

Enforce Tuning Goal at Subset of Design Points
You can restrict application of a tuning goal to a subset of models in the design grid using the Models
property of the tuning goal. Specify models by their linear index in the model array. For instance,
suppose that you have a tuning goal, Req. Configure Req to apply to the first and last models in a 3-
by-3 design grid.

Req.Models = [1,9];

When you call systune with Req as a hard or soft goal, systune enforces Req for these models and
ignores it for the rest of the grid.

Exclude Design Points from systune Run
You can exclude one or more design points from tuning without removing the corresponding model
from the array or reconfiguring your tuning goals. Doing so can be useful, for example, to identify
problematic design points when tuning over the entire design grid fails to meet your design
requirements. It can also be useful when there are design points that you want to exclude from a
particular tuning run, but preserve for performance analysis or further tuning.

The SkipModels option of systuneOptions lets you specify models in the design grid to exclude
from tuning. Specify models by their linear index in the model array. For instance, configure
systuneOptions to skip the first and last models in a 3-by-3 design grid.

opt = systuneOptions;
opt.SkipModels = [1,9];

When you call systune with opt, the tuning algorithm ignores these models.

As an alternative, you can eliminate design points from the model grid entirely, so that they do not
contribute to any stage of tuning or analysis. To do so, use voidModel, which replaces specified
models in a model array with NaN. This option is useful when your sampling grid includes points that
represent irrelevant or unphysical design points. Using voidModel lets you design over a grid of
design points that is almost regular.

See Also
viewGoal | varyingGoal | systuneOptions

More About
• “Validate Gain-Scheduled Control Systems” on page 11-36
• “Tune Gain Schedules in Simulink” on page 11-12

 Change Requirements with Operating Condition

11-35

Validate Gain-Scheduled Control Systems
Tuned gain schedules require careful validation. The tuning process guarantees suitable performance
only near each design point. In addition, the tuning ignores dynamic couplings between the plant
state variables and the scheduling variables (see Section 4.3, “Hidden Coupling”, in [1]). Best
practices for validation include:

• Examine tuned gain surfaces to make sure that they are smooth and well-behaved.
• Visualize tuning goals against system responses at all design points.
• Check linear performance of the tuned control system between design points.
• Validate gain schedules in simulation of the full nonlinear system.

Check linear performance on a denser grid of σ values than you used for design. If adequate linear
performance is not maintained between design points, you can add more design points and retune.

Perform nonlinear simulations that drive the closed-loop system through its entire operating range.
Pay special attention to maneuvers that cause rapid variations of the scheduling variables.

Examine Tuned Gain Surfaces
After tuning, examine the tuned gains as a function of the scheduling variables to make sure that they
are smooth and well-behaved over the operating range. Visualize tuned gain surfaces using the
viewSurf command.

Visualize Tuning Goals
Use tuning-goal plots to visualize your design requirements against the linear response of the tuned
control system. Tuning-goal plots show graphically where and by how much tuning goals are satisfied
or violated. This visualization lets you examine how close your control system is to ideal performance.
It can also help you identify problems with tuning and provide clues on how to improve your design.

For general information about using tuning-goal plots, see “Visualize Tuning Goals” on page 10-141.
For gain-scheduled control systems, the tuning-goal plots you generate with viewGoal provide
additional information that helps you evaluate how each tuning goal contributes to the result.

Fixed Tuning Goals

For fixed tuning goals that apply to multiple design points, viewGoal plots the relevant system
response at all those design points. For instance, suppose that you tune an slTuner interface, ST, for
the rct_CSTR model described in “Gain-Scheduled Control of a Chemical Reactor”. You can use
viewGoal to see how well each of the five design points of that example satisfies the gain goal R3.
The resulting plot shows the relevant gain profile at all five design points. Click any of the gain lines
for a display that shows the corresponding value of the scheduling variable Cr.

viewGoal(R3,ST)

11 Gain-Scheduled Controllers

11-36

Varying Tuning Goals

Varying goals that you create using varyingGoal apply a different target response at each design
point. When you use viewGoal to examine a varying goal, the plot initially displays the target and
tuned responses at the first design point in the design grid. For instance, suppose that you tune a
control system ST over a design grid of two scheduling variables, using a varying goal Rv that varies
across the entire grid. After tuning, examine Rv.

viewGoal(Rv,ST)

 Validate Gain-Scheduled Control Systems

11-37

Click CHANGE to open sliders that let you select a design point at which to view the target and
tuned responses.

11 Gain-Scheduled Controllers

11-38

Check Linear Performance
In addition to examining linear responses associated with tuning goals, check other linear responses
of the system to make sure that the behavior is suitable. You can do so by extracting and plotting
system responses as described generally in “Validate Tuned Control System” on page 10-168.

For gain-scheduled systems, it is good practice to check linear performance on a denser grid of
operating points than you used for design. If the system does not maintain adequate linear
performance between design points, then you can add more design points and retune.

Validate Gain Schedules in Nonlinear System
Because systune tunes gain schedules against a linearization obtained at each design point, it is
important to test the tuning results in simulation of the full nonlinear system. Perform nonlinear
simulations that drive the closed-loop system through its entire operating range. Pay special attention
to maneuvers that cause rapid variations of the scheduling variables.

After tuning an slTuner interface, use writeBlockValue to write tuned controller parameters to
the Simulink model for such simulation. This command can write tuned gain schedules to lookup
table blocks, Matrix Interpolation blocks, and MATLAB Function blocks for which you have specified
a tunableSurface parameterization.

 Validate Gain-Scheduled Control Systems

11-39

Lookup Tables

For lookup table blocks and Matrix Interpolation blocks, writeBlockValue automatically evaluates
the tuned gain surface at the breakpoints specified in the block. These breakpoints do not need to be
the same as the design points used for tuning. Because the tunableSurface describes the gain
schedule in parametric form, writeBlockValue can evaluate the gain at any scheduling-variable
value.

If you have retuned a subset of design points, you can use writeLookupTableData to update a
portion of the lookup-table data while leaving the rest intact.

MATLAB Function Blocks

For gain schedules implemented as MATLAB Function blocks, writeBlockValue automatically
generates MATLAB code and pushes it to the block. The generated MATLAB function takes the
scheduling variables and returns the gain value given by the tuned parametric expression of the
tunableSurface. To see this MATLAB code for a particular gain surface, use the codegen
command.

References
[1] Rugh, W.J., and J.S. Shamma, "Research on Gain Scheduling", Automatica, 36 (2000), pp.

1401-1425.

See Also
viewSurf | codegen | writeBlockValue | writeLookupTableData | viewGoal

Related Examples
• “Tuning of Gain-Scheduled Three-Loop Autopilot”
• “Gain-Scheduled Control of a Chemical Reactor”
• “Validate Tuned Control System” on page 10-168

11 Gain-Scheduled Controllers

11-40

Gain-Scheduled Control of a Chemical Reactor

This example shows how to design and tune a gain-scheduled controller for a chemical reactor
transitioning from low to high conversion rate. For background, see Seborg, D.E. et al., "Process
Dynamics and Control", 2nd Ed., 2004, Wiley, pp. 34-36.

Continuous Stirred Tank Reactor

The process considered here is a continuous stirred tank reactor (CSTR) during transition from low to
high conversion rate (high to low residual concentration). Because the chemical reaction is
exothermic (produces heat), the reactor temperature must be controlled to prevent a thermal
runaway. The control task is complicated by the fact that the process dynamics are nonlinear and
transition from stable to unstable and back to stable as the conversion rate increases. The reactor
dynamics are modeled in Simulink. The controlled variables are the residual concentration Cr and the
reactor temperature Tr, and the manipulated variable is the temperature Tc of the coolant
circulating in the reactor's cooling jacket.

open_system('rct_CSTR_OL')

We want to transition from a residual concentration of 8.57 kmol/m^3 initially down to 2 kmol/m^3.
To understand how the process dynamics evolve with the residual concentration Cr, find the
equilibrium conditions for five values of Cr between 8.57 and 2 and linearize the process dynamics
around each equilibrium. Log the reactor and coolant temperatures at each equilibrium point.

CrEQ = linspace(8.57,2,5)'; % concentrations
TrEQ = zeros(5,1); % reactor temperatures
TcEQ = zeros(5,1); % coolant temperatures

% Specify trim conditions
opspec = operspec('rct_CSTR_OL',5);
for k=1:5
 % Set desired residual concentration
 opspec(k).Outputs(1).y = CrEQ(k);
 opspec(k).Outputs(1).Known = true;
end

 Gain-Scheduled Control of a Chemical Reactor

11-41

% Compute equilibrium condition and log corresponding temperatures
[op,report] = findop('rct_CSTR_OL',opspec,...
 findopOptions('DisplayReport','off'));
for k=1:5
 TrEQ(k) = report(k).Outputs(2).y;
 TcEQ(k) = op(k).Inputs.u;
end

% Linearize process dynamics at trim conditions
G = linearize('rct_CSTR_OL', 'rct_CSTR_OL/CSTR', op);
G.InputName = {'Cf','Tf','Tc'};
G.OutputName = {'Cr','Tr'};

Plot the reactor and coolant temperatures at equilibrium as a function of concentration.

subplot(311), plot(CrEQ,'b-*'), grid, title('Residual concentration'), ylabel('CrEQ')
subplot(312), plot(TrEQ,'b-*'), grid, title('Reactor temperature'), ylabel('TrEQ')
subplot(313), plot(TcEQ,'b-*'), grid, title('Coolant temperature'), ylabel('TcEQ')

An open-loop control strategy consists of following the coolant temperature profile above to smoothly
transition between the Cr=8.57 and Cr=2 equilibria. However, this strategy is doomed by the fact
that the reaction is unstable in the mid range and must be properly cooled to avoid thermal runaway.
This is confirmed by inspecting the poles of the linearized models for the five equilibrium points
considered above (three out of the five models are unstable).

pole(G)

11 Gain-Scheduled Controllers

11-42

ans(:,:,1) =

 -0.5225 + 0.0000i
 -0.8952 + 0.0000i

ans(:,:,2) =

 0.1733 + 0.0000i
 -0.8866 + 0.0000i

ans(:,:,3) =

 0.5114 + 0.0000i
 -0.8229 + 0.0000i

ans(:,:,4) =

 0.0453 + 0.0000i
 -0.4991 + 0.0000i

ans(:,:,5) =

 -1.1077 + 1.0901i
 -1.1077 - 1.0901i

The Bode plot further highlights the significant variations in plant dynamics while transitioning from
Cr=8.57 to Cr=2.

clf, bode(G(:,'Tc'),{0.01,10})

 Gain-Scheduled Control of a Chemical Reactor

11-43

Feedback Control Strategy

To prevent thermal runaway while ramping down the residual concentration, use feedback control to
adjust the coolant temperature Tc based on measurements of the residual concentration Cr and
reactor temperature Tr. For this application, we use a cascade control architecture where the inner
loop regulates the reactor temperature and the outer loop tracks the concentration setpoint. Both
feedback loops are digital with a sampling period of 0.5 minutes.

open_system('rct_CSTR')

11 Gain-Scheduled Controllers

11-44

The target concentration Cref ramps down from 8.57 kmol/m^3 at t=10 to 2 kmol/m^3 at t=36 (the
transition lasts 26 minutes). The corresponding profile Tref for the reactor temperature is obtained
by interpolating the equilibrium values TrEQ from trim analysis. The controller computes the coolant
temperature adjustment dTc relative to the initial equilibrium value TcEQ(1)=297.98 for Cr=8.57.
Note that the model is set up so that initially, the output TrSP of the "Concentration controller" block
matches the reactor temperature, the adjustment dTc is zero, and the coolant temperature Tc is at
its equilibrium value TcEQ(1).

clf
t = [0 10:36 45];
C = interp1([0 10 36 45],[8.57 8.57 2 2],t);
subplot(211), plot(t,C), grid, set(gca,'ylim',[0 10])
title('Target residual concentration'), ylabel('Cref')
subplot(212), plot(t,interp1(CrEQ,TrEQ,C))
title('Corresponding reactor temperature at equilibrium'), ylabel('Tref'), grid

 Gain-Scheduled Control of a Chemical Reactor

11-45

Control Objectives

Use TuningGoal objects to capture the design requirements. First, Cr should follow setpoints Cref
with a response time of about 5 minutes.

R1 = TuningGoal.Tracking('Cref','Cr',5);

The inner loop (temperature) should stabilize the reaction dynamics with sufficient damping and fast
enough decay.

MinDecay = 0.2;
MinDamping = 0.5;
% Constrain closed-loop poles of inner loop with the outer loop open
R2 = TuningGoal.Poles('Tc',MinDecay,MinDamping);
R2.Openings = 'TrSP';

The Rate Limit block at the controller output specifies that the coolant temperature Tc cannot vary
faster than 10 degrees per minute. This is a severe limitation on the controller authority which, when
ignored, can lead to poor performance or instability. To take this rate limit into account, observe that
Cref varies at a rate of 0.25 kmol/m^3/min. To ensure that Tc does not vary faster than 10 degrees/
min, the gain from Cref to Tc should be less than 10/0.25=40.

R3 = TuningGoal.Gain('Cref','Tc',40);

Finally, require at least 7 dB of gain margin and 45 degrees of phase margin at the plant input Tc.

R4 = TuningGoal.Margins('Tc',7,45);

11 Gain-Scheduled Controllers

11-46

Gain-Scheduled Controller

To achieve these requirements, we use a PI controller in the outer loop and a lead compensator in the
inner loop. Due to the slow sampling rate, the lead compensator is needed to adequately stabilize the
chemical reaction at the mid-range concentration Cr = 5.28 kmol/m^3/min. Because the reaction
dynamics vary substantially with concentration, we further schedule the controller gains as a function
of concentration. This is modeled in Simulink using Lookup Table blocks as shown in Figures 1 and 2.

Figure 1: Gain-scheduled PI controller for concentration loop.

 Gain-Scheduled Control of a Chemical Reactor

11-47

Figure 2: Gain-scheduled lead compensator for temperature loop.

Tuning this gain-scheduled controller amounts to tuning the look-up table data over a range of
concentration values. Rather than tuning individual look-up table entries, parameterize the controller
gains Kp,Ki,Kt,a,b as quadratic polynomials in Cr, for example,

Besides reducing the number of variables to tune, this approach ensures smooth gain transitions as
Cr varies. Using systune, you can automatically tune the coefficients to meet
the requirements R1-R4 at the five equilibrium points computed above. This amounts to tuning the
gain-scheduled controller at five design points along the Cref trajectory. Use the tunableSurface
object to parameterize each gain as a quadratic function of Cr. The "tuning grid" is set to the five
concentrations CrEQ and the basis functions for the quadratic parameterization are . Most
gains are initialized to be identically zero.

TuningGrid = struct('Cr',CrEQ);
ShapeFcn = @(Cr) [Cr , Cr^2];

Kp = tunableSurface('Kp', 0, TuningGrid, ShapeFcn);
Ki = tunableSurface('Ki', -2, TuningGrid, ShapeFcn);
Kt = tunableSurface('Kt', 0, TuningGrid, ShapeFcn);
a = tunableSurface('a', 0, TuningGrid, ShapeFcn);
b = tunableSurface('b', 0, TuningGrid, ShapeFcn);

11 Gain-Scheduled Controllers

11-48

Controller Tuning

Because the target bandwidth is within a decade of the Nyquist frequency, it is easier to tune the
controller directly in the discrete domain. Discretize the linearized process dynamics with sample
time of 0.5 minutes. Use the ZOH method to reflect how the digital controller interacts with the
continuous-time plant.

Ts = 0.5;
Gd = c2d(G,Ts);

Create an slTuner interface for tuning the quadratic gain schedules introduced above. Use block
substitution to replace the nonlinear plant model by the five discretized linear models Gd obtained at
the design points CrEQ. Use setBlockParam to associate the tunable gain functions Kp, Ki, Kt, a, b
with the Lookup Table blocks of the same name.

BlockSubs = struct('Name','rct_CSTR/CSTR','Value',Gd);
ST0 = slTuner('rct_CSTR',{'Kp','Ki','Kt','a','b'},BlockSubs);
ST0.Ts = Ts; % sample time for tuning

% Register points of interest
ST0.addPoint({'Cref','Cr','Tr','TrSP','Tc'})

% Parameterize look-up table blocks
ST0.setBlockParam('Kp',Kp);
ST0.setBlockParam('Ki',Ki);
ST0.setBlockParam('Kt',Kt);
ST0.setBlockParam('a',a);
ST0.setBlockParam('b',b);

You can now use systune to tune the controller coefficients against the requirements R1-R4. Make
the stability margin requirement a hard constraints and optimize the remaining requirements.

ST = systune(ST0,[R1 R2 R3],R4);

Final: Soft = 1.21, Hard = 0.9991, Iterations = 203

The resulting design satisfies the hard constraint (Hard<1) and nearly satisfies the remaining
requirements (Soft close to 1). To validate this design, simulate the responses to a ramp in
concentration with the same slope as Cref. Each plot shows the linear responses at the five design
points CrEQ.

t = 0:Ts:20;
uC = interp1([0 2 5 20],(-0.25)*[0 0 3 3],t);
subplot(211), lsim(getIOTransfer(ST,'Cref','Cr'),uC)
grid, set(gca,'ylim',[-1.5 0.5]), title('Residual concentration')
subplot(212), lsim(getIOTransfer(ST,'Cref','Tc'),uC)
grid, title('Coolant temperature variation')

 Gain-Scheduled Control of a Chemical Reactor

11-49

Note that rate of change of the coolant temperature remains within the physical limits (10 degrees
per minute or 5 degrees per sample period).

Controller Validation

Inspect how each gain varies with Cr during the transition.

% Access tuned gain schedules
TGS = getBlockParam(ST);

% Plot gain profiles
clf
subplot(321), viewSurf(TGS.Kp), ylabel('Kp')
subplot(322), viewSurf(TGS.Ki), ylabel('Ki')
subplot(323), viewSurf(TGS.Kt), ylabel('Kt')
subplot(324), viewSurf(TGS.a), ylabel('a')
subplot(325), viewSurf(TGS.b), ylabel('b')

11 Gain-Scheduled Controllers

11-50

To validate the gain-scheduled controller in Simulink, first use writeBlockValue to apply the tuning
results to the Simulink model. For each Lookup Table block, this evaluates the corresponding
quadratic gain formula at the table breakpoints and updates the table data accordingly.

writeBlockValue(ST)

Next push the Play button to simulate the response with the tuned gain schedules. The simulation
results appear in Figure 3. The gain-scheduled controller successfully drives the reaction through the
transition with adequate response time and no saturation of the rate limits (controller output du
matches effective temperature variation dTc). The reactor temperature stays close to its equilibrium
value Tref, indicating that the controller keeps the reaction near equilibrium while preventing
thermal runaway.

 Gain-Scheduled Control of a Chemical Reactor

11-51

Figure 3: Transition with gain-scheduled cascade controller.

Controller Tuning in MATLAB

Alternatively, you can tune the gain schedules directly in MATLAB without using the slTuner
interface. First parameterize the gains as quadratic functions of Cr as done above.

TuningGrid = struct('Cr',CrEQ);
ShapeFcn = @(Cr) [Cr , Cr^2];

Kp = tunableSurface('Kp', 0, TuningGrid, ShapeFcn);
Ki = tunableSurface('Ki', -2, TuningGrid, ShapeFcn);
Kt = tunableSurface('Kt', 0, TuningGrid, ShapeFcn);
a = tunableSurface('a', 0, TuningGrid, ShapeFcn);
b = tunableSurface('b', 0, TuningGrid, ShapeFcn);

Use these gains to build the PI and lead controllers.

11 Gain-Scheduled Controllers

11-52

PI = pid(Kp,Ki,'Ts',Ts,'TimeUnit','min');
PI.u = 'ECr'; PI.y = 'TrSP';

LEAD = Kt * tf([1 -a],[1 -b],Ts,'TimeUnit','min');
LEAD.u = 'ETr'; LEAD.y = 'Tc';

Use connect to build a closed-loop model of the overall control system at the five design points.
Mark the controller outputs TrSP and Tc as "analysis points" so that loops can be opened and
stability margins evaluated at these locations. The closed-loop model T0 is a 5-by-1 array of linear
models depending on the tunable coefficients of Kp,Ki,Kt,a,b. Each model is discrete and sampled
every half minute.

Gd.TimeUnit = 'min';
S1 = sumblk('ECr = Cref - Cr');
S2 = sumblk('ETr = TrSP - Tr');
T0 = connect(Gd(:,'Tc'),LEAD,PI,S1,S2,'Cref','Cr',{'TrSP','Tc'});

Finally, use systune to tune the gain schedule coefficients.

T = systune(T0,[R1 R2 R3],R4);

Final: Soft = 1.21, Hard = 0.99892, Iterations = 238

The result is similar to the one obtained above. Confirm by plotting the gains as a function of Cr
using the tuned coefficients in T.

clf
subplot(321), viewSurf(setBlockValue(Kp,T)), ylabel('Kp')
subplot(322), viewSurf(setBlockValue(Ki,T)), ylabel('Ki')
subplot(323), viewSurf(setBlockValue(Kt,T)), ylabel('Kt')
subplot(324), viewSurf(setBlockValue(a,T)), ylabel('a')
subplot(325), viewSurf(setBlockValue(b,T)), ylabel('b')

 Gain-Scheduled Control of a Chemical Reactor

11-53

You can further validate the design by simulating the linear responses at each design point. However,
you need to return to Simulink to simulate the nonlinear response of the gain-scheduled controller.

See Also
slTuner | tunableSurface | setBlockParam

Related Examples
• “Model Gain-Scheduled Control Systems in Simulink” on page 11-4
• “Tuning of Gain-Scheduled Three-Loop Autopilot” on page 11-55

More About
• “Parameterize Gain Schedules” on page 11-24

11 Gain-Scheduled Controllers

11-54

Tuning of Gain-Scheduled Three-Loop Autopilot

This example uses systune to generate smooth gain schedules for a three-loop autopilot.

Airframe Model and Three-Loop Autopilot

This example uses a three-degree-of-freedom model of the pitch axis dynamics of an airframe. The
states are the Earth coordinates , the body coordinates , the pitch angle , and the pitch
rate . The following figure summarizes the relationship between the inertial and body frames,
the flight path angle , the incidence angle , and the pitch angle .

We use a classic three-loop autopilot structure to control the flight path angle . This autopilot
adjusts the flight path by delivering adequate bursts of normal acceleration (acceleration along).
In turn, normal acceleration is produced by adjusting the elevator deflection to cause pitching and
vary the amount of lift. The autopilot uses Proportional-Integral (PI) control in the pitch rate loop
and proportional control in the and loops. The closed-loop system (airframe and autopilot) are
modeled in Simulink.

open_system('rct_airframeGS')

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-55

Autopilot Gain Scheduling

The airframe dynamics are nonlinear and the aerodynamic forces and moments depend on speed
and incidence . To obtain suitable performance throughout the flight envelope, the autopilot
gains must be adjusted as a function of and to compensate for changes in plant dynamics. This
adjustment process is called "gain scheduling" and are called the scheduling variables. In the
Simulink model, gain schedules are implemented as look-up tables driven by measurements of and

.

Gain scheduling is a linear technique for controlling nonlinear or time-varying plants. The idea is to
compute linear approximations of the plant at various operating conditions, tune the controller gains
at each operating condition, and swap gains as a function of operating condition during operation.
Conventional gain scheduling involves the following three major steps.

1 Trim and linearize the plant at each operating condition
2 Tune the controller gains for the linearized dynamics at each operating condition
3 Reconcile the gain values to provide smooth transition between operating conditions.

In this example, you combine steps 2 and 3 by parameterizing the autopilot gains as first-order
polynomials in and directly tuning the polynomial coefficients for the entire flight envelope. This
approach eliminates step 3 and guarantees smooth gain variations as a function of and .
Moreover, the gain schedule coefficients can be automatically tuned with systune.

Trimming and Linearization

Assume that the incidence varies between -20 and 20 degrees and that the speed varies between
700 and 1400 m/s. When neglecting gravity, the airframe dynamics are symmetric in . Therefore,
consider only positive values of . Use a 5-by-9 grid of linearly spaced pairs to cover the flight
envelope.

11 Gain-Scheduled Controllers

11-56

nA = 5; % number of alpha values
nV = 9; % number of V values
[alpha,V] = ndgrid(linspace(0,20,nA)*pi/180,linspace(700,1400,nV));

For each flight condition , linearize the airframe dynamics at trim (zero normal acceleration and
pitching moment). This requires computing the elevator deflection and pitch rate that result in
steady and . To do this, first isolate the airframe model in a separate Simulink model.

mdl = 'rct_airframeTRIM';
open_system(mdl)

Use operspec to specify the trim condition, use findop to compute the trim values of and , and
linearize the airframe dynamics for the resulting operating points. For details, see “Trim and
Linearize an Airframe” on page 2-183. Repeat these steps for the 45 flight conditions .

Compute the trim condition for each pair.

for ct=1:nA*nV
 alpha_ini = alpha(ct); % Incidence [rad]
 v_ini = V(ct); % Speed [m/s]

 % Specify trim condition
 opspec(ct) = operspec(mdl);
 % Xe,Ze: known, not steady
 opspec(ct).States(1).Known = [1;1];
 opspec(ct).States(1).SteadyState = [0;0];
 % u,w: known, w steady
 opspec(ct).States(3).Known = [1 1];
 opspec(ct).States(3).SteadyState = [0 1];
 % theta: known, not steady
 opspec(ct).States(2).Known = 1;
 opspec(ct).States(2).SteadyState = 0;
 % q: unknown, steady
 opspec(ct).States(4).Known = 0;
 opspec(ct).States(4).SteadyState = 1;
end
opspec = reshape(opspec,[nA nV]);

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-57

Trim the model for the given specifications.

Options = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,Options);

Linearize the model at the trim conditions.

G = linearize(mdl,op);
G.u = 'delta';
G.y = {'alpha','V','q','az','gamma','h'};
G.SamplingGrid = struct('alpha',alpha,'V',V);

This process produces a 5-by-9 array of linearized plant models at the 45 flight conditions . The
plant dynamics vary substantially across the flight envelope.

sigma(G)
title('Variations in airframe dynamics')

Tunable Gain Surface

The autopilot consists of four gains to be "scheduled" (adjusted) as a function of and
. Practically, this means tuning 88 values in each of the corresponding four look-up tables. Rather

than tuning each table entry separately, parameterize the gains as a two-dimensional gain surfaces,
for example, surfaces with a simple multi-linear dependence on and :

.

11 Gain-Scheduled Controllers

11-58

This cuts the number of variables from 88 down to 4 for each lookup table. Use the tunableSurface
object to parameterize each gain surface. Note that:

• TuningGrid specifies the "tuning grid" (design points). This grid should match the one used for
linearization but needs not match the loop-up table breakpoints

• ShapeFcn specifies the basis functions for the surface parameterization (, , and)

Each surface is initialized to a constant gain using the tuning results for = 10 deg and = 1050
m/s (mid-range design).

TuningGrid = struct('alpha',alpha,'V',V);
ShapeFcn = @(alpha,V) [alpha,V,alpha*V];

Kp = tunableSurface('Kp',0.1, TuningGrid,ShapeFcn);
Ki = tunableSurface('Ki',2, TuningGrid,ShapeFcn);
Ka = tunableSurface('Ka',0.001, TuningGrid,ShapeFcn);
Kg = tunableSurface('Kg',-1000, TuningGrid,ShapeFcn);

Next create an slTuner interface for tuning the gain surfaces. Use block substitution to replace the
nonlinear plant model by the linearized models over the tuning grid. Use setBlockParam to
associate the tunable gain surfaces Kp, Ki, Ka, Kg with the Interpolation blocks of the same name.

BlockSubs = struct('Name','rct_airframeGS/Airframe Model','Value',G);
ST0 = slTuner('rct_airframeGS',{'Kp','Ki','Ka','Kg'},BlockSubs);

% Register points of interest
ST0.addPoint({'az_ref','az','gamma_ref','gamma','delta'})

% Parameterize look-up table blocks
ST0.setBlockParam('Kp',Kp,'Ki',Ki,'Ka',Ka,'Kg',Kg);

Autopilot Tuning

systune can automatically tune the gain surface coefficients for the entire flight envelope. Use
TuningGoal objects to specify the performance objectives:

• loop: Track the setpoint with a 1 second response time, less than 2% steady-state error, and less
than 30% peak error.

Req1 = TuningGoal.Tracking('gamma_ref','gamma',1,0.02,1.3);
viewGoal(Req1)

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-59

• loop: Ensure good disturbance rejection at low frequency (to track acceleration demands) and
past 10 rad/s (to be insensitive to measurement noise). The disturbance is injected at the az_ref
location.

RejectionProfile = frd([0.02 0.02 1.2 1.2 0.1],[0 0.02 2 15 150]);
Req2 = TuningGoal.Gain('az_ref','az',RejectionProfile);
viewGoal(Req2)

11 Gain-Scheduled Controllers

11-60

• loop: Ensure good disturbance rejection up to 10 rad/s. The disturbance is injected at the plant
input delta.

Req3 = TuningGoal.Gain('delta','az',600*tf([0.25 0],[0.25 1]));
viewGoal(Req3)

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-61

• Transients: Ensure a minimum damping ratio of 0.35 for oscillation-free transients

MinDamping = 0.35;
Req4 = TuningGoal.Poles(0,MinDamping);

Using systune, tune the 16 gain surface coefficients to best meet these performance requirements
at all 45 flight conditions.

ST = systune(ST0,[Req1 Req2 Req3 Req4]);

Final: Soft = 1.13, Hard = -Inf, Iterations = 57

The final value of the combined objective is close to 1, indicating that all requirements are nearly
met. Visualize the resulting gain surfaces.

% Get tuned gain surfaces.
TGS = getBlockParam(ST);

% Plot gain surfaces.
clf
subplot(2,2,1)
viewSurf(TGS.Kp)
title('Kp')
subplot(2,2,2)
viewSurf(TGS.Ki)
title('Ki')
subplot(2,2,3)
viewSurf(TGS.Ka)

11 Gain-Scheduled Controllers

11-62

title('Ka')
subplot(2,2,4)
viewSurf(TGS.Kg)
title('Kg')

Validation

First validate the tuned autopilot at the 45 flight conditions considered above. Plot the response to a
step change in flight path angle and the response to a step disturbance in elevator deflection.

clf
subplot(2,1,1)
step(getIOTransfer(ST,'gamma_ref','gamma'),5)
grid
title('Tracking of step change in flight path angle')
subplot(2,1,2)
step(getIOTransfer(ST,'delta','az'),3)
grid
title('Rejection of step disturbance at plant input')

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-63

The responses are satisfactory at all flight conditions. Next validate the autopilot against the
nonlinear airframe model. First use writeBlockValue to apply the tuning results to the Simulink
model. This evaluates each gain surface formula at the breakpoints specified in the two Prelookup
blocks and writes the result in the corresponding Interpolation block.

writeBlockValue(ST)

Simulate the autopilot performance for a maneuver that takes the airframe through a large portion of
its flight envelope. The code below is equivalent to pressing the Play button in the Simulink model
and inspecting the responses in the Scope blocks.

% Specify the initial conditions.
h_ini = 1000;
alpha_ini = 0;
v_ini = 700;

% Simulate the model.
SimOut = sim('rct_airframeGS', 'ReturnWorkspaceOutputs', 'on');

% Extract simulation data.
SimData = get(SimOut,'sigsOut');
Sim_gamma = getElement(SimData,'gamma');
Sim_alpha = getElement(SimData,'alpha');
Sim_V = getElement(SimData,'V');
Sim_delta = getElement(SimData,'delta');
Sim_h = getElement(SimData,'h');
Sim_az = getElement(SimData,'az');

11 Gain-Scheduled Controllers

11-64

t = Sim_gamma.Values.Time;

% Plot the main flight variables.
clf
subplot(2,1,1)
plot(t,Sim_gamma.Values.Data(:,1),'r--',t,Sim_gamma.Values.Data(:,2),'b')
grid
legend('Commanded','Actual','location','SouthEast')
title('Flight path angle \gamma in degrees')
subplot(2,1,2)
plot(t,Sim_delta.Values.Data)
grid
title('Elevator deflection \delta in degrees')

subplot(2,1,1)
plot(t,Sim_alpha.Values.Data)
grid
title('Incidence \alpha in degrees')
subplot(2,1,2)
plot(t,Sim_V.Values.Data)
grid
title('Speed V in m/s')

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-65

subplot(2,1,1)
plot(t,Sim_h.Values.Data)
grid
title('Altitude h in meters')
subplot(2,1,2)
plot(t,Sim_az.Values.Data)
grid
title('Normal acceleration a_z in g''s')

11 Gain-Scheduled Controllers

11-66

Tracking of the flight path angle profile remains good throughout the maneuver. Note that the
variations in incidence and speed cover most of the flight envelope considered here ([-20,20]
degrees for and [700,1400] for). And while the autopilot was tuned for a nominal altitude of 3000
m, it fares well for altitude changing from 1,000 to 10,000 m.

The nonlinear simulation results confirm that the gain-scheduled autopilot delivers consistently high
performance throughout the flight envelope. The "gain surface tuning" procedure provides simple
explicit formulas for the gain dependence on the scheduling variables. Instead of using look-up tables,
you can use these formulas directly for an more memory-efficient hardware implementation.

See Also
slTuner | tunableSurface | setBlockParam

Related Examples
• “Model Gain-Scheduled Control Systems in Simulink” on page 11-4
• “Gain-Scheduled Control of a Chemical Reactor”

More About
• “Gain Scheduling Basics” on page 11-2
• “Parameterize Gain Schedules” on page 11-24

 Tuning of Gain-Scheduled Three-Loop Autopilot

11-67

Trimming and Linearization of the HL-20 Airframe

This is Part 1 of a five-part example series on design and tuning of the flight control system for the
HL-20 vehicle. This part deals with trimming and linearization of the airframe.

HL-20 Model

The HL-20 model is adapted from the model described in “NASA HL-20 Lifting Body Airframe”
(Aerospace Blockset). This is a 6-DOF model of the vehicle during the final descent and landing phase
of the flight. No thrust is used during this phase and the airframe is gliding to the landing strip.

open_system('csthl20_trim')

This version of the model includes the equations of motion (EOM), the force and moment calculation
from the aerodynamic tables, the environment model, and the "Controls Selector" block which maps
aileron, elevator, and rudder demands to deflections of the six control surfaces.

11 Gain-Scheduled Controllers

11-68

Batch Trimming

Trimming consists of calculating aileron, elevator, and rudder deflections that zero out the forces and
moments on the airframe, or equivalently, keep the body velocities ub,vb,wb and angular rates p,q,r
steady. Because thrust is not used during descent, one degree-of-freedom is lost and the trim
condition must be relaxed to let ub to vary. The trim values of the deflections da,de,dr depend on the
airframe orientation relative to the wind. This orientation is characterized by the angle-of-attack
(AoA) alpha and the sideslip angle (AoS) beta.

With the operspec and findop functions, you can efficiently compute the trim deflections over a
grid of (alpha,beta) values covering the operating range of the vehicle. Here we trim the model for 8
values of alpha ranging from -10 to 25 degrees, and 5 values of beta ranging from -10 to +10
degrees. The nominal altitude and speed are set to 10,000 feet and Mach 0.6.

d2r = pi/180; % degrees to radians
m2ft = 3.28084; % meter to feet
Altitude = 10000/m2ft; % Nominal altitude
Mach = 0.6; % Nominal Mach
alpha_vec = -10:5:25; % Alpha Range
beta_vec = -10:5:10; % Beta Range
[alpha,beta] = ndgrid(alpha_vec,beta_vec); % (Alpha,Beta) grid

Use operspec to create an array of operating point specifications.

opspec = operspec('csthl20_trim',size(alpha));

opspec(1)

ans =

 Operating point specification for the Model csthl20_trim.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax

 Trimming and Linearization of the HL-20 Airframe

11-69

___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/Calculate DCM & Euler Angles/phi theta psi
 0 false true -Inf Inf -Inf Inf
 -0.19945 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
(2.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/p,q,r
 0 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
(3.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/ub,vb,wb
 202.67 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
 23.257 false true -Inf Inf -Inf Inf
(4.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/xe,ye,ze
-12071.9115 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
-3047.9999 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) csthl20_trim/da
 0 false -Inf Inf
(2.) csthl20_trim/de
 0 false -Inf Inf
(3.) csthl20_trim/dr
 0 false -Inf Inf

Outputs:

 y Known Min Max
_____ _____ _____ _____

(1.) csthl20_trim/p;q;r (1-3)
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
(2.) csthl20_trim/phi;theta;psi (4-6)
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
(3.) csthl20_trim/alpha (7)
 0 false -Inf Inf
(4.) csthl20_trim/beta (8)
 0 false -Inf Inf
(5.) csthl20_trim/Mach (9)
 0 false -Inf Inf
(6.) csthl20_trim/Ax,Ay,Az (10-12)
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf

Specify the equilibrium conditions for each orientation of the airframe. To do this:

• Specify the orientation by fixing the outputs alpha and beta to their desired values.

11 Gain-Scheduled Controllers

11-70

• Specify the airframe speed by fixing the Mach output to 0.6.
• Mark the angular rates p,q,r as steady.
• Mark the velocities vb and wb as steady.

for ct=1:40
 % Specify alpha angle
 opspec(ct).Outputs(3).y = alpha(ct);
 opspec(ct).Outputs(3).Known = true;
 % Specify beta angle
 opspec(ct).Outputs(4).y = beta(ct);
 opspec(ct).Outputs(4).Known = true;
 % Specify Mach speed
 opspec(ct).Outputs(5).y = Mach;
 opspec(ct).Outputs(5).Known = true;
 % Mark p,q,r as steady
 opspec(ct).States(2).SteadyState = true(3,1);
 % Mark vb,wb as steady
 opspec(ct).States(3).SteadyState = [false;true;true];
 % (phi,theta,psi) and (Xe,Ye,Ze) are not steady
 opspec(ct).States(1).SteadyState = false(3,1);
 opspec(ct).States(4).SteadyState = false(3,1);
end

To fully characterize the trim condition, also

• Set p=0 to prevent rolling.
• Set the roll/pitch/yaw angles (phi,theta,psi) to (0,alpha,beta) to align the wind and earth frames.
• Specify the airframe position (Xe,Ye,Ze) as (0,0,-Altitude).

for ct=1:40
 % Set (phi,theta,psi) to (0,alpha,beta)
 opspec(ct).States(1).x = [0 ; alpha(ct)*d2r ; beta(ct)*d2r];
 opspec(ct).States(1).Known = true(3,1);
 % Set p=0 (no rolling)
 opspec(ct).States(2).x(1) = 0;
 opspec(ct).States(2).Known(1) = true;
 % Set (Xe,Ye,Ze) to (0,0,-Altitude)
 opspec(ct).States(4).x = [0 ; 0 ; -Altitude];
 opspec(ct).States(4).Known = true(3,1);
end

Now use findop to compute the trim conditions for all 40 (alpha,beta) combinations in one go. This
batch mode approach involves a single compilation of the model. FINDOP uses optimization to solve
the nonlinear equations characterizing each equilibrium. Here we use the "SQP" algorithm for this
task.

% Set options for FINDOP solver
TrimOptions = findopOptions;
TrimOptions.OptimizationOptions.Algorithm = 'sqp';
TrimOptions.DisplayReport = 'off';

% Trim model
[ops,rps] = findop('csthl20_trim',opspec,TrimOptions);

 Trimming and Linearization of the HL-20 Airframe

11-71

This returns 8-by-5 arrays OPS (operating conditions) and RPS (optimization reports). You can use
RPS to verify that each trim condition was successfully calculated. Results for the first (alpha,beta)
pair are shown below.

[alpha(1) beta(1)]

ans =

 -10 -10

ops(1)

ans =

 Operating point for the Model csthl20_trim.
 (Time-Varying Components Evaluated at time t=0)

States:

 x

(1.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/Calculate DCM & Euler Angles/phi theta psi
 0
 -0.17453
 -0.17453
(2.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/p,q,r
 0
 -0.15825
 0.008004
(3.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/ub,vb,wb
 191.0911
 -34.2143
 -33.6945
(4.) csthl20_trim/HL20 Airframe/6DOF (Euler Angles)/xe,ye,ze
 0
 0
-3047.9999

Inputs:

 u

(1.) csthl20_trim/da
-23.9841
(2.) csthl20_trim/de
-6.4896
(3.) csthl20_trim/dr
 4.0858

rps(1).TerminationString

ans =

11 Gain-Scheduled Controllers

11-72

 'Operating point specifications were successfully met.'

Batch Linearization

The gains of the flight control system are typically scheduled as a function of alpha and beta, see Part
2 (“Angular Rate Control in the HL-20 Autopilot”) for more details. To tune these gains, you need
linearized models of the HL-20 airframe at the 40 trim conditions. Use linearize to compute these
models from the trim operating conditions ops.

% Linearize airframe dynamics at each trim condition
G = linearize('csthl20_trim','csthl20_trim/HL20 Airframe',ops);

size(G)

8x5 array of state-space models.
Each model has 34 outputs, 9 inputs, and 12 states.

The linear equivalent of the "Controls Selector" block depends on the amount of elevator deflection
and should be computed for qbar_inv=1 (nominal dynamic pressure at Mach=0.6). For convenience,
also linearize this block at the 40 trim conditions.

CS = linearize('csthl20_trim','csthl20_trim/Controls Selector',ops);

% Zero out a/b and qbar_inv channels
CS = [CS(:,1:3) zeros(6,2)];

Linear Model Simplification

The linearized airframe models have 12 states:

xG = G.StateName

xG =

 12x1 cell array

 {'phi theta psi(1)'}
 {'phi theta psi(2)'}
 {'phi theta psi(3)'}
 {'p,q,r (1)' }
 {'p,q,r (2)' }
 {'p,q,r (3)' }
 {'ub,vb,wb(1)' }
 {'ub,vb,wb(2)' }
 {'ub,vb,wb(3)' }
 {'xe,ye,ze(1)' }
 {'xe,ye,ze(2)' }
 {'xe,ye,ze(3)' }

Some states are not under the authority of the roll/pitch/yaw autopilot and other states contribute
little to the design of this autopilot. For control purposes, the most important states are the roll angle
phi, the body velocities ub,vb,wb, and the angular rates p,q,r. Accordingly, use modred to obtain a
7th-order model that only retains these states.

 Trimming and Linearization of the HL-20 Airframe

11-73

G7 = G;
xKeep = {...
 'phi theta psi(1)'
 'ub,vb,wb(1)'
 'ub,vb,wb(2)'
 'ub,vb,wb(3)'
 'p,q,r(1)'
 'p,q,r(2)'
 'p,q,r(3)'};
[~,xElim] = setdiff(xG,xKeep);
for ct=1:40
 G7(:,:,ct) = modred(G(:,:,ct),xElim,'truncate');
end

With these linearized models in hand, you can move to the task of tuning and scheduling the flight
control system gains. See “Angular Rate Control in the HL-20 Autopilot” for Part 2 of this example.

See Also

More About
• “Angular Rate Control in the HL-20 Autopilot”
• “Model Gain-Scheduled Control Systems in Simulink”

11 Gain-Scheduled Controllers

11-74

Angular Rate Control in the HL-20 Autopilot

This is Part 2 of the example series on design and tuning of the flight control system for the HL-20
vehicle. This part deals with closing the inner loops controlling the body angular rates.

Control Architecture

Open the HL-20 model with its flight control system.

open_system('csthl20_control')

This 6-DOF model is adapted from “NASA HL-20 Lifting Body Airframe” (Aerospace Blockset). The
model is configured to simulate the final approach to the landing site. The "Guidance System"
generates the glideslope trajectory and corresponding roll, angle of attack (alpha), and sideslip angle
(beta) commands. The "Flight Control System" is tasked with adjusting the control surfaces to track

 Angular Rate Control in the HL-20 Autopilot

11-75

these commands. The "Controller" block inside the "Flight Control System" is a variant subsystem
with different autopilot configurations.

The "Baseline" and "Classical" controllers use a classic cascaded-loop architecture with three inner P-
only loops to control the angular rates p,q,r, and three outer PI loops to control the angular positions
phi,alpha,beta. The six proportional gains and three integral gains are all scheduled as a function of
alpha and beta. The "Baseline" variant contains the baseline design featured in “NASA HL-20 Lifting
Body Airframe” (Aerospace Blockset). Parts 2 and 3 of this series use the "Classical" variant to walk
through the tuning process. The active variant is controlled by the workspace variable CTYPE. Set its
value to 2 to activate the "Classical" variant of the controller.

% Select "Classical" variant of controller
CTYPE = 2;

% call model update to make sure only active variant signals are analyzed during linearization
set_param('csthl20_control', 'SimulationCommand', 'update');

Note that this variant uses a mix of lookup tables and MATLAB Function blocks to schedule the
autopilot gains.

11 Gain-Scheduled Controllers

11-76

Setup for Controller Tuning

In Part 1 of this series (“Trimming and Linearization of the HL-20 Airframe”), we obtained linearized
models of the "HL20 Airframe" and "Controls Selector" blocks for 40 different aircraft orientations
(40 different pairs of (alpha,beta) values). Load these arrays of linearized models.

load csthl20_TrimData G7 CS

size(G7)

8x5 array of state-space models.
Each model has 34 outputs, 9 inputs, and 7 states.

size(CS)

 Angular Rate Control in the HL-20 Autopilot

11-77

8x5 array of state-space models.
Each model has 6 outputs, 5 inputs, and 0 states.

The slTuner interface is a convenient way to obtain linearized models of "csthl20_control" that are
suitable for control system design and analysis. Through this interface you can designate the signals
and points of interest in the model and specify which blocks you want to tune.

ST0 = slTuner('csthl20_control');
ST0.Ts = 0; % ask for continuous-time linearizations

Here the points of interest include the angular and rate demands, the corresponding responses, and
the deflections da,de,dr.

AP = {'da;de;dr'
 'HL20 Airframe/pqr'
 'Alpha_deg'
 'Beta_deg'
 'Phi_deg'
 'Controller/Classical/Demands' % angular demands
 'p_demand'
 'q_demand'
 'r_demand'};
ST0.addPoint(AP)

Since we already obtained linearized models of the "HL20 Airframe" and "Controls Selector" blocks
as a function of (alpha,beta), the simplest way to linearize the entire model "csthl20_control" is to
replace each nonlinear component by a family of linear models. This is called "block substitution" and
is often the most effective way to linearize complex models at multiple operating conditions.

% Replace "HL20 Airframe" block by 8-by-5 array of linearized models G7
BlockSub1 = struct('Name','csthl20_control/HL20 Airframe','Value',G7);

% Replace "Controls Selector" by CS
BlockSub2 = struct('Name','csthl20_control/Flight Control System/Controls Selector','Value',CS);

% Replace "Actuators" by direct feedthrough (ignore saturations and second-order actuator dynamics)
BlockSub3 = struct('Name','csthl20_control/Actuators','Value',eye(6));

ST0.BlockSubstitutions = [BlockSub1 ; BlockSub2 ; BlockSub3];

You are now ready for the control design part.

Closing the Inner Loops

Begin with the three inner loops controlling the angular rates p,q,r. To get oriented, plot the open-
loop transfer function from deflections (da,de,dr) to angular rates (p,q,r). With the slTuner
interface, you can query the model for any transfer function of interest.

% NOTE: The second 'da;de;dr' opens all feedback loops at the plant input
Gpqr = getIOTransfer(ST0,'da;de;dr','pqr','da;de;dr');

bode(Gpqr(1,1),Gpqr(2,2),Gpqr(3,3),{1e-1,1e3}), grid
legend('da to p','de to q','dr to r')

11 Gain-Scheduled Controllers

11-78

This Bode plot suggests that the diagonal terms behave as integrators (up to the sign) beyond 5 rad/s.
This justifies using proportional-only control. Consistent with the baseline design, set the target
bandwidth for the p,q,r loops to 30, 22.5, and 37.5 rad/s, respectively. The gains Kp, Kq, Kr for each
(alpha,beta) value are readily obtained from the plant frequency response at these frequencies, and
the phase plots indicate that Kp should be positive (negative feedback) and Kq, Kr should be negative
(positive feedback).

% Compute Kp,Kq,Kr for each (alpha,beta) condition. Resulting arrays
% have size [1 1 8 5]
Kp = 1./abs(evalfr(Gpqr(1,1),30i));
Kq = -1./abs(evalfr(Gpqr(2,2),22.5i));
Kr = -1./abs(evalfr(Gpqr(3,3),37.5i));

bode(Gpqr(1,1)*Kp,Gpqr(2,2)*Kq,Gpqr(3,3)*Kr,{1e-1,1e3}), grid
legend('da to p','de to q','dr to r')

 Angular Rate Control in the HL-20 Autopilot

11-79

To conclude the inner-loop design, push these gain values to the corresponding lookup tables in the
Simulink model and refresh the slTuner object.

MWS = get_param('csthl20_control','ModelWorkspace');
MWS.assignin('Kp',squeeze(Kp))
MWS.assignin('Kq',squeeze(Kq))
MWS.assignin('Kr',squeeze(Kr))

refresh(ST0)

Next you need to tune the outer loops controlling roll, angle of attack, and sideslip angle. Part 3 of
this series (“Attitude Control in the HL-20 Autopilot - SISO Design”) shows how to tune a classic SISO
architecture and Part 4 (“Attitude Control in the HL-20 Autopilot - MIMO Design”) looks into the
benefits of a MIMO architecture.

See Also

More About
• “Trimming and Linearization of the HL-20 Airframe”
• “Attitude Control in the HL-20 Autopilot - SISO Design”
• “Tune Gain Schedules in Simulink”

11 Gain-Scheduled Controllers

11-80

Attitude Control in the HL-20 Autopilot - SISO Design

This is Part 3 of the example series on design and tuning of the flight control system for the HL-20
vehicle. This part shows how to tune a classic SISO architecture for controlling the roll, pitch, and
yaw of the vehicle.

Background

This example uses the HL-20 model adapted from “NASA HL-20 Lifting Body Airframe” (Aerospace
Blockset), see Part 1 of the series (“Trimming and Linearization of the HL-20 Airframe”) for details.
The autopilot controlling the attitude of the aircraft consists of three inner loops and three outer
loops.

 Attitude Control in the HL-20 Autopilot - SISO Design

11-81

In Part 2 (“Angular Rate Control in the HL-20 Autopilot”), we showed how to close the inner loops
controlling the angular rates p,q,r. The following commands recap the corresponding steps. Note that
this creates and configures an slTuner interface ST0 for interacting with the Simulink model.

load_system('csthl20_control')
CTYPE = 2; % Select SISO architecture
HL20recapPart2

ST0

slTuner tuning interface for "csthl20_control":

No tuned blocks. Use the addBlock command to add new blocks.

11 Gain-Scheduled Controllers

11-82

9 Analysis points:

Point 1: Signal "da;de;dr", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller
Point 2: Signal "pqr", located at 'Output Port 2' of csthl20_control/HL20 Airframe
Point 3: 'Output Port 1' of csthl20_control/Flight Control System/Alpha_deg
Point 4: 'Output Port 1' of csthl20_control/Flight Control System/Beta_deg
Point 5: 'Output Port 1' of csthl20_control/Flight Control System/Phi_deg
Point 6: 'Output Port 1' of csthl20_control/Flight Control System/Controller/Classical/Demands
Point 7: Signal "p_demand", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller/Classical/Roll-off1
Point 8: Signal "q_demand", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller/Classical/Roll-off2
Point 9: Signal "r_demand", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller/Classical/Roll-off3

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : [3x1 struct]
 Options : [1x1 linearize.SlTunerOptions]
 Ts : 0

Setup for Outer Loop Tuning

We now shift focus to the three gain-scheduled PI loops controlling roll (phi), angle of attack (alpha),
and sideslip angle (beta). These loops could be tuned one at a time (3 loops and 40 operating points
equals 120 design points). You could also use pidtune to tune the PI gains in batch mode for specific
target bandwidth and phase margin requirements. Both approaches have caveats:

• It is difficult to account for loop interactions.
• The gains obtained at each design point may be inconsistent and require smoothing across

operating points.

An alternative approach is the concept of "Gain Surface Tuning" [1] where you parameterize the gain
schedules P(alpha,beta) and I(alpha,beta) as polynomial surfaces and use systune to tune the
polynomial coefficients. This approach tackles all operating points at once and can account for loop
interactions, in particular for stability margin considerations. This is the approach showcased here.

To tune the outer loops, we must close the inner loops and obtain a linearized model of the "plant"
seen by the outer loops at each (alpha,beta) condition. We could ask slTuner to compute the
corresponding transfer function, but this would effectively fix the inner-loop gains Kp,Kq,Kr to their
values at the default operating condition. To get the correct linearization, we must tell slTuner that
these gains vary with (alpha,beta). Block substitution is again the simplest way to do this. To mark Kp
as varying, find the Product block used to multiply the error signal by Kp, and replace it by an array
of gains, one for each (alpha,beta) condition.

ProductBlk = 'csthl20_control/Flight Control System/Controller/Classical/Product1';
BlockSub4 = struct('Name',ProductBlk,'Value',[0 ss(Kp)]);

It is easily verified that this block linearization amounts to multiplying the error signal by the varying
quantity Kp computed above. Similarly, replace the corresponding Product blocks for Kq and Kr by
varying gains.

ProductBlk = 'csthl20_control/Flight Control System/Controller/Classical/Product3';
BlockSub5 = struct('Name',ProductBlk,'Value',[0 ss(Kq)]);

ProductBlk = 'csthl20_control/Flight Control System/Controller/Classical/Product4';
BlockSub6 = struct('Name',ProductBlk,'Value',[0 ss(Kr)]);

 Attitude Control in the HL-20 Autopilot - SISO Design

11-83

ST0.BlockSubstitutions = [ST0.BlockSubstitutions ; BlockSub4 ; BlockSub5 ; BlockSub6];

You can now plot the angular responses for the initial gain-schedule settings in the model.

T0 = getIOTransfer(ST0,'Demand',{'Phi_deg','Alpha_deg','Beta_deg'});
step(T0,6)

Tuning Goals

Basic control objectives include bandwidth (response time) and stability margins. Use the
"MinLoopGain" and "MaxLoopGain" goals to set the gain crossover of the outer loops between 0.5
and 5 rad/s. Since all loop variables are expressed in degrees, no additional scaling is needed.

R1 = TuningGoal.MinLoopGain({'Phi_deg','Alpha_deg','Beta_deg'},0.5,1);
R1.LoopScaling = 'off';
R2 = TuningGoal.MaxLoopGain({'Phi_deg','Alpha_deg','Beta_deg'},tf(50,[1 10 0]));
R2.LoopScaling = 'off';

Use the "Margins" goal to impose adequate stability margins in each loop and across loops. This goal
is based on the notion of disk margins which guarantees stability in the face of concurrent gain and
phase variations in all three loops. Because the target margins of 7 dB and 40 degrees are difficult to
obtain for extreme orientations (corners of the (alpha,beta) grid), we use a varying goal to relax the
gain and phase margin requirements at the corners.

% Gain margins vs (alpha,beta)
GM = [...

11 Gain-Scheduled Controllers

11-84

 6 6 6 6 6
 6 6 7 6 6
 7 7 7 7 7
 7 7 7 7 7
 7 7 7 7 7
 7 7 7 7 7
 6 6 7 6 6
 6 6 6 6 6];

% Phase margins vs (alpha,beta)
PM = [...
 40 40 40 40 40
 40 40 45 40 40
 45 45 45 45 45
 45 45 45 45 45
 45 45 45 45 45
 45 45 45 45 45
 40 40 45 40 40
 40 40 40 40 40];

% Create varying goal
FH = @(gm,pm) TuningGoal.Margins('da;de;dr',gm,pm);
R3 = varyingGoal(FH,GM,PM);

Gain Schedule Tuning

To tune the P and I gain schedules for the outer loop, mark the three MATLAB Function blocks and
three lookup table blocks as tunable.

TunedBlocks = {'P phi','P alpha','P beta','I phi','I alpha','I beta'};
ST0.addBlock(TunedBlocks)

Parameterize each tuned gain schedule as a polynomial surface in alpha and beta. Here we use
quadratic surfaces for the proportional gains and multilinear surfaces for the integral gains.

% Grid of (alpha,beta) design points
alpha_vec = -10:5:25; % Alpha Range
beta_vec = -10:5:10; % Beta Range
[alpha,beta] = ndgrid(alpha_vec,beta_vec);
SG = struct('alpha',alpha,'beta',beta);

% Proportional gains
alphabetaBasis = polyBasis('canonical',2,2);
P_PHI = tunableSurface('Pphi', 0.05, SG, alphabetaBasis);
P_ALPHA = tunableSurface('Palpha', 0.05, SG, alphabetaBasis);
P_BETA = tunableSurface('Pbeta', -0.05, SG, alphabetaBasis);
ST0.setBlockParam('P phi',P_PHI);
ST0.setBlockParam('P alpha',P_ALPHA);
ST0.setBlockParam('P beta',P_BETA);

% Integral gains
alphaBasis = @(alpha) alpha;
betaBasis = @(beta) abs(beta);
alphabetaBasis = ndBasis(alphaBasis,betaBasis);
I_PHI = tunableSurface('Iphi', 0.05, SG, alphabetaBasis);
I_ALPHA = tunableSurface('Ialpha', 0.05, SG, alphabetaBasis);
I_BETA = tunableSurface('Ibeta', -0.05, SG, alphabetaBasis);
ST0.setBlockParam('I phi',I_PHI);

 Attitude Control in the HL-20 Autopilot - SISO Design

11-85

ST0.setBlockParam('I alpha',I_ALPHA);
ST0.setBlockParam('I beta',I_BETA);

Note that we initialized each gain surface to a fixed value suggested by the baseline design. In
general, it is not recommended to start from a zero or random initial point because the difficulty of
the problem increases the likelihood of getting stuck in uninteresting local minima. Instead, a better
strategy consists of tuning a fixed (non-scheduled) set of gains against the full set (or a relevant
subset) of design points. Such "robust design" typically provides a good starting point for gain surface
tuning.

You can now use systune to tune the 6 gain surfaces against the three tuning goals.

ST = systune(ST0,[R1 R2 R3]);

Final: Soft = 1.03, Hard = -Inf, Iterations = 41

The final objective value is close to 1 so the tuning goals are essentially met. Plot the closed-loop
angular responses and compare with the baseline design.

T = getIOTransfer(ST,'Demand',{'Phi_deg','Alpha_deg','Beta_deg'});
step(T0,T,6)
legend('Baseline','Tuned','Location','SouthEast')

The results are comparable with the baseline with less oscillations in the roll and sideslip responses
and a reduced amount of cross-coupling. Use viewSurf to inspect the tuned gain surfaces.

TV = getTunedValue(ST);
clf

11 Gain-Scheduled Controllers

11-86

% NOTE: setBlockValue updates each gain surface with the tuned coefficients in TV
subplot(3,2,1)
viewSurf(setBlockValue(P_PHI,TV))
subplot(3,2,3)
viewSurf(setBlockValue(P_ALPHA,TV))
subplot(3,2,5)
viewSurf(setBlockValue(P_BETA,TV))
subplot(3,2,2)
viewSurf(setBlockValue(I_PHI,TV))
subplot(3,2,4)
viewSurf(setBlockValue(I_ALPHA,TV))
subplot(3,2,6)
viewSurf(setBlockValue(I_BETA,TV))

Validation

To further validate this design, push the tuned gain surfaces to the Simulink model.

writeBlockValue(ST)

For the three lookup table blocks "I phi", "I alpha", "I beta", writeBlockValue samples the gain
surfaces at the table breakpoints and updates the table data in the model workspace. For the
MATLAB Function blocks "P phi", "P alpha", "P beta", writeBlockValue generates MATLAB code
for the gain surface equations. For example, the code for the "P phi" block looks like

 Attitude Control in the HL-20 Autopilot - SISO Design

11-87

Simulink Coder automatically turns this MATLAB code into efficient embedded C code. Whether to
use lookup tables or MATLAB Function blocks depends on the application. The MATLAB Function
option ensures smooth variation of the gains as a function of alpha and beta (no kinks at breakpoints).
It can also be more memory-efficient as it only needs to store the coefficients of the polynomial

11 Gain-Scheduled Controllers

11-88

equation for the gain surface. On the other hand, evaluating the gain at a given (alpha,beta) point
may take a few more operations than in a lookup table, and further adjustment of the gains is easier
in a lookup table.

Once you pushed the gains to Simulink, the autopilot tuning is complete and you can simulate its
behavior during the landing approach.

The performance is satisfactory but the linear responses showed a significant amount of cross-
coupling between axes and we could not quite meet the stability margins target at the corner points
of the (alpha,beta) range. Would it be beneficial to use a MIMO architecture that combines all three
measurements of phi, alpha, beta to calculate the surface deflections? This idea is further explored in
Part 4 of this series (“Attitude Control in the HL-20 Autopilot - MIMO Design”).

References

[1] P. Gahinet and P. Apkarian, "Automated tuning of gain-scheduled control systems," in Proc. IEEE
Conf. Decision and Control, Dec 2013.

See Also
tunableSurface

 Attitude Control in the HL-20 Autopilot - SISO Design

11-89

More About
• “Attitude Control in the HL-20 Autopilot - MIMO Design”
• “Tune Gain Schedules in Simulink”

11 Gain-Scheduled Controllers

11-90

Attitude Control in the HL-20 Autopilot - MIMO Design

This is Part 4 of the example series on design and tuning of the flight control system for the HL-20
vehicle. This part shows how to tune a MIMO PI architecture for controlling the roll, pitch, and yaw of
the vehicle.

Background

This example uses the HL-20 model adapted from “NASA HL-20 Lifting Body Airframe” (Aerospace
Blockset), see Part 1 of the series (“Trimming and Linearization of the HL-20 Airframe”) for details. In
Parts 2 and 3, we showed how to close the inner loops and tune the outer loops of a classic SISO
architecture for the HL-20 autopilot, see “Angular Rate Control in the HL-20 Autopilot” and “Attitude
Control in the HL-20 Autopilot - SISO Design” for details. In this example, we explore the benefits of
switching to a MIMO architecture for the outer loops.

 Attitude Control in the HL-20 Autopilot - MIMO Design

11-91

In this architecture, the three PI loops for pitch, alpha, beta are replaced by a 3-input, 3-output PI
controller that blends the pitch, alpha, and beta measurements to calculate the inner-loop setpoints
p_demand, q_demand, r_demand. Intuitively, this architecture should be more successful at reducing
cross-couplings between axes. Note that the P and I gains are 3-by-3 matrices scheduled as a function
of alpha and beta.

To get started, load the model, set CTYPE to 3 to select the MIMO variant of the Controller block, and
reapply the steps of Part 2 for closing the inner loops (this part of the design is unchanged). Note that
this creates and configures an slTuner interface ST0 for interacting with the Simulink model.

load_system('csthl20_control')
CTYPE = 3; % MIMO architecture
HL20recapPart2

ST0

slTuner tuning interface for "csthl20_control":

No tuned blocks. Use the addBlock command to add new blocks.
9 Analysis points:

Point 1: Signal "da;de;dr", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller
Point 2: Signal "pqr", located at 'Output Port 2' of csthl20_control/HL20 Airframe
Point 3: 'Output Port 1' of csthl20_control/Flight Control System/Alpha_deg
Point 4: 'Output Port 1' of csthl20_control/Flight Control System/Beta_deg
Point 5: 'Output Port 1' of csthl20_control/Flight Control System/Phi_deg
Point 6: 'Output Port 1' of csthl20_control/Flight Control System/Controller/MIMO/Demands
Point 7: Signal "p_demand", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller/MIMO/Roll-off1
Point 8: Signal "q_demand", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller/MIMO/Roll-off2
Point 9: Signal "r_demand", located at 'Output Port 1' of csthl20_control/Flight Control System/Controller/MIMO/Roll-off3

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : [3x1 struct]
 Options : [1x1 linearize.SlTunerOptions]
 Ts : 0

Setup for Outer Loop Tuning

As in the SISO design (“Attitude Control in the HL-20 Autopilot - SISO Design”), the first step is to
obtain a linearized model of the "plant" seen by the outer loops at each (alpha,beta) condition. To
account for the fact that the inner-loop gains Kp,Kq,Kr vary with (alpha,beta), replace the "MIMO/
Product" block by its linear equivalent, which is the diagonal gain matrix

Blk = 'csthl20_control/Flight Control System/Controller/MIMO/Product';
Subs = [zeros(3) append(ss(Kp),ss(Kq),ss(Kr))];
BlockSub4 = struct('Name',Blk,'Value',Subs);

ST0.BlockSubstitutions = [ST0.BlockSubstitutions ; BlockSub4];

11 Gain-Scheduled Controllers

11-92

The gain schedules "P" and "I" are initialized to the constant diagonal matrices diag([0.05, 0.05,
-0.05]). Plot the angular responses for these initial settings.

T0 = getIOTransfer(ST0,'Demand',{'Phi_deg','Alpha_deg','Beta_deg'});
step(T0,6)

Tuning Goals

To tune the MIMO gain schedules we use the following three tuning goals:

• A "Sensitivity" goal to specify the desired bandwidth (response time) and maximize decoupling at
low frequency.

s = tf('s');
R1 = TuningGoal.Sensitivity({'Phi_deg','Alpha_deg','Beta_deg'},s);
R1.Focus = [1e-2 1];
R1.LoopScaling = 'off';

viewGoal(R1)

 Attitude Control in the HL-20 Autopilot - MIMO Design

11-93

• A "Gain" constraint on the closed-loop transfer from angular demands to angular responses. The
gain profile is chosen to enforce adequate roll-off and limit overshoot (which is related to the
hump near crossover).

MaxGain = 1.2 * (10/(s+10))^2; % max gain profile
R2 = TuningGoal.Gain('Demands',{'Phi_deg','Alpha_deg','Beta_deg'},MaxGain);

viewGoal(R2)

11 Gain-Scheduled Controllers

11-94

• A "Margins" goal to require gain margins of at least 7 dB and phase margins of at least 45 degrees
(in the disk margin sense).

R3 = TuningGoal.Margins('da;de;dr',7,45);

Gain Schedule Tuning

The gain schedules for the MIMO PI controller are specified by the "P" and "I" blocks in the MIMO
architecture. Recall that these blocks output 3-by-3 matrices and implement the MIMO transfer
function:

For illustration sake, we use a MATLAB Function block to implement the proportional gain schedule,
and a Matrix Interpolation block to implement the integral gain schedule. The Matrix Interpolation
block lives in the "Simulink Extras" library and is a lookup table where each table entry is a matrix.

To tune the P and I gain schedules, mark the corresponding blocks as tunable in the slTuner
interface.

TunedBlocks = {'MIMO/P' , 'MIMO/I'};
ST0.addBlock(TunedBlocks)

Parameterize each tuned gain schedule as a polynomial surface in alpha and beta. Again we use a
quadratic surface for the proportional gain and a multilinear surface for the integral gain.

 Attitude Control in the HL-20 Autopilot - MIMO Design

11-95

% Grid of (alpha,beta) design points
alpha_vec = -10:5:25; % Alpha Range
beta_vec = -10:5:10; % Beta Range
[alpha,beta] = ndgrid(alpha_vec,beta_vec);
SG = struct('alpha',alpha,'beta',beta);

% Proportional gain matrix
alphabetaBasis = polyBasis('canonical',2,2);
P0 = diag([0.05 0.05 -0.05]); % initial (constant) value
PS = tunableSurface('P', P0, SG, alphabetaBasis);
ST0.setBlockParam('P',PS);

% Integral gain matrix
alphaBasis = @(alpha) alpha;
betaBasis = @(beta) abs(beta);
alphabetaBasis = ndBasis(alphaBasis,betaBasis);
I0 = diag([0.05 0.05 -0.05]);
IS = tunableSurface('I', I0, SG, alphabetaBasis);
ST0.setBlockParam('I',IS);

Finally, use systune to tune the 6 gain surfaces against the three tuning goals.

ST = systune(ST0,[R1 R2 R3]);

Final: Soft = 1.13, Hard = -Inf, Iterations = 109

The final value of the objective function indicates that the tuning goals are nearly met (a tuning goal
is satisfied when its "value" is less than one). Plot the closed-loop angular responses and compare
with the baseline design.

T = getIOTransfer(ST,'Demand',{'Phi_deg','Alpha_deg','Beta_deg'});
step(T0,T,6)
legend('Baseline','Tuned','Location','SouthEast')

11 Gain-Scheduled Controllers

11-96

These responses show significant reductions in overshoot and cross-coupling when compared to the
SISO design.

Validation

To further validate this design, push the tuned gain surfaces to the Simulink model.

writeBlockValue(ST)

For the Matrix Interpolation block "I", this samples the gain surface at the table breakpoints and
updates the table data in the model workspace. For the MATLAB Function block "P", this generates
MATLAB code for the gain surface equations. You can see this code by double-clicking on the block.

Once you push the gains to Simulink, tuning of the MIMO architecture is complete and you can
simulate its behavior during the landing approach.

 Attitude Control in the HL-20 Autopilot - MIMO Design

11-97

These responses are not very different from the SISO design (“Attitude Control in the HL-20 Autopilot
- SISO Design”) due to the mild demands throughout the maneuver. The benefits of the MIMO design
would be more visible in a more challenging maneuver.

See Also
tunableSurface

More About
• “Attitude Control in the HL-20 Autopilot - SISO Design”
• “Tune Gain Schedules in Simulink”

11 Gain-Scheduled Controllers

11-98

MATLAB Workflow for Tuning the HL-20 Autopilot

This is Part 5 of the example series on design and tuning of the flight control system for the HL-20
vehicle. This part shows how to perform most of the design in MATLAB® without interacting with the
Simulink® model.

Background

This example uses the HL-20 model adapted from “NASA HL-20 Lifting Body Airframe” (Aerospace
Blockset), see Part 1 of the series (“Trimming and Linearization of the HL-20 Airframe”) for details.
The autopilot controlling the attitude of the aircraft consists of three inner loops and three outer
loops.

 MATLAB Workflow for Tuning the HL-20 Autopilot

11-99

In Part 2 (“Angular Rate Control in the HL-20 Autopilot”) and Part 3 (“Attitude Control in the HL-20
Autopilot - SISO Design”), we showed how to close the inner loops and tune the gain schedules for
the outer loops. These examples made use of the slTuner interface to interact with the Simulink
model, obtain linearized models and control system responses, and push tuned values back to
Simulink.

For simple architectures and rapid design iterations, it can be preferable (and conceptually simpler)
to manipulate the linearized models in MATLAB and use basic commands like feedback to close
loops. This example shows how to perform the design steps of Parts 2 and 3 in MATLAB.

11 Gain-Scheduled Controllers

11-100

Obtaining the Plant Models

To tune the autopilot, we need linearized models of the transfer function from deflections to angular
position and rates. To do this, start from the results from the "Trim and Linearize" step (see
“Trimming and Linearization of the HL-20 Airframe”). Recall that G7 is a seven-state linear model of
the airframe at 40 different (alpha,beta) conditions, and CS is the linearization of the Controls
Selector block.

load csthl20_TrimData G7 CS

Using the Simulink model "csthl20_trim" as reference for selecting I/Os, build the desired plant
models by connecting G7 and CS in series. Do not forget to convert phi,alpha,beta from radians to
degrees.

r2d = 180/pi;
G = diag([1 1 1 r2d r2d r2d]) * G7([4:7 31:32],1:6) * CS(:,1:3);

G.InputName = {'da','de','dr'};
G.OutputName = {'p','q','r','Phi_deg','Alpha_deg','Beta_deg'};

size(G)

8x5 array of state-space models.
Each model has 6 outputs, 3 inputs, and 7 states.

This gives us an array of plant models over the 8-by-5 grid of (alpha,beta) conditions used for
trimming.

Closing the Inner Loops

To close the inner loops, we follow the same procedure as in Part 2 (“Angular Rate Control in the
HL-20 Autopilot”). This consists of selecting the gain Kp,Kq,Kr to set the crossover frequency of the
p,q,r loops to 30, 22.5, and 37.5 rad/s, respectively.

% Compute Kp,Kq,Kr for each (alpha,beta) condition.
Gpqr = G({'p','q','r'},:);
Kp = 1./abs(evalfr(Gpqr(1,1),30i));
Kq = -1./abs(evalfr(Gpqr(2,2),22.5i));
Kr = -1./abs(evalfr(Gpqr(3,3),37.5i));

bode(Gpqr(1,1)*Kp,Gpqr(2,2)*Kq,Gpqr(3,3)*Kr,{1e-1,1e3}), grid
legend('da to p','de to q','dr to r')

 MATLAB Workflow for Tuning the HL-20 Autopilot

11-101

Use feedback to close the three inner loops. Insert an analysis point at the plant inputs da,de,dr for
later evaluation of the stability margins.

Cpqr = append(ss(Kp),ss(Kq),ss(Kr));
APu = AnalysisPoint('u',3); APu.Location = {'da','de','dr'};

Gpos = feedback(G * APu * Cpqr, eye(3), 1:3, 1:3);
Gpos.InputName = {'p_demand','q_demand','r_demand'};

size(Gpos)

8x5 array of generalized state-space models.
Each model has 6 outputs, 3 inputs, 7 states, and 1 blocks.

Note that these commands seamlessly manage the fact that we are dealing with arrays of plants and
gains corresponding to the various (alpha,beta) conditions.

Tuning the Outer Loops

Next move to the outer loops. We already have an array of linear models Gpos for the "plant" seen by
the outer loops. As done in Part 3 (“Attitude Control in the HL-20 Autopilot - SISO Design”),
parameterize the six gain schedules as polynomial surfaces in alpha and beta. Again we use quadratic
surfaces for the proportional gains and multilinear surfaces for the integral gains.

% Grid of (alpha,beta) design points
alpha_vec = -10:5:25; % Alpha Range
beta_vec = -10:5:10; % Beta Range

11 Gain-Scheduled Controllers

11-102

[alpha,beta] = ndgrid(alpha_vec,beta_vec);
SG = struct('alpha',alpha,'beta',beta);

% Proportional gains
alphabetaBasis = polyBasis('canonical',2,2);
P_PHI = tunableSurface('Pphi', 0.05, SG, alphabetaBasis);
P_ALPHA = tunableSurface('Palpha', 0.05, SG, alphabetaBasis);
P_BETA = tunableSurface('Pbeta', -0.05, SG, alphabetaBasis);

% Integral gains
alphaBasis = @(alpha) alpha;
betaBasis = @(beta) abs(beta);
alphabetaBasis = ndBasis(alphaBasis,betaBasis);
I_PHI = tunableSurface('Iphi', 0.05, SG, alphabetaBasis);
I_ALPHA = tunableSurface('Ialpha', 0.05, SG, alphabetaBasis);
I_BETA = tunableSurface('Ibeta', -0.05, SG, alphabetaBasis);

The overall controller for the outer loop is a diagonal 3-by-3 PI controller taken the errors on angular
positions phi,alpha,beta and calculating the rate demands p_demand,q_demand,r_demand.

KP = append(P_PHI,P_ALPHA,P_BETA);
KI = append(I_PHI,I_ALPHA,I_BETA);
Cpos = KP + KI * tf(1,[1 0]);

Finally, use feedback to obtain a tunable closed-loop model of the outer loops. To enable tuning and
closed-loop analysis, insert analysis points at the plant outputs.

RollOffFilter = tf(10,[1 10]);
APy = AnalysisPoint('y',3); APy.Location = {'Phi_deg','Alpha_deg','Beta_deg'};

T0 = feedback(APy * Gpos(4:6,:) * RollOffFilter * Cpos ,eye(3));
T0.InputName = {'Phi_demand','Alpha_demand','Beta_demand'};
T0.OutputName = {'Phi_deg','Alpha_deg','Beta_deg'};

You can plot the closed-loop responses for the initial gain surface settings (constant gains of 0.05).

step(T0,6)

 MATLAB Workflow for Tuning the HL-20 Autopilot

11-103

Tuning Goals

Use the same tuning goals as in Part 3 (“Attitude Control in the HL-20 Autopilot - SISO Design”).
These include "MinLoopGain" and "MaxLoopGain" goals to set the gain crossover of the outer loops
between 0.5 and 5 rad/s.

R1 = TuningGoal.MinLoopGain({'Phi_deg','Alpha_deg','Beta_deg'},0.5,1);
R1.LoopScaling = 'off';
R2 = TuningGoal.MaxLoopGain({'Phi_deg','Alpha_deg','Beta_deg'},tf(50,[1 10 0]));
R2.LoopScaling = 'off';

These also include a varying "Margins" goal to impose adequate stability margins in each loop and
across loops.

% Gain margins vs (alpha,beta)
GM = [...
 6 6 6 6 6
 6 6 7 6 6
 7 7 7 7 7
 7 7 7 7 7
 7 7 7 7 7
 7 7 7 7 7
 6 6 7 6 6
 6 6 6 6 6];

% Phase margins vs (alpha,beta)
PM = [...

11 Gain-Scheduled Controllers

11-104

 40 40 40 40 40
 40 40 45 40 40
 45 45 45 45 45
 45 45 45 45 45
 45 45 45 45 45
 45 45 45 45 45
 40 40 45 40 40
 40 40 40 40 40];

% Create varying goal
FH = @(gm,pm) TuningGoal.Margins({'da','de','dr'},gm,pm);
R3 = varyingGoal(FH,GM,PM);

Gain Schedule Tuning

You can now use systune to shape the six gain surfaces against the tuning goals at all 40 design
points.

T = systune(T0,[R1 R2 R3]);

Final: Soft = 1.03, Hard = -Inf, Iterations = 52

The final objective value is close to 1 so the tuning goals are essentially met. Plot the closed-loop
angular responses and compare with the initial settings.

step(T0,T,6)
legend('Baseline','Tuned','Location','SouthEast')

 MATLAB Workflow for Tuning the HL-20 Autopilot

11-105

The results match those obtained in Parts 2 and 3. The tuned gain surfaces are also similar.

clf
% NOTE: setBlockValue updates each gain surface with the tuned coefficients in T
subplot(3,2,1), viewSurf(setBlockValue(P_PHI,T))
subplot(3,2,3), viewSurf(setBlockValue(P_ALPHA,T))
subplot(3,2,5), viewSurf(setBlockValue(P_BETA,T))
subplot(3,2,2), viewSurf(setBlockValue(I_PHI,T))
subplot(3,2,4), viewSurf(setBlockValue(I_ALPHA,T))
subplot(3,2,6), viewSurf(setBlockValue(I_BETA,T))

You could now use evalSurf to sample the gain surfaces and update the lookup tables in the
Simulink model. You could also use the codegen method to generate code for the gain surface
equations. For example

% Generate code for "P phi" block
MCODE = codegen(setBlockValue(P_PHI,T));

% Get tuned values for the "I phi" lookup table
Kphi = evalSurf(setBlockValue(I_PHI,T),alpha_vec,beta_vec);

See Also
tunableSurface

11 Gain-Scheduled Controllers

11-106

More About
• “Trimming and Linearization of the HL-20 Airframe”
• “Tune Gain Schedules in Simulink”

 MATLAB Workflow for Tuning the HL-20 Autopilot

11-107

Loop-Shaping Design

• “Structure of Control System for Tuning With looptune” on page 12-2
• “Set Up Your Control System for Tuning with looptune” on page 12-3
• “Tune MIMO Control System for Specified Bandwidth” on page 12-4
• “Decoupling Controller for a Distillation Column” on page 12-10
• “Tuning of a Digital Motion Control System” on page 12-21

12

Structure of Control System for Tuning With looptune
looptune tunes the feedback loop illustrated below to meet default requirements or requirements
that you specify.

C represents the controller and G represents the plant. The sensor outputs y (measurement signals)
and actuator outputs u (control signals) define the boundary between plant and controller. The
controller is the portion of your control system whose inputs are measurements, and whose outputs
are control signals. Conversely, the plant is the remainder—the portion of your control system that
receives control signals as inputs, and produces measurements as outputs.

For example, in the control system of the following illustration, the controller C receives the
measurement y, and the reference signal r. The controller produces the controls qL and qV as
outputs.

The controller C has a fixed internal structure. C includes a gain matrix D , the PI controllers PI_L
and PI_V, and a summing junction. The looptune command tunes free parameters of C such as the
gains in D and the proportional and integral gains of PI_L and PI_V. You can also use looptune to
co-tune free parameters in both C and G.

12 Loop-Shaping Design

12-2

Set Up Your Control System for Tuning with looptune

Set Up Your Control System for looptunein MATLAB
To set up your control system in MATLAB for tuning with looptune:

1 Parameterize the tunable elements of your controller. You can use predefined structures such as
tunablePID, tunableGain, and tunableTF. Or, you can create your own structure from
elementary tunable parameters (realp).

2 Use model interconnection commands such as series and connect to build a tunable genss
model representing the controller C0.

3 Create a Numeric LTI model representing the plant G. For co-tuning the plant and controller,
represent the plant as a tunable genss model.

Set Up Your Control System for looptune in Simulink
To set up your control system in Simulink for tuning with systune (requires Simulink Control Design
software):

1 Use slTuner to create an interface to the Simulink model of your control system. When you
create the interface, you specify which blocks to tune in your model.

2 Use addPoint to specify the control and measurement signals that define the boundaries
between plant and controller. Use addOpening to mark optional loop-opening or signal injection
sites for specifying and assessing open-loop requirements.

The slTuner interface automatically linearizes your Simulink model. The slTuner interface also
automatically parametrizes the blocks that you specify as tunable blocks. For more information about
this linearization, see the slTuner reference page and “How Tuned Simulink Blocks Are
Parameterized” on page 10-26.

See Also

Related Examples
• “Tune MIMO Control System for Specified Bandwidth” on page 12-4
• “Tune Feedback Loops Using looptune”

More About
• “Structure of Control System for Tuning With looptune” on page 12-2

 Set Up Your Control System for Tuning with looptune

12-3

Tune MIMO Control System for Specified Bandwidth

This example shows how to tune the following control system to achieve a loop crossover frequency
between 0.1 and 1 rad/s using looptune.

The plant, G, is a two-input, two-output model (y is a two-element vector signal). For this example, the
transfer function of G is given by:

G s = 1
75s + 1

87 . 8 −86 . 4
108 . 2 −109 . 6

.

This sample plant is based on the distillation column described in more detail in the example
“Decoupling Controller for a Distillation Column”.

To tune this control system, you first create a numeric model of the plant. Then you create tunable
models of the controller elements and interconnect them to build a controller model. Then you use
looptune to tune the free parameters of the controller model. Finally, examine the performance of
the tuned system to confirm that the tuned controller yields desirable performance.

Create a model of the plant.

s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = 'y';

When you tune the control system, looptune uses the channel names G.InputName and
G.OutputName to interconnect the plant and controller. Therefore, assign these channel names to
match the illustration. When you set G.OutputName = 'y', the G.OutputName is automatically
expanded to {'y(1)';'y(2)'}. This expansion occurs because G is a two-output system.

Represent the components of the controller.

D = tunableGain('Decoupler',eye(2));
D.InputName = 'e';
D.OutputName = {'pL','pV'};

PI_L = tunablePID('PI_L','pi');
PI_L.InputName = 'pL';
PI_L.OutputName = 'qL';

PI_V = tunablePID('PI_V','pi');
PI_V.InputName = 'pV';
PI_V.OutputName = 'qV';

sum1 = sumblk('e = r - y',2);

The control system includes several tunable control elements. PI_L and PI_V are tunable PI
controllers. These elements represented by tunablePID models. The fixed control structure also

12 Loop-Shaping Design

12-4

includes a decoupling gain matrix D, represented by a tunable tunableGain model. When the
control system is tuned, D ensures that each output of G tracks the corresponding reference signal r
with minimal crosstalk.

Assigning InputName and OutputName values to these control elements allows you to interconnect
them to create a tunable model of the entire controller C as shown.

When you tune the control system, looptune uses these channel names to interconnect C and G. The
controller C also includes the summing junction sum1. This a two-channel summing junction, because
r and y are vector-valued signals of dimension 2.

Connect the controller components.

C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});

C0 is a tunable genss model that represents the entire controller structure. C0 stores the tunable
controller parameters and contains the initial values of those parameters.

Tune the control system.

The inputs to looptune are G and C0, the plant and initial controller models that you created. The
input wc = [0.1,1] sets the target range for the loop bandwidth. This input specifies that the
crossover frequency of each loop in the tuned system fall between 0.1 and 1 rad/min.

wc = [0.1,1];
[G,C,gam,Info] = looptune(G,C0,wc);

Final: Peak gain = 1, Iterations = 25
Achieved target gain value TargetGain=1.

The displayed Peak Gain = 0.949 indicates that looptune has found parameter values that
achieve the target loop bandwidth. looptune displays the final peak gain value of the optimization
run, which is also the output gam. If gam is less than 1, all tuning requirements are satisfied. A value
greater than 1 indicates failure to meet some requirement. If gam exceeds 1, you can increase the
target bandwidth range or relax another tuning requirement.

looptune also returns the tuned controller model C. This model is the tuned version of C0. It
contains the PI coefficients and the decoupling matrix gain values that yield the optimized peak gain
value.

Display the tuned controller parameters.

showTunable(C)

Decoupler =

 D =
 u1 u2
 y1 1.266 -0.8781
 y2 -1.505 1.222

 Tune MIMO Control System for Specified Bandwidth

12-5

Name: Decoupler
Static gain.

PI_L =

 1
 Kp + Ki * ---
 s

 with Kp = 2.19, Ki = 0.131

Name: PI_L
Continuous-time PI controller in parallel form.

PI_V =

 1
 Kp + Ki * ---
 s

 with Kp = -1.78, Ki = -0.0905

Name: PI_V
Continuous-time PI controller in parallel form.

Check the time-domain response for the control system with the tuned coefficients. To produce a plot,
construct a closed-loop model of the tuned control system. Plot the step response from reference to
output.

T = connect(G,C,'r','y');
step(T)

12 Loop-Shaping Design

12-6

The decoupling matrix in the controller permits each channel of the two-channel output signal y to
track the corresponding channel of the reference signal r, with minimal crosstalk. From the plot, you
can how well this requirement is achieved when you tune the control system for bandwidth alone. If
the crosstalk still exceeds your design requirements, you can use a TuningGoal.Gain requirement
object to impose further restrictions on tuning.

Examine the frequency-domain response of the tuned result as an alternative method for validating
the tuned controller.

figure('Position',[100,100,520,1000])
loopview(G,C,Info)

 Tune MIMO Control System for Specified Bandwidth

12-7

12 Loop-Shaping Design

12-8

The first plot shows that the open-loop gain crossovers fall within the specified interval [0.1,1].
This plot also includes the maximum and tuned values of the sensitivity function S = (I − GC)−1 and
complementary sensitivity T = I − S. The second and third plots show that the MIMO stability
margins of the tuned system (blue curve) do not exceed the upper limit (yellow curve).

See Also

Related Examples
• “Decoupling Controller for a Distillation Column”

More About
• “Structure of Control System for Tuning With looptune” on page 12-2

 Tune MIMO Control System for Specified Bandwidth

12-9

Decoupling Controller for a Distillation Column

This example shows how to use looptune to decouple the two main feedback loops in a distillation
column.

Distillation Column Model

This example uses a simple model of the distillation column shown below.

Figure 1: Distillation Column

In the so-called LV configuration, the controlled variables are the concentrations yD and yB of the
chemicals D (tops) and B (bottoms), and the manipulated variables are the reflux L and boilup V. This
process exhibits strong coupling and large variations in steady-state gain for some combinations of L
and V. For more details, see Skogestad and Postlethwaite, Multivariable Feedback Control.

The plant is modeled as a first-order transfer function with inputs L,V and outputs yD,yB:

The unit of time is minutes (all plots are in minutes, not seconds).

s = tf('s');
G = [87.8 -86.4 ; 108.2 -109.6]/(75*s+1);
G.InputName = {'L','V'};
G.OutputName = {'yD','yB'};

Control Architecture

The control objectives are as follows:

12 Loop-Shaping Design

12-10

• Independent control of the tops and bottoms concentrations by ensuring that a change in the tops
setpoint Dsp has little impact on the bottoms concentration B and vice versa

• Response time of about 4 minutes with less than 15% overshoot
• Fast rejection of input disturbances affecting the effective reflux L and boilup V

To achieve these objectives we use the control architecture shown below. This architecture consists of
a static decoupling matrix DM in series with two PI controllers for the reflux L and boilup V.

open_system('rct_distillation')

Controller Tuning in Simulink with LOOPTUNE

The looptune command provides a quick way to tune MIMO feedback loops. When the control
system is modeled in Simulink, you just specify the tuned blocks, the control and measurement
signals, and the desired bandwidth, and looptune automatically sets up the problem and tunes the
controller parameters. looptune shapes the open-loop response to provide integral action, roll-off,
and adequate MIMO stability margins.

Use the slTuner interface to specify the tuned blocks, the controller I/Os, and signals of interest for
closed-loop validation.

ST0 = slTuner('rct_distillation',{'PI_L','PI_V','DM'});

% Signals of interest
addPoint(ST0,{'r','dL','dV','L','V','y'})

Set the control bandwidth by specifying the gain crossover frequency for the open-loop response. For
a response time of 4 minutes, the crossover frequency should be approximately 2/4 = 0.5 rad/min.

wc = 0.5;

Use TuningGoal objects to specify the remaining control objectives. The response to a step
command should have less than 15% overshoot. The response to a step disturbance at the plant input
should be well damped, settle in less than 20 minutes, and not exceed 4 in amplitude.

 Decoupling Controller for a Distillation Column

12-11

OS = TuningGoal.Overshoot('r','y',15);

DR = TuningGoal.StepRejection({'dL','dV'},'y',4,20);

Next use looptune to tune the controller blocks PI_L, PI_V, and DM subject to the disturbance
rejection requirement.

Controls = {'L','V'};
Measurements = 'y';
[ST,gam,Info] = looptune(ST0,Controls,Measurements,wc,OS,DR);

Final: Peak gain = 1, Iterations = 61
Achieved target gain value TargetGain=1.

The final value is near 1 which indicates that all requirements were met. Use loopview to check the
resulting design. The responses should stay outside the shaded areas.

figure('Position',[0,0,1000,1200])
loopview(ST,Info)

12 Loop-Shaping Design

12-12

Use getIOTransfer to access and plot the closed-loop responses from reference and disturbance to
the tops and bottoms concentrations. The tuned responses show a good compromise between
tracking and disturbance rejection.

figure
Ttrack = getIOTransfer(ST,'r','y');
step(Ttrack,40), grid, title('Setpoint tracking')

 Decoupling Controller for a Distillation Column

12-13

Treject = getIOTransfer(ST,{'dV','dL'},'y');
step(Treject,40), grid, title('Disturbance rejection')

12 Loop-Shaping Design

12-14

Comparing the open- and closed-loop disturbance rejection characteristics in the frequency domain
shows a clear improvement inside the control bandwidth.

clf, sigma(G,Treject), grid
title('Principal gains from input disturbances to outputs')
legend('Open-loop','Closed-loop')

 Decoupling Controller for a Distillation Column

12-15

Adding Constraints on the Tuned Variables

Inspection of the controller obtained above shows that the second PI controller has negative gains.

getBlockValue(ST,'PI_V')

ans =

 1
 Kp + Ki * ---
 s

 with Kp = -4.21, Ki = -0.59

Name: PI_V
Continuous-time PI controller in parallel form.

This is due to the negative signs in the second input channels of the plant . In addition, the tunable
elements are over-parameterized because multiplying DM by two and dividing the PI gains by two
does not change the overall controller. To address these issues, fix the (1,1) entry of DM to 1 and the
(2,2) entry to -1.

DM = getBlockParam(ST0,'DM');
DM.Gain.Value = diag([1 -1]);
DM.Gain.Free = [false true;true false];
setBlockParam(ST0,'DM',DM)

12 Loop-Shaping Design

12-16

Re-tune the controller for the reduced set of tunable parameters.

[ST,gam,Info] = looptune(ST0,Controls,Measurements,wc,OS,DR);

Final: Peak gain = 0.998, Iterations = 88
Achieved target gain value TargetGain=1.

The step responses look similar but the values of DM and the PI gains are more suitable for
implementation.

figure('Position',[0,0,700,350])

subplot(121)
Ttrack = getIOTransfer(ST,'r','y');
step(Ttrack,40), grid, title('Setpoint tracking')

subplot(122)
Treject = getIOTransfer(ST,{'dV','dL'},'y');
step(Treject,40), grid, title('Disturbance rejection')

showTunable(ST)

Block 1: rct_distillation/PI_L =

 1
 Kp + Ki * ---
 s

 with Kp = 16.4, Ki = 2.21

Name: PI_L
Continuous-time PI controller in parallel form.

 Decoupling Controller for a Distillation Column

12-17

Block 2: rct_distillation/PI_V =

 1
 Kp + Ki * ---
 s

 with Kp = 13.1, Ki = 1.76

Name: PI_V
Continuous-time PI controller in parallel form.

Block 3: rct_distillation/DM =

 D =
 u1 u2
 y1 1 -0.7834
 y2 1.235 -1

Name: DM
Static gain.

Equivalent Workflow in MATLAB

If you do not have a Simulink model of the control system, you can use LTI objects and Control Design
blocks to create a MATLAB representation of the following block diagram.

Figure 2: Block Diagram of Control System

First parameterize the tunable elements using Control Design blocks. Use the tunableGain object
to parameterize DM and fix DM(1,1)=1 and DM(2,2)=-1. This creates a 2x2 static gain with the off-
diagonal entries as tunable parameters.

DM = tunableGain('Decoupler',diag([1 -1]));
DM.Gain.Free = [false true;true false];

Similarly, use the tunablePID object to parameterize the two PI controllers:

PI_L = tunablePID('PI_L','pi');
PI_V = tunablePID('PI_V','pi');

12 Loop-Shaping Design

12-18

Next construct a model C0 of the controller in Figure 2.

C0 = blkdiag(PI_L,PI_V) * DM * [eye(2) -eye(2)];

% Note: I/O names should be consistent with those of G
C0.InputName = {'Dsp','Bsp','yD','yB'};
C0.OutputName = {'L','V'};

Now tune the controller parameters with looptune as done previously.

% Crossover frequency
wc = 0.5;

% Overshoot and disturbance rejection requirements
OS = TuningGoal.Overshoot({'Dsp','Bsp'},{'yD','yB'},15);
DR = TuningGoal.StepRejection({'L','V'},{'yD','yB'},4,20);

% Tune controller gains
[~,C] = looptune(G,C0,wc,OS,DR);

Final: Peak gain = 0.998, Iterations = 58
Achieved target gain value TargetGain=1.

To validate the design, close the loop with the tuned compensator C and simulate the step responses
for setpoint tracking and disturbance rejection.

Tcl = connect(G,C,{'Dsp','Bsp','L','V'},{'yD','yB'});

figure('Position',[0,0,700,350])

subplot(121)
Ttrack = Tcl(:,[1 2]);
step(Ttrack,40), grid, title('Setpoint tracking')

subplot(122)
Treject = Tcl(:,[3 4]);
Treject.InputName = {'dL','dV'};
step(Treject,40), grid, title('Disturbance rejection')

 Decoupling Controller for a Distillation Column

12-19

The results are similar to those obtained in Simulink.

See Also
looptune | looptune (slTuner)

More About
• “Tuning of a Digital Motion Control System”

12 Loop-Shaping Design

12-20

Tuning of a Digital Motion Control System

This example shows how to use Control System Toolbox™ to tune a digital motion control system.

Motion Control System

The motion system under consideration is shown below.

Figure 1: Digital motion control hardware

This device could be part of some production machine and is intended to move some load (a gripper, a
tool, a nozzle, or anything else that you can imagine) from one angular position to another and back
again. This task is part of the "production cycle" that has to be completed to create each product or
batch of products.

The digital controller must be tuned to maximize the production speed of the machine without
compromising accuracy and product quality. To do this, we first model the control system in
Simulink® using a 4th-order model of the inertia and flexible shaft:

open_system('rct_dmc')

 Tuning of a Digital Motion Control System

12-21

The "Tunable Digital Controller" consists of a gain in series with a lead/lag controller.

Figure 2: Digital controller

Tuning is complicated by the presence of a flexible mode near 350 rad/s in the plant:

G = linearize('rct_dmc','rct_dmc/Plant Model');
bode(G,{10,1e4}), grid

12 Loop-Shaping Design

12-22

Compensator Tuning

We are seeking a 0.5 second response time to a step command in angular position with minimum
overshoot. This corresponds to a target bandwidth of approximately 5 rad/s. The looptune command
offers a convenient way to tune fixed-structure compensators like the one in this application. To use
looptune, first instantiate the slTuner interface to automatically acquire the control structure from
Simulink. Note that the signals of interest are already marked as Linear Analysis Points in the
Simulink model.

ST0 = slTuner('rct_dmc',{'Gain','Leadlag'});

Next use looptune to tune the compensator parameters for the target gain crossover frequency of 5
rad/s:

Measurement = 'Measured Position'; % controller input
Control = 'Leadlag'; % controller output
ST1 = looptune(ST0,Control,Measurement,5);

Final: Peak gain = 0.979, Iterations = 19
Achieved target gain value TargetGain=1.

A final value below or near 1 indicates success. Inspect the tuned values of the gain and lead/lag
filter:

showTunable(ST1)

Block 1: rct_dmc/Tunable Digital Controller/Gain =

 Tuning of a Digital Motion Control System

12-23

 D =
 u1
 y1 1.869e-05

Name: Gain
Static gain.

Block 2: rct_dmc/Tunable Digital Controller/Leadlag =

 3.855 s + 6.322

 s + 13.35

Name: Leadlag
Continuous-time transfer function.

Design Validation

To validate the design, use the slTuner interface to quickly access the closed-loop transfer functions
of interest and compare the responses before and after tuning.

T0 = getIOTransfer(ST0,'Reference','Measured Position');
T1 = getIOTransfer(ST1,'Reference','Measured Position');
step(T0,T1), grid
legend('Original','Tuned')

12 Loop-Shaping Design

12-24

The tuned response has significantly less overshoot and satisfies the response time requirement.
However these simulations are obtained using a continuous-time lead/lag compensator (looptune
operates in continuous time) so we need to further validate the design in Simulink using a digital
implementation of the lead/lag compensator. Use writeBlockValue to apply the tuned values to the
Simulink model and automatically discretize the lead/lag compensator to the rate specified in
Simulink.

writeBlockValue(ST1)

You can now simulate the response of the continuous-time plant with the digital controller:

sim('rct_dmc'); % angular position logged in "yout" variable
t = yout.time;
y = yout.signals.values;
step(T1), hold, plot(t,y,'r--')
legend('Continuous','Hybrid (Simulink)')

Current plot held

 Tuning of a Digital Motion Control System

12-25

The simulations closely match and the coefficients of the digital lead/lag can be read from the
"Leadlag" block in Simulink.

Tuning an Additional Notch Filter

Next try to increase the control bandwidth from 5 to 50 rad/s. Because of the plant resonance near
350 rad/s, the lead/lag compensator is no longer sufficient to get adequate stability margins and small
overshoot. One remedy is to add a notch filter as shown in Figure 3.

12 Loop-Shaping Design

12-26

Figure 3: Digital Controller with Notch Filter

To tune this modified control architecture, create an slTuner instance with the three tunable blocks.

ST0 = slTuner('rct_dmcNotch',{'Gain','Leadlag','Notch'});

By default the "Notch" block is parameterized as any second-order transfer function. To retain the
notch structure

specify the coefficients as real parameters and create a parametric model N of the transfer
function shown above:

wn = realp('wn',300);
zeta1 = realp('zeta1',1);
zeta2 = realp('zeta2',1);
zeta1.Minimum = 0; zeta1.Maximum = 1; % 0 <= zeta1 <= 1
zeta2.Minimum = 0; zeta2.Maximum = 1; % 0 <= zeta2 <= 1
N = tf([1 2*zeta1*wn wn^2],[1 2*zeta2*wn wn^2]); % tunable notch filter

Then associate this parametric notch model with the "Notch" block in the Simulink model. Because
the control system is tuned in the continuous time, you can use a continuous-time parameterization of
the notch filter even though the "Notch" block itself is discrete.

setBlockParam(ST0,'Notch',N);

Next use looptune to jointly tune the "Gain", "Leadlag", and "Notch" blocks with a 50 rad/s target
crossover frequency. To eliminate residual oscillations from the plant resonance, specify a target loop
shape with a -40 dB/decade roll-off past 50 rad/s.

% Specify target loop shape with a few frequency points
Freqs = [5 50 500];

 Tuning of a Digital Motion Control System

12-27

Gains = [10 1 0.01];
TLS = TuningGoal.LoopShape('Notch',frd(Gains,Freqs));

Measurement = 'Measured Position'; % controller input
Control = 'Notch'; % controller output
ST2 = looptune(ST0,Control,Measurement,TLS);

Final: Peak gain = 1.05, Iterations = 60

The final gain is close to 1, indicating that all requirements are met. Compare the closed-loop step
response with the previous designs.

T2 = getIOTransfer(ST2,'Reference','Measured Position');
clf
step(T0,T1,T2,1.5), grid
legend('Original','Lead/lag','Lead/lag + notch')

To verify that the notch filter performs as expected, evaluate the total compensator C and the open-
loop response L and compare the Bode responses of G, C, L:

% Get tuned block values (in the order blocks are listed in ST2.TunedBlocks)
[g,LL,N] = getBlockValue(ST2,'Gain','Leadlag','Notch');
C = N * LL * g;

L = getLoopTransfer(ST2,'Notch',-1);

bode(G,C,L,{1e1,1e3}), grid
legend('G','C','L')

12 Loop-Shaping Design

12-28

This Bode plot confirms that the plant resonance has been correctly "notched out."

Discretizing the Notch Filter

Again use writeBlockValue to discretize the tuned lead/lag and notch filters and write their values
back to Simulink. Compare the MATLAB and Simulink responses:

writeBlockValue(ST2)

sim('rct_dmcNotch');
t = yout.time;
y = yout.signals.values;
step(T2), hold, plot(t,y,'r--')
legend('Continuous','Hybrid (Simulink)')

Current plot held

 Tuning of a Digital Motion Control System

12-29

The Simulink response exhibits small residual oscillations. The notch filter discretization is the likely
culprit because the notch frequency is close to the Nyquist frequency pi/0.002=1570 rad/s. By
default the notch is discretized using the ZOH method. Compare this with the Tustin method
prewarped at the notch frequency:

wn = damp(N); % natural frequency of the notch filter
Ts = 0.002; % sample time of discrete notch filter

Nd1 = c2d(N,Ts,'zoh');
Nd2 = c2d(N,Ts,'tustin',c2dOptions('PrewarpFrequency',wn(1)));

clf, bode(N,Nd1,Nd2)
legend('Continuous','Discretized with ZOH','Discretized with Tustin',...
 'Location','NorthWest')

12 Loop-Shaping Design

12-30

The ZOH method has significant distortion and prewarped Tustin should be used instead. To do this,
specify the desired rate conversion method for the notch filter block:

setBlockRateConversion(ST2,'Notch','tustin',wn(1))

writeBlockValue(ST2)

writeBlockValue now uses Tustin prewarped at the notch frequency to discretize the notch filter
and write it back to Simulink. Verify that this gets rid of the oscillations.

sim('rct_dmcNotch');
t = yout.time;
y = yout.signals.values;
step(T2), hold, plot(t,y,'r--')
legend('Continuous','Hybrid (Simulink)')

Current plot held

 Tuning of a Digital Motion Control System

12-31

Direct Discrete-Time Tuning

Alternatively, you can tune the controller directly in discrete time to avoid discretization issues with
the notch filter. To do this, specify that the Simulink model should be linearized and tuned at the
controller sample time of 0.002 seconds:

ST0 = slTuner('rct_dmcNotch',{'Gain','Leadlag','Notch'});
ST0.Ts = 0.002;

To prevent high-gain control and saturations, add a requirement that limits the gain from reference to
control signal (output of Notch block).

GL = TuningGoal.Gain('Reference','Notch',0.01);

Now retune the controller at the specified sampling rate and verify the tuned open- and closed-loop
responses.

ST2 = looptune(ST0,Control,Measurement,TLS,GL);

% Closed-loop responses
T2 = getIOTransfer(ST2,'Reference','Measured Position');
clf
step(T0,T1,T2,1.5), grid
legend('Original','Lead/lag','Lead/lag + notch')

Final: Peak gain = 1.04, Iterations = 37

12 Loop-Shaping Design

12-32

% Open-loop responses
[g,LL,N] = getBlockValue(ST2,'Gain','Leadlag','Notch');
C = N * LL * g;
L = getLoopTransfer(ST2,'Notch',-1);
bode(G,C,L,{1e1,2e3}), grid
legend('G','C','L')

 Tuning of a Digital Motion Control System

12-33

The results are similar to those obtained when tuning the controller in continuous time. Now validate
the digital controller against the continuous-time plant in Simulink.

writeBlockValue(ST2)

sim('rct_dmcNotch');
t = yout.time;
y = yout.signals.values;
step(T2), hold, plot(t,y,'r--')
legend('Discrete','Hybrid (Simulink)')

Current plot held

12 Loop-Shaping Design

12-34

This time, the hybrid response closely matches its discrete-time approximation and no further
adjustment of the notch filter is required.

See Also
looptune (slTuner)

More About
• “Tune Feedback Loops Using looptune”

 Tuning of a Digital Motion Control System

12-35

Control System Tuning Examples

• “Tuning Multiloop Control Systems” on page 13-2
• “PID Tuning for Setpoint Tracking vs. Disturbance Rejection” on page 13-11
• “Time-Domain Specifications” on page 13-20
• “Frequency-Domain Specifications” on page 13-26
• “Loop Shape and Stability Margin Specifications” on page 13-34
• “System Dynamics Specifications” on page 13-39
• “Configuring Design Requirements” on page 13-41
• “Validating Results” on page 13-42
• “Tune Control Systems in Simulink” on page 13-50
• “Tune a Control System Using Control System Tuner” on page 13-58
• “Using Parallel Computing to Accelerate Tuning” on page 13-72
• “Control of a Linear Electric Actuator” on page 13-76
• “Control of a Linear Electric Actuator Using Control System Tuner” on page 13-85
• “Multi-Loop PI Control of a Robotic Arm” on page 13-110
• “Control of an Inverted Pendulum on a Cart” on page 13-125
• “Digital Control of Power Stage Voltage” on page 13-132
• “MIMO Control of Diesel Engine” on page 13-141
• “Tuning of a Two-Loop Autopilot” on page 13-154
• “Multiloop Control of a Helicopter” on page 13-169
• “Fixed-Structure Autopilot for a Passenger Jet” on page 13-176
• “Fault-Tolerant Control of a Passenger Jet” on page 13-187
• “Passive Control of Water Tank Level” on page 13-196
• “Tuning for Multiple Values of Plant Parameters” on page 13-206

13

Tuning Multiloop Control Systems

This example shows how to jointly tune the inner and outer loops of a cascade architecture with the
systune command.

Cascaded PID Loops

Cascade control is often used to achieve smooth tracking with fast disturbance rejection. The
simplest cascade architecture involves two control loops (inner and outer) as shown in the block
diagram below. The inner loop is typically faster than the outer loop to reject disturbances before
they propagate to the outer loop. (Simulink® is not supported in MATLAB® Online.)

open_system('rct_cascade')

Plant Models and Bandwidth Requirements

In this example, the inner loop plant G2 is

and the outer loop plant G1 is

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);

We use a PI controller in the inner loop and a PID controller in the outer loop. The outer loop must
have a bandwidth of at least 0.2 rad/s and the inner loop bandwidth should be ten times larger for
adequate disturbance rejection.

13 Control System Tuning Examples

13-2

Tuning the PID Controllers with SYSTUNE

When the control system is modeled in Simulink, use the slTuner interface in Simulink Control
Design™ to set up the tuning task. List the tunable blocks, mark the signals r and d2 as inputs of
interest, and mark the signals y1 and y2 as locations where to measure open-loop transfers and
specify loop shapes.

ST0 = slTuner('rct_cascade',{'C1','C2'});
addPoint(ST0,{'r','d2','y1','y2'})

You can query the current values of C1 and C2 in the Simulink model using showTunable. The
control system is unstable for these initial values as confirmed by simulating the Simulink model.

showTunable(ST0)

Block 1: rct_cascade/C1 =

 1
 Kp + Ki * ---
 s

 with Kp = 0.1, Ki = 0.1

Name: C1
Continuous-time PI controller in parallel form.

Block 2: rct_cascade/C2 =

 1
 Kp + Ki * ---
 s

 with Kp = 0.1, Ki = 0.1

Name: C2
Continuous-time PI controller in parallel form.

Next use "LoopShape" requirements to specify the desired bandwidths for the inner and outer loops.
Use as the target loop shape for the outer loop to enforce integral action with a gain crossover
frequency at 0.2 rad/s:

% Outer loop bandwidth = 0.2
s = tf('s');
Req1 = TuningGoal.LoopShape('y1',0.2/s); % loop transfer measured at y1
Req1.Name = 'Outer Loop';

Use for the inner loop to make it ten times faster (higher bandwidth) than the outer loop. To
constrain the inner loop transfer, make sure to open the outer loop by specifying y1 as a loop
opening:

% Inner loop bandwidth = 2
Req2 = TuningGoal.LoopShape('y2',2/s); % loop transfer measured at y2
Req2.Openings = 'y1'; % with outer loop opened at y1
Req2.Name = 'Inner Loop';

 Tuning Multiloop Control Systems

13-3

You can now tune the PID gains in C1 and C2 with systune:

ST = systune(ST0,[Req1,Req2]);

Final: Soft = 0.861, Hard = -Inf, Iterations = 55

Use showTunable to see the tuned PID gains.

showTunable(ST)

Block 1: rct_cascade/C1 =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 0.0518, Ki = 0.0186, Kd = 0.0472, Tf = 0.0228

Name: C1
Continuous-time PIDF controller in parallel form.

Block 2: rct_cascade/C2 =

 1
 Kp + Ki * ---
 s

 with Kp = 0.722, Ki = 1.23

Name: C2
Continuous-time PI controller in parallel form.

Validating the Design

The final value is less than 1 which means that systune successfully met both loop shape
requirements. Confirm this by inspecting the tuned control system ST with viewGoal

viewGoal([Req1,Req2],ST)

13 Control System Tuning Examples

13-4

Note that the inner and outer loops have the desired gain crossover frequencies. To further validate
the design, plot the tuned responses to a step command r and step disturbance d2:

% Response to a step command
H = getIOTransfer(ST,'r','y1');
clf, step(H,30), title('Step command')

 Tuning Multiloop Control Systems

13-5

% Response to a step disturbance
H = getIOTransfer(ST,'d2','y1');
step(H,30), title('Step disturbance')

13 Control System Tuning Examples

13-6

Once you are satisfied with the linear analysis results, use writeBlockValue to write the tuned PID
gains back to the Simulink blocks. You can then conduct a more thorough validation in Simulink.

writeBlockValue(ST)

Equivalent Workflow in MATLAB

If you do not have a Simulink model of the control system, you can perform the same steps using LTI
models of the plant and Control Design blocks to model the tunable elements.

Figure 1: Cascade Architecture

First create parametric models of the tunable PI and PID controllers.

 Tuning Multiloop Control Systems

13-7

C1 = tunablePID('C1','pid');
C2 = tunablePID('C2','pi');

Then use "analysis point" blocks to mark the loop opening locations y1 and y2.

LS1 = AnalysisPoint('y1');
LS2 = AnalysisPoint('y2');

Finally, create a closed-loop model T0 of the overall control system by closing each feedback loop.
The result is a generalized state-space model depending on the tunable elements C1 and C2.

InnerCL = feedback(LS2*G2*C2,1);
T0 = feedback(G1*InnerCL*C1,LS1);
T0.InputName = 'r';
T0.OutputName = 'y1';

You can now tune the PID gains in C1 and C2 with systune.

T = systune(T0,[Req1,Req2]);

Final: Soft = 0.86, Hard = -Inf, Iterations = 139

As before, use getIOTransfer to compute and plot the tuned responses to a step command r and
step disturbance entering at the location y2:

% Response to a step command
H = getIOTransfer(T,'r','y1');
clf, step(H,30), title('Step command')

13 Control System Tuning Examples

13-8

% Response to a step disturbance
H = getIOTransfer(T,'y2','y1');
step(H,30), title('Step disturbance')

You can also plot the open-loop gains for the inner and outer loops to validate the bandwidth
requirements. Note the -1 sign to compute the negative-feedback open-loop transfer:

L1 = getLoopTransfer(T,'y1',-1); % crossover should be at .2
L2 = getLoopTransfer(T,'y2',-1,'y1'); % crossover should be at 2
bodemag(L2,L1,{1e-2,1e2}), grid
legend('Inner Loop','Outer Loop')

 Tuning Multiloop Control Systems

13-9

See Also
slTuner | systune (slTuner)

Related Examples
• “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”

13 Control System Tuning Examples

13-10

PID Tuning for Setpoint Tracking vs. Disturbance Rejection

This example uses systune to explore trade-offs between setpoint tracking and disturbance rejection
when tuning PID controllers.

PID Tuning Trade-Offs

When tuning 1-DOF PID controllers, it is often impossible to achieve good tracking and fast
disturbance rejection at the same time. Assuming the control bandwidth is fixed, faster disturbance
rejection jrequires more gain inside the bandwidth, which can only be achieved by increasing the
slope near the crossover frequency. Because a larger slope means a smaller phase margin, this
typically comes at the expense of more overshoot in the response to setpoint changes.

Figure 1: Trade-off in 1-DOF PID Tuning.

This example uses systune to explore this trade-off and find the right compromise for your
application. You can also use the PID Tuner app to make such a trade-off. For more information, see
“Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)”.

Tuning Setup

Consider the PID loop of Figure 2 with a load disturbance at the plant input.

 PID Tuning for Setpoint Tracking vs. Disturbance Rejection

13-11

Figure 2: PID Control Loop.

For this example we use the plant model

The target control bandwidth is 10 rad/s. Create a tunable PID controller and fix its derivative filter
time constant to (10 times the bandwidth) so that there are only three gains to tune
(proportional, integral, and derivative gains).

G = zpk(-5,[-1 -2 -10],10);
C = tunablePID('C','pid');
C.Tf.Value = 0.01; C.Tf.Free = false; % fix Tf=0.01

Construct a tunable model T0 of the closed-loop transfer from r to y. Use an "analysis point" block to
mark the location u where the disturbance enters.

LS = AnalysisPoint('u');
T0 = feedback(G*LS*C,1);
T0.u = 'r'; T0.y = 'y';

The gain of the open-loop response is a key indicator of the feedback loop behavior. The
open-loop gain should be high (greater than one) inside the control bandwidth to ensure good
disturbance rejection, and should be low (less than one) outside the control bandwidth to be
insensitive to measurement noise and unmodeled plant dynamics. Accordingly, use three
requirements to express the control objectives:

• "Tracking" requirement to specify a response time of about 0.2 seconds to step changes in r
• "MaxLoopGain" requirement to force a roll-off of -20 dB/decade past the crossover frequency 10

rad/s
• "MinLoopGain" requirement to adjust the integral gain at frequencies below 0.1 rad/s.

s = tf('s');
wc = 10; % target crossover frequency

% Tracking
R1 = TuningGoal.Tracking('r','y',2/wc);

% Bandwidth and roll-off
R2 = TuningGoal.MaxLoopGain('u',wc/s);

% Disturbance rejection

13 Control System Tuning Examples

13-12

R3 = TuningGoal.MinLoopGain('u',wc/s);
R3.Focus = [0 0.1];

Tuning of 1-DOF PID Controller

Use systune to tune the PID gains to meet these requirements. Treat the bandwidth and disturbance
rejection goals as hard constraints and optimize tracking subject to these constraints.

T1 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.12, Hard = 0.9998, Iterations = 157

Verify that all three requirements are nearly met. The blue curves are the achieved values and the
yellow patches highlight regions where the requirements are violated.

figure('Position',[100,100,560,580])
viewGoal([R1 R2 R3],T1)

 PID Tuning for Setpoint Tracking vs. Disturbance Rejection

13-13

Tracking vs. Rejection

To gain insight into the trade-off between tracking and disturbance rejection, increase the minimum
loop gain in the frequency band [0,0.1] rad/s by a factor . Re-tune the PID gains for the values

.

% Increase loop gain by factor 2
alpha = 2;
R3.MinGain = alpha*wc/s;
T2 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.17, Hard = 0.99954, Iterations = 115

% Increase loop gain by factor 4
alpha = 4;
R3.MinGain = alpha*wc/s;
T3 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.25, Hard = 0.99994, Iterations = 166

Compare the responses to a step command r and to a step disturbance d entering at the plant input
u.

figure, step(T1,T2,T3,3)
title('Setpoint tracking')
legend('\alpha = 1','\alpha = 2','\alpha = 4')

% Compute closed-loop transfer from u to y
D1 = getIOTransfer(T1,'u','y');

13 Control System Tuning Examples

13-14

D2 = getIOTransfer(T2,'u','y');
D3 = getIOTransfer(T3,'u','y');
step(D1,D2,D3,10)
title('Disturbance rejection')
legend('\alpha = 1','\alpha = 2','\alpha = 4')

Note how disturbance rejection improves as alpha increases, but at the expense of increased
overshoot in setpoint tracking. Plot the open-loop responses for the three designs, and note how the
slope before crossover (0dB) increases with alpha.

L1 = getLoopTransfer(T1,'u');
L2 = getLoopTransfer(T2,'u');
L3 = getLoopTransfer(T3,'u');
bodemag(L1,L2,L3,{1e-2,1e2}), grid
title('Open-loop response')
legend('\alpha = 1','\alpha = 2','\alpha = 4')

 PID Tuning for Setpoint Tracking vs. Disturbance Rejection

13-15

Which design is most suitable depends on the primary purpose of the feedback loop you are tuning.

Tuning of 2-DOF PID Controller

If you cannot compromise tracking to improve disturbance rejection, consider using a 2-DOF
architecture instead. A 2-DOF PID controller is capable of fast disturbance rejection without
significant increase of overshoot in setpoint tracking.

Figure 3: 2-DOF PID Control Loop.

Use the tunablePID2 object to parameterize the 2-DOF PID controller and construct a tunable
model T0 of the closed-loop system in Figure 3.

C = tunablePID2('C','pid');
C.Tf.Value = 0.01; C.Tf.Free = false; % fix Tf=0.01

13 Control System Tuning Examples

13-16

T0 = feedback(G*LS*C,1,2,1,+1);
T0 = T0(:,1);
T0.u = 'r'; T0.y = 'y';

Next tune the 2-DOF PI controller for the largest loop gain tried earlier ().

% Minimum loop gain inside bandwidth (for disturbance rejection)
alpha = 4;
R3.MinGain = alpha*wc/s;

% Tune 2-DOF PI controller
T4 = systune(T0,R1,[R2 R3]);

Final: Soft = 1.09, Hard = 0.8969, Iterations = 74

Compare the setpoint tracking and disturbance rejection properties of the 1-DOF and 2-DOF designs
for .

clf, step(T3,'b',T4,'g--',4)
title('Setpoint tracking')
legend('1-DOF','2-DOF')

D4 = getIOTransfer(T4,'u','y');
step(D3,'b',D4,'g--',4)
title('Disturbance rejection')
legend('1-DOF','2-DOF')

 PID Tuning for Setpoint Tracking vs. Disturbance Rejection

13-17

The responses to a step disturbance are similar but the 2-DOF controller eliminates the overshoot in
the response to a setpoint change. You can use showTunable to compare the tuned gains in the 1-
DOF and 2-DOF controllers.

showTunable(T3) % 1-DOF PI

C =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 9.51, Ki = 14.9, Kd = 0.89, Tf = 0.01

Name: C
Continuous-time PIDF controller in parallel form.

showTunable(T4) % 2-DOF PI

C =

 1 s
 u = Kp (b*r-y) + Ki --- (r-y) + Kd -------- (c*r-y)
 s Tf*s+1

 with Kp = 5.97, Ki = 21.4, Kd = 0.877, Tf = 0.01, b = 0.676, c = 1.26

13 Control System Tuning Examples

13-18

Name: C
Continuous-time 2-DOF PIDF controller in parallel form.

See Also
systune

Related Examples
• “Multi-Loop PI Control of a Robotic Arm” on page 13-110

 PID Tuning for Setpoint Tracking vs. Disturbance Rejection

13-19

Time-Domain Specifications

This example gives a tour of available time-domain requirements for control system tuning with
systune or looptune.

The systune and looptune functions tune the parameters of fixed-structure control systems subject
to a variety of time- and frequency-domain requirements. To specify these requirements, use tuning
goal objects.

Step Command Following

The TuningGoal.StepTracking requirement specifies how the tuned closed-loop system should
respond to a step input. You can specify the desired response either in terms of first- or second-order
characteristics, or as an explicit reference model. This requirement is satisfied when the relative gap
between the actual and desired responses is small enough in the least-squares sense. For example,

R1 = TuningGoal.StepTracking('r','y',0.5);

stipulates that the closed-loop response from r to y should behave like a first-order system with time
constant 0.5, while

R2 = TuningGoal.StepTracking('r','y',zpk(2,[-1 -2],-1));

specifies a second-order, non-minimum-phase behavior. Use viewGoal to visualize the desired
response.

viewGoal(R2)

13 Control System Tuning Examples

13-20

This requirement can be used to tune both SISO and MIMO step responses. In the MIMO case, the
requirement ensures that each output tracks the corresponding input with minimum cross-couplings.

Step Disturbance Rejection

The TuningGoal.StepRejection requirement specifies how the tuned closed-loop system should
respond to a step disturbance. You can specify worst-case values for the response amplitude, settling
time, and damping of oscillations. For example,

R1 = TuningGoal.StepRejection('d','y',0.3,2,0.5);

limits the amplitude of y(t) to 0.3, the settling time to 2 time units, and the damping ratio to a
minimum of 0.5. Use viewGoal to see the corresponding time response.

viewGoal(R1)

 Time-Domain Specifications

13-21

You can also use a "reference model" to specify the desired response. Note that the actual and
specified responses may differ substantially when better disturbance rejection is possible. Use the
TuningGoal.Transient requirement when a close match is desired. For best results, adjust the
gain of the reference model so that the actual and specified responses have similar peak amplitudes
(see TuningGoal.StepRejection documentation for details).

Transient Response Matching

The TuningGoal.Transient requirement specifies the transient response for a specific input
signal. This is a generalization of the TuningGoal.StepTracking requirement. For example,

R1 = TuningGoal.Transient('r','y',tf(1,[1 1 1]),'impulse');

requires that the tuned response from r to y look like the impulse response of the reference model
1/(s2 + s + 1).

viewGoal(R1)

13 Control System Tuning Examples

13-22

The input signal can be an impulse, a step, a ramp, or a more general signal modeled as the impulse
response of some input shaping filter. For example, a sine wave with frequency ω0 can be modeled as
the impulse response of ω0

2/(s2 + ω0
2).

w0 = 2;
F = tf(w0^2,[1 0 w0^2]); % input shaping filter
R2 = TuningGoal.Transient('r','y',tf(1,[1 1 1]),F);
viewGoal(R2)

 Time-Domain Specifications

13-23

LQG Design

Use the TuningGoal.LQG requirement to create a linear-quadratic-Gaussian objective for tuning the
control system parameters. This objective is applicable to any control structure, not just the classical
observer structure of LQG control. For example, consider the simple PID loop of Figure 2 where d
and n are unit-variance disturbance and noise inputs, and Sd and Sn are lowpass and highpass filters
that model the disturbance and noise spectral contents.

Figure 2: Regulation loop.

To regulate y around zero, you can use the following LQG criterion:

J = limT ∞E 1
T∫0 T

(y2(t) + 0 . 05u2)dt

13 Control System Tuning Examples

13-24

The first term in the integral penalizes the deviation of y(t) from zero, and the second term penalizes
the control effort. Using systune, you can tune the PID controller to minimize the cost J. To do this,
use the LQG requirement

Qyu = diag([1 0.05]); % weighting of y^2 and u^2
R4 = TuningGoal.LQG({'d','n'},{'y','u'},1,Qyu);

See Also
TuningGoal.StepTracking | TuningGoal.StepRejection | TuningGoal.Transient |
TuningGoal.LQG

Related Examples
• “Frequency-Domain Specifications”

 Time-Domain Specifications

13-25

Frequency-Domain Specifications

This example shows the available frequency-domain requirements for control system tuning with
systune or looptune.

The systune and looptune functions tune the parameters of fixed-structure control systems subject
to a variety of time- and frequency-domain requirements. To specify these requirements, use tuning
goal objects.

Gain Limit

The TuningGoal.Gain requirement enforces gain limits on SISO or MIMO closed-loop transfer
functions. This requirement is useful to enforce adequate disturbance rejection and roll off, limit
sensitivity and control effort, and prevent saturation. For MIMO transfer functions, "gain" refers to
the largest singular value of the frequency response matrix. The gain limit can be frequency
dependent. For example

s = tf('s');
R1 = TuningGoal.Gain('d','y',s/(s+1)^2);

specifies that the gain from d to y should not exceed the magnitude of the transfer function
.

viewGoal(R1)

13 Control System Tuning Examples

13-26

It is often convenient to just sketch the asymptotes of the desired gain profile. For example, instead of
the transfer function , we could just specify gain values of 0.01,1,0.01 at the frequencies
0.01,1,100, the point (1,1) being the breakpoint of the two asymptotes and .

Asymptotes = frd([0.01,1,0.01],[0.01,1,100]);
R2 = TuningGoal.Gain('d','y',Asymptotes);

The requirement object automatically turns this discrete gain profile into a gain limit defined at all
frequencies.

bodemag(Asymptotes,R2.MaxGain)
legend('Specified','Interpolated')

Variance Amplification

The TuningGoal.Variance requirement limits the noise variance amplification from specified
inputs to specified outputs. In technical terms, this requirement constrains the norm of a closed-
loop transfer function. This requirement is preferable to TuningGoal.Gain when the input signals
are random processes and the average gain matters more than the peak gain. For example,

R = TuningGoal.Variance('n','y',0.1);

limits the output variance of y to for a unit-variance white-noise input n.

 Frequency-Domain Specifications

13-27

Reference Tracking and Overshoot Reduction

The TuningGoal.Tracking requirement enforces reference tracking and loop decoupling
objectives in the frequency domain. For example

R1 = TuningGoal.Tracking('r','y',2);

specifies that the output y should track the reference r with a two-second response time. Similarly

R2 = TuningGoal.Tracking({'Vsp','wsp'},{'V','w'},2);

specifies that V should track Vsp and w should track wsp with minimum cross-coupling between the
two responses. Tracking requirements are converted into frequency-domain constraints on the
tracking error as a function of frequency. For the first requirement R1, for example, the gain from r
to the tracking error e = r-y should be small at low frequency and approach 1 (100%) at
frequencies greater than 1 rad/s (bandwidth for a two-second response time). You can use viewGoal
to visualize this frequency-domain constraint. Note that the yellow region indicates where the
requirement is violated.

viewGoal(R1)

If the response has excessive overshoot, use the TuningGoal.Overshoot requirement in
conjunction with the TuningGoal.Tracking requirement. For example, you can limit the overshoot
from r to y to 10% using

R3 = TuningGoal.Overshoot('r','y',10);

13 Control System Tuning Examples

13-28

Disturbance Rejection

In feedback loops such as the one shown in Figure 1, the open- and closed-loop responses from
disturbance to output are related by

where is the loop transfer function measured at the disturbance entry point. The gain of is
the disturbance attenuation factor, the ratio between the open- and closed-loop sensitivities to the
disturbance. Its reciprocal is the sensitivity at the disturbance input.

Figure 1: Sample feedback loop.

The TuningGoal.Rejection requirement specifies the disturbance attenuation as a function of
frequency. The attenuation factor is greater than one inside the control bandwidth since feedback
control reduces the impact of disturbances. As a rule of thumb, a 10-times-larger attenuation requires
a 10-times-larger loop gain. For example

R1 = TuningGoal.Rejection('u',10);
R1.Focus = [0 1];

specifies that a disturbance entering at the plant input "u" should be attenuated by a factor 10 in the
frequency band from 0 to 1 rad/s.

viewGoal(R1)

 Frequency-Domain Specifications

13-29

More generally, you can specify a frequency-dependent attenuation profile, for example

s = tf('s');
R2 = TuningGoal.Rejection('u',(s+10)/(s+0.1));

specifies an attenuation factor of 100 below 0.1 rad/s gradually decreasing to 1 (no attenuation) after
10 rad/s.

viewGoal(R2)

13 Control System Tuning Examples

13-30

Instead of specifying the minimum attenuation, you can use the TuningGoal.Sensitivity
requirement to specify the maximum sensitivity, that is, the maximum gain of . For
example,

R3 = TuningGoal.Sensitivity('u',(s+0.1)/(s+10));

is equivalent to the rejection requirement R2 above. The sensitivity increases from 0.01 (1%) below
0.1 rad/s to 1 (100%) above 10 rad/s.

viewGoal(R3)

 Frequency-Domain Specifications

13-31

Frequency-Weighted Gain and Variance

The TuningGoal.WeightedGain and TuningGoal.WeightedVariance requirements are
generalizations of the TuningGoal.Gain and TuningGoal.Variance requirements. These
requirements constrain the or norm of a frequency-weighted closed-loop transfer function

, where and are user-defined weighting functions. For example,
specify following normalized gain constraint.

WL = blkdiag(1/(s+0.001),s/(0.001*s+1));
WR = [];
R = TuningGoal.WeightedGain('r',{'e','y'},WL,[]);

viewGoal(R)

13 Control System Tuning Examples

13-32

See Also
TuningGoal.Gain | TuningGoal.Variance | TuningGoal.Tracking | TuningGoal.Overshoot
| TuningGoal.Rejection | TuningGoal.Sensitivity | TuningGoal.WeightedGain |
TuningGoal.WeightedVariance

Related Examples
• “Time-Domain Specifications”
• “Loop Shape and Stability Margin Specifications”

 Frequency-Domain Specifications

13-33

Loop Shape and Stability Margin Specifications

This example shows how to specify loop shapes and stability margins when tuning control systems
with systune or looptune.

The systune and looptune functions tune the parameters of fixed-structure control systems subject
to a variety of time- and frequency-domain requirements. To specify these design requirements, use
tuning goal objects.

Loop Shape

The TuningGoal.LoopShape requirement is used to shape the open-loop response gain(s), a design
approach known as loop shaping. For example,

s = tf('s');
R1 = TuningGoal.LoopShape('u',1/s);

specifies that the open-loop response measured at the location "u" should look like a pure integrator
(as far as its gain is concerned). In MATLAB, use an AnalysisPoint block to mark the location "u",
see the "Building Tunable Models" example for details. In Simulink, use the addPoint method of the
slTuner interface to mark "u" as a point of interest.

As with other gain specifications, you can just specify the asymptotes of the desired loop shape using
a few frequency points. For example, to specify a loop shape with gain crossover at 1 rad/s, -20 dB/
decade slope before 1 rad/s, and -40 dB/decade slope after 1 rad/s, just specify that the gain at the
frequencies 0.1,1,10 should be 10,1,0.01, respectively.

LS = frd([10,1,0.01],[0.1,1,10]);
R2 = TuningGoal.LoopShape('u',LS);

bodemag(LS,R2.LoopGain)
legend('Specified','Interpolated')

13 Control System Tuning Examples

13-34

Loop shape requirements are constraints on the open-loop response L. For tuning purposes, they are
converted into closed-loop gain constraints on the sensitivity function S = 1/(1 + L) and
complementary sensitivity function T = L/(1 + L). Use viewGoal to visualize the target loop shape
and corresponding gain bounds on S (green) and T (red).

viewGoal(R2)

Minimum and Maximum Loop Gain

Instead of TuningGoal.LoopShape, you can use TuningGoal.MinLoopGain and
TuningGoal.MaxLoopGain to specify minimum or maximum values for the loop gain in a particular
frequency band. This is useful when the actual loop shape near crossover is best left to the tuning
algorithm to figure out. For example, the following requirements specify the minimum loop gain
inside the bandwidth and the roll-off characteristics outside the bandwidth, but do not specify the
actual crossover frequency nor the loop shape near crossover.

MinLG = TuningGoal.MinLoopGain('u',5/s); % integral action
MinLG.Focus = [0 0.2];

MaxLG = TuningGoal.MaxLoopGain('u',1/s^2); % -40dB/decade roll off
MaxLG.Focus = [1 Inf];

viewGoal([MinLG MaxLG])

 Loop Shape and Stability Margin Specifications

13-35

The TuningGoal.MaxLoopGain requirement rests on the fact that the open- and closed-loop gains
are comparable when the loop gain is small (|L | ≪ 1). As a result, it can be ineffective at keeping the
loop gain below some value close to 1. For example, suppose that flexible modes cause gain spikes
beyond the crossover frequency and that you need to keep these spikes below 0.5 (-6 dB). Instead of
using TuningGoal.MaxLoopGain, you can directly constrain the gain of L using TuningGoal.Gain
with a loop opening at "u".

MaxLG = TuningGoal.Gain('u','u',0.5);
MaxLG.Opening = 'u';

If the open-loop response is unstable, make sure to further disable the implicit stability constraint
associated with this requirement.

MaxLG.Stabilize = false;

Figure 1 shows this requirement evaluated for an open-loop response with flexible modes.

13 Control System Tuning Examples

13-36

Figure 1: Gain constraint on L

Stability Margins

The TuningGoal.Margins requirement uses the notion of disk margin to enforce minimum amounts
of gain and phase margins at the specified loop opening site(s). For MIMO feedback loops, this
requirement guarantees stability for gain or phase variations in each feedback channel. The gain or
phase can change in all channels simultaneously, and by a different amount in each channel. See
“Stability Margins in Control System Tuning” for details. For example,the following code enforces ±6
dB of gain margin and 45 degrees of phase margin at a location "u".

R = TuningGoal.Margins('u',6,45);

In MATLAB, use an AnalysisPoint block to mark the location "u" (see “Building Tunable Models”
for details). In Simulink, use the addPoint method of the slTuner interface to mark "u" as a point of
interest (see “Create and Configure slTuner Interface to Simulink Model” on page 10-157). Stability
margins are typically measured at the plant inputs or plant outputs or both.

The target gain and phase margin values are converted into a normalized gain constraint on some
appropriate closed-loop transfer function. The desired margins are achieved at frequencies where the
gain is less than 1. Use viewGoal to examine the requirement you have configured.

viewGoal(R)

 Loop Shape and Stability Margin Specifications

13-37

The shaded region indicates where the constraint is violated. After tuning, for a tuned model T, you
can use viewGoal(R,T) to see the tuned frequency-dependent margins on this plot.

See Also
TuningGoal.MinLoopGain | TuningGoal.MaxLoopGain | TuningGoal.LoopShape |
TuningGoal.Margins

Related Examples
• “Stability Margins in Control System Tuning”
• “Frequency-Domain Specifications”

13 Control System Tuning Examples

13-38

System Dynamics Specifications

This example shows how to constrain the poles of a control system tuned with systune or
looptune.

The systune and looptune functions tune the parameters of fixed-structure control systems subject
to a variety of time- and frequency-domain requirements. To specify these design requirements, use
tuning goal objects.

Closed-Loop Poles

The TuningGoal.Poles goal constrains the location of the closed-loop poles. You can enforce some
minimum decay rate

Re(s) < − α,

impose some minimum damping ratio

Re(s) < − ζ |s | ,

or constrain the pole magnitude to

|s | < ωmax .

For example

MinDecay = 0.5;
MinDamping = 0.7;
MaxFrequency = 10;
R = TuningGoal.Poles(MinDecay,MinDamping,MaxFrequency);

constrains the closed-loop poles to lie in the white region below.

viewGoal(R)

 System Dynamics Specifications

13-39

Increasing the MinDecay value results in faster transients. Increasing the MinDamping value results
in better damped transients. Decreasing the MaxFrequency value prevents fast dynamics.

Controller Poles

The TuningGoal.ControllerPoles goal constrains the pole locations for tuned elements such as
filters and compensators. The tuning algorithm may produce unstable compensators for unstable
plants. To prevent this, use the TuningGoal.ControllerPoles goal to keep the compensator poles
in the left-half plane. For example, if your compensator is parameterized as a second-order transfer
function,

C = tunableTF('C',1,2);

you can force it to have stable dynamics by adding the requirement

MinDecay = 0;
R = TuningGoal.ControllerPoles('C',MinDecay);

See Also
TuningGoal.Poles | TuningGoal.ControllerPoles

Related Examples
• “Loop Shape and Stability Margin Specifications”

13 Control System Tuning Examples

13-40

Configuring Design Requirements

This example shows how to configure additional attributes of design requirements for use with
systune or looptune.

All TuningGoal requirements are objects that can be further configured by modifying their default
attributes. The display shows the list of such attributes. For example

R = TuningGoal.Gain('d','y',1)

R =
 Gain with properties:

 MaxGain: [1x1 zpk]
 Focus: [0 Inf]
 Stabilize: 1
 InputScaling: []
 OutputScaling: []
 Input: {'d'}
 Output: {'y'}
 Models: NaN
 Openings: {0x1 cell}
 Name: ''

Three attributes are shared by multiple requirements. The Focus property specifies the frequency
band in which the requirement is active. For example,

R.Focus = [1 20];

limits the gain from d to y in the frequency interval [1,20] only. The Models property specifies which
models the requirement applies to (in the context of tuning for multiple plant models). For example,

R.Models = [2 3 5];

indicates that the requirement only applies to the second, third, and fifth model in the model array
supplied to systune. Finally, the Openings property lets you specify additional loop openings. For
example

R = TuningGoal.Margins('Inner',6,45);
R.Openings = 'Outer';

specifies stability margins for the inner loop with the outer loop open. In MATLAB®, use
AnalysisPoint blocks to mark loop opening locations. In Simulink®, use the addPoint method of
the slTuner interface to flag such locations.

 Configuring Design Requirements

13-41

Validating Results

This example shows how to interpret and validate tuning results from systune.

Background

You can tune the parameters of your control system with systune or looptune. The design
specifications are captured using TuningGoal requirement objects. This example shows how to
interpret the results from systune, graphically verify the design requirements, and perform
additional open- and closed-loop analysis.

Controller Tuning with SYSTUNE

We use an autopilot tuning application as illustration, see the "Tuning of a Two-Loop Autopilot"
example for details. The tuned compensator is the "MIMO Controller" block highlighted in orange in
the model below.

open_system('rct_airframe2')

The setup and tuning steps are repeated below for completeness.

ST0 = slTuner('rct_airframe2','MIMO Controller');

% Compensator parameterization
C0 = tunableSS('C',2,1,2);
C0.D.Value(1) = 0;
C0.D.Free(1) = false;
setBlockParam(ST0,'MIMO Controller',C0)

% Requirements
Req1 = TuningGoal.Tracking('az ref','az',1); % tracking

13 Control System Tuning Examples

13-42

Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0])); % roll-off
Req3 = TuningGoal.Margins('delta fin',7,45); % margins
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain); % disturbance rejection

% Tuning
Opt = systuneOptions('RandomStart',3);
rng('default')
[ST1,fSoft] = systune(ST0,[Req1,Req2,Req3,Req4],Opt);

Final: Soft = 1.51, Hard = -Inf, Iterations = 52
Final: Soft = 1.15, Hard = -Inf, Iterations = 105
Final: Soft = 1.15, Hard = -Inf, Iterations = 71
Final: Soft = 1.15, Hard = -Inf, Iterations = 111

Interpreting Results

systune run three optimizations from three different starting points and returned the best overall
result. The first output ST is an slTuner interface representing the tuned control system. The second
output fSoft contains the final values of the four requirements for the best design.

fSoft

fSoft =

 1.1476 1.1476 0.5461 1.1476

Requirements are normalized so a requirement is satisfied if and only if its value is less than 1.
Inspection of fSoft reveals that Requirements 1,2,4 are active and slightly violated while
Requirement 3 (stability margins) is satisfied.

Verifying Requirements

Use viewGoal to graphically inspect each requirement. This is useful to understand whether small
violations are acceptable or what causes large violations. First verify the tracking requirement.

viewGoal(Req1,ST1)

 Validating Results

13-43

We observe a slight violation across frequency, suggesting that setpoint tracking will perform close to
expectations. Similarly, verify the disturbance rejection requirement.

viewGoal(Req4,ST1)
legend('location','NorthWest')

13 Control System Tuning Examples

13-44

Most of the violation is at low frequency with a small bump near 35 rad/s, suggesting possible
damped oscillations at this frequency. Finally, verify the stability margin requirement.

viewGoal(Req3,ST1)

 Validating Results

13-45

This requirement is satisfied at all frequencies, with the smallest margins achieved near the
crossover frequency as expected.

Evaluating Requirements

You can also use evalGoal to evaluate each requirement, that is, compute its contribution to the soft
and hard constraints. For example

[H1,f1] = evalGoal(Req1,ST1);

returns the value f1 of the requirement and the underlying frequency-weighted transfer function H1
used to computed it. You can verify that f1 matches the first entry of fSoft and coincides with the
peak gain of H1.

[f1 fSoft(1) getPeakGain(H1,1e-6)]

ans =

 1.1476 1.1476 1.1476

Analyzing System Responses

In addition to verifying requirements, you can perform basic open- and closed-loop analysis using
getIOTransfer and getLoopTransfer. For example, verify tracking performance in the time
domain by plotting the response az to a step command azref for the tuned system ST1.

13 Control System Tuning Examples

13-46

T = ST1.getIOTransfer('az ref','az');
step(T)

Also plot the open-loop response measured at the plant input delta fin. You can use this plot to
assess the classical gain and phase margins at the plant input.

L = ST1.getLoopTransfer('delta fin',-1); % negative-feedback loop transfer
margin(L)
grid

 Validating Results

13-47

Soft vs Hard Requirements

So far we have treated all four requirements equally in the objective function. Alternatively, you can
use a mix of soft and hard constraints to differentiate between must-have and nice-to-have
requirements. For example, you could treat Requirements 3,4 as hard constraints and optimize the
first two requirements subject to these constraints. For best results, do this only after obtaining a
reasonable design with all requirements treated equally.

[ST2,fSoft,gHard] = systune(ST1,[Req1 Req2],[Req3 Req4]);

Final: Soft = 1.29, Hard = 0.99968, Iterations = 176

fSoft

fSoft =

 1.2805 1.2862

gHard

gHard =

 0.4665 0.9997

13 Control System Tuning Examples

13-48

Here fSoft contains the final values of the first two requirements (soft constraints) and gHard
contains the final values of the last two requirements (hard constraints). The hard constraints are
satisfied since all entries of gHard are less than 1. As expected, the best value of the first two
requirements went up as the optimizer strived to strictly enforce the fourth requirement.

 Validating Results

13-49

Tune Control Systems in Simulink

This example shows how to use systune or looptune to automatically tune control systems
modeled in Simulink®.

Engine Speed Control

For this example we use the following model of an engine speed control system:

open_system('rct_engine_speed')

The control system consists of a single PID loop and the PID controller gains must be tuned to
adequately respond to step changes in the desired speed. Specifically, we want the response to settle
in less than 5 seconds with little or no overshoot. While pidtune is a faster alternative for tuning a
single PID controller, this simple example is well suited for an introduction to the systune and
looptune workflows in Simulink.

Controller Tuning with SYSTUNE

The slTuner interface provides a convenient gateway to systune for control systems modeled in
Simulink. This interface lets you specify which blocks in the Simulink model are tunable and what
signals are of interest for open- or closed-loop validation. Create an slTuner instance for the
rct_engine_speed model and list the "PID Controller" block (highlighted in orange) as tunable.
Note that all Linear Analysis points in the model (signals "Ref" and "Speed" here) are automatically
available as points of interest for tuning.

ST0 = slTuner('rct_engine_speed','PID Controller');

The PID block is initialized with its value in the Simulink model, which you can access using
getBlockValue. Note that the proportional and derivative gains are initialized to zero.

getBlockValue(ST0,'PID Controller')

ans =

 1
 Ki * ---
 s

13 Control System Tuning Examples

13-50

 with Ki = 0.01

Name: PID_Controller
Continuous-time I-only controller.

Next create a step tracking requirement to capture the target settling time of 5 seconds. Use the
signal names in the Simulink model to refer to the reference and output signals, and specify the
target response as a first-order response with time constant of 1 second.

TrackReq = TuningGoal.StepTracking('Ref','Speed',1);

You can now tune the control system ST0 subject to the requirement TrackReq.

ST1 = systune(ST0,TrackReq);

Final: Soft = 0.282, Hard = -Inf, Iterations = 67

The final value is close to 1 indicating that the tracking requirement is met. systune returns a
"tuned" version ST1 of the control system described by ST0. Again use getBlockValue to access the
tuned values of the PID gains:

getBlockValue(ST1,'PID Controller')

ans =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 0.00217, Ki = 0.00341, Kd = 0.000512, Tf = 1.24e-06

Name: PID_Controller
Continuous-time PIDF controller in parallel form.

To simulate the closed-loop response to a step command in speed, get the initial and tuned transfer
functions from speed command "Ref" to "Speed" output and plot their step responses:

T0 = getIOTransfer(ST0,'Ref','Speed');
T1 = getIOTransfer(ST1,'Ref','Speed');
step(T0,T1)
legend('Initial','Tuned')

 Tune Control Systems in Simulink

13-51

Controller Tuning with LOOPTUNE

You can also use looptune to tune control systems modeled in Simulink. The looptune workflow is
very similar to the systune workflow. One difference is that looptune needs to know the boundary
between the plant and controller, which is specified in terms of controls and measurements signals.
For a single loop the performance is essentially captured by the response time, or equivalently by the
open-loop crossover frequency. Based on first-order characteristics the crossover frequency should
exceed 1 rad/s for the closed-loop response to settle in less than 5 seconds. You can therefore tune
the PID loop using 1 rad/s as target 0-dB crossover frequency.

% Mark the signal "u" as a point of interest
addPoint(ST0,'u')

% Tune the controller parameters
Control = 'u';
Measurement = 'Speed';
wc = 1;
ST1 = looptune(ST0,Control,Measurement,wc);

Final: Peak gain = 0.979, Iterations = 4
Achieved target gain value TargetGain=1.

Again the final value is close to 1, indicating that the target control bandwidth was achieved. As with
systune, use getIOTransfer to compute and plot the closed-loop response from speed command
to actual speed. The result is very similar to that obtained with systune.

13 Control System Tuning Examples

13-52

T0 = getIOTransfer(ST0,'Ref','Speed');
T1 = getIOTransfer(ST1,'Ref','Speed');
step(T0,T1)
legend('Initial','Tuned')

You can also perform open-loop analysis, for example, compute the gain and phase margins at the
plant input u.

% Note: -1 because |margin| expects the negative-feedback loop transfer
L = getLoopTransfer(ST1,'u',-1);

margin(L), grid

 Tune Control Systems in Simulink

13-53

Validation in Simulink

Once you are satisfied with the systune or looptune results, you can upload the tuned controller
parameters to Simulink for further validation with the nonlinear model.

writeBlockValue(ST1)

You can now simulate the engine response with the tuned PID controller.

13 Control System Tuning Examples

13-54

The nonlinear simulation results closely match the linear responses obtained in MATLAB.

Constraints on PID Gains

It is often useful to constrain the range of tuned parameters to weed out undesirable solutions. For
example, you may require that the proportional and derivative gains of the PID controller be
nonnegative. To do this, access the tuned block parameterization.

C = getBlockParam(ST0,'PID Controller')

Tunable continuous-time PID controller "PID_Controller" with formula:

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

and tunable parameters Kp, Ki, Kd, Tf.

Type "pid(C)" to see the current value.

Set the "Minimum" value of the tunable parameters Kp and Kd to 0.

C.Kp.Minimum = 0;
C.Kd.Minimum = 0;

Finally, associate the modified parameterization with the tuned block.

setBlockParam(ST0,'PID Controller',C)

Retune the PID gains and verify that the proportional and derivative gains are indeed nonnegative.

ST1 = looptune(ST0,Control,Measurement,wc);

showTunable(ST1)

Final: Peak gain = 0.964, Iterations = 4
Achieved target gain value TargetGain=1.

 Tune Control Systems in Simulink

13-55

Block 1: rct_engine_speed/PID Controller =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 0.00091, Ki = 0.00253, Kd = 0.000146, Tf = 0.01

Name: PID_Controller
Continuous-time PIDF controller in parallel form.

Comparison of PI and PID Controllers

Closer inspection of the tuned PID gains suggests that the contribution of the derivative term is
minor. This suggests using a simpler PI controller instead. To do this, override the default
parameterization for the "PID Controller" block:

setBlockParam(ST0,'PID Controller',tunablePID('C','pi'))

This specifies that the "PID Controller" block should now be parameterized as a mere PI controller.
Next re-tune the control system for this simpler controller:

ST2 = looptune(ST0,Control,Measurement,wc);

Final: Peak gain = 0.95, Iterations = 4
Achieved target gain value TargetGain=1.

Again the final value is less than one indicating success. Compare the closed-loop response with the
previous ones:

T2 = getIOTransfer(ST2,'Ref','Speed');
step(T0,T1,T2,'r--')
legend('Initial','PID','PI')

13 Control System Tuning Examples

13-56

Clearly a PI controller is sufficient for this application.

See Also
systune (slTuner) | slTuner | TuningGoal.Tracking

Related Examples
• “Create and Configure slTuner Interface to Simulink Model”

 Tune Control Systems in Simulink

13-57

Tune a Control System Using Control System Tuner

This example shows how to use the Control System Tuner app to tune a MIMO, multiloop control
system modeled in Simulink®.

Control System Tuner lets you model any control architecture and specify the structure of controller
components, such as PID controllers, gains, and other elements. You specify which blocks in the
model are tunable. Control System Tuner parameterizes those blocks and tunes the free parameters
system to meet design requirements that you specify, such as setpoint tracking, disturbance rejection,
and stability margins.

Control System Model

This example uses the Simulink model rct_helico. Open the model.

open_system('rct_helico')

The plant, Helicopter, is an 8-state helicopter model trimmed to a steady-state hovering condition.
The state vector x = [u,w,q,theta,v,p,phi,r] consists of:

• Longitudinal velocity u (m/s)
• Normal velocity w (m/s)
• Pitch rate q (deg/s)
• Pitch angle theta (deg)
• Lateral velocity v (m/s)
• Roll rate p (deg/s)

13 Control System Tuning Examples

13-58

• Roll angle phi (deg)
• Yaw rate r (deg/s)

The control system of the model has two feedback loops. The inner loop provides static output
feedback for stability augmentation and decoupling, represented in the model by the gain block SOF.
The outer loop has a PI controller for each of the three attitude angles. The controller generates
commands ds,dc,dT in degrees for the longitudinal cyclic, lateral cyclic, and tail rotor collective
using measurements of theta, phi, p, q, and r. This loop provides the desired setpoint tracking for
the three angles.

This example uses these control objectives:

• Track setpoint changes in theta, phi, and r with zero steady-state error, rise times of about 2
seconds, minimal overshoot, and minimal cross-coupling.

• Limit the control bandwidth to guard against neglected high-frequency rotor dynamics and
measurement noise. (The model contains low-pass filters that partially enforce this objective.)

• Provide strong multivariable gain and phase margins. (Multivariable margins measure robustness
to simultaneous gain or phase variations at the plant inputs and outputs. See the diskmargin
reference page for details.)

Set Up the Model for Tuning

Using Control System Tuner, you can jointly tune the inner and outer loops to meet all the design
requirements. To set up the model for tuning, open the app and specify which blocks of the Simulink
model you want to tune.

In the Simulink model window, under Control Systems in the Apps tab, select Control System
Tuner.

 Tune a Control System Using Control System Tuner

13-59

In Control System Tuner, on the Tuning tab, click Select Blocks. Use the Select tuned blocks dialog
box to specify the blocks to tune.

Click Add Blocks. Control System Tuner analyzes your model to find blocks that can be tuned. For
this example, the controller blocks to tune are the three PI controllers and the gain block. Check the
corresponding blocks PI1, PI2, PI3, and SOF.

Click OK. The Select tuned blocks dialog box now reflects the blocks you added.

When you select a block to tune, Control System Tuner automatically parameterizes the block
according to its type and initializes the parameterization with the block value in the Simulink model.

13 Control System Tuning Examples

13-60

In this example, the PI controllers are initialized to and the static output-feedback gain is
initialized to zero on all channels. Simulating the model shows that the control system is unstable for
these initial values.

Specify Tuning Goals

The design requirements for this system, discussed previously, include setpoint tracking, minimum
stability margins, and a limit on fast dynamics. In Control System Tuner, you capture design
requirements using tuning goals.

First, create a tuning goal for the setpoint-tracking requirement on theta, phi, and r. On the
Tuning tab, in the New Goal drop-down list, select Tracking of step commands.

 Tune a Control System Using Control System Tuner

13-61

In the Step Tracking Goal dialog, specify the reference signals for tracking. Under Specify step-
response inputs, click Add signal to list. Then click Select signal from model.

13 Control System Tuning Examples

13-62

In the Simulink model editor, select the reference signals theta_ref, phi_ref, and r_ref. These
signals appear in the Select signals dialog box. Click Add Signal(s) to add them to the step tracking
goal.

Next, specify the outputs that you want to track those references. Under Specify step-response
outputs, add the outputs theta, phi, and r.

The requirement is that the responses at the outputs track the reference commands with a first-order
response that has a one-second time constant. Enter these values in the Desired Response section
of the dialog box. Also, for this example set Keep mismatch below to 20. This value sets a 20%
relative mismatch between the target first-order response and the tuned response.

This figure shows the configuration of the Step Tracking Goal dialog box. Click OK to save the tuning
goal.

Next, create tuning goals for the desired stability margin requirements. For this example, the
multivariable gain and phase margins at the plant inputs u and plant outputs y must be at least 5 dB

 Tune a Control System Using Control System Tuner

13-63

and 40 degrees. Create separate tuning goals for the input and output margin constraints. In the
New Goal drop-down list, select Minimum stability margins. In the Margins Goal dialog box, add
the input signal u under Measure stability margins at the following locations. Also, enter the
gain and phase values 5 and 40 in the Desired Margins section of the dialog box. Click OK to save
the input stability margin goal.

Create another Margins Goal for the output stability margin. Specify the output signal y and the
target margins, as shown, and save the output stability margin goal.

13 Control System Tuning Examples

13-64

The last requirement is to limit fast dynamics and jerky transients. To achieve this, create a tuning
goal that constrains the magnitude of the closed-loop poles to less than 25 rad/s. In the New Goal
drop-down list, select Constraint on closed-loop dynamics. In the Poles Goal dialog box, specify
the maximum natural frequency of 25, and click OK to save the tuning goal.

 Tune a Control System Using Control System Tuner

13-65

As you create each tuning goal, Control System Tuner creates a new figure that displays a graphical
representation of the tuning goal. When you tune your control system, you can refer to this figure for
a graphical representation of how closely the tuned system satisfies the tuning goal.

13 Control System Tuning Examples

13-66

Tune the Control System

Tune the control system to meet the design requirements you have specified.

On the Tuning tab, click Tune. Control System Tuner adjusts the tunable parameters to values that
best meet those requirements.

Control System Tuner automatically updates the tuning-goal plots to reflect the tuned parameter
values. Examine these plots to see how well the requirements are satisfied by the design. For
instance, examine the tuned step responses of tracking requirements.

 Tune a Control System Using Control System Tuner

13-67

The blue line shows that the tuned response is very close to the target response, in pink. The rise
time is about two seconds, and there is no overshoot and little cross-coupling.

Similarly, the MarginsGoal1 and MarginsGoal2 plots provide a visual assessment of the
multivariable stability margins. (See the diskmargin reference page for more information about
multivariable stability margins.) These plots show that the stability margin is out of the shaded
region, satisfying the requirement at all frequencies.

13 Control System Tuning Examples

13-68

You can also view a numeric report of the tuning results. Click the Tuning Report at the bottom right
of Control System Tuner.

 Tune a Control System Using Control System Tuner

13-69

When you tune the model, Control System Tuner converts each tuning goal to a function of the
tunable parameters of the system and adjusts the parameters to minimize the value of those
functions. For this example, the tuning report shows that the final values for all tuning goals are close
to 1, which indicates that all the requirements are nearly met.

Validate the Tuned Design

In general, your Simulink model represents a nonlinear system. Control System Tuner linearizes the
model at the operating point you specify in the app, and tunes parameters using the linear
approximation of your system. Therefore, it is important to validate the controller design on the full
Simulink model.

To do so, write the tuned parameter values back to the Simulink model. On the Control System tab,
click Update Blocks. In the Simulink model window, simulate the model with the new parameter
values. Observe the response to the step changes in setpoint commands, theta-ref, phi-ref, and
r-ref at 0, 3, and 6 seconds respectively.

Examine the simulation to confirm that you get the desired responses in the Simulink model. Here,
the rise time of each response is about 2 seconds with no overshoot, no steady-state error, and
minimal cross-coupling, as specified in the design requirements.

See Also
Control System Tuner

13 Control System Tuning Examples

13-70

Related Examples
• “Specify Operating Points for Tuning in Control System Tuner”
• “Tuning for Multiple Values of Plant Parameters” on page 13-206

 Tune a Control System Using Control System Tuner

13-71

Using Parallel Computing to Accelerate Tuning

This example shows how to leverage the Parallel Computing Toolbox™ to accelerate multi-start
strategies for tuning fixed-structure control systems.

Background

Both systune and looptune use local optimization methods for tuning the control architecture at
hand. To mitigate the risk of ending up with a locally optimal but globally poor design, it is
recommended to run several optimizations starting from different randomly generated initial points.
If you have a multi-core machine or have access to distributed computing resources, you can
significantly speed up this process using the Parallel Computing Toolbox.

This example shows how to parallelize the tuning of an airframe autopilot with looptune. See the
example "Tuning of a Two-Loop Autopilot" for more details about this application of looptune.

Autopilot Tuning

The airframe dynamics and autopilot are modeled in Simulink.

open_system('rct_airframe1')

The autopilot consists of two cascaded loops whose tunable elements include two PI controller gains
("az Control" block) and one gain in the pitch-rate loop ("q Gain" block). The vertical acceleration az
should track the command azref with a 1 second response time. Use slTuner to configure this
tuning task (see "Tuning of a Two-Loop Autopilot" example for details):

ST0 = slTuner('rct_airframe1',{'az Control','q Gain'});
addPoint(ST0,{'az ref','delta fin','az','q'})

13 Control System Tuning Examples

13-72

% Design requirements
wc = [3,12]; % bandwidth
TrackReq = TuningGoal.Tracking('az ref','az',1); % tracking

Parallel Tuning with LOOPTUNE

We are ready to tune the autopilot gains with looptune. To minimize the risk of getting a poor-
quality local minimum, run 30 optimizations starting from 30 randomly generated values of the three
gains. Configure the looptune options to enable parallel processing of these 30 runs:

rng('default')
Options = looptuneOptions('RandomStart',30,'UseParallel',true);

Next call looptune to launch the tuning algorithm. The 30 runs are automatically distributed across
available computing resources:

Controls = 'delta fin';
Measurements = {'az','q'};
[ST,gam,Info] = looptune(ST0,Controls,Measurements,wc,TrackReq,Options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.075)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.04)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.06)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Peak gain = 1e+03, Iterations = 59
Final: Peak gain = 1.23, Iterations = 49
Final: Failed to enforce closed-loop stability (max Re(s) = 0.062)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.041)
Final: Failed to enforce closed-loop stability (max Re(s) = 0.078)
Final: Peak gain = 1.23, Iterations = 133
Final: Peak gain = 1.23, Iterations = 59
Final: Peak gain = 1.23, Iterations = 61
Final: Failed to enforce closed-loop stability (max Re(s) = 0.083)
Final: Peak gain = 1e+03, Iterations = 61
Warning: Tuning goal "Open loop CG": Feedback configuration has fixed
integrators that cannot be stabilized with available tuning parameters. Make
sure these are modeling artifacts rather than physical instabilities.

 Using Parallel Computing to Accelerate Tuning

13-73

Most runs return 1.23 as optimal gain value, suggesting that this local minimum has a wide region of
attraction and is likely to be the global optimum. Use showBlockValue to see the corresponding
gain values:

showBlockValue(ST)

AnalysisPoints_ =

 D =
 u1 u2 u3 u4
 y1 1 0 0 0
 y2 0 1 0 0
 y3 0 0 1 0
 y4 0 0 0 1

Name: AnalysisPoints_
Static gain.

az_Control =

 1
 Kp + Ki * ---
 s

 with Kp = 0.00165, Ki = 0.00166

Name: az_Control
Continuous-time PI controller in parallel form.

q_Gain =

 D =
 u1
 y1 1.983

Name: q_Gain
Static gain.

Plot the closed-loop response for this set of gains:

T = getIOTransfer(ST,'az ref','az');
step(T,5)

13 Control System Tuning Examples

13-74

See Also
systune (slTuner) | slTuner | systune

 Using Parallel Computing to Accelerate Tuning

13-75

Control of a Linear Electric Actuator

This example shows how to use slTuner and systune to tune the current and velocity loops in a
linear electric actuator with saturation limits.

Linear Electric Actuator Model

Open the Simulink model of the linear electric actuator:

open_system('rct_linact')

The electrical and mechanical components are modeled using Simscape Electrical. The control
system consists of two cascaded feedback loops controlling the driving current and angular speed of
the DC motor.

13 Control System Tuning Examples

13-76

Figure 1: Current and Speed Controllers.

Note that the inner-loop (current) controller is a proportional gain while the outer-loop (speed)
controller has proportional and integral actions. The output of both controllers is limited to plus/
minus 5.

Design Specifications

We need to tune the proportional and integral gains to respond to a 2000 rpm speed demand in about
0.1 seconds with minimum overshoot. The initial gain settings in the model are P=50 and
PI(s)=0.2+0.1/s and the corresponding response is shown in Figure 2. This response is too slow and
too sensitive to load disturbances.

Figure 2: Untuned Response.

Control System Tuning

You can use systune to jointly tune both feedback loops. To set up the design, create an instance of
the slTuner interface with the list of tuned blocks. All blocks and signals are specified by their
names in the model. The model is linearized at t=0.5 to avoid discontinuities in some derivatives at
t=0.

TunedBlocks = {'Current PID','Speed PID'};
tLinearize = 0.5; % linearize at t=0.5

 Control of a Linear Electric Actuator

13-77

% Create tuning interface
ST0 = slTuner('rct_linact',TunedBlocks,tLinearize);
addPoint(ST0,{'Current PID','Speed PID'})

The data structure ST0 contains a description of the control system and its tunable elements. Next
specify that the DC motor should follow a 2000 rpm speed demand in 0.1 seconds:

TR = TuningGoal.Tracking('Speed Demand (rpm)','rpm',0.1);

You can now tune the proportional and integral gains with looptune:

ST1 = systune(ST0,TR);

Final: Soft = 1.04, Hard = -Inf, Iterations = 40

This returns an updated description ST1 containing the tuned gain values. To validate this design,
plot the closed-loop response from speed demand to speed:

T1 = getIOTransfer(ST1,'Speed Demand (rpm)',{'rpm','i'});
figure
step(T1,0.5)

The response looks good in the linear domain so push the tuned gain values to Simulink and further
validate the design in the nonlinear model.

writeBlockValue(ST1)

13 Control System Tuning Examples

13-78

The nonlinear simulation results appear in Figure 3. The nonlinear behavior is far worse than the
linear approximation. Figure 4 shows saturation and oscillations in the inner (current) loop.

Figure 3: Nonlinear Simulation of Tuned Controller.

Figure 4: Current Controller Output.

 Control of a Linear Electric Actuator

13-79

Preventing Saturations

So far we have only specified a desired response time for the outer (speed) loop. This leaves systune
free to allocate the control effort between the inner and outer loops. Saturation in the inner loop
suggests that the proportional gain is too high and that some rebalancing is needed. One possible
remedy is to explicitly limit the gain from the speed command to the "Current PID" output. For a
speed reference of 2000 rpm and saturation limits of plus/minus 5, the average gain should not
exceed 5/2000 = 0.0025. To be conservative, try keeping the gain from speed reference to "Current
PID" below 0.001. To do this, add a gain constraint and retune the controller gains with both
requirements in place.

% Mark the "Current PID" output as a point of interest
addPoint(ST0,'Current PID')

% Limit gain from speed demand to "Current PID" output to avoid saturation
MG = TuningGoal.Gain('Speed Demand (rpm)','Current PID',0.001);

% Retune with this additional goal
ST2 = systune(ST0,[TR,MG]);

Final: Soft = 1.39, Hard = -Inf, Iterations = 52

The final gain 1.39 indicates that the requirements are nearly but not exactly met (all requirements
are met when the final gain is less than 1). Use viewGoal to inspect how the tuned controllers fare
against each goal.

figure('Position',[100,100,560,550])
viewGoal([TR,MG],ST2)

13 Control System Tuning Examples

13-80

Next compare the two designs in the linear domain.

T2 = getIOTransfer(ST2,'Speed Demand (rpm)',{'rpm','i'});
figure
step(T1,'b',T2,'g--',0.4)
legend('Initial tuning','Tuning with Gain Constraint')

 Control of a Linear Electric Actuator

13-81

The second design is less aggressive but still meets the response time requirement. A comparison of
the tuned PID gains shows that the proportional gain in the current loop was reduced from 18 to
about 2.

showTunable(ST1) % initial tuning

Block 1: rct_linact/Current Controller/Current PID =

 Kp = 30

Name: Current_PID
P-only controller.

Block 2: rct_linact/Speed Controller/Speed PID =

 1
 Kp + Ki * ---
 s

 with Kp = 0.391, Ki = 0.412

Name: Speed_PID
Continuous-time PI controller in parallel form.

13 Control System Tuning Examples

13-82

showTunable(ST2) % retuning

Block 1: rct_linact/Current Controller/Current PID =

 Kp = 2.2

Name: Current_PID
P-only controller.

Block 2: rct_linact/Speed Controller/Speed PID =

 1
 Kp + Ki * ---
 s

 with Kp = 0.481, Ki = 4.94

Name: Speed_PID
Continuous-time PI controller in parallel form.

To validate this new design, push the new tuned gain values to the Simulink model and simulate the
response to a 2000 rpm speed demand and 500 N load disturbance. The simulation results appear in
Figure 5 and the current controller output is shown in Figure 6.

writeBlockValue(ST2)

Figure 5: Nonlinear Response of Tuning with Gain Constraint.

 Control of a Linear Electric Actuator

13-83

Figure 6: Current Controller Output.

The nonlinear responses are now satisfactory and the current loop is no longer saturating. The
additional gain constraint has successfully rebalanced the control effort between the inner and outer
loops.

See Also
systune (slTuner) | slTuner | writeBlockValue | TuningGoal.Tracking |
TuningGoal.Gain

Related Examples
• “Control of a Linear Electric Actuator Using Control System Tuner” on page 13-85
• “Tune Control Systems in Simulink” on page 13-50
• “Tune Control Systems Using systune”

13 Control System Tuning Examples

13-84

Control of a Linear Electric Actuator Using Control System
Tuner

This example shows how to use the Control System Tuner app to tune the current and velocity loops
in a linear electric actuator with saturation limits.

Linear Electric Actuator Model

Open the Simulink® model of the linear electric actuator:

open_system('rct_linact')

The electrical and mechanical components are modeled using Simulink and Simscape Electrical. The
control system consists of two cascaded feedback loops controlling the driving current and angular
speed of the DC motor.

 Control of a Linear Electric Actuator Using Control System Tuner

13-85

Figure 1: Current and Speed Controllers.

Note that the inner-loop (current) controller is a proportional gain while the outer-loop (speed)
controller has proportional and integral actions. The output of both controllers is limited to plus/
minus 5.

Design Specifications

We need to tune the proportional and integral gains to respond to a 2000 rpm speed demand in about
0.1 seconds with minimum overshoot. The initial gain settings in the model are P=50 and
PI(s)=0.2+0.1/s and the corresponding response is shown in Figure 2. This response is too slow and
too sensitive to load disturbances.

Figure 2: Untuned Response.

Control System Tuning

You can use Control System Tuner to jointly tune both feedback loops. First, open Control System
Tuner from the Apps tab.

13 Control System Tuning Examples

13-86

Figure 3: Opening Control System Tuner.

This opens Control System Tuner.

 Control of a Linear Electric Actuator Using Control System Tuner

13-87

Figure 4: Control System Tuner.

You linearize the model at t=0.5 to avoid discontinuities in some derivatives at t=0. You can set the
operating point in Linearize At....

13 Control System Tuning Examples

13-88

Figure 5: Setting Operating Point for Linearization.

Set the linearization snapshot time at t=0.5.

 Control of a Linear Electric Actuator Using Control System Tuner

13-89

Figure 6: Setting the Linearization Snapshot Time.

In order to set the tuned blocks of the control system, open Select Blocks from Tuning tab.

Figure 7: Tuning Tab of Control System Tuner.

This shows the editor for tuned blocks where you can Add Blocks.

13 Control System Tuning Examples

13-90

Figure 8: Editor for Tuned Blocks.

Set the tuned blocks Current PID and Speed PID by navigating through the tree on the left.

Figure 9: Selecting Tuned Block Current PID.

 Control of a Linear Electric Actuator Using Control System Tuner

13-91

Figure 10: Selecting Tuned Block Speed PID.

Selected tuned blocks Current PID and Speed PID show in the editor for tuned blocks.

Figure 11: Editor Updated with Selected Tuned Blocks.

They also appear in the Tuned Blocks section of Data Browser on the left side of Control System
Tuner.

13 Control System Tuning Examples

13-92

Figure 12: Updated Tuned Blocks in Control System Tuner.

Next specify the tracking goal that the DC motor should follow a 2000 rpm speed demand in 0.1
seconds. See different types of goals under New Goal and select Reference Tracking.

 Control of a Linear Electric Actuator Using Control System Tuner

13-93

Figure 13: Available Goals for Selection in Control System Tuner.

Name the tracking goal as TR, specify the tracking goal from the reference input rct_linact/
Speed Demand(rpm)/1 to the reference-tracking output rct_linact/Hall Effect Sensor/
1[rpm] with the response time 0.1 seconds.

13 Control System Tuning Examples

13-94

Figure 14: Reference Tracking Dialog in Control System Tuner.

The plot for specified tracking goal appears in Control System Tuner and Tuning Goals section of
Data Browser on the left side is updated.

 Control of a Linear Electric Actuator Using Control System Tuner

13-95

Figure 15: Tracking Tuning Goal in Control System Tuner.

You can now tune the proportional and integral gains with Control System Tuner from clicking Tune
button. The plot for tracking goal is updated

13 Control System Tuning Examples

13-96

Figure 16: Updated Tracking Goal Plot with Tuned Blocks in Control System Tuner.

Tuned blocks are updated with the tuned gain values. To validate this design, plot the closed-loop
response from speed demand to speed from New Plot of Control System Tab.

 Control of a Linear Electric Actuator Using Control System Tuner

13-97

Figure 17: New Plot in Control System Tuner.

Specify the closed-loop response from speed demand to speed by the step plot dialog.

13 Control System Tuning Examples

13-98

Figure 18: Step Plot Dialog in Control System Tuner.

You see the step plot of the response in Control System Tuner.

 Control of a Linear Electric Actuator Using Control System Tuner

13-99

Figure 19: Step Plot in Control System Tuner.

The response looks good in the linear domain so first store the current design by clicking Store and
push the tuned gain values to Simulink by clicking Update Blocks and further validate the design
in the nonlinear model.

13 Control System Tuning Examples

13-100

Figure 20: Stored Values of Tuned Blocks in Control System Tuner.

The nonlinear simulation results appear in Figure 21. The nonlinear behavior is far worse than the
linear approximation, a discrepancy that can be traced to saturations in the inner loop (see Figure
22).

 Control of a Linear Electric Actuator Using Control System Tuner

13-101

Figure 21: Nonlinear Simulation of Tuned Controller.

Figure 22: Current Controller Output (limited to plus/minus 5).

Preventing Saturations

So far we have only specified a desired response time for the outer (speed) loop. This leaves systune
free to allocate the control effort between the inner and outer loops. Saturations in the inner loop
suggest that the proportional gain is too high and that some rebalancing is needed. One possible
remedy is to explicitly limit the gain from the speed command to the outputs of the P and PI
controllers. For a speed reference of 2000 rpm and saturation limits of plus/minus 5, the average gain
should not exceed 5/2000 = 0.0025. To be conservative, we can try to keep the gain from speed
reference to controller outputs below 0.001. To do this, add two gain requirements and retune the
controller gains with all three requirements in place.

Limit gain from speed demand to control signals to avoid saturation by specifying two new goals from
Tuning tab. You need to select control signals from Simulink model since they are not defined
previously.

13 Control System Tuning Examples

13-102

Figure 23: Gain Goal Dialog from Speed Demand to Control Signal of Speed PID.

 Control of a Linear Electric Actuator Using Control System Tuner

13-103

Figure 24: Gain Goal Dialog from Speed Demand to Control Signal of Current PID.

New gain goals appear in Tuning Goals section of Control System Tuner.

13 Control System Tuning Examples

13-104

Figure 25: Two Gain Goals Added to Control System Tuner.

Retune with these additional requirements. Tuning Report accessed at the bottom right of the tool
shows the worst gain 1.39 indicating that the requirements are nearly but not exactly met (all
requirements are met when the final gain is less than 1).

 Control of a Linear Electric Actuator Using Control System Tuner

13-105

Figure 26: Tuning Report After Retuning.

Next compare the two designs in the linear domain by clicking Compare in Control System tab.

13 Control System Tuning Examples

13-106

Figure 27: Comparing Two Designs.

The second design is less aggressive but still meets the response time requirement.

 Control of a Linear Electric Actuator Using Control System Tuner

13-107

Figure 28: Step Responses of Two Designs.

Finally, push the new tuned gain values to the Simulink model by Update Blocks and simulate the
response to a 2000 rpm speed demand and 500 N load disturbance. The simulation results appear in
Figure 29 and the current controller output is shown in Figure 30.

13 Control System Tuning Examples

13-108

Figure 29: Nonlinear Response of Tuning with Gain Constraints.

Figure 30: Current Controller Output.

The nonlinear responses are now satisfactory and the current loop is no longer saturating. The
additional gain constraints have forced systune to re-distribute the control effort between the inner
and outer loops so as to avoid saturation.

See Also
Control System Tuner

Related Examples
• “Control of a Linear Electric Actuator”

 Control of a Linear Electric Actuator Using Control System Tuner

13-109

Multi-Loop PI Control of a Robotic Arm

This example shows how to use looptune to tune a multi-loop controller for a 6-DOF robotic arm
manipulator.

Robotic Arm Model and Controller

This example uses the six degree-of-freedom robotic arm shown below. This arm consists of six joints
labeled from base to tip: "Turntable", "Bicep", "Forearm", "Wrist", "Hand", and "Gripper". Each joint
is actuated by a DC motor except for the Bicep joint which uses two DC motors in tandem.

Figure 1: Robotic arm manipulator.

The file "cst_robotarm.slx" contains a Simulink model of the electrical and mechanical components of
this system.

open_system("cst_robotarm");

13 Control System Tuning Examples

13-110

Figure 2: Simulink model of robotic arm.

The "Controller" subsystem consists of six digital PI controllers (one per joint). Each PI controller is
implemented using the "2-DOF PID Controller" block from the Simulink library (see PID Tuning for
Setpoint Tracking vs. Disturbance Rejection example for motivation). The control sample time is
Ts=0.1 (10 Hz).

 Multi-Loop PI Control of a Robotic Arm

13-111

Figure 3: Controller structure.

Typically, such multi-loop controllers are tuned sequentially by tuning one PID loop at a time and
cycling through the loops until the overall behavior is satisfactory. This process can be time
consuming and is not guaranteed to converge to the best overall tuning. Alternatively, you can use
systune or looptune to jointly tune all six PI loops subject to system-level requirements such as
response time and minimum cross-coupling.

In this example, the arm must move to a particular configuration in about 1 second with smooth
angular motion at each joint. The arm starts in a fully extended vertical position with all joint angles
at zero except for the Bicep angle at ninety degrees. The end configuration is specified by the angular
positions: Turntable = 60 deg, Bicep = 80 deg, Forearm = 60 deg, Wrist = 90 deg, Hand = 90 deg,
and Gripper = 60 deg.

Press the "Play" button in the Simulink model to simulate the angular trajectories for the PI gain
values specified in the model. You can first double-click on the blue button to also show a 3D
animation of the robotic arm. The angular responses and the 3D animation appear below. Clearly the
response is too sluggish and imprecise.

13 Control System Tuning Examples

13-112

 Multi-Loop PI Control of a Robotic Arm

13-113

Figure 4: Untuned response.

Linearizing the Plant

The robot arm dynamics are nonlinear. To understand whether the arm can be controlled with one set
of PI gains, linearize the plant at various points (snapshot times) along the trajectory of interest. Here
"plant" refers to the dynamics between the control signals (outputs of PID blocks) and the
measurement signals (output of "6 DOF Robot Arm" block).

SnapshotTimes = 0:1:5;
% Plant is from PID outputs to Robot Arm outputs
LinIOs = [...
 linio('cst_robotarm/Controller/turntablePID',1,'openinput'),...
 linio('cst_robotarm/Controller/bicepPID',1,'openinput'),...
 linio('cst_robotarm/Controller/forearmPID',1,'openinput'),...
 linio('cst_robotarm/Controller/wristPID',1,'openinput'),...
 linio('cst_robotarm/Controller/handPID',1,'openinput'),...
 linio('cst_robotarm/Controller/gripperPID',1,'openinput'),...
 linio('cst_robotarm/6 DOF Robot Arm',1,'output')];
LinOpt = linearizeOptions('SampleTime',0); % seek continuous-time model
G = linearize('cst_robotarm',LinIOs,SnapshotTimes,LinOpt);

13 Control System Tuning Examples

13-114

size(G)

6x1 array of state-space models.
Each model has 6 outputs, 6 inputs, and 19 states.

Plot the gap between the linearized models at t=0,1,2,3,4 seconds and the final model at t=5
seconds.

G5 = G(:,:,end); % t=5
G5.SamplingGrid = [];
sigma(G5,G(:,:,2:5)-G5,{1e-3,1e3}), grid
title('Variation of linearized dynamics along trajectory')
legend('Linearization at t=5 s','Absolute variation',...
 'location','SouthWest')

While the dynamics vary significantly at low and high frequency, the variation drops to less than 10%
near 10 rad/s, which is roughly the desired control bandwidth. Small plant variations near the target
gain crossover frequency suggest that we can control the arm with a single set of PI gains and need
not resort to gain scheduling.

Tuning the PI Controllers with LOOPTUNE

With looptune, you can directly tune all six PI loops to achieve the desired response time with
minimal loop interaction and adequate MIMO stability margins. The controller is tuned in continuous
time and automatically discretized when writing the PI gains back to Simulink. Use the slTuner
interface to specify which blocks must be tuned and to locate the plant/controller boundary.

 Multi-Loop PI Control of a Robotic Arm

13-115

% Linearize the plant at t=3s
tLinearize = 3;

% Create slTuner interface
TunedBlocks = {'turntablePID','bicepPID','forearmPID',...
 'wristPID','handPID','gripperPID'};
ST0 = slTuner('cst_robotarm',TunedBlocks,tLinearize);

% Mark outputs of PID blocks as plant inputs
addPoint(ST0,TunedBlocks)

% Mark joint angles as plant outputs
addPoint(ST0,'6 DOF Robot Arm')

% Mark reference signals
RefSignals = {...
 'ref Select/tREF',...
 'ref Select/bREF',...
 'ref Select/fREF',...
 'ref Select/wREF',...
 'ref Select/hREF',...
 'ref Select/gREF'};
addPoint(ST0,RefSignals)

In its simplest use, looptune only needs to know the target control bandwidth, which should be at
least twice the reciprocal of the desired response time. Here the desired response time is 1 second so
try a target bandwidth of 3 rad/s (bearing in mind that the plant dynamics vary least near 10 rad/s).

wc = 3; % target gain crossover frequency
Controls = TunedBlocks; % actuator commands
Measurements = '6 DOF Robot Arm'; % joint angle measurements
ST1 = looptune(ST0,Controls,Measurements,wc);

Final: Peak gain = 0.957, Iterations = 10
Achieved target gain value TargetGain=1.

A final value near or below 1 indicates that looptune achieved the requested bandwidth. Compare
the responses to a step command in angular position for the initial and tuned controllers.

T0 = getIOTransfer(ST0,RefSignals,Measurements);
T1 = getIOTransfer(ST1,RefSignals,Measurements);

opt = timeoptions; opt.IOGrouping = 'all'; opt.Grid = 'on';
stepplot(T0,'b--',T1,'r',4,opt)
legend('Initial','Tuned','location','SouthEast')

13 Control System Tuning Examples

13-116

The six curves settling near y=1 represent the step responses of each joint, and the curves settling
near y=0 represent the cross-coupling terms. The tuned controller is a clear improvement, but there
is some overshoot and the Bicep response takes a long time to settle.

Exploiting the Second Degree of Freedom

The 2-DOF PI controllers have a feedforward and a feedback component.

Figure 5: Two degree-of-freedom PID controllers.

By default, looptune only tunes the feedback loop and does not "see" the feedforward component.
This can be confirmed by verifying that the parameters of the PI controllers remain set to their
initial value (type showTunable(ST1) to see the tuned values). To take advantage of the

 Multi-Loop PI Control of a Robotic Arm

13-117

feedforward action and reduce overshoot, replace the bandwidth target by an explicit step tracking
requirement from reference angles to joint angles.

TR = TuningGoal.StepTracking(RefSignals,Measurements,0.5);
ST2 = looptune(ST0,Controls,Measurements,TR);

Final: Peak gain = 0.766, Iterations = 13
Achieved target gain value TargetGain=1.

The 2-DOF tuning eliminates overshoot and improves the Bicep response.

T2 = getIOTransfer(ST2,RefSignals,Measurements);
stepplot(T1,'r--',T2,'g',4,opt)
legend('1-DOF tuning','2-DOF tuning','location','SouthEast')

Validating the Tuned Controller

The tuned linear responses look satisfactory so write the tuned values of the PI gains back to the
Simulink blocks and simulate the overall maneuver. The simulation results appear in Figure 6.

writeBlockValue(ST2)

13 Control System Tuning Examples

13-118

Figure 6: Tuned angular responses.

 Multi-Loop PI Control of a Robotic Arm

13-119

The nonlinear response of the Bicep joint noticeably undershoots. Further investigation suggests two
possible culprits. First, the PI controllers are too aggressive and saturate the motors (the input
voltage is limited to ± 5 V).

Figure 7: Input voltage to DC motors (control signal).

13 Control System Tuning Examples

13-120

Second, cross-coupling effects between the Wrist and Bicep, when brought to scale, have a significant
and lasting impact on the Bicep response. To see this, plot the step response of these three joints for
the actual step changes occurring during the maneuver (-10 deg for the Bicep joint and 90 degrees
for the Wrist joint).

H2 = T2([2 4],[2 4]) * diag([-10 90]); % scale by step amplitude
H2.u = {'Bicep','Wrist'};
H2.y = {'Bicep','Wrist'};
step(H2,5), grid

Refining the Design

To improve the Bicep response for this specific arm maneuver, we must keep the cross-couplings
effects small relative to the final angular displacements in each joint. To do this, scale the cross-
coupling terms in the step tracking requirement by the reference angle amplitudes.

JointDisp = [60 10 60 90 90 60]; % commanded angular displacements, in degrees
TR.InputScaling = JointDisp;

To reduce saturation of the actuators, limit the gain from reference signals to control signals.

UR = TuningGoal.Gain(RefSignals,Controls,6);

Retune the controller with these refined tuning goals.

ST3 = looptune(ST0,Controls,Measurements,TR,UR);

Final: Peak gain = 1.14, Iterations = 182

 Multi-Loop PI Control of a Robotic Arm

13-121

Compare the scaled responses with the previous design. Notice the significant reduction of the
coupling between Wrist and Bicep motion, both in peak value and total energy.

T2s = diag(1./JointDisp) * T2 * diag(JointDisp);
T3s = diag(1./JointDisp) * getIOTransfer(ST3,RefSignals,Measurements) * diag(JointDisp);
stepplot(T2s,'g--',T3s,'m',4,opt)
legend('Initial 2-DOF','Refined 2-DOF','location','SouthEast')

Push the retuned values to Simulink for further validation.

writeBlockValue(ST3)

The simulation results appear in Figure 8. The Bicep response is now on par with the other joints in
terms of settling time and smooth transient, and there is less actuator saturation than in the previous
design.

13 Control System Tuning Examples

13-122

Figure 8: Angular positions and control signals with refined controller.

The 3D animation confirms that the arm now moves quickly and precisely to the desired
configuration.

 Multi-Loop PI Control of a Robotic Arm

13-123

Figure 9: Fine-tuned response.

See Also
systune | TuningGoal.Tracking | TuningGoal.MinLoopGain | TuningGoal.MaxLoopGain

Related Examples
• “Active Vibration Control in Three-Story Building”

13 Control System Tuning Examples

13-124

Control of an Inverted Pendulum on a Cart

This example uses systune to control an inverted pendulum on a cart.

Pendulum/Cart Assembly

The cart/pendulum assembly is depicted in Figure 1 and modeled in Simulink® using Simscape™
Multibody™.

Figure 1: Inverted pendulum on a cart

Figure 2: Simscape Multibody model

This system is controlled by exerting a variable force on the cart. The controller needs to keep the
pendulum upright while moving the cart to a new position or when the pendulum is nudged forward
(impulse disturbance).

 Control of an Inverted Pendulum on a Cart

13-125

Control Structure

The upright position is an unstable equilibrium for the inverted pendulum. The unstable nature of the
plant makes the control task more challenging. For this example, you use the following two-loop
control structure:

open_system('rct_pendulum.slx')
set_param('rct_pendulum','SimMechanicsOpenEditorOnUpdate','off');

The inner loop uses a second-order state-space controller to stabilize the pendulum in its upright
position (control), while the outer loop uses a Proportional-Derivative (PD) controller to control the
cart position. You use a PD rather than PID controller because the plant already provides some
integral action.

Design Requirements

Use TuningGoal requirements to specify the desired closed-loop behavior. Specify a response time
of 3 seconds for tracking a setpoint change in cart position .

% Tracking of x command
req1 = TuningGoal.Tracking('xref','x',3);

To adequately reject impulse disturbances on the tip of the pendulum, use an LQR penalty of the
form

that emphasizes a small angular deviation and limits the control effort .

% Rejection of impulse disturbance dF
Qxu = diag([16 1 0.01]);
req2 = TuningGoal.LQG('dF',{'Theta','x','F'},1,Qxu);

13 Control System Tuning Examples

13-126

For robustness, require at least 6 dB of gain margin and 40 degrees of phase margin at the plant
input.

% Stability margins
req3 = TuningGoal.Margins('F',6,40);

Finally, constrain the damping and natural frequency of the closed-loop poles to prevent jerky or
underdamped transients.

% Pole locations
MinDamping = 0.5;
MaxFrequency = 45;
req4 = TuningGoal.Poles(0,MinDamping,MaxFrequency);

Control System Tuning

The closed-loop system is unstable for the initial values of the PD and state-space controllers (1 and
, respectively). You can use systune to jointly tune these two controllers. Use the slTuner

interface to specify the tunable blocks and register the plant input F as an analysis point for
measuring stability margins.

ST0 = slTuner('rct_pendulum',{'Position Controller','Angle Controller'});
addPoint(ST0,'F');

Next, use systune to tune the PD and state-space controllers subject to the performance
requirements specified above. Optimize the tracking and disturbance rejection performance (soft
requirements) subject to the stability margins and pole location constraints (hard requirements).

rng(0)
Options = systuneOptions('RandomStart',5);
[ST, fSoft] = systune(ST0,[req1,req2],[req3,req4],Options);

Final: Soft = 1.47, Hard = 0.97355, Iterations = 319
Final: Soft = 1.44, Hard = 0.999, Iterations = 243
Final: Soft = 1.27, Hard = 0.99815, Iterations = 294
Final: Soft = 1.36, Hard = 0.99693, Iterations = 322
Final: Soft = 1.27, Hard = 0.99803, Iterations = 307
Final: Soft = 1.36, Hard = 0.99898, Iterations = 262

The best design achieves a value close to 1 for the soft requirements while satisfying the hard
requirements (Hard<1). This means that the tuned control system nearly achieves the target
performance for tracking and disturbance rejection while satisfying the stability margins and pole
location constraints.

Validation

Use viewGoal to further analyze how the best design fares against each requirement.

figure('Position',[100 100 575 660])
viewGoal([req1,req3,req4],ST)

 Control of an Inverted Pendulum on a Cart

13-127

These plots confirm that the first two requirements are nearly satisfied while the last two are strictly
enforced. Next, plot the responses to a step change in position and to a force impulse on the cart.

T = getIOTransfer(ST,{'xref','dF'},{'x','Theta'});
figure('Position',[100 100 650 420]);
subplot(121), step(T(:,1),10)
title('Tracking of set point change in position')
subplot(122), impulse(T(:,2),10)
title('Rejection of impulse disturbance')

13 Control System Tuning Examples

13-128

The responses are smooth with the desired settling times. Inspect the tuned values of the controllers.

C1 = getBlockValue(ST,'Position Controller')

C1 =

 s
 Kp + Kd * --------
 Tf*s+1

 with Kp = 5.61, Kd = 1.63, Tf = 0.049

Name: Position_Controller
Continuous-time PDF controller in parallel form.

C2 = zpk(getBlockValue(ST,'Angle Controller'))

C2 =

 -1608.7 (s+13.26) (s+3.989)

 (s+134.8) (s-14.38)

Name: Angle_Controller
Continuous-time zero/pole/gain model.

 Control of an Inverted Pendulum on a Cart

13-129

Note that the angle controller has an unstable pole that pairs up with the plant unstable pole to
stabilize the inverted pendulum. To see this, get the open-loop transfer at the plant input and plot the
root locus.

L = getLoopTransfer(ST,'F',-1);
figure
rlocus(L)
set(gca,'XLim',[-25 20],'YLim',[-20 20])

To complete the validation, upload the tuned values to Simulink and simulate the nonlinear response
of the cart/pendulum assembly. A video of the resulting simulation appears below.

writeBlockValue(ST)

13 Control System Tuning Examples

13-130

Figure 3: Cart/pendulum simulation with tuned controllers.

Close the model after simulation.

set_param('rct_pendulum','SimMechanicsOpenEditorOnUpdate','on');
close_system('rct_pendulum',0);

See Also
systune | slTuner

Related Examples
• “Mark Signals of Interest for Control System Analysis and Design” on page 2-38
• “Create and Configure slTuner Interface to Simulink Model” on page 10-157

 Control of an Inverted Pendulum on a Cart

13-131

Digital Control of Power Stage Voltage

This example shows how to tune a high-performance digital controller with bandwidth close to the
sampling frequency.

Voltage Regulation in Power Stage

We use Simulink to model the voltage controller in the power stage for an electronic device:

open_system('rct_powerstage')

The power stage amplifier is modeled as a second-order linear system with the following frequency
response:

bode(psmodel)
grid

13 Control System Tuning Examples

13-132

The controller must regulate the voltage Vchip delivered to the device to track the setpoint Vcmd
and be insensitive to variations in load current iLoad. The control structure consists of a feedback
compensator and a disturbance feedforward compensator. The voltage Vin going into the amplifier is
limited to . The controller sampling rate is 10 MHz (sample time Tm is 1e-7 seconds).

Performance Requirements

This application is challenging because the controller bandwidth must approach the Nyquist
frequency pi/Tm = 31.4 MHz. To avoid aliasing troubles when discretizing continuous-time
controllers, it is preferable to tune the controller directly in discrete time.

The power stage should respond to a setpoint change in desired voltage Vcmd in about 5 sampling
periods with a peak error (across frequency) of 50%. Use a tracking requirement to capture this
objective.

Req1 = TuningGoal.Tracking('Vcmd','Vchip',5*Tm,0,1.5);
Req1.Name = 'Setpoint change';

viewGoal(Req1)

 Digital Control of Power Stage Voltage

13-133

The power stage should also quickly reject load disturbances iLoad. Express this requirement in
terms of gain from iLoad to Vchip. This gain should be low at low frequency for good disturbance
rejection.

s = tf('s');
nf = pi/Tm; % Nyquist frequency

Req2 = TuningGoal.Gain('iLoad','Vchip',1.5e-3 * s/nf);
Req2.Focus = [nf/1e4, nf];
Req2.Name = 'Load disturbance';

High-performance demands may lead to high control effort and saturation. For the ramp profile vcmd
specified in the Simulink model (from 0 to 1 in about 250 sampling periods), we want to avoid hitting
the saturation constraint . Use a rate-limiting filter to model the ramp command, and
require that the gain from the rate-limiter input to be less than .

RateLimiter = 1/(250*Tm*s); % models ramp command in Simulink

% |RateLimiter * (Vcmd->Vin)| < Vmax
Req3 = TuningGoal.Gain('Vcmd','Vin',Vmax/RateLimiter);
Req3.Focus = [nf/1000, nf];
Req3.Name = 'Saturation';

To ensure adequate robustness, require at least 7 dB gain margin and 45 degrees phase margin at
the plant input.

13 Control System Tuning Examples

13-134

Req4 = TuningGoal.Margins('Vin',7,45);
Req4.Name = 'Margins';

Finally, the feedback compensator has a tendency to cancel the plant resonance by notching it out.
Such plant inversion may lead to poor results when the resonant frequency is not exactly known or
subject to variations. To prevent this, impose a minimum closed-loop damping of 0.5 to actively damp
of the plant's resonant mode.

Req5 = TuningGoal.Poles(0,0.5,3*nf);
Req5.Name = 'Damping';

Tuning

Next use systune to tune the controller parameters subject to the requirements defined above. First
use the slTuner interface to configure the Simulink model for tuning. In particular, specify that
there are two tunable blocks and that the model should be linearized and tuned at the sample time
Tm.

TunedBlocks = {'compensator','FIR'};
ST0 = slTuner('rct_powerstage',TunedBlocks);
ST0.Ts = Tm;

% Register points of interest for open- and closed-loop analysis
addPoint(ST0,{'Vcmd','iLoad','Vchip','Vin'});

We want to use an FIR filter as feedforward compensator. To do this, create a parameterization of a
first-order FIR filter and assign it to the "Feedforward FIR" block in Simulink.

FIR = tunableTF('FIR',1,1,Tm);
% Fix denominator to z^n
FIR.Denominator.Value = [1 0];
FIR.Denominator.Free = false;
setBlockParam(ST0,'FIR',FIR);

Note that slTuner automatically parameterizes the feedback compensator as a third-order state-
space model (the order specified in the Simulink block). Next tune the feedforward and feedback
compensators with systune. Treat the damping and margin requirements as hard constraints and
try to best meet the remaining requirements.

rng(0)
topt = systuneOptions('RandomStart',6);
ST = systune(ST0,[Req1 Req2 Req3],[Req4 Req5],topt);

Final: Soft = 1.3, Hard = 0.89669, Iterations = 338
Final: Soft = 1.32, Hard = 0.94808, Iterations = 402
Final: Soft = 1.51, Hard = 0.91697, Iterations = 177
Final: Soft = 1.29, Hard = 0.9895, Iterations = 386
Final: Soft = 1.29, Hard = 0.99234, Iterations = 358
Final: Soft = 1.29, Hard = 0.92875, Iterations = 345
Final: Soft = 1.28, Hard = 0.99305, Iterations = 380

The best design satisfies the hard constraints (Hard less than 1) and nearly satisfies the other
constraints (Soft close to 1). Verify this graphically by plotting the tuned responses for each
requirement.

figure('Position',[10,10,1071,714])
viewGoal([Req1 Req2 Req3 Req4 Req5],ST)

 Digital Control of Power Stage Voltage

13-135

Validation

First validate the design in the linear domain using the slTuner interface. Plot the closed-loop
response to a step command Vcmd and a step disturbance iLoad.

figure('Position',[100,100,560,500])
subplot(2,1,1)
step(getIOTransfer(ST,'Vcmd','Vchip'),20*Tm)
title('Response to step command in voltage')
subplot(2,1,2)
step(getIOTransfer(ST,'iLoad','Vchip'),20*Tm)
title('Rejection of step disturbance in load current')

13 Control System Tuning Examples

13-136

Use getLoopTransfer to compute the open-loop response at the plant input and superimpose the
plant and feedback compensator responses.

clf
L = getLoopTransfer(ST,'Vin',-1);
C = getBlockValue(ST,'compensator');
bodeplot(L,psmodel(2),C(2),{1e-3/Tm pi/Tm})
grid
legend('Open-loop response','Plant','Compensator')

 Digital Control of Power Stage Voltage

13-137

The controller achieves the desired bandwidth and the responses are fast enough. Apply the tuned
parameter values to the Simulink model and simulate the tuned responses.

writeBlockValue(ST)

The results from the nonlinear simulation appear below. Note that the control signal Vin remains
approximately within saturation bounds for the setpoint tracking portion of the simulation.

13 Control System Tuning Examples

13-138

Figure 1: Response to ramp command and step load disturbances.

 Digital Control of Power Stage Voltage

13-139

Figure 2: Amplitude of input voltage Vin during setpoint tracking phase.

See Also
systune (slTuner) | slTuner | TuningGoal.Tracking | TuningGoal.Gain |
TuningGoal.Margins

Related Examples
• “MIMO Control of Diesel Engine”

13 Control System Tuning Examples

13-140

MIMO Control of Diesel Engine

This example uses systune to design and tune a MIMO controller for a Diesel engine. The controller
is tuned in discrete time for a single operating condition.

Diesel Engine Model

Modern Diesel engines use a variable geometry turbocharger (VGT) and exhaust gas recirculation
(EGR) to reduce emissions. Tight control of the VGT boost pressure and EGR massflow is necessary to
meet strict emission targets. This example shows how to design and tune a MIMO controller that
regulates these two variables when the engine operates at 2100 rpm with a fuel mass of 12 mg per
injection-cylinder.

open_system('rct_diesel')

The VGT/EGR control system is modeled in Simulink. The controller adjusts the positions EGRLIFT
and VGTPOS of the EGR and VGT valves. It has access to the boost pressure and EGR massflow
targets and measured values, as well as fuel mass and engine speed measurements. Both valves have
rate and saturation limits. The plant model is sampled every 0.1 seconds and the control signals
EGRLIFT and VGTPOS are refreshed every 0.2 seconds. This example considers step changes of +10
KPa in boost pressure and +3 g/s in EGR massflow, and disturbances of +5 mg in fuel mass and -200
rpm in speed.

For the operating condition under consideration, we used System Identification to derive a linear
model of the engine from experimental data. The frequency response from the manipulated variables
EGRLIFT and VGTPOS to the controlled variables BOOST and EGR MF appears below. Note that the
plant is ill conditioned at low frequency which makes independent control of boost pressure and EGR
massflow difficult.

sigma(Plant(:,1:2)), grid
title('Frequency response of the linearized engine dynamics')

 MIMO Control of Diesel Engine

13-141

Control Objectives

There are two main control objectives:

1 Respond to step changes in boost pressure and EGR massflow in about 5 seconds with minimum
cross-coupling

2 Be insensitive to (small) variations in speed and fuel mass.

Use a tracking requirement for the first objective. Specify the amplitudes of the step changes to
ensure that cross-couplings are small relative to these changes.

% 5-second response time, steady-state error less than 5%
TR = TuningGoal.Tracking({'BOOST REF';'EGRMF REF'},{'BOOST';'EGRMF'},5,0.05);
TR.Name = 'Setpoint tracking';
TR.InputScaling = [10 3];

For the second objective, treat the speed and fuel mass variations as step disturbances and specify
the peak amplitude and settling time of the resulting variations in boost pressure and EGR massflow.
Also specify the signal amplitudes to properly reflect the relative contribution of each disturbance.

% Peak<0.5, settling time<5
DR = TuningGoal.StepRejection({'FUELMASS';'SPEED'},{'BOOST';'EGRMF'},0.5,5);
DR.Name = 'Disturbance rejection';
DR.InputScaling = [5 200];
DR.OutputScaling = [10 3];

To provide adequate robustness to unmodeled dynamics and aliasing, limit the control bandwidth and
impose sufficient stability margins at both the plant inputs and outputs. Because we are dealing with

13 Control System Tuning Examples

13-142

2-by-2 MIMO feedback loops, this requirement guarantees stability for gain or phase variations in
each feedback channel. The gain or phase can change in both channels simultaneously, and by a
different amount in each channel. See “Stability Margins in Control System Tuning” and
TuningGoal.Margins for details.

% Roll off of -20 dB/dec past 1 rad/s
RO = TuningGoal.MaxLoopGain({'EGRLIFT','VGTPOS'},1,1);
RO.LoopScaling = 'off';
RO.Name = 'Roll-off';

% 7 dB of gain margin and 45 degrees of phase margin
M1 = TuningGoal.Margins({'EGRLIFT','VGTPOS'},7,45);
M1.Name = 'Plant input';
M2 = TuningGoal.Margins('DIESEL ENGINE',7,45);
M2.Name = 'Plant output';

Tuning of Blackbox MIMO Controller

Without a-priori knowledge of a suitable control structure, first try "blackbox" state-space controllers
of various orders. The plant model has four states, so try a controller of order four or less. Here we
tune a second-order controller since the "SS2" block in the Simulink model has two states.

Figure 1: Second-order blackbox controller.

Use the slTuner interface to configure the Simulink model for tuning. Mark the block "SS2" as
tunable, register the locations where to assess margins and loop shapes, and specify that
linearization and tuning should be performed at the controller sampling rate.

ST0 = slTuner('rct_diesel','SS2');
ST0.Ts = 0.2;
addPoint(ST0,{'EGRLIFT','VGTPOS','DIESEL ENGINE'})

Now use systune to tune the state-space controller subject to our control objectives. Treat the
stability margins and roll-off target as hard constraints and try to best meet the remaining objectives
(soft goals). Randomize the starting point to reduce exposure to undesirable local minima.

Opt = systuneOptions('RandomStart',2);
rng(0), ST1 = systune(ST0,[TR DR],[M1 M2 RO],Opt);

 MIMO Control of Diesel Engine

13-143

Final: Soft = 1.28, Hard = 0.88766, Iterations = 396
Final: Soft = 1.05, Hard = 0.94955, Iterations = 506
Final: Soft = 1.05, Hard = 0.99312, Iterations = 437

All requirements are nearly met (a requirement is satisfied when its normalized value is less than 1).
Verify this graphically.

figure('Position',[10,10,1071,714])
viewGoal([TR DR RO M1 M2],ST1)

Plot the setpoint tracking and disturbance rejection responses. Scale by the signal amplitudes to
show normalized effects (boost pressure changes by +10 KPa, EGR massflow by +3 g/s, fuel mass by
+5 mg, and speed by -200 rpm).

figure('Position',[100,100,560,500])
T1 = getIOTransfer(ST1,{'BOOST REF';'EGRMF REF'},{'BOOST','EGRMF','EGRLIFT','VGTPOS'});
T1 = diag([1/10 1/3 1 1]) * T1 * diag([10 3]);
subplot(211), step(T1(1:2,:),15), title('Setpoint tracking')
subplot(212), step(T1(3:4,:),15), title('Control effort')

13 Control System Tuning Examples

13-144

D1 = getIOTransfer(ST1,{'FUELMASS';'SPEED'},{'BOOST','EGRMF','EGRLIFT','VGTPOS'});
D1 = diag([1/10 1/3 1 1]) * D1 * diag([5 -200]);
subplot(211), step(D1(1:2,:),15), title('Disturbance rejection')
subplot(212), step(D1(3:4,:),15), title('Control effort')

 MIMO Control of Diesel Engine

13-145

The controller responds in less than 5 seconds with minimum cross-coupling between the BOOST and
EGRMF variables.

Tuning of Simplified Control Structure

The state-space controller could be implemented as is, but it is often desirable to boil it down to a
simpler, more familiar structure. To do this, get the tuned controller and inspect its frequency
response

C = getBlockValue(ST1,'SS2');

clf
bode(C(:,1:2),C(:,3:4),{.02 20}), grid
legend('REF to U','Y to U')

13 Control System Tuning Examples

13-146

bodemag(C(:,5:6)), grid
title('Bode response from FUELMASS/SPEED to EGRLIFT/VGTPOS')

 MIMO Control of Diesel Engine

13-147

The first plot suggests that the controller essentially behaves like a PI controller acting on REF-Y (the
difference between the target and actual values of the controlled variables). The second plot suggests
that the transfer from measured disturbance to manipulated variables could be replaced by a gain in
series with a lag network. Altogether this suggests the following simplified control structure
consisting of a MIMO PI controller with a first-order disturbance feedforward.

13 Control System Tuning Examples

13-148

Figure 2: Simplified control structure.

Using variant subsystems, you can implement both control structures in the same Simulink model and
use a variable to switch between them. Here setting MODE=2 selects the MIMO PI structure. As
before, use systune to tune the three 2-by-2 gain matrices Kp, Ki, Kff in the simplified control
structure.

% Select "MIMO PI" variant in "CONTROLLER" block
MODE = 2;

% Configure tuning interface
ST0 = slTuner('rct_diesel',{'Kp','Ki','Kff'});
ST0.Ts = 0.2;
addPoint(ST0,{'EGRLIFT','VGTPOS','DIESEL ENGINE'})

% Tune MIMO PI controller.
ST2 = systune(ST0,[TR DR],[M1 M2 RO]);

Final: Soft = 1.09, Hard = 0.99961, Iterations = 302

Again all requirements are nearly met. Plot the closed-loop responses and compare with the state-
space design.

clf
T2 = getIOTransfer(ST2,{'BOOST REF';'EGRMF REF'},{'BOOST','EGRMF','EGRLIFT','VGTPOS'});
T2 = diag([1/10 1/3 1 1]) * T2 * diag([10 3]);
subplot(211), step(T1(1:2,:),T2(1:2,:),15), title('Setpoint tracking')
legend('SS2','PI+FF')
subplot(212), step(T1(3:4,:),T2(3:4,:),15), title('Control effort')

 MIMO Control of Diesel Engine

13-149

D2 = getIOTransfer(ST2,{'FUELMASS';'SPEED'},{'BOOST','EGRMF','EGRLIFT','VGTPOS'});
D2 = diag([1/10 1/3 1 1]) * D2 * diag([5 -200]);
subplot(211), step(D1(1:2,:),D2(1:2,:),15), title('Disturbance rejection')
legend('SS2','PI+FF')
subplot(212), step(D1(3:4,:),D2(3:4,:),15), title('Control effort')

13 Control System Tuning Examples

13-150

The blackbox and simplified control structures deliver similar performance. Inspect the tuned values
of the PI and feedforward gains.

showTunable(ST2)

Block 1: rct_diesel/CONTROLLER/MIMO PID/Kp =

 D =
 u1 u2
 y1 -0.00798 -0.0005209
 y2 -0.02047 0.01545

Name: Kp
Static gain.

Block 2: rct_diesel/CONTROLLER/MIMO PID/Ki =

 D =
 u1 u2

 MIMO Control of Diesel Engine

13-151

 y1 -0.01051 -0.0143
 y2 -0.03026 0.04698

Name: Ki
Static gain.

Block 3: rct_diesel/CONTROLLER/MIMO PID/Kff =

 D =
 u1 u2
 y1 0.01322 -9.457e-05
 y2 0.03708 -0.001465

Name: Kff
Static gain.

Nonlinear Validation

To validate the MIMO PI controller in the Simulink model, push the tuned controller parameters to
Simulink and run the simulation.

writeBlockValue(ST2)

The simulation results are shown below and confirm that the controller adequately tracks setpoint
changes in boost pressure and EGR massflow and quickly rejects changes in fuel mass (at t=90) and
in speed (at t=110).

13 Control System Tuning Examples

13-152

Figure 3: Simulation results with simplified controller.

See Also
systune (slTuner) | slTuner | TuningGoal.Tracking | TuningGoal.StepRejection |
TuningGoal.MaxLoopGain | TuningGoal.Margins

Related Examples
• “Digital Control of Power Stage Voltage”

 MIMO Control of Diesel Engine

13-153

Tuning of a Two-Loop Autopilot

This example shows how to use Simulink Control Design to tune a two-loop autopilot controlling the
pitch rate and vertical acceleration of an airframe.

Model of Airframe Autopilot

The airframe dynamics and the autopilot are modeled in Simulink.

open_system('rct_airframe1')

The autopilot consists of two cascaded loops. The inner loop controls the pitch rate q, and the outer
loop controls the vertical acceleration az in response to the pilot stick command azref. In this
architecture, the tunable elements include the PI controller gains ("az Control" block) and the pitch-
rate gain ("q Gain" block). The autopilot must be tuned to respond to a step command azref in about
1 second with minimal overshoot. In this example, we tune the autopilot gains for one flight condition
corresponding to zero incidence and a speed of 984 m/s.

To analyze the airframe dynamics, trim the airframe for and . The trim condition
corresponds to zero normal acceleration and pitching moment (and steady). Use findop to
compute the corresponding closed-loop operating condition. Note that we added a "delta trim" input
port so that findop can adjust the fin deflection to produce the desired equilibrium of forces and
moments.

opspec = operspec('rct_airframe1');

% Specify trim condition
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];

13 Control System Tuning Examples

13-154

opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];
% theta: known, not steady
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;
% integrator states unknown, not steady
opspec.States(5).SteadyState = 0;
opspec.States(6).SteadyState = 0;

op = findop('rct_airframe1',opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model rct_airframe1.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Position
 0 0 0 -Inf 984 Inf
-3047.9999 -3047.9999 -3047.9999 -Inf 0 Inf
(2.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Theta
 0 0 0 -Inf -0.0097235 Inf
(3.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/U,w
 984 984 984 -Inf 22.6897 Inf
 0 0 0 0 -1.4371e-11 0
(4.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/q
 -Inf -0.0097235 Inf 0 1.1477e-16 0
(5.) rct_airframe1/Integrator
 -Inf 0.00070807 Inf -Inf -0.0097235 Inf
(6.) rct_airframe1/az Control/Integrator/Continuous/Integrator
 -Inf 0 Inf -Inf 0.00024207 Inf

Inputs:

 Min u Max
__________ __________ __________

(1.) rct_airframe1/delta trim
 -Inf 0.00070807 Inf

Outputs: None

 Tuning of a Two-Loop Autopilot

13-155

Linearize the "Airframe Model" block for the computed trim condition op and plot the gains from the
fin deflection delta to az and q:

G = linearize('rct_airframe1','rct_airframe1/Airframe Model',op);
G.InputName = 'delta';
G.OutputName = {'az','q'};

bodemag(G), grid

Note that the airframe model has an unstable pole:

pole(G)

ans =

 -0.0320
 -0.0255
 0.1253
 -29.4685

Frequency-Domain Tuning with LOOPTUNE

You can use the looptune function to automatically tune multi-loop control systems subject to basic
requirements such as integral action, adequate stability margins, and desired bandwidth. To apply
looptune to the autopilot model, create an instance of the slTuner interface and designate the

13 Control System Tuning Examples

13-156

Simulink blocks "az Control" and "q Gain" as tunable. Also specify the trim condition op to correctly
linearize the airframe dynamics.

ST0 = slTuner('rct_airframe1',{'az Control','q Gain'},op);

Mark the reference, control, and measurement signals as points of interest for analysis and tuning.

addPoint(ST0,{'az ref','delta fin','az','q'});

Finally, tune the control system parameters to meet the 1 second response time requirement. In the
frequency domain, this roughly corresponds to a gain crossover frequency wc = 5 rad/s for the open-
loop response at the plant input "delta fin".

wc = 5;
Controls = 'delta fin';
Measurements = {'az','q'};
[ST,gam,Info] = looptune(ST0,Controls,Measurements,wc);

Final: Peak gain = 1.01, Iterations = 71

The requirements are normalized so a final value near 1 means that all requirements are met.
Confirm this by graphically validating the design.

figure('Position',[100,100,560,714])
loopview(ST,Info)

 Tuning of a Two-Loop Autopilot

13-157

The first plot confirms that the open-loop response has integral action and the desired gain crossover
frequency while the second plot shows that the MIMO stability margins are satisfactory (the blue
curve should remain below the yellow bound). Next check the response from the step command
azref to the vertical acceleration az:

13 Control System Tuning Examples

13-158

T = getIOTransfer(ST,'az ref','az');
figure
step(T,5)

The acceleration az does not track azref despite the presence of an integrator in the loop. This is
because the feedback loop acts on the two variables az and q and we have not specified which one
should track azref.

Adding a Tracking Requirement

To remedy this issue, add an explicit requirement that az should follow the step command azref
with a 1 second response time. Also relax the gain crossover requirement to the interval [3,12] to let
the tuner find the appropriate gain crossover frequency.

TrackReq = TuningGoal.Tracking('az ref','az',1);
ST = looptune(ST0,Controls,Measurements,[3,12],TrackReq);

Final: Peak gain = 1.23, Iterations = 54

The step response from azref to az is now satisfactory:

Tr1 = getIOTransfer(ST,'az ref','az');
step(Tr1,5)
grid

 Tuning of a Two-Loop Autopilot

13-159

Also check the disturbance rejection characteristics by looking at the responses from a disturbance
entering at the plant input

Td1 = getIOTransfer(ST,'delta fin','az');
bodemag(Td1)
grid

13 Control System Tuning Examples

13-160

step(Td1,5)
grid
title('Disturbance rejection')

 Tuning of a Two-Loop Autopilot

13-161

Use showBlockValue to see the tuned values of the PI controller and inner-loop gain

showBlockValue(ST)

AnalysisPoints_ =

 D =
 u1 u2 u3 u4
 y1 1 0 0 0
 y2 0 1 0 0
 y3 0 0 1 0
 y4 0 0 0 1

Name: AnalysisPoints_
Static gain.

az_Control =

 1
 Kp + Ki * ---
 s

 with Kp = 0.00166, Ki = 0.0017

Name: az_Control
Continuous-time PI controller in parallel form.

q_Gain =

13 Control System Tuning Examples

13-162

 D =
 u1
 y1 1.985

Name: q_Gain
Static gain.

If this design is satisfactory, use writeBlockValue to apply the tuned values to the Simulink model
and simulate the tuned controller in Simulink.

writeBlockValue(ST)

MIMO Design with SYSTUNE

Cascaded loops are commonly used for autopilots. Yet one may wonder how a single MIMO controller
that uses both az and q to generate the actuator command delta fin would compare with the two-
loop architecture. Trying new control architectures is easy with systune or looptune. For variety,
we now use systune to tune the following MIMO architecture.

open_system('rct_airframe2')

As before, compute the trim condition for and .

opspec = operspec('rct_airframe2');

% Specify trim condition
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];

 Tuning of a Two-Loop Autopilot

13-163

% theta: known, not steady
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;
% controller states unknown, not steady
opspec.States(5).SteadyState = [0;0];

op = findop('rct_airframe2',opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model rct_airframe2.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
___________ ___________ ___________ ___________ ___________ ___________

(1.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Position
 0 0 0 -Inf 984 Inf
-3047.9999 -3047.9999 -3047.9999 -Inf 0 Inf
(2.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Theta
 0 0 0 -Inf -0.0097235 Inf
(3.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/U,w
 984 984 984 -Inf 22.6897 Inf
 0 0 0 0 2.4587e-11 0
(4.) rct_airframe2/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/q
 -Inf -0.0097235 Inf 0 -1.7215e-16 0
(5.) rct_airframe2/MIMO Controller
 -Inf 0.00065361 Inf -Inf -0.0089973 Inf
 -Inf 4.1313e-19 Inf -Inf 0.030259 Inf

Inputs:

 Min u Max
__________ __________ __________

(1.) rct_airframe2/delta trim
 -Inf 0.00043574 Inf

Outputs: None

As with looptune, use the slTuner interface to configure the Simulink model for tuning. Note that
the signals of interest are already marked as Linear Analysis points in the Simulink model.

ST0 = slTuner('rct_airframe2','MIMO Controller',op);

13 Control System Tuning Examples

13-164

Try a second-order MIMO controller with zero feedthrough from e to delta fin. To do this, create
the desired controller parameterization and associate it with the "MIMO Controller" block using
setBlockParam:

C0 = tunableSS('C',2,1,2); % Second-order controller
C0.D.Value(1) = 0; % Fix D(1) to zero
C0.D.Free(1) = false;
setBlockParam(ST0,'MIMO Controller',C0)

Next create the tuning requirements. Here we use the following four requirements:

1 Tracking: az should respond in about 1 second to the azref command
2 Bandwidth and roll-off: The loop gain at delta fin should roll off after 25 rad/s with a -20

dB/decade slope
3 Stability margins: The margins at delta fin should exceed 7 dB and 45 degrees
4 Disturbance rejection: The attenuation factor for input disturbances should be 40 dB at 1 rad/s

increasing to 100 dB at 0.001 rad/s.

% Tracking
Req1 = TuningGoal.Tracking('az ref','az',1);

% Bandwidth and roll-off
Req2 = TuningGoal.MaxLoopGain('delta fin',tf(25,[1 0]));

% Margins
Req3 = TuningGoal.Margins('delta fin',7,45);

% Disturbance rejection
% Use an FRD model to sketch the desired attenuation profile with a few points
Freqs = [0 0.001 1];
MinAtt = [100 100 40]; % in dB
Req4 = TuningGoal.Rejection('delta fin',frd(db2mag(MinAtt),Freqs));
Req4.Focus = [0 1];

You can now use systune to tune the controller parameters subject to these requirements.

AllReqs = [Req1,Req2,Req3 Req4];
Opt = systuneOptions('RandomStart',3);

rng(0)
[ST,fSoft] = systune(ST0,AllReqs,Opt);

Final: Soft = 1.42, Hard = -Inf, Iterations = 47
Final: Soft = 1.42, Hard = -Inf, Iterations = 62
Final: Soft = 1.14, Hard = -Inf, Iterations = 78
Final: Soft = 1.14, Hard = -Inf, Iterations = 119

The best design has an overall objective value close to 1, indicating that all four requirements are
nearly met. Use viewGoal to inspect each requirement for the best design.

figure('Position',[100,100,987,474])
viewGoal(AllReqs,ST)

 Tuning of a Two-Loop Autopilot

13-165

Compute the closed-loop responses and compare with the two-loop design.

T = getIOTransfer(ST,{'az ref','delta fin'},'az');

figure
step(Tr1,'b',T(1),'r',5)
title('Tracking')
legend('Cascade','2 dof')

13 Control System Tuning Examples

13-166

step(Td1,'b',T(2),'r',5)
title('Disturbance rejection')
legend('Cascade','2 dof')

 Tuning of a Two-Loop Autopilot

13-167

The tracking performance is similar but the second design has better disturbance rejection
properties.

See Also
looptune (slTuner) | slTuner

Related Examples
• “Multi-Loop PI Control of a Robotic Arm”
• “Decoupling Controller for a Distillation Column”

13 Control System Tuning Examples

13-168

Multiloop Control of a Helicopter

This example shows how to use slTuner and systune to tune a multiloop controller for a rotorcraft.

Helicopter Model

This example uses an 8-state helicopter model at the hovering trim condition. The state vector x =
[u,w,q,theta,v,p,phi,r] consists of

• Longitudinal velocity u (m/s)
• Lateral velocity v (m/s)
• Normal velocity w (m/s)
• Pitch angle theta (deg)
• Roll angle phi (deg)
• Roll rate p (deg/s)
• Pitch rate q (deg/s)
• Yaw rate r (deg/s).

The controller generates commands ds,dc,dT in degrees for the longitudinal cyclic, lateral cyclic,
and tail rotor collective using measurements of theta, phi, p, q, and r.

Control Architecture

The following Simulink model depicts the control architecture:

open_system('rct_helico')

 Multiloop Control of a Helicopter

13-169

The control system consists of two feedback loops. The inner loop (static output feedback) provides
stability augmentation and decoupling. The outer loop (PI controllers) provides the desired setpoint
tracking performance. The main control objectives are as follows:

• Track setpoint changes in theta, phi, and r with zero steady-state error, rise times of about 2
seconds, minimal overshoot, and minimal cross-coupling

• Limit the control bandwidth to guard against neglected high-frequency rotor dynamics and
measurement noise

• Provide strong multivariable gain and phase margins (robustness to simultaneous gain/phase
variations at the plant inputs and outputs, see diskmargin for details).

We use lowpass filters with cutoff at 40 rad/s to partially enforce the second objective.

Controller Tuning

You can jointly tune the inner and outer loops with the systune command. This command only
requires models of the plant and controller along with the desired bandwidth (which is function of the
desired response time). When the control system is modeled in Simulink, you can use the slTuner
interface to quickly set up the tuning task. Create an instance of this interface with the list of blocks
to be tuned.

ST0 = slTuner('rct_helico',{'PI1','PI2','PI3','SOF'});

Each tunable block is automatically parameterized according to its type and initialized with its value
in the Simulink model (for the PI controllers and zero for the static output-feedback gain).
Simulating the model shows that the control system is unstable for these initial values:

13 Control System Tuning Examples

13-170

Mark the I/O signals of interest for setpoint tracking, and identify the plant inputs and outputs
(control and measurement signals) where the stability margin are measured.

addPoint(ST0,{'theta-ref','phi-ref','r-ref'}) % setpoint commands
addPoint(ST0,{'theta','phi','r'}) % corresponding outputs
addPoint(ST0,{'u','y'});

Finally, capture the design requirements using TuningGoal objects. We use the following
requirements for this example:

• Tracking requirement: The response of theta, phi, r to step commands theta_ref, phi_ref,
r_ref must resemble a decoupled first-order response with a one-second time constant

• Stability margins: The multivariable gain and phase margins at the plant inputs u and plant
outputs y must be at least 5 dB and 40 degrees

• Fast dynamics: The magnitude of the closed-loop poles must not exceed 25 to prevent fast
dynamics and jerky transients

% Less than 20% mismatch with reference model 1/(s+1)
TrackReq = TuningGoal.StepTracking({'theta-ref','phi-ref','r-ref'},{'theta','phi','r'},1);
TrackReq.RelGap = 0.2;

% Gain and phase margins at plant inputs and outputs
MarginReq1 = TuningGoal.Margins('u',5,40);
MarginReq2 = TuningGoal.Margins('y',5,40);

 Multiloop Control of a Helicopter

13-171

% Limit on fast dynamics
MaxFrequency = 25;
PoleReq = TuningGoal.Poles(0,0,MaxFrequency);

You can now use systune to jointly tune all controller parameters. This returns the tuned version
ST1 of the control system ST0.

AllReqs = [TrackReq,MarginReq1,MarginReq2,PoleReq];
ST1 = systune(ST0,AllReqs);

Final: Soft = 1.12, Hard = -Inf, Iterations = 71

The final value is close to 1 so the requirements are nearly met. Plot the tuned responses to step
commands in theta, phi, r:

T1 = getIOTransfer(ST1,{'theta-ref','phi-ref','r-ref'},{'theta','phi','r'});
step(T1,5)

The rise time is about two seconds with no overshoot and little cross-coupling. You can use viewGoal
for a more thorough validation of each requirement, including a visual assessment of the
multivariable stability margins (see diskmargin for details):

figure('Position',[100,100,900,474])
viewGoal(AllReqs,ST1)

13 Control System Tuning Examples

13-172

Inspect the tuned values of the PI controllers and static output-feedback gain.

showTunable(ST1)

Block 1: rct_helico/PI1 =

 1
 Kp + Ki * ---
 s

 with Kp = 1.04, Ki = 2.07

Name: PI1
Continuous-time PI controller in parallel form.

Block 2: rct_helico/PI2 =

 1
 Kp + Ki * ---
 s

 with Kp = -0.099, Ki = -1.35

Name: PI2
Continuous-time PI controller in parallel form.

Block 3: rct_helico/PI3 =

 Multiloop Control of a Helicopter

13-173

 1
 Kp + Ki * ---
 s

 with Kp = 0.137, Ki = -2.2

Name: PI3
Continuous-time PI controller in parallel form.

Block 4: rct_helico/SOF =

 D =
 u1 u2 u3 u4 u5
 y1 2.211 -0.31 -0.00336 0.7854 -0.01518
 y2 -0.1923 -1.291 0.01821 -0.08501 -0.1195
 y3 -0.01941 -0.01208 -1.895 -0.00412 0.06795

Name: SOF
Static gain.

Benefit of the Inner Loop

You may wonder whether the static output feedback is necessary and whether PID controllers aren't
enough to control the helicopter. This question is easily answered by re-tuning the controller with the
inner loop open. First break the inner loop by adding a loop opening after the SOF block:

addOpening(ST0,'SOF')

Then remove the SOF block from the tunable block list and re-parameterize the PI blocks as full-
blown PIDs with the correct loop signs (as inferred from the first design).

PID = pid(0,0.001,0.001,.01); % initial guess for PID controllers

removeBlock(ST0,'SOF');
setBlockParam(ST0,...
 'PI1',tunablePID('C1',PID),...
 'PI2',tunablePID('C2',-PID),...
 'PI3',tunablePID('C3',-PID));

Re-tune the three PID controllers and plot the closed-loop step responses.

ST2 = systune(ST0,AllReqs);

Final: Soft = 4.94, Hard = -Inf, Iterations = 67

T2 = getIOTransfer(ST2,{'theta-ref','phi-ref','r-ref'},{'theta','phi','r'});
figure, step(T2,5)

13 Control System Tuning Examples

13-174

The final value is no longer close to 1 and the step responses confirm the poorer performance with
regard to rise time, overshoot, and decoupling. This suggests that the inner loop has an important
stabilizing effect that should be preserved.

See Also
systune (slTuner) | slTuner | TuningGoal.StepTracking | TuningGoal.Margins |
TuningGoal.Poles

Related Examples
• “Fixed-Structure Autopilot for a Passenger Jet”

 Multiloop Control of a Helicopter

13-175

Fixed-Structure Autopilot for a Passenger Jet

This example shows how to use slTuner and systune to tune the standard configuration of a
longitudinal autopilot. We thank Professor D. Alazard from Institut Superieur de l'Aeronautique et de
l'Espace for providing the aircraft model and Professor Pierre Apkarian from ONERA for developing
the example.

Aircraft Model and Autopilot Configuration

The longitudinal autopilot for a supersonic passenger jet flying at Mach 0.7 and 5000 ft is depicted in
Figure 1. The autopilot main purpose is to follow vertical acceleration commands issued by the
pilot. The feedback structure consists of an inner loop controlling the pitch rate and an outer loop
controlling the vertical acceleration . The autopilot also includes a feedforward component and a
reference model that specifies the desired response to a step command . Finally, the
second-order roll-off filter

is used to attenuate noise and limit the control bandwidth as a safeguard against unmodeled
dynamics. The tunable components are highlighted in orange.

Figure 1: Longitudinal Autopilot Configuration.

The aircraft model is a 5-state model, the state variables being the aerodynamic speed (m/s),
the climb angle (rad), the angle of attack (rad), the pitch rate (rad/s), and the altitude (m).
The elevator deflection (rad) is used to control the vertical load factor . The open-loop dynamics
include the oscillation with frequency and damping ratio = 1.7 (rad/s) and = 0.33, the phugoid
mode = 0.64 (rad/s) and = 0.06, and the slow altitude mode = -0.0026.

13 Control System Tuning Examples

13-176

load ConcordeData G
bode(G,{1e-3,1e2}), grid
title('Aircraft Model')

Note the zero at the origin in . Because of this zero, we cannot achieve zero steady-state error
and must instead focus on the transient response to acceleration commands. Note that acceleration
commands are transient in nature so steady-state behavior is not a concern. This zero at the origin
also precludes pure integral action so we use a pseudo-integrator with = 0.001.

Tuning Setup

When the control system is modeled in Simulink, you can use the slTuner interface to quickly set up
the tuning task. Open the Simulink model of the autopilot.

open_system('rct_concorde')

 Fixed-Structure Autopilot for a Passenger Jet

13-177

Configure the slTuner interface by listing the tuned blocks in the Simulink model (highlighted in
orange). This automatically picks all Linear Analysis points in the model as points of interest for
analysis and tuning.

ST0 = slTuner('rct_concorde',{'Ki','Kp','Kq','Kf','RollOff'});

This also parameterizes each tuned block and initializes the block parameters based on their values
in the Simulink model. Note that the four gains Ki,Kp,Kq,Kf are initialized to zero in this example.
By default the roll-off filter is parameterized as a generic second-order transfer function. To
parameterize it as

create real parameters , build the transfer function shown above, and associate it with the
RollOff block.

wn = realp('wn', 3); % natural frequency
zeta = realp('zeta',0.8); % damping
Fro = tf(wn^2,[1 2*zeta*wn wn^2]); % parametric transfer function

setBlockParam(ST0,'RollOff',Fro) % use Fro to parameterize "RollOff" block

Design Requirements

The autopilot must be tuned to satisfy three main design requirements:

1. Setpoint tracking: The response to the command should closely match the response of the
reference model:

13 Control System Tuning Examples

13-178

This reference model specifies a well-damped response with a 2 second settling time.

2. High-frequency roll-off: The closed-loop response from the noise signals to should roll off past
8 rad/s with a slope of at least -40 dB/decade.

3. Stability margins: The stability margins at the plant input should be at least 7 dB and 45
degrees.

For setpoint tracking, we require that the gain of the closed-loop transfer from the command to
the tracking error be small in the frequency band [0.05,5] rad/s (recall that we cannot drive the
steady-state error to zero because of the plant zero at s=0). Using a few frequency points, sketch the
maximum tracking error as a function of frequency and use it to limit the gain from to .

Freqs = [0.005 0.05 5 50];
Gains = [5 0.05 0.05 5];
Req1 = TuningGoal.Gain('Nzc','e',frd(Gains,Freqs));
Req1.Name = 'Maximum tracking error';

The TuningGoal.Gain constructor automatically turns the maximum error sketch into a smooth
weighting function. Use viewGoal to graphically verify the desired error profile.

viewGoal(Req1)

 Fixed-Structure Autopilot for a Passenger Jet

13-179

Repeat the same process to limit the high-frequency gain from the noise inputs to and enforce a
-40 dB/decade slope in the frequency band from 8 to 800 rad/s

Freqs = [0.8 8 800];
Gains = [10 1 1e-4];
Req2 = TuningGoal.Gain('n','delta_m',frd(Gains,Freqs));
Req2.Name = 'Roll-off requirement';

viewGoal(Req2)

Finally, register the plant input as a site for open-loop analysis and use TuningGoal.Margins to
capture the stability margin requirement.

addPoint(ST0,'delta_m')

Req3 = TuningGoal.Margins('delta_m',7,45);

Autopilot Tuning

We are now ready to tune the autopilot parameters with systune. This command takes the untuned
configuration ST0 and the three design requirements and returns the tuned version ST of ST0. All
requirements are satisfied when the final value is less than one.

[ST,fSoft] = systune(ST0,[Req1 Req2 Req3]);

Final: Soft = 0.966, Hard = -Inf, Iterations = 131

Use showTunable to see the tuned block values.

13 Control System Tuning Examples

13-180

showTunable(ST)

Block 1: rct_concorde/Ki =

 D =
 u1
 y1 -0.02949

Name: Ki
Static gain.

Block 2: rct_concorde/Kp =

 D =
 u1
 y1 -0.009886

Name: Kp
Static gain.

Block 3: rct_concorde/Kq =

 D =
 u1
 y1 -0.2812

Name: Kq
Static gain.

Block 4: rct_concorde/Kf =

 D =
 u1
 y1 -0.02201

Name: Kf
Static gain.

wn = 4.78

zeta = 0.504

To get the tuned value of , use getBlockValue to evaluate Fro for the tuned parameter values
in ST:

Fro = getBlockValue(ST,'RollOff');
tf(Fro)

 Fixed-Structure Autopilot for a Passenger Jet

13-181

ans =

 22.84

 s^2 + 4.82 s + 22.84

Continuous-time transfer function.

Finally, use viewGoal to graphically verify that all requirements are satisfied.

figure('Position',[100,100,550,710])
viewGoal([Req1 Req2 Req3],ST)

13 Control System Tuning Examples

13-182

Closed-Loop Simulations

We now verify that the tuned autopilot satisfies the design requirements. First compare the step
response of with the step response of the reference model . Again use getIOTransfer to
compute the tuned closed-loop transfer from Nzc to Nz:

 Fixed-Structure Autopilot for a Passenger Jet

13-183

Gref = tf(1.7^2,[1 2*0.7*1.7 1.7^2]); % reference model

T = getIOTransfer(ST,'Nzc','Nz'); % transfer Nzc -> Nz

figure, step(T,'b',Gref,'b--',6), grid,
ylabel('N_z'), legend('Actual response','Reference model')

Also plot the deflection and the respective contributions of the feedforward and feedback paths:

T = getIOTransfer(ST,'Nzc','delta_m'); % transfer Nzc -> delta_m
Kf = getBlockValue(ST,'Kf'); % tuned value of Kf
Tff = Fro*Kf; % feedforward contribution to delta_m

step(T,'b',Tff,'g--',T-Tff,'r-.',6), grid
ylabel('\delta_m'), legend('Total','Feedforward','Feedback')

13 Control System Tuning Examples

13-184

Finally, check the roll-off and stability margin requirements by computing the open-loop response at
.

OL = getLoopTransfer(ST,'delta_m',-1); % negative-feedback loop transfer
margin(OL);
grid;
xlim([1e-3,1e2]);

 Fixed-Structure Autopilot for a Passenger Jet

13-185

The Bode plot confirms a roll-off of -40 dB/decade past 8 rad/s and indicates gain and phase margins
in excess of 10 dB and 70 degrees.

See Also
systune (slTuner) | slTuner | TuningGoal.Gain | TuningGoal.Margins

Related Examples
• “Fault-Tolerant Control of a Passenger Jet”

13 Control System Tuning Examples

13-186

Fault-Tolerant Control of a Passenger Jet

This example shows how to tune a fixed-structure controller for multiple operating modes of the
plant.

Background

This example deals with fault-tolerant flight control of passenger jet undergoing outages in the
elevator and aileron actuators. The flight control system must maintain stability and meet
performance and comfort requirements in both nominal operation and degraded conditions where
some actuators are no longer effective due to control surface impairment. Wind gusts must be
alleviated in all conditions. This application is sometimes called reliable control as aircraft safety
must be maintained in extreme flight conditions.

Aircraft Model

The control system is modeled in Simulink.

open_system('faultTolerantAircraft')

The aircraft is modeled as a rigid 6th-order state-space system with the following state variables
(units are mph for velocities and deg/s for angular rates):

• u: x-body axis velocity
• w: z-body axis velocity

 Fault-Tolerant Control of a Passenger Jet

13-187

• q: pitch rate
• v: y-body axis velocity
• p: roll rate
• r: yaw rate

The state vector is available for control as well as the flight-path bank angle rate mu (deg/s), the
angle of attack alpha (deg), and the sideslip angle beta (deg). The control inputs are the deflections of
the right elevator, left elevator, right aileron, left aileron, and rudder. All deflections are in degrees.
Elevators are grouped symmetrically to generate the angle of attack. Ailerons are grouped anti-
symmetrically to generate roll motion. This leads to 3 control actions as shown in the Simulink model.

The controller consists of state-feedback control in the inner loop and MIMO integral action in the
outer loop. The gain matrices Ki and Kx are 3-by-3 and 3-by-6, respectively, so the controller has 27
tunable parameters.

Actuator Failures

We use a 9x5 matrix to encode the nominal mode and various actuator failure modes. Each row
corresponds to one flight condition, a zero indicating outage of the corresponding deflection surface.

OutageCases = [...
 1 1 1 1 1; ... % nominal operational mode
 0 1 1 1 1; ... % right elevator outage
 1 0 1 1 1; ... % left elevator outage
 1 1 0 1 1; ... % right aileron outage
 1 1 1 0 1; ... % left aileron outage
 1 0 0 1 1; ... % left elevator and right aileron outage
 0 1 0 1 1; ... % right elevator and right aileron outage
 0 1 1 0 1; ... % right elevator and left aileron outage
 1 0 1 0 1; ... % left elevator and left aileron outage
];

Design Requirements

The controller should:

1 Provide good tracking performance in mu, alpha, and beta in nominal operating mode with
adequate decoupling of the three axes

2 Maintain performance in the presence of wind gust of 10 mph
3 Limit stability and performance degradation in the face of actuator outage.

To express the first requirement, you can use an LQG-like cost function that penalizes the integrated
tracking error e and the control effort u:

The diagonal weights and are the main tuning knobs for trading responsiveness and control
effort and emphasizing some channels over others. Use the WeightedVariance requirement to
express this cost function, and relax the performance weight by a factor 2 for the outage
scenarios.

We = diag([10 20 15]); Wu = eye(3);

13 Control System Tuning Examples

13-188

% Nominal tracking requirement
SoftNom = TuningGoal.WeightedVariance('setpoint',{'e','u'}, blkdiag(We,Wu), []);
SoftNom.Models = 1; % nominal model

% Tracking requirement for outage conditions
SoftOut = TuningGoal.WeightedVariance('setpoint',{'e','u'}, blkdiag(We/2,Wu), []);
SoftOut.Models = 2:9; % outage scenarios

For wind gust alleviation, limit the variance of the error signal e due to the white noise wg driving the
wind gust model. Again use a less stringent requirement for the outage scenarios.

% Nominal gust alleviation requirement
HardNom = TuningGoal.Variance('wg','e',0.02);
HardNom.Models = 1;

% Gust alleviation requirement for outage conditions
HardOut = TuningGoal.Variance('wg','e',0.1);
HardOut.Models = 2:9;

Controller Tuning for Nominal Flight

Set the wind gust speed to 10 mph and initialize the tunable state-feedback and integrators gains of
the controller.

GustSpeed = 10;
Ki = eye(3);
Kx = zeros(3,6);

Use the slTuner interface to set up the tuning task. List the blocks to be tuned and specify the nine
flight conditions by varying the outage variable in the Simulink model. Because you can only vary
scalar parameters in slTuner, independently specify the values taken by each entry of the outage
vector.

OutageData = struct(...
 'Name',{'outage(1)','outage(2)','outage(3)','outage(4)','outage(5)'},...
 'Value',mat2cell(OutageCases,9,[1 1 1 1 1]));
ST0 = slTuner('faultTolerantAircraft',{'Ki','Kx'},OutageData);

Use systune to tune the controller gains subject to the nominal requirements. Treat the wind gust
alleviation as a hard constraint.

[ST,fSoft,gHard] = systune(ST0,SoftNom,HardNom);

Final: Soft = 22.6, Hard = 0.99919, Iterations = 283

Retrieve the gain values and simulate the responses to step commands in mu, alpha, beta for the
nominal and degraded flight conditions. All simulations include wind gust effects, and the red curve is
the nominal response.

Ki = getBlockValue(ST, 'Ki'); Ki = Ki.d;
Kx = getBlockValue(ST, 'Kx'); Kx = Kx.d;

% Bank-angle setpoint simulation
plotResponses(OutageCases,1,0,0);

 Fault-Tolerant Control of a Passenger Jet

13-189

% Angle-of-attack setpoint simulation
plotResponses(OutageCases,0,1,0);

13 Control System Tuning Examples

13-190

% Sideslip-angle setpoint simulation
plotResponses(OutageCases,0,0,1);

 Fault-Tolerant Control of a Passenger Jet

13-191

The nominal responses are good but the deterioration in performance is unacceptable when faced
with actuator outage.

Controller Tuning for Impaired Flight

To improve reliability, retune the controller gains to meet the nominal requirement for the nominal
plant as well as the relaxed requirements for all eight outage scenarios.

[ST,fSoft,gHard] = systune(ST0,[SoftNom;SoftOut],[HardNom;HardOut]);

Final: Soft = 25.8, Hard = 0.99965, Iterations = 463

The optimal performance (square root of LQG cost) is only slightly worse than for the nominal
tuning (26 vs. 23). Retrieve the gain values and rerun the simulations (red curve is the nominal
response).

Ki = getBlockValue(ST, 'Ki'); Ki = Ki.d;
Kx = getBlockValue(ST, 'Kx'); Kx = Kx.d;

% Bank-angle setpoint simulation
plotResponses(OutageCases,1,0,0);

13 Control System Tuning Examples

13-192

% Angle-of-attack setpoint simulation
plotResponses(OutageCases,0,1,0);

 Fault-Tolerant Control of a Passenger Jet

13-193

% Sideslip-angle setpoint simulation
plotResponses(OutageCases,0,0,1);

13 Control System Tuning Examples

13-194

The controller now provides acceptable performance for all outage scenarios considered in this
example. The design could be further refined by adding specifications such as minimum stability
margins and gain limits to avoid actuator rate saturation.

See Also
systune (slTuner) | slTuner | TuningGoal.WeightedVariance | TuningGoal.Variance

Related Examples
• “Fixed-Structure Autopilot for a Passenger Jet”

 Fault-Tolerant Control of a Passenger Jet

13-195

Passive Control of Water Tank Level

In this example, you learn how to use Control System Tuner app to design a controller for a
nonlinear plant modeled in Simulink®. You accomplish the following tasks:

• Configure the model and app for compensator tuning
• Tune a first-order compensator using passivity-based design
• Simulate the closed-loop nonlinear response.

Simulink Model of the Control System

The cst_watertank_comp_design model, models a feedback loop for regulating the water level
in a water tank. The Controller block contains the first-order compensator to be tuned.

mdl = 'cst_watertank_comp_design';
open_system(mdl)

The Water Tank subsystem models the water-tank dynamics. Water enters the tank from the top at a
rate proportional to the voltage, V, applied to the pump. The water leaves through an opening in the
tank base at a rate that is proportional to the square root of the water height, H, in the tank. The
presence of the square root in the water flow rate makes the plant nonlinear.

13 Control System Tuning Examples

13-196

The nonlinear model for the water flow is

where

• denotes the height of water in the tank
• denotes the voltage applied to the pump
• denotes the cross-sectional area of the tank
• and are constants related to the flow rate into and out of the tank

This system is passive with storage function since

Passivity-Based Control

By the Passivity Theorem, the negative-feedback interconnection of two strictly passive systems
and is always stable.

 Passive Control of Water Tank Level

13-197

Since the water tank system is passive, it makes sense to require that the controller be strictly
passive to guarantee closed-loop stability even when the plant model is inaccurate.

Compensator Tuning Using Control System Tuner

You can use the Control System Tuner app to tune the Controller block.

Step 1: Open the Control System Tuner app. In the Simulink model window, on the Apps tab, in the
Apps gallery, click Control System Tuner.

Step 2: Launch the tuned block selector from the Select Blocks button in the Tuning tab

Step 3: Select the Controller block and Click OK. This block now appears in the Tuned Blocks list.

13 Control System Tuning Examples

13-198

Step 4: Specify the tuning goals. Here, there are two main goals:

1 Track step changes in water level
2 Make the controller passive

Click the New Goal drop-down list, and first add a Passivity goal.

 Passive Control of Water Tank Level

13-199

Configure this goal to apply to the Controller block only. This is done by setting the input signal to be
the "Desired Water Level", the output signal to be the output of the Controller block, and the loop
opening to be at the Controller block output. Also specify minimum passivity indices of 0.01 at the
inputs and outputs to enforce strict passivity.

Next, add a Reference Tracking goal from the New Goal drop-down list. Configure this goal for a 1
second response time.

13 Control System Tuning Examples

13-200

Finally, click on the Manage Goals button off the Tuning tab and mark the Passivity goal as a hard
tuning constraint.

Step 5: You are ready to tune the Controller block. Click the Tune button. You can view the tuning
results side-by-side by selecting Left/Right in the View tab.

 Passive Control of Water Tank Level

13-201

You can further analyze these results by generating a MATLAB script that reproduces this tuning
process.

13 Control System Tuning Examples

13-202

Closed-Loop Simulation

You can view the Bode plot of the tuned controller. Click on the New Plot button off the Control
System tab. Select New Bode from the drop-down list.

The controller response can be specified as follows.

Click on the Plot button. The bode plot is shown in the following figure.

 Passive Control of Water Tank Level

13-203

You can also simulate the closed-loop nonlinear response with the tuned controller. First, update the
Controller block by clicking Update Blocks in the Control System tab.

In the Simulink model, double click the Scope block to open the Scope window, then simulate the
model.

13 Control System Tuning Examples

13-204

The nonlinear response of the tuned control system appears in the Scope window. This simulation
shows that the tracking performance is satisfactory.

See Also
Control System Tuner

Related Examples
• “About Passivity and Passivity Indices”
• “Vibration Control in Flexible Beam”

 Passive Control of Water Tank Level

13-205

Tuning for Multiple Values of Plant Parameters

This example shows how to use Control System Tuner to tune a control system when there are
parameter variations in the plant. The control system used in this example is an active suspension of
a quarter-car model. The example uses Control System Tuner to tune the system to meet
performance objectives when parameters in the plant vary from their nominal values.

Quarter-Car Model and Active Suspension Control

A simple quarter-car model of an active suspension system is shown in Figure 1. The quarter-car
model consists of two masses, a car chassis with mass and a wheel assembly of mass . There is
a spring and damper between the masses, which models the passive spring and shock absorber.
The tire between the wheel assembly and the road is modeled by the spring .

Active suspension introduces a force between the chassis and wheel assembly and allows the
designer to balance driving objectives such as passenger comfort and road handling with the use of a
feedback controller.

Figure 1: Quarter-car model of active suspension.

Control Architecture

The quarter-car model is implemented using Simscape. The following Simulink model contains the
quarter-car model with active suspension, controller and actuator dynamics. Its inputs are road
disturbance and the force for the active suspension. Its outputs are the suspension deflection and
body acceleration. The controller uses these measurements to send a control signal to the actuator
that creates the force for active suspension.

mdl = 'rct_suspension.slx';
open_system(mdl)

13 Control System Tuning Examples

13-206

Control Objectives

The example has the following three control objectives:

• Good handling defined from road disturbance to suspension deflection.
• User comfort defined from road disturbance to body acceleration.
• Reasonable control bandwidth.

The nominal values of the spring constant and damper between the body and the wheel
assembly are not exact and due to the imperfections in the materials, these values can be constant
but different. Assess the impact on the system control using a variety of parameter values.

Model the road disturbance of magnitude seven centimeters and use a constant weight.

Wroad = ss(0.07);

Define the closed-loop target for handling from road disturbance to suspension deflection as

HandlingTarget = 0.044444 * tf([1/8 1],[1/80 1]);

Define the target for comfort from road disturbance to body acceleration.

ComfortTarget = 0.6667 * tf([1/0.45 1],[1/150 1]);

Limit the control bandwidth by the weight function from road disturbance to the control signal.

Wact = tf(0.1684*[1 500],[1 50]);

 Tuning for Multiple Values of Plant Parameters

13-207

For more information on selecting the closed-loop targets and the weight function, see “Robust
Control of Active Suspension” (Robust Control Toolbox).

Controller Tuning

To open a Control System Tuner session for active suspension control, in the Simulink model,
Double click to the orange block. Tuned block is set to the second order Controller and three tuning
goals are defined to achieve the handling, comfort and control bandwidth as described above. In
order to see the performance of the tuning, the step responses from road disturbance to suspension
deflection, the body acceleration and the control force are plotted.

Handling, comfort, and control bandwidth goals are defined as gain limits, HandlingTarget/Wroad,
ComfortTarget/Wroad and Wact/Wroad. All gain functions are divided by Wroad to incorporate
the road disturbance.

The open-loop system with zero controller violates the handling goal and results in highly oscillatory
behavior for both suspension deflection and body acceleration with long settling time.

Figure 2: Control System Tuner with Session File.

To tune the controller using Control System Tuner, on the Tuning tab, click Tune. As shown in
Figure 3, this design satisfies the tuning goals and the responses are less oscillatory and converges
quickly to zero.

13 Control System Tuning Examples

13-208

Figure 3: Control System Tuner after tuning.

Controller Tuning for Multiple Parameter Values

Now, try to tune the controller for multiple parameter values. The default value for car chassis of
mass is 300 kg. Vary the mass to 100 kg, 200 kg and 300 kg for different operation conditions.

In order to vary these parameters in Control System Tuner, on the Control System tab, under
Parameter Variations, select Select parameters to Vary. Define the parameters in the dialog that
opens.

 Tuning for Multiple Values of Plant Parameters

13-209

Figure 4: Defining parameter variations.

On the Parameter Variations tab, click Manage Parameters. In the Select model variables dialog
box, select Mb.

Figure 5: Select a parameter to vary from the model.

13 Control System Tuning Examples

13-210

Now, the parameter Mb is added with default values in the parameter variations table.

Figure 6: Parameter variations table with default values.

To generate variations quickly, click Generate Values. In the Generate Parameter Values dialog box,
define values 100, 200, 300 for Mb, and click Overwrite.

Figure 7: Generate values window.

All values are populated in the parameter variations table. To set the parameter variations to Control
System Tuner, click Apply.

 Tuning for Multiple Values of Plant Parameters

13-211

Figure 8: Parameter variations table with updated values.

Multiple lines appear in the tuning goal and response plots due to the varying parameters. The
controller obtained for these nominal parameter values results in an unstable closed-loop system.

Figure 9: Control System Tuner with multiple parameter variations.

Tune the controller to satisfy the handling, comfort, and control bandwidth objectives by clicking
Tune in Tuning tab. The tuning algorithm tries to satisfy these objectives for the nominal parameters
and for all parameter variations. This is a challenging task in contrast to nominal design as shown in
Figure 10.

13 Control System Tuning Examples

13-212

Figure 10: Control System Tuner with multiple parameter variations (Tuned).

Control System Tuner tunes the controller parameters for the linearized control system. To examine
the performance of the tuned parameters on the Simulink model, update the controller in the
Simulink model by clicking Update Blocks on the Control System tab.

Simulate the model for each of the parameter variations. Then, using the Simulation Data Inspector,
examine the results for all simulations. The results are shown in Figure 11. For all three parameter
variations, the controller tries to minimize the suspension deflection and body acceleration with
minimal control effort.

 Tuning for Multiple Values of Plant Parameters

13-213

Figure 11: Controller performance on the Simulink model.

See Also
Control System Tuner

More About
• “Create Response Plots in Control System Tuner”

13 Control System Tuning Examples

13-214

Control System Tuning Applications

• “UAV Inflight Failure Recovery” on page 14-2
• “Multiloop Control Design for Buck Converter” on page 14-20

14

UAV Inflight Failure Recovery

This example shows how to use Control System Tuner to tune the fixed-structure PID controllers of
a multicopter for nominal flight conditions and fault conditions. Here, you use a gain-scheduled
approach to recover from a single rotor failure and land the UAV.

UAV Package Delivery Model

This example uses a model based on the model discussed in the “UAV Package Delivery” (UAV
Toolbox) example. The high-fidelity 6-DOF plant model is based on Simulink Drone Reference
Application.

Open the Simulink® Project.

prj = openProject('scdUAVInflightFailureRecovery');

In this example, a single rotor failure is simulated by injecting a multiplicative gain vector in the
plant. To demonstrate the simulation results of the gain-scheduled controllers, the actuator
commands are used as features to design a fault detection algorithm, and a threshold based on
nominal and fault induced simulations is used to detect the fault.

The controller consists of a position (X, Y) and attitude (pitch, roll) loop, a yaw control loop, and an
altitude (Z) control loop. The Rotor Fault Injection Gains block is used to define the fault condition for
the plant model. Control System Tuner is used to tune the inner attitude controller and the altitude
controller. The gains are tuned for nominal flight conditions and fault conditions. A fault-recovery
control strategy is implemented using Varying PID Controller and Lookup Table blocks scheduled
based on the fault detection indicator. The following figure shows the controller subsystem used for
tuning.

open_system('MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/Controller/Controller')

14 Control System Tuning Applications

14-2

https://www.mathworks.com/matlabcentral/fileexchange/67625-simulink-drone-reference-application
https://www.mathworks.com/matlabcentral/fileexchange/67625-simulink-drone-reference-application

Controller Tuning

This section describes how to specify tunable elements and create tuning goals using Control
System Tuner. To launch a preconfigured session instead, use Project Shortcuts.

The controller and plant are extracted in a separate model,
MultirotorModelControlDesign.slx, set up for tuning controller gains using Control System
Tuner. The initial condition for the integral gains is set as 0.01 to suppress overshoot while
maintaining zero steady-state error. The rotor gain multiplier parameter is set to indicate nominal
mode with all rotors operational.

Open the model.

 UAV Inflight Failure Recovery

14-3

open_system("MultirotorModelControlDesign.slx")

To launch the Control System Tuner app, in the Simulink model window, in the Apps gallery, click
Control System Tuner.

Specify to linearize the model at a sample time of 0.005 seconds. To do so, click Linearization
Options, select Discrete with sample time, and enter 0.005.

Parameter Variations for Multiple Models

To specify parameter variations, on the Control System tab, click Select parameters to vary
from the Parameter Variations list. To select model variables, on the Parameter Variations tab,
click Manage Parameters. Select the rotor4ThrustGain parameter and click OK to add it to the
Parameter Variations table.

14 Control System Tuning Applications

14-4

Enter 0 for the second row value. The parameter variation defines the nominal flight
(rotor4ThrustGain = 1) and single rotor failure (rotor4ThrustGain = 0) conditions.

Select Tunable Blocks

To select blocks for tuning, on the Tuning tab, click Select Blocks. Then, on the Select Tuned Blocks
dialog, click Add Blocks. This opens the editor for tuned blocks where you can specify which blocks
are tunable.

 UAV Inflight Failure Recovery

14-5

Select the controller gains in the attitude controller and altitude controller subsystems as tunable.

14 Control System Tuning Applications

14-6

Specify Tuning Goals

To specify a tuning goal, on the Tuning tab, click New Goal. The Step Tracking Goal is used to
specify the response and desired characteristics for controlling the pitch and roll angles. The
reference pitch and roll signals and measured signals in the UAVState signal are marked as inputs
and outputs for the tuning goal, respectively. The position controller loop is opened to tune the
attitude control loop in isolation. Enter the Time constant parameter as 0.1 s and apply the tuning
goal to the nominal model (first row of Parameter Variation).

 UAV Inflight Failure Recovery

14-7

14 Control System Tuning Applications

14-8

Similarly, use the Step Tracking Goal and Loop Shape Goal dialogs to create the full set of tuning
goals required to tune the attitude and altitude controller gains.

The control objectives for the attitude loop are:

• Step tracking tuning goal to control pitch and roll with a desired first order response with a time
constant of 0.1 seconds

• Loop shape goal to suppress gain of feedback of pitch and roll loops at high frequency, specified as
an integrator with bandwidth of 10 Hz

The control objectives for the altitude loop are:

• Step tracking tuning goal with a desired first order response with a time constant of 1 second
• Loop shape goal to suppress gain of feedback at high frequency, specified as an integrator with

bandwidth of 10 Hz

Tuning Controller Parameters for Nominal Model

Follow the preceding section to set up the Control System Tuner session for tuning controller gains
for nominal flight mode. Alternatively, use the shortcut Tune controller for nominal flight in the
project to launch Control System Tuner with a preconfigured session file.

The tuning goal plots show that with the untuned controller gains, the attitude control loop is
unstable and the altitude control loop does not have the desired response. Use the Manage Goals
option to select and edit a tuning goal.

 UAV Inflight Failure Recovery

14-9

Click Tune to adjust the values of the tunable blocks to achieve the tuning goals. Both the attitude
and altitude control loops are tuned together with the yaw control loop fixed.

To see the values of tuned controller gains, select a block in the Tuned Blocks and view the value in
the Data Preview area of the Control System Tuner. For more information, see “Examine Tuned
Controller Parameters in Control System Tuner” on page 10-152.

The tuned controller gains are:

• Outer proportional loop control for pitch — Kp = 9 . 667

• Inner PI control for pitch angular velocity — Kp = 0 . 004296, Ki = 0 . 01

• Outer proportional loop control for roll — Kp = 9 . 572

• Inner PI control for roll angular velocity — Kp = 0 . 003494, Ki = 0 . 01

• PID control for altitude — Kp = 2 . 856, Ki = 0 . 01, Kd = 3 . 242

Tune Parameters for Fault Model

The defined parameter variation, rotor4ThrustGain = 0, generates the model for single rotor
failure. Change the tuning goals to apply to the fault model instead of the nominal model. The yaw
control loop is set to open for all tuning goals because with the loss of thrust to one rotor the diagonal
rotor pairs are unbalanced and the yaw is uncontrolled. The desired time constant for the
StepTracking - Altitude tuning goal is modified to 2 seconds, which reduces the landing
velocity of the multicopter.

14 Control System Tuning Applications

14-10

Double-click to open and modify each objective under Tuning Goals in Data Browser. Alternatively,
use the shortcut Tune controller for rotor failure in the project to launch Control System Tuner
with a preconfigured session file.

 UAV Inflight Failure Recovery

14-11

14 Control System Tuning Applications

14-12

Click Tune to retune the parameters based on the fault model. As seen in the following plots, small
overshoots and oscillations exist in the step response of pitch and roll as a result of the rotor failure.

The tuned controller gains for a plant with a single rotor failure are:

• Outer proportional loop control for pitch — Kp = 11 . 02
• Inner PI control for pitch angular velocity — Kp = 0 . 006415, Ki = 0 . 01
• Outer proportional loop control for roll — Kp = 11 . 42
• Inner PI control for roll angular velocity — Kp = 0 . 005209, Ki = 0 . 01
• PID control for altitude — Kp = 1 . 667, Ki = 0 . 01, Kd = 4 . 098

Simulation with Injected Fault and Gain-Scheduled PID Controllers

The simulation model implements a fault detection subsystem that extracts features from the actuator
commands and sets a threshold to detect the fault in rotor 4. The fault detection indicator is used as
the scheduling variable for the gain-scheduled controllers in the attitude loop and altitude loop. Also,
the pitch, roll, and altitude reference inputs are reconfigured to command the multicopter to land
with a safe velocity.

load_system("MultirotorModel");
open_system("MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault");

 UAV Inflight Failure Recovery

14-13

The gain-scheduled controllers are implemented using the Varying PID Controller block and Lookup
Table blocks to specify the gains, as shown for the pitch angular velocity controller. Update the gains
computed in the previous section in the table data of the blocks defined at breakpoints of nominal
operation (0) and fault (1).

14 Control System Tuning Applications

14-14

 UAV Inflight Failure Recovery

14-15

Similarly, update the gains for the remaining controllers.

Alternatively, you can set the block parameters using the following commands. If you modify any
tuning goal, replace the provided values with your tuned controller gain values.

Set the pitch controller parameters as follows.

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/Attitude Controller/Gain_PitchAngle'],'TableData','[9.669, 11.02]');

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/Attitude Controller/PI Pitch/Kp'],'TableData','[0.004296, 0.006416]');

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/Attitude Controller/PI Pitch/Ki'],'TableData','[0.01, 0.01]');

Set the roll controller parameters as follows.

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/Attitude Controller/Gain_RollAngle'],'TableData','[9.572, 11.42]');

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/Attitude Controller/PI Roll/Kp'],'TableData','[0.003493, 0.005209]');

14 Control System Tuning Applications

14-16

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/Attitude Controller/PI Roll/Ki'],'TableData','[0.01, 0.01]');

Set the altitude controller parameters as follows.

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/gravity feedforward//equilibrium thrust/Kp'],'TableData','[3.004, 1.667]');

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/gravity feedforward//equilibrium thrust/Ki'],'TableData','[0.01, 0.01]');

set_param(['MultirotorModel/Inner Loop and Plant Model/High-FidelityModel_RotorFault/' ...
 'Controller/Controller/gravity feedforward//equilibrium thrust/Kd'],'TableData','[3.308, 4.098]');

Use the Simulate model with fault injection project shortcut to simulate the model to takeoff and
fly the multicopter based on position commands from the guidance logic subsystem. A rotor fault is
introduced at 30 seconds by reducing the rotor thrust to 30%. Results for altitude position (top row)
and the attitude (middle row) in the Simulation Data Inspector show that the UAV settles to within
5% of its desired altitude and has smooth pitch and roll to enable it to track X and Y positions. The
bottom row shows the actuator commands for the four rotors.

When a rotor fails at 30 seconds, the UAV starts pitching and rolling. The controller is reconfigured
as the failure is detected. The pitch and roll are controlled to settle at 0 radians and the UAV lands
while maintaining a low velocity. As expected, the yaw is uncontrolled and the UAV does spin around
the vertical axis. The maximum yaw rate that the UAV reaches is verified through simulation, and the
attitude and altitude controllers are retuned with modified tuning goals, if necessary.

The UAV is visualized in a photorealistic environment and shows the UAV flying in a realistic world.
As the simulation starts, press 'F' to set the camera mode to Free in the AutoVrtlEnv window and
use the mouse scroll wheel to increase the camera distance from the UAV. Using these controls, you
can visualize the landing sequence following the rotor failure.

 UAV Inflight Failure Recovery

14-17

The following plot shows the transients after occurrence of the fault at 30 seconds.

14 Control System Tuning Applications

14-18

Close the project.

close(prj);

See Also
Control System Tuner

Related Examples
• “Specify Goals for Interactive Tuning” on page 10-28
• “View and Change Block Parameterization in Control System Tuner” on page 10-19
• “Tune a Control System Using Control System Tuner” on page 13-58
• “PID Autotuning for UAV Quadcopter” on page 8-73

 UAV Inflight Failure Recovery

14-19

Multiloop Control Design for Buck Converter

This example shows how to tune the gains of a discrete PID controller in a cascade control
configuration using systune.

This example is based on the article Cascade Digital PID Control Design for Power Electronic
Converters. The article describes the workflow to tune the inner-loop current control and outer-loop
voltage control one loop at a time, whereas this example shows how to tune both loops at the same
time.

In this example, you:

1 Conduct frequency response estimation (FRE) of the buck converter plant model.
2 Estimate a parametric LTI model from the FRE result.
3 Construct a multiloop feedback control system using LTI models.
4 Define tuning goals in the frequency domain and tune the controllers using systune.
5 Verify the performance of the tuned controllers.

Conduct Frequency Response Estimation

This example uses a buck converter modeled using Simscape™ Electrical™ components to provide
voltage regulation from 48 V to 12 V. The model uses cascade control architecture so that the inner
loop regulates the inductor current and the outer loop regulates the output voltage. The output of the
outer voltage loop provides the current reference signal to the inner current loop, which, in turn,
provides the duty cycle signal to the PWM Generator block. The controller architecture includes
manual switches to make the converter operate in one of three configurations: open-loop (PWM
Generator block with a constant duty cycle), inner current-loop, and outer voltage loop.

Open the buck converter plant model.

mdl = 'scdCurrentControlBuckConverter';
open_system(mdl)

14 Control System Tuning Applications

14-20

https://www.mathworks.com/company/newsletters/articles/cascade-digital-pid-control-design-for-power-electronic-converters.html
https://www.mathworks.com/company/newsletters/articles/cascade-digital-pid-control-design-for-power-electronic-converters.html

Specify Linear Analysis Points for Frequency Response Estimation

To collect frequency response data, you must first specify the portion of model to estimate. You can
configure the linear analysis points that specify the inputs and outputs of the model for estimation
using linio. Alternatively, you can interactively specify the linear analysis points using the
Linearization Manager app. Here, use linio to assign the input perturbation analysis point to the
Duty Cycle block and the output measurement analysis points to the Current ADC and Voltage ADC
blocks, which are the Rate Transition blocks after the inductor current measurement and output
voltage measurement Probe blocks, respectively.

io(1) = linio('scdCurrentControlBuckConverter/Duty Cycle',1,'input');
io(2) = linio('scdCurrentControlBuckConverter/Current ADC',1,'output');
io(3) = linio('scdCurrentControlBuckConverter/Voltage ADC',1,'output');

Find Snapshot-Based Model Operating Point and Initialize Model

To obtain a frequency response that accurately captures system dynamics, you must perform the
estimation at a steady-state operating point.

Simulate the model to determine the time the model takes to reach steady state.

sim(mdl,'StopTime','0.008');

Initial simulation results show that the buck converter model reaches steady-state operation after
around 0.007 seconds. Take a simulation snapshot at 0.007 seconds to find the steady-state operating
point.

opini = findop(mdl,0.007);

Initialize the model using this operating point object.

set_param(mdl,'LoadInitialState','on','InitialState','getstatestruct(opini)');
op = operpoint(mdl);

Create Perturbation Signal for Experiment and Compute Non-Parametric Frequency
Response

Define a PRBS perturbation signal with the following parameters.

• Signal order — 11

 Multiloop Control Design for Buck Converter

14-21

• Number of periods — 1
• Perturbation amplitude — 0.05
• Sample time — 1 ×10−5 seconds

in_PRBS = frest.PRBS('Order',11,'NumPeriods',1,'Amplitude',0.05,'Ts',1e-5);

Before you conduct the frequency response estimation experiment, identify the time-varying sources
so that these sources are deterministic during the experiment.

srcblks = frest.findSources(mdl,io);
opts = frestimateOptions;
opts.BlocksToHoldConstant = srcblks;

You can now conduct the frequency response estimation experiment. During the experiment, the
software simulates the model, injects the PRBS signal at the specified input, and measures the
response at the specified output. The result is a frequency-response data model (frd) object. This is a
non-parametric model that is a description of the system as discrete frequency points.

estsys_PRBS = frestimate(mdl,io,op,in_PRBS,opts);

Frequency response estimation with PRBS input signal produces results with many frequency points.
Use interp (System Identification Toolbox) to extract an interpolated result from the estimated
frequency response model across 50 frequency points from 700 rad/s to 300,000 rad/s.

wmin = 700;
wmax = 3e5;
Nfreq = 50;
w = logspace(log10(wmin+10),log10(wmax),Nfreq);
estsys_PRBS_thinned = interp(estsys_PRBS, w);

Compare the FRE result before and after thinning.

figure;
bode(estsys_PRBS,estsys_PRBS_thinned);
legend('Raw FRE result','Thinned FRE result');

14 Control System Tuning Applications

14-22

The frequency points match very well. You can now estimate a parametric model from the thinned
result.

Estimate Parametric LTI Model from FRE Results

Estimate a state-space parametric model of the buck converter with one input (duty cycle) and two
outputs (inductor current and output voltage). As the shape of the estimated frequency response in
the Bode plot resembles a third-order model, estimate a third-order state-space model using ssest.

optssest = ssestOptions('SearchMethod','lm');
optssest.Regularization.Lambda = 1e-8;
sys_systune = ssest(estsys_PRBS_thinned,3,'Ts',Ts_ctrl,optssest);

Compare the parametric estimation result with the thinned FRE result.

figure;
P = bodeoptions;
P.PhaseMatching = 'on';
bode(estsys_PRBS_thinned,sys_systune, P);
legend('FRE result','ssest result');

 Multiloop Control Design for Buck Converter

14-23

You can see that the estimated parametric model is satisfactory.

Construct Feedback Control System for Tuning

To model a feedback control system for tuning, first define the discrete-time PI controllers as tunable
elements.

Ci = tunablePID('Ci','PI',Ts_ctrl);
Ci.IFormula = 'Trapezoidal';
Ci.u = 'Ie';
Ci.y = 'Duty Cycle';

Cv = tunablePID('Cv','PI',Ts_ctrl);
Cv.IFormula = 'Trapezoidal';
Cv.u = 'Ve';
Cv.y = 'Iref';

To improve the convergence time, provide initial values for the outer-loop controller.

Cv.Kp.Value = 1;
Cv.Ki.Value = 200;

Then, construct a multiloop control system as shown.

14 Control System Tuning Applications

14-24

sum_i = sumblk('Ie = Iref-iL_sampled');
sum_v = sumblk('Ve = Vref-vc_sampled');

input = {'Vref'};
output = {'iL_sampled','vc_sampled'};
APs = {'Iref','Duty Cycle','iL_sampled','vc_sampled'};

ST0 = connect(sys_systune,Ci,Cv,sum_i,sum_v,input,output,APs);

Define Frequency-Domain Tuning Goals

Define tuning goals for inner and outer loops using target bandwidths and stability margins.

• Use TuningGoal.LoopShape to specify the target bandwidth.
• Use TuningGoal.Margins to specify phase and gain margins in a frequency range. While you

can clearly define target phase margins, specify a small value of 3 dB for the gain margins for
stability. The tuning result usually achieves a higher gain margin. For this goal, also define a
frequency focus band so that systune enforces margins only over the interested frequency range.

Additionally, specify the outer loop as open while evaluating the inner-loop tuning goals.

LS1 = TuningGoal.LoopShape('iL_sampled',30000);
LS1.Openings = {'vc_sampled'};
LS2 = TuningGoal.LoopShape('vc_sampled',3000);
MG1 = TuningGoal.Margins('iL_sampled',3,60);
MG1.Openings = {'vc_sampled'};
MG1.Focus = [30000 300000];
MG2 = TuningGoal.Margins('vc_sampled',3,60);
MG2.Focus = [3000 30000];

Tune Controllers and Extract Tuning Results

Start tuning with systune, using the following settings to help optimization achieve desirable
results. To satisfy the performance requirements, systune enforces all tuning goals as hard goals.

Create a systuneOptions object and adjust the values for the minimum decay rate and maximum
spectral radius to suit tuning for high bandwidth loop shapes. Also, reduce the relative tolerance
criteria for termination.

 Multiloop Control Design for Buck Converter

14-25

opt = systuneOptions('SoftTol',1e-10,'MinDecay',1e-10,'MaxRadius',1e10);
rng(1)
[ST1,fSoft,fHard] = systune(ST0,[],[LS1,LS2,MG1,MG2],opt);

Final: Soft = -Inf, Hard = 1.7014, Iterations = 76

Plot the performance of the tuned system against the tuning goals.

figure;
viewGoal([LS1,LS2],ST1)

figure;
viewGoal([MG1,MG2],ST1)

14 Control System Tuning Applications

14-26

For the inner loop, the tuned result achieves a bandwidth slightly lower than the specified target
bandwidth and the phase margin is lower than the specified target phase margin in some frequencies.
Even though the tuning goals are not completely satisfied, the tuning results are sufficient for the
stable operation of the tuned model.

Get the controller gains from tunable blocks and save to workspace.

Cv = getBlockValue(ST1,'Cv');
Ci = getBlockValue(ST1,'Ci');
CurrentControlP = Ci.Kp

CurrentControlP = 0.1387

CurrentControlI = Ci.Ki

CurrentControlI = 1.8676e+03

VoltageControlP = Cv.Kp

VoltageControlP = 0.2199

VoltageControlI = Cv.Ki

VoltageControlI = 603.0286

Verify Control Design Result Performance

Examine the tuned controller performance with load and input voltage disturbances.

 Multiloop Control Design for Buck Converter

14-27

• The load disturbance is applied at 0.008 seconds, which increases the load resistance from 6 ohms
to 12 ohms.

• The input voltage disturbance is applied at 0.016 seconds, which decreases the input voltage from
48 V to 40 V.

Set the PI controller gains to the tuned values.

set_param('scdCurrentControlBuckConverter/Discrete PID Controller','P','CurrentControlP');
set_param('scdCurrentControlBuckConverter/Discrete PID Controller','I','CurrentControlI');
set_param('scdCurrentControlBuckConverter/Discrete PID Controller1','P','VoltageControlP');
set_param('scdCurrentControlBuckConverter/Discrete PID Controller1','I','VoltageControlI');

Toggle the manual switches to close both the inner and outer loops and simulate the model with the
regulated voltage and current.

set_param('scdCurrentControlBuckConverter/Manual Switch', 'sw', '0');
set_param('scdCurrentControlBuckConverter/Manual Switch1', 'sw', '0');

Simulate the model with the tuned gains.

set_param(mdl,'LoadInitialState','off');
sim(mdl)

The tuned controllers track the voltage reference and reject disturbances well. To fine tune the result,
you can update the tuning goals in the Define Frequency-Domain Tuning Goals on page 14-25 section
of this example. For a faster response, you can increase the target bandwidth in the loop shape
tuning goal. For improved transient behavior, you can increase the target phase margin in the
margins tuning goal.

Close the model.

close_system(mdl,0);

See Also
systune | ssest | frestimate | connect

14 Control System Tuning Applications

14-28

Related Examples
• “Tune Control Systems Using systune”
• “Tuning Multiloop Control Systems” on page 13-2
• “Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary

Signal” on page 5-97

 Multiloop Control Design for Buck Converter

14-29

Adaptive Control

• “Extremum Seeking Control” on page 15-2
• “Extremum Seeking Control for Reference Model Tracking of Uncertain Systems” on page 15-8
• “Anti-Lock Braking Using Extremum Seeking Control” on page 15-15
• “Adaptive Cruise Control Using Extremum Seeking Control” on page 15-21
• “Model Reference Adaptive Control” on page 15-28
• “Model Reference Adaptive Control of Satellite Spin” on page 15-34
• “Model Reference Adaptive Control of Aircraft Undergoing Wing Rock” on page 15-42
• “Indirect Model Reference Adaptive Control of First-Order System” on page 15-55
• “Indirect MRAC Control of Mass-Spring-Damper System” on page 15-59
• “Active Disturbance Rejection Control” on page 15-67
• “Design Active Disturbance Rejection Control for Water-Tank System” on page 15-71
• “Design Active Disturbance Rejection Control for Boost Converter” on page 15-79
• “Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM”

on page 15-91

15

Extremum Seeking Control
Extremum seeking control (ESC) is a model-free, real-time adaptive control algorithm that is useful
for adapting parameters to unknown system dynamics and unknown mappings from control
parameters to an objective function. You can use extremum seeking to solve static optimization
problems and to optimize parameters of dynamic systems.

The extremum seeking algorithm uses the following stages to tune a parameter value.

1 Modulation — Perturb the value of the parameter being optimized using a low-amplitude
sinusoidal signal.

2 System Response — The system being optimized reacts to the parameter perturbations. This
reaction causes a corresponding change in the objective function value.

3 Demodulation — Multiply the objective function signal by a sinusoid with the same frequency as
the modulation signal. This stage includes an optional high-pass filter to remove bias from the
objective function signal.

4 Parameter Update — Update the parameter value by integrating the demodulated signal. The
parameter value corresponds to the state of the integrator. This stage includes an optional low-
pass filter to remove high-frequency noise from the demodulated signal.

Simulink Control Design software implements this algorithm using the Extremum Seeking Control
block. For examples of extremum-seeking control, see:

• “Extremum Seeking Control for Reference Model Tracking of Uncertain Systems” on page 15-8
• “Anti-Lock Braking Using Extremum Seeking Control” on page 15-15
• “Adaptive Cruise Control Using Extremum Seeking Control” on page 15-21

Time Domain
Using the Extremum Seeking Control block, you can implement both continuous-time and discrete-
time controllers. The ESC algorithm is the same in both cases. Changing the time-domain of the
controller affects the time domain of the high-pass filters, low-pass filters, and integrators used in the
tuning loops.

To generate hardware-deployable code for the Extremum Seeking Control block, use a discrete-time
controller.

The following table shows the continuous-time and discrete-time transfer functions for the filters and
integrators in the Extremum Seeking Control block.

Controller Element Continuous-Time Transfer
Function

Discrete-Time Transfer
Function

High-pass filter s
s + ωh

1 − z−1

1 − ωhz−1

Low-pass Filter 1
s + ωl

1
1 − ωlz−1

15 Adaptive Control

15-2

Controller Element Continuous-Time Transfer
Function

Discrete-Time Transfer
Function

Integrator 1
s

Forward Euler:

Ts
z − 1

Backward Euler:

Tsz
z − 1

Trapezoidal:

Ts
2

z + 1
z − 1

Here:

• ωl is the low-pass filter cutoff frequency.
• ωh is the high-pass filter cutoff frequency.
• Ts is the sample time of the discrete-time controller learning rate.

Static Optimization
To demonstrate extremum seeking, consider the following static optimization problem.

Here:

• θ is the estimated parameter value.
• θ is the modulation signal

 Extremum Seeking Control

15-3

• y = f(θ) is the function output being maximized, that is, the objective function.
• ω is the forcing frequency of the modulation and demodulation signals.
• b·sin(ωt) is the modulation signal.
• a·sin(ωt) is the demodulation signal.
• k is the learning rate.

The optimum parameter value, θ*, occurs at the maximum value of f(θ).

To optimize multiple parameters, you use a separate tuning loop for each parameter.

The following figure demonstrates extremum seeking for an increasing portion of the objective
function curve. The modulated signal θ is the sum of the current estimated parameter and the
modulation signal. Applying f(θ) produces a perturbed objective function with the same phase as the
modulation signal. Multiplying the perturbed objective function by the demodulation signal produces
a positive signal. Integrating this signal increases the value of θ, which moves it closer to the peak of
the objective function.

The following figure demonstrates extremum seeking for a decreasing portion of the objective
function curve. In this case, applying f(θ) produces a perturbed objective function that is 180 degrees
out of phase from the modulation signal. Multiplying by the demodulation signal produces a negative
signal. Integrating this signal decreases the value of θ, which moves it closer to the peak of the
objective function.

15 Adaptive Control

15-4

The following figure demonstrates extremum seeking for a flat portion of the objective function curve,
that is, a portion of the curve near the maximum. In this case, applying f(θ) produces a near-zero
perturbed objective function. Multiplying by the demodulation signal and integrating this signal does
not significantly change the value of θ, which is already near its optimum value θ*.

 Extremum Seeking Control

15-5

Dynamic System Optimization
Extremum seeking optimization of a dynamic system occurs in a similar fashion as static optimization.
However, in this case, the parameter θ affects the output of a time-dependent dynamic system. The
objective function to be maximized is computed from the system output. The following figure shows
the general tuning loop for a dynamic system.

15 Adaptive Control

15-6

Here:

• ẋ = f x, α x, θ is the state function of the dynamic system.
• z = h(x) is the output of the dynamic system.
• y = g(z) is the objective function derived from the output of the dynamic system.
• ϕ1 is the phase of the demodulation signal.
• ϕ2 is the phase of the modulation signal.

ESC Design Guidelines
When designing an extremum-seeking controller, consider the following guidelines.

• Ensure that the system dynamics are on the fastest time scale, the forcing frequencies are on the
medium time scale, and the filter cutoff frequencies are on the slowest time scale.

• Specify an amplitude for the demodulation signal that is much greater than the modulation signal
amplitude (a ≫ b).

• Select phase angles for the modulation and demodulation signals such that cos(ϕ1 – ϕ2) > 0.
• When tuning multiple parameters, the forcing frequency for each tuning loop must be different.
• Try designing your system without high-pass and low-pass filters. If the performance is not

satisfactory, you can then consider adding one or both filters.

References
[1] Ariyur, Kartik B., and Miroslav Krstić. Real Time Optimization by Extremum Seeking Control.

Hoboken, NJ: Wiley Interscience, 2003.

See Also
Blocks
Extremum Seeking Control

Related Examples
• What Is Extremum Seeking Control?
• “Extremum Seeking Control for Reference Model Tracking of Uncertain Systems” on page 15-

8
• “Anti-Lock Braking Using Extremum Seeking Control” on page 15-15
• “Adaptive Cruise Control Using Extremum Seeking Control” on page 15-21

 Extremum Seeking Control

15-7

https://www.mathworks.com/videos/learning-based-control-part-1-what-is-extremum-seeking-control-1625202364595.html

Extremum Seeking Control for Reference Model Tracking of
Uncertain Systems

This example shows the design of feedback and feedforward gains for a system, a common controller
design technique. Here, you use an extremum seeking controller to track a given reference plant
model by adapting feedback and feedforward gains for an uncertain dynamical system.

Adaptive Gain Tuning for Uncertain Linear Systems

For this example, consider the following first-order linear system.

ẋ(t) = a0x(t) + b0u(t)

Here, x t and u t are the state and control input of the system, respectively. The constants a0 and b0
are unknown.

The goal of this example is to track the performance of the following reference plant model, which
defines the required transient and steady-state behavior.

ẋref (t) = a*xref (t) + b*r(t)

Here, xref t is the state of the reference plant and r t is the reference signal.

The aim of the control signal u(t) is to make the states x(t)of the uncertain system track the reference
states xref t .

u(t) = Kx(t) − Kr(t)

The designed controller contains a feedback term, Kx t , and a feedforward term, −Kr t .

Substitute this control signal into the unknown linear system dynamics.

ẋ(t) = a0x(t) + b0 Kx(t) − Kr(t)

You can rewrite this expression as shown in the following equation.

ẋ(t) = (a0 + b0K)x(t) − b0Kr(t)

In the ideal case, if the coefficients a0 and b0 of the nominal system dynamics are known, then you
can determine the controller gain K using pole-placement techniques. Doing so produces the
following matching condition.

a0 + b0K = a*, b0K = b*

When you use a single gain value as both the feedforward and feedback gain, this matching condition
might not be satisfied for all the possible values of a0 and b0. For a more general solution, you can
tune two different gain values (multiparameter tuning).

For this example, use the following unknown system and reference dynamics.

ẋ(t) = − 1x(t) + u(t)

15 Adaptive Control

15-8

ẋref (t) = − 3xref (t) + 2r(t)

In this case, the ideal control gain is K = − 2.

Extremum Seeking Control Adaptive Gain Tuning

To implement an extremum seeking control (ESC) approach to the preceding problem, you define an
objective function, which the ESC controller then maximizes to find the controller gain K.

For this example, use the following objective function.

J = − 10∫ x(t) − xref (t)
2dt

The following figure shows the setup for extremum seeking control.

• The cost function is computed from the outputs of the reference system and the actual system.
• The extremum seeking controller updates the gain parameter.
• The control action is updated using the new gain value.
• This control action is applied to the actual system.

The firstOrderRefTracking_Esc Simulink model implements this problem configuration.

mdl = 'firstOrderRefTracking_Esc';
open_system(mdl)

 Extremum Seeking Control for Reference Model Tracking of Uncertain Systems

15-9

In this model, you use the Extremum Seeking Control block to optimize the gain value.

The System Dynamics and Objective subsystem contains the reference model, the plant (including the
actual system and control action), and the objective function computation. These elements are all
implemented using MATLAB Function blocks.

open_system([mdl '/System Dynamics and Objective'])

Specify an initial guess for the gain value.

IC = 0;

15 Adaptive Control

15-10

The Extremum Seeking Control block perturbs the parameter value using a modulation signal. It then
demodulates the resulting change in the objective function signal before computing the parameter
update. Configure the extremum seeking control parameters for this block.

First specify the number of parameters to be tuned (N) and the learning rate (lr).

N = 1;
lr = 0.55;

Configure the demodulation and modulation signals by specifying their frequency (omega), phases
(phi_1 and phi_2), and their amplitudes (a and b).

omega = 5; % Forcing frequency
a = 1; % Demodulation amplitude
b = 0.1; % Modulation amplitude
phi_1 = 0; % Demodulation phase
phi_2 = 0; % Modulation phase

For this example, the Extremum Seeking Control block is configured to remove high-frequency noise
from the demodulated signal. Set the cutoff frequency for the corresponding low-pass filter.

omega_lpf = 1;

Simulate the model.

sim(mdl);

To check the reference tracking performance, view the state trajectories from the simulation. The
actual trajectory converges to the reference trajectory in less than five seconds.

open_system([mdl '/System Dynamics and Objective/State'])

 Extremum Seeking Control for Reference Model Tracking of Uncertain Systems

15-11

To examine the behavior of the ESC controller, first view the objective function, which reaches its
maximum value quickly.

open_system([mdl '/System Dynamics and Objective/Cost'])

15 Adaptive Control

15-12

By maximizing the objective function, the ESC controller optimizes the control gain value near its
ideal value of –2. The fluctuations in the gain value are due to the modulation signal from the
Extremum Seeking Control block.

open_system([mdl '/System Dynamics and Objective/Gain K'])

 Extremum Seeking Control for Reference Model Tracking of Uncertain Systems

15-13

bdclose(mdl)

See Also
Blocks
Extremum Seeking Control

Related Examples
• “Anti-Lock Braking Using Extremum Seeking Control” on page 15-15
• “Adaptive Cruise Control Using Extremum Seeking Control” on page 15-21

15 Adaptive Control

15-14

Anti-Lock Braking Using Extremum Seeking Control

This example shows how to use the extremum seeking control (ESC) to optimize braking torque for
an anti-lock braking system (ABS).

Anti-Lock Braking System

An anti-lock braking system prevents vehicle brakes from locking up by adjusting the braking torque
for each wheel. For such a system, the following function defines the slip coefficient of a wheel.

slip = 1 −
ωw
ωv

Here, ωw is the wheel angular velocity and ωv is the wheel angular velocity under a nonbraking
condition (vehicle speed divided by wheel radius). Based on this equation, slip is zero when the wheel
speed and vehicle speed are equal, and slip equals one when the wheel is locked (ωw is zero). A
desirable slip value for braking is 0.2, which means that the number of wheel revolutions equals 0.8
times the number of revolutions under nonbraking conditions with the same vehicle velocity. This slip
value maximizes the adhesion between the tire and road and minimizes the stopping distance for the
available friction.

The friction coefficient μ between the tire and the road surface is a function of slip, known as the mu-
slip curve.

The frictional force Ff acting on the circumference of the tire is the product of the friction coefficient
μ multiplied by the weight on the wheel W. Ff divided by the vehicle mass is equal to the vehicle
deceleration, which you can integrate to obtain vehicle velocity.

Ideally, an anti-lock braking controller uses bang-bang control based upon the error between the
actual slip and desired slip. The desired slip value is a constant and corresponds to the slip value for
which the mu-slip curve reaches its peak value. For more information, see “Modeling an Anti-Lock
Braking System”.

Specify Vehicle Model Parameters

Define the following vehicle parameters for this example.

 Anti-Lock Braking Using Extremum Seeking Control

15-15

• m — Vehicle mass
• W — Vehicle weight
• B — Wheel damping torque coefficient
• Rr — Wheel radius
• I — Wheel inertia

m = 400;
W = m*9.81;
B = 0.01;
Rr = 0.3;
I = 1;

Also, specify the initial vehicle forward velocity v0 and initial wheel angular velocity x0.

v0 = 120/3.6;
w0 = 400/3.6;

Extremum Seeking Control for Anti-Lock Braking System

For this ABS example, you design an extremum seeking controller that maximizes the friction
coefficient, which is a function of the slip coefficient as shown in the following equation.

μ = 2μ*λ*λ
λ * 2 + λ2

Here, μ* and λ* are the ideal friction and slip coefficients, respectively. The actual friction μ equals μ*
when the achieved slip coefficient λ equals the ideal slip coefficient λ*. The ABS achieves this
objective of maximum deceleration, and hence the shortest stopping distance, by controlling the
braking torque, which is a function of the slip and friction coefficients.

Simulink Control Design software implements the ESC algorithm using the Extremum Seeking
Control block. For this example, open the ExtremumSeekingControlABS model, which includes this
block along with an ABS system model.

mdl = 'ExtremumSeekingControlABS';
open_system(mdl)

15 Adaptive Control

15-16

The output of the Extremum Seeking Control block is the slip coefficient λ. Since the ESC controller
maximizes the value of μ, use this value as the objective function input for the block.

Specify an initial guess for the slip coefficient.

IC = 0.15;

Also, specify the ideal slip coefficient lambda_star and ideal friction coefficient mu_star.

lambda_star = 0.25;
mu_star = 0.6;

The Extremum Seeking Control block perturbs the parameter value using a modulation signal. It then
demodulates the resulting change in the objective function signal before computing the parameter
update. Configure the extremum seeking control parameters for this block.

First specify the number of parameters to be tuned (N) and the learning rate (lr).

N = 1;
lr = 0.3;

Configure the demodulation and modulation signals by specifying their frequency (omega), phases
(phi_1 and phi_2), and amplitudes (a and b).

omega = 0.7; % Forcing frequency
a = 1; % Demodulation amplitude
b = 0.02; % Modulation amplitude
phi_1 = pi/2; % Demodulation phase
phi_2 = 0; % Modulation phase

For this example, use a low-pass filter to remove high-frequency noise from the demodulated signal
and a high-pass filter to remove bias from the perturbed objective function signal. Specify the cutoff
frequencies for these filters.

 Anti-Lock Braking Using Extremum Seeking Control

15-17

omega_lpf = 1;
omega_hpf = 0.5;

Simulate Anti-Lock Braking System

Simulate the model.

sim(mdl);

View the friction coefficient simulation result. Within two seconds, μ reaches its maximum value.

open_system([mdl '/mu'])

View the vehicle velocity and the wheel angular velocity, both of which decrease to zero during the
braking simulation.

open_system([mdl '/velocity'])

15 Adaptive Control

15-18

open_system([mdl '/wheel velocity'])

bdclose('ExtremumSeekingControlABS')

 Anti-Lock Braking Using Extremum Seeking Control

15-19

Reference

[1] Ariyur, Kartik B., and Miroslav Krstić. Real Time Optimization by Extremum Seeking Control.
Hoboken, NJ: Wiley Interscience, 2003.

See Also
Blocks
Extremum Seeking Control

Related Examples
• “Extremum Seeking Control for Reference Model Tracking of Uncertain Systems” on page 15-8
• “Adaptive Cruise Control Using Extremum Seeking Control” on page 15-21

15 Adaptive Control

15-20

Adaptive Cruise Control Using Extremum Seeking Control

This example shows how to implement adaptive cruise control using an extremum seeking control
(ESC) approach. In this example, the goal is to make an ego car travel at a set velocity while
maintaining a safe distance from a lead car by controlling longitudinal acceleration and braking.

Adaptive Cruise Control System

Adaptive cruise control (ACC) is a system designed to help vehicles maintain a safe following distance
and stay within the speed limit. A vehicle equipped with an ACC system (ego car) uses radar to
measure relative distance (Drel) and relative velocity (Vrel) with respect to the leading vehicle. The
ACC system is designed to maintain a desired cruising speed (Vset) or maintain a relative safe
distance (Dsafe) from the leading car. The switch in the control objective is determined based on the
following conditions.

• If Drel > Dsafe, the ACC system follows the desired reference cruise velocity commanded by the
driver.

• If Drel < Dsafe, the ACC system controls the relative position of the ego car with respect to the
lead car.

This example uses the same ego and lead car model as the “Adaptive Cruise Control System Using
Model Predictive Control” (Model Predictive Control Toolbox).

Implement the longitudinal vehicle dynamics as a simple second-order linear model.

G = tf(1,[0.5,1,0]);

Configure the ACC parameters for the example.

D_default = 10; % Default spacing (m)
t_gap = 1.4; % Time gap (s)
v_set = 30; % Driver-set velocity (m/s)
amin_ego = -3; % Minimum acceleration for driver comfort (m/s^2)
amax_ego = 2; % Maximum acceleration for driver comfort (m/s^2)
Ts = 0.1; % Sample time (s)
Tf = 150; % Duration (s)

Specify the initial position and velocity for both the lead car and ego car.

x0_lead = 50; % Initial lead car position (m)
v0_lead = 25; % Initial lead car velocity (m/s)
x0_ego = 10; % Initial ego car position (m)
v0_ego = 20; % Initial ego car velocity (m/s)

ACC Using Extremum Seeking Control

An extremum seeking controller achieves satisfactory control performance by adjusting control
parameters to maximize an objective function in real time. For this example, use the following
objective function, which depends on relative distance, safe distance, relative velocity, and set
velocity.

J = −∫Qd Drel− Dsafe
2 + Qv vrel− vset

2

 Adaptive Cruise Control Using Extremum Seeking Control

15-21

Here, Qd and Qv are objective function weights for the distance error and velocity error terms,
respectively.

Qd = 0.5;
Qv = 1;

The extremum seeking controller adapts the following controller gains.

• Kxerr — Position error gain
• Kverr — Velocity error gain
• Kvrel — Relative velocity gain

Specify initial guesses for the gain values.

Kverr = 1; % ACC velocity error gain
Kxerr = 1; % ACC spacing error gain
Kvrel = 0.5; % ACC relative velocity gain

Specify Extremum Seeking Control Parameters

Simulink Control Design software implements the ESC algorithm using the Extremum Seeking
Control block. Configure the parameters for this block.

Specify the number of parameters to tune (the three controller gains). The controller uses a separate
tuning loop for each parameter.

N = 3;

Specify the initial conditions for the parameter update integrators by scaling the initial gain values
with respect to the learning rate for each parameter lr.

lr = 0.02*[2 3 1];
IC = [Kverr,Kxerr,Kvrel];

Configure the demodulation and modulation signals by specifying their frequencies (omega), phases
(phi_1 and phi_2), and amplitudes (a and b). Each parameter must use a different forcing
frequency. For this example, use the same modulation and demodulation phases and amplitudes for
all parameters.

omega = 0.8*[5,7,8]; % Forcing frequency (rad/s)
a = 0.01; % Demodulation amplitude
b = 0.5*lr; % Modulation amplitude
phi_1 = 0; % Demodulation phase (rad)
phi_2 = pi/4; % Modulation phase (rad)

Use a low-pass filter to remove high-frequency noise from the demodulated signal and a high-pass
filter to remove bias from the perturbed objective function signal. Specify the cutoff frequencies for
these filters.

omega_lpf = 0.04;
omega_hpf = 0.01;

Simulate Adaptive Cruise Control System

To simulate the ESC adaptive cruise controller, open the ExtremumSeekingControlACC model.

15 Adaptive Control

15-22

mdl = 'ExtremumSeekingControlACC';
open_system(mdl)

The Plant Dynamics and Objective subsystem contains the ACC models and computes the objective
function for the ESC algorithm.

open_system([mdl '/Plant Dynamics and Objective'])

Simulate the model. During the simulation, the lead car velocity varies sinusoidally. Therefore, the
ego car must adjust its velocity to compensate.

 Adaptive Cruise Control Using Extremum Seeking Control

15-23

sim(mdl);

The following plot shows the relative distance between the lead and ego cars and the safe distance.

• The safe distance varies as the ego car velocity changes.
• The relative distance between the ego and lead cars occasionally drops slightly below the safe

distance. This result is because the ACC system enforces the relative distance using a soft
constraint.

open_system([mdl '/Plant Dynamics and Objective/Simulation results/Distance'])

View the velocities of the ego and lead cars along with the ego car set velocity. To maintain a safe
distance the ACC system adjusts the ego car velocity as the lead car velocity changes. When the lead
car velocity is greater than the set velocity, the ego car stops tracking the lead car velocity and
cruises at the set velocity.

open_system([mdl '/Plant Dynamics and Objective/Simulation results/Velocity'])

15 Adaptive Control

15-24

The next plot shows the cost function that ESC seeks to optimize when searching for optimal control
gains.

open_system([mdl '/Plant Dynamics and Objective/Simulation results/Cost'])

 Adaptive Cruise Control Using Extremum Seeking Control

15-25

View the resulting controller gains, which adapt over the course of the simulation. The top plot is
Kverr, the middle plot is Kxerr, and the bottom plot is Kvrel. Fluctuations in the gain values are due to
the modulation signals from the Extremum Seeking Control block.

open_system([mdl '/Plant Dynamics and Objective/Gains'])

15 Adaptive Control

15-26

bdclose('ExtremumSeekingControlACC')

See Also
Blocks
Extremum Seeking Control

Related Examples
• “Extremum Seeking Control for Reference Model Tracking of Uncertain Systems” on page 15-8
• “Anti-Lock Braking Using Extremum Seeking Control” on page 15-15

 Adaptive Cruise Control Using Extremum Seeking Control

15-27

Model Reference Adaptive Control
The Model Reference Adaptive Control block computes control actions to make an uncertain
controlled system track the behavior of a given reference plant model. Using this block, you can
implement the following model reference adaptive control (MRAC) algorithms.

• Direct MRAC — Estimate the feedback and feedforward controller gains based on the real-time
tracking error between the states of the reference plant model and the controlled system.

• Indirect MRAC — Estimate the parameters of the controlled system based on the tracking error
between the states of the reference plant model and the estimated system. Then, derive the
feedback and feedforward controller gains based on the parameters of the estimated system and
the reference model.

Both direct and indirect MRAC also estimate a model of the external disturbances and uncertainty in
the system being controlled. The controller then uses this model to compensate for the disturbances
and uncertainty when computing control actions.

In both cases, the controller updates the estimated parameters and disturbance model in real-time
based on the tracking error.

Reference Model
For both direct and indirect MRAC, the following reference plant model is the ideal system that
characterizes the desired behavior that you want to achieve in practice.

ẋm t = Amxm t + Bmr t

Here:

• r(t) is the external reference signal.
• xm(t) is the state of the reference plant model. Since r(t) is known, you can simulate the reference

model to get xm(t).
• Am is a constant state matrix. For a stable reference model, Am must be a Hurwitz matrix for which

every eigenvalue must have a strictly negative real part.
• Bm is a control effective matrix.

Disturbance and Uncertainty Model
The Model Reference Adaptive Control block maintains an internal model uad of the disturbance and
model uncertainty in the controlled system.

uad = wTϕ x

Here, ϕ(x) is a vector of model features. w is an adaptive control weight vector that the controller
updates in real time based on the tracking error.

To define ϕ(x), you can use one of the following feature definitions.

• State vector of the controlled plant — This approach can under-represent the uncertainty in the
system. Using the states as features can be a useful starting point when you do not know the
complexity of the disturbance and model uncertainty.

15 Adaptive Control

15-28

• Gaussian radial basis functions — Use this option when the disturbance and model uncertainty are
nonlinear and the structure of the disturbance model is unknown. Radial basis functions require
some prior knowledge of the operation domain of the model, which can be difficult for some cases.

• Single hidden layer neural network — Use this option when the disturbance and model
uncertainty are nonlinear and the structure of the disturbance model is unknown and you do not
have prior knowledge of the operating domain. The neural network is a universal function
approximator that can approximate any continuous function.

• External source provided to the controller block — Use this option to define your own custom
feature vector. You can use this option when you know the structure of the disturbance and
uncertainty model. For example, you can use a custom feature vector to identify specific unknown
plant parameters.

Direct MRAC
A direct MRAC controller has the following control structure.

The controller computes the control input u(t) as follows.

u t = kxx t + krr t − uad

uad = wTϕ x

Here:

• x(t) is the state of the controlled system.
• r(t) is the external reference signal.
• kx and kr are the feedback and feedforward controller gains, respectively.
• uad is the adaptive control component derived from the disturbance model.

ϕ(x) contains the disturbance model features.

 Model Reference Adaptive Control

15-29

• w is an adaptive disturbance model weight vector.
• V is the hidden layer weight vector.

For a single hidden layer neural network, uad is:

uad = wTσ VTx

Here:

• V is the hidden layer weight vector.
• σ is a sigmoid activation function.

The controller computes the error e(t) between the states of the controlled system and the states of
the reference model. It then uses that error to adapt the values of kx, kr, and w in real time.

Nominal Model

The controlled system, which typically exhibits modeling uncertainty and external disturbances, has
the following nominal state equation. The controller uses this expected nominal plant behavior when
updating the controller parameters.

ẋ t = Ax t + B u t + f x

Here:

• x(t) is the state of the system you want to control.
• u(t) is the control input.
• A is a constant state-transition matrix.
• B is a constant control effective matrix.
• f(x) is the matched uncertainty in the system.

Parameter Updates

A direct MRAC controller uses the following equations to update the controller gains and disturbance
model weights for state vector, radial basis function, and external source feature definitions [1] [2].

k̇x = Γxx t eT t PB

k̇r = Γrr t eT t PB

ẇ = Γwϕ x eT t PB

A single hidden layer disturbance model update equations use the same controller gain updates along
with the following update equations.

ẇ = − σ VTx − σ′ VTx VTx eT t PBΓw

V̇ = − ΓVxeT t PBwTσ VTx

Here, P is the solution to the following Lyapunov function based on the reference model state matrix
and B is the control effective matrix from the nominal plant model.

Am
T P + PAm + Q = 0

15 Adaptive Control

15-30

Here, Q is a positive definite matrix of size N-by-N, where N is size of state vector x(t)

Indirect MRAC
An indirect MRAC controller has the following control structure. The reference model is

The controller computes the control input u(t) as follows.

u t = kxx t + krr t − uad

uad = wTϕ x

Here:

• x (t) is the estimated state of the controlled system produced by an estimator model.
• r(t) is the external reference signal.
• kx and kr are the feedback and feedforward controller gains, respectively.
• uad is the adaptive control component derived from the disturbance model.

ϕ(x) contains the disturbance model features.
• w is an adaptive disturbance model weight vector.

The controller computes the error e(t) between the actual and estimated system states. It then uses
that error to adapt the values of w in real time. The controller also uses e(t) to update the parameters
of the estimator model in real time. The values of gains kx and kr are derived from the parameters of
the estimator model and reference model.

Estimator Model and Controller Gains

The indirect MRAC controller contains the following estimator model of the controlled system.

 Model Reference Adaptive Control

15-31

ẋ t = Ax t + B u t

Here:

• x (t) is the estimated system state.
• u(t) is the control input.
• A is the state-transition matrix of the estimator.
• B is the control effective matrix of the estimator.

During operation the controller updates A and B based on the estimation error e(t).

Rather than estimate the controller gains directly, an indirect MRAC controller derives the feedback
gain kx and feedforward gain kr from the parameters of the reference and estimator models using a
dynamic inversion-based approach as follows.

kr =
Bm
B

kx = 1
B

Am− A

Here, 1
B

 is the Moore-Penrose pseudoinverse of the matrix B .

Parameter Updates

An indirect MRAC controller uses the following equations to update the estimator model parameters
and disturbance model weights for state vector, radial basis function, and external source feature
definitions [1] [2].

Ȧ = Γax t eT t P

Ḃ = Γbu t eT t P

ẇ = Γwϕ x eT t PB

A single hidden layer disturbance model update equations use the same estimator model parameter
updates along with the following update equations.

ẇ = − σ VTx − σ′ VTx VTx eT t PBΓw

V̇ = − ΓVxeT t PBwTσ VTx

Here, P is the solution to the following Lyapunov function.

kτ
TP + Pkτ + Q = 0

kτ is the estimator feedback gain. By default, this value corresponds to the reference model state-
transition matrix Am. However, you can specify a different estimator feedback gain value.

15 Adaptive Control

15-32

Learning Modification
For both direct and indirect MRAC, to add robustness at higher learning rates, you can modify the
parameter updates to include an optional momentum term. You can choose one of two possible
learning modification methods: sigma modification and e-modification.

For sigma modification, the momentum term for each parameter update is the product of the
momentum weight parameter σ and the current parameter value. For example, the following update
equations for a direct MRAC controller include a sigma modification term.

k̇x = Γxx t eT t PB + σkx

k̇r = Γrr t eT t PB + σkx

ẇx = Γwϕ t eT t PB + σw

For e-modification, the controller scales the sigma-modification momentum term by the norm of the
error vector. For example, the following update equations for an indirect MRAC controller include an
e-modification term.

Ȧ = Γax t eT t P + σ e t A

Ḃ = Γbu t eT t P + σ e t B

ẇx = Γwϕ t eT t PB + σ e t w

To adjust the amount of the learning modification for either method, change the value of the
momentum weight parameter σ.

References
[1] Ioannou, Petros A., and Jing Sun. Robust adaptive control, Courier Corporation, 2012.

[2] Narendra, Kumpati S, and Anuradha M Annaswamy. Stable Adaptive Systems. Courier
Corporation, 2012.

[3] Narendra, Kumpati S., and Anuradha M. Annaswamy. “Robust Adaptive Control.” In 1984
American Control Conference, 333–35. San Diego, CA, USA: IEEE, 1984. https://doi.org/
10.23919/ACC.1984.4788398.

See Also
Blocks
Model Reference Adaptive Control

Related Examples
• What Is Model Reference Adaptive Control?
• “Model Reference Adaptive Control of Satellite Spin” on page 15-34
• “Model Reference Adaptive Control of Aircraft Undergoing Wing Rock” on page 15-42

 Model Reference Adaptive Control

15-33

https://doi.org/10.23919/ACC.1984.4788398
https://doi.org/10.23919/ACC.1984.4788398
https://www.mathworks.com/videos/adaptive-control-basics-what-is-model-reference-adaptive-control-1635166236332.html

Model Reference Adaptive Control of Satellite Spin

This example shows how to control satellite spin using model reference adaptive control (MRAC) to
make the unknown controlled system match an ideal reference model. The satellite system is modeled
in Simulink® and the MRAC controller is implemented using the Model Reference Adaptive Control
block provided by Simulink Control Design™ software.

Satellite-Spin Control System

In the model for this example, the cylindrical body of the satellite spins around its axis of symmetry (z
axis) with constant angular rate Ω [1]. The goal is to independently control the angular rates ωx and
ωy around the x and y axes using torques ux and uy. The equations of motion produce a second-order
model with two inputs and two outputs.

ω̇ x

ωẏ
=

0 a
−a −0 . 5a

ωx
ωy

+
ux
uy

In this system, the controller does not observe the plant states directly. Instead, it views the states
indirectly through following measurement model.

ν1
ν2

=
1 a
−a 1

ωx
ωy

For this example, assume that the actual plant model is unknown and that the MRAC controller uses
the following nominal model of the plant dynamics.

ω̇ x

ωẏ
=

0 0 . 5a
−0 . 5a −0 . 5a

ωx
ωy

+
ux
uy

Given this uncertain nonlinear system, your goal is to design a controller that enables the system to
track the following decoupled reference model.

x m1˙
x m2˙

=
−5 0
0 −5

xm1
xm2

+
r1
r2

Here:

• xm is the reference model state vector.
• r t contains the angular rate reference signals.

Define Nominal and Reference Models

Define the dynamic model for the satellite system. For this system, A represents the true state matrix.

a = 10; % System Constant
A = [0 a;-a -a/2]; % True model parameters
B = eye(2);
C = [1 a;-a 1];
D = zeros(2,2);

Specify a plant mismatch matrix. This matrix is subtracted from the true A matrix to define the
nominal plant used by the controller. The goal of the controller is to model this plant uncertainty.

15 Adaptive Control

15-34

deltaA = [0 0.5*a; -0.5*a 0]; % Plant mismatch

The reference system is the following stable second order system.

Am = [-5 0; 0 -5]; % Second-order decoupled integrator model
Bm = diag([5 5]); % Nominal control effective matrix

Define the initial conditions for the satellite spin rates and reference model states.

x1_0 = 0.5; % Initial x-axis angular rate (rad/s)
x2_0 = 0.5; % Initial y-axis angular rate (rad/s)
xm_0 = [0;0]; % Initial conditions of the reference plant model

Model Reference Adaptive Control Structure

The goal of the MRAC controller is to achieve asymptotic convergence of the tracking error
e t = x t − xm t .

lim
t → ∞

x(t) − xm(t) → 0

The MRAC controller has the following structure.

u(t) = − kxx(t) + krr(t) − uad

Here:

• kx contains feedback control gains.
• kr contains feedforward control gains.
• uad is an adaptive control term that cancels the model uncertainty.

The Model Reference Adaptive Control block adjusts the adaptive control term to achieve the desired
reference model tracking. Optionally, you can also adapt the feedback and feedforward control gains.

For this example, the controller adapts the feedback gains and keeps the feedforward gains static.

The initial feedback gain and the static feedforward gain are computed to satisfy the following model
matching condition:

Am = A− Bkx
Bm = Bkr

Specify the computed controller gains and the feedback gain learning rate.

Kx = -place(A,B,eig(Am)); % State feedback gain for pole placement
gain_kx = 1; % Feedback gain learning rate
Kr = Bm; % Feedforward gain for ref model matching

Configure Uncertainty Estimation Parameters

The MRAC controller estimates the model uncertainty online and generates an adaptive control
action uad that cancels the uncertainty to recover the nominal system for the baseline controller. The
adaptive control term models the system uncertainty using the following model.

uad = wTϕ(x)

 Model Reference Adaptive Control of Satellite Spin

15-35

Here:

• w contains the network weights that are adjusted by the controller.
• ϕ x is the uncertainty model feature vector.

Using the Model Reference Adaptive Control block, you can select one of the following feature vector
definitions.

• System states, where ϕ x = x t
• Radial basis functions with Gaussian kernels
• Custom features provided by an optional input port.

For this example, the controller is configured to use the system states as the disturbance model
features.

Define the model estimation learning rate gamma_w and tracking error weight Q.

gamma_w = 100; % Learning rate
Q = 10; % Tracking error weight

Simulate Controller

Open the Simulink model of the satellite-spin control system.

mdl = "satellitespin";
open_system(mdl)

Simulate the model.

15 Adaptive Control

15-36

Tf = 35; % Duration (s)
sim(mdl);

View the controller performance by comparing the spin response (top plot) and spin-rate response
(bottom plot) to their respective reference signals.

The MRAC controller tracks the reference signals well. The first step response has an initial
transient, which reduces in size as the disturbance estimate of the controller improves.

View the uncertainty estimated by the controller and compare it to the true uncertainty.

 Model Reference Adaptive Control of Satellite Spin

15-37

The controller estimates an accurate y-axis uncertainty model. The uncertainty model for the x-axis
has the correct sign, though the magnitude is lower than that of the true uncertainty. Both
uncertainty models show significant transients in the uncertainty estimate, especially during the first
step change in the reference signals.

To reduce the transients in the estimated uncertainty responses, you can reduce the value of the
tracking error rate Q. For example, reduce the value of Q to 1 and simulate the model.

Q = 1;
sim(mdl);

15 Adaptive Control

15-38

 Model Reference Adaptive Control of Satellite Spin

15-39

The model estimate responses have fewer transients. The tradeoff is that the spin and spin-rate
responses have longer settling times.

Reference

[1] Zhou, Kemin, John Comstock Doyle, and K. Glover. Robust and Optimal Control. Englewood Cliffs,
N.J: Prentice Hall, 1996.

See Also
Blocks
Model Reference Adaptive Control

15 Adaptive Control

15-40

Related Examples
• “Model Reference Adaptive Control” on page 15-28
• “Model Reference Adaptive Control of Aircraft Undergoing Wing Rock” on page 15-42

 Model Reference Adaptive Control of Satellite Spin

15-41

Model Reference Adaptive Control of Aircraft Undergoing Wing
Rock

This example shows how to control roll and roll rate of a delta wing aircraft undergoing wing rock.
For this example, the system model is unknown. Therefore, you use model reference adaptive control
(MRAC) to make the controlled system match an ideal reference model. The aircraft is modeled in
Simulink® and the MRAC controller is implemented using the Model Reference Adaptive Control
block provided by Simulink Control Design™ software.

Wing-Rock Control System

Wing rock is a phenomenon observed in delta wing aircraft flying at low speeds and high angles of
attack. The aircraft experiences undesired roll oscillations that make the aircraft more difficult for
the pilot to control. The goal of the MRAC controller is to cancel the undesired roll oscillation. You
can then design a baseline controller to achieve a desired reference behavior.

The following equations define the dynamics for the wing-rock model.

θ̇ = p
ṗ = Δ(x) + Lδδa

Δ(x) = w0* + w1*θ + w2*p + w3*|θ |θ + w4*|p |p + w5*θ3

Here:

• x = θ , p is the system state vector, where θ is the roll angle and p is the roll rate.
• δa is the aileron angle control input for the aircraft.
• Lδ is the control effective matrix for which you know at least the sign.
• Δ x is the wing-rock disturbance.
• wi* are unknown ideal weights.

For this uncertain nonlinear system, your goal is to design a controller that enables the system to
track the following second-order reference model.

ẍm = − 4xm− 2ẋm + 4r(t)

Here:

• xm is the reference model state vector.
• r t is the roll reference signal provided by the pilot.

Nominal and Reference Models

Specify the following simplified second-order nominal model for the roll dynamics.

A = [0 1; 0 0]; % Second integrator model
B = [0;1]; % Nominal control effective matrix

Define the reference model as the stable second-order system defined previously. The controller
adapts its uncertainty model to achieve the same second-order behavior as this model.

15 Adaptive Control

15-42

Am = [0 1; -4 -2]; % Second intergrator model
Bm = [0;4]; % Nominal control effective matrix

Specify the initial conditions for the nominal and reference models.

theta_0 = 0; % Initial roll angle (rad)
p0 = 0; % Initial roll rate (rad/s)
xm = [0;0]; % Initial condition of the reference plant model

Model Reference Adaptive Control Structure

The goal of the MRAC controller is to achieve asymptotic convergence of the tracking error
e t = x t − xm t .

lim
t → ∞

x(t) − xm(t) → 0

The MRAC controller has the following structure.

u(t) = − kxx(t) + krr(t) − uad

Here:

• kx contains feedback control gains.
• kr contains feedforward control gains.
• uad is an adaptive control term that cancels the model uncertainty.

The Model Reference Adaptive Control block adjusts the adaptive control term to achieve the desired
reference model tracking. Optionally, you can also adapt the feedback and feedforward control gains.
Though, for this example, the control gains are static.

The static feedback and feedforward control gains for the wing-rock system are computed to satisfy
the following model-matching condition.

Am = A− Bkx
Bm = Bkr

Specify the computed controller gains.

Kx = [-4 -2]; % Feedback gain
Kr = 4; % Feedforward gain

Uncertainty Estimation Parameters

The MRAC controller estimates the model uncertainty online and generates an adaptive control
action uad that cancels the uncertainty to recover the nominal system for the baseline controller. The
adaptive control term models the system uncertainty using the following model.

uad = wTϕ(x)

Here:

• w contains the network weights that are adjusted by the controller.
• ϕ x is the uncertainty model feature vector.

 Model Reference Adaptive Control of Aircraft Undergoing Wing Rock

15-43

Using the Model Reference Adaptive Control block, you can select one of the following feature vector
definitions.

1 System states, where ϕ x = x t — This approach is the simplest option, which can be a good
starting point if you do not know the complexity of the system uncertainty. If you find that using
the states as features does not adequately represent the nonlinear uncertainty, select one of the
other approaches.

2
Radial basis functions (RBFs) with Gaussian kernels, where ϕ x = exp −

x− ci
2

σ i
i = 1

N
 . You can

configure the kernels by defining the feature centers ci and bandwidths σi.
3 Single hidden layer (SHL) neural network with a specified number of neurons in the hidden layer.
4 Custom features provided by an optional input port.

For this example, you configure the controller to use all three methods and compare the results.

Define the model estimation learning rate gamma_w and tracking error weight Q. These parameters
are used for all three controller configurations.

gamma_w = 100; % Learning rate
Q = 1; % Tracking error weight

Specify the parameters for the radial basis function kernels. Generally, you configure the RBF centers
to span the possible state space of the system and the bandwidth to provide sufficient overlap
between the kernels.

N = 10; % Number of RBF kernels
cen_max = 2; % Upper limit for kernel centers
cen_min = -2; % Lower limit for kernel centers
bandwidth = 25; % Kernel bandwidth

Simulate Controller Using State Feature Vector

Open a Simulink model of the wing-rock control system configured to use the system states as the
uncertainty model feature vector.

mdl = "wingrockStates";
open_system(mdl)

15 Adaptive Control

15-44

In this model:

• The Wing-Rock Model block implements the nominal model of the roll dynamics.
• The External Disturbance block generates a wing-rock disturbance of the roll dynamics.
• The Reference Command block generates the pilot reference signal.
• The Model Reference Adaptive Control block outputs the control action uad, which is an estimate

of the wing-rock disturbance.

Set the simulation duration and simulate the model.

Tf = 40; % Simulation duration (s)
sim(mdl);

Compare the resulting aircraft roll to the reference command.

open_system(mdl + "/Roll")

 Model Reference Adaptive Control of Aircraft Undergoing Wing Rock

15-45

The controller does not achieve a smooth second-order transient response.

Compare the disturbance model estimated by the MRAC controller with the true disturbance signal.

open_system(mdl + "/Disturbance")

15 Adaptive Control

15-46

When using the states as the disturbance model features, the linear disturbance model estimated by
the controller does not accurately represent the true nonlinear disturbance.

Simulate Controller Using RBF Feature Vector

Open a Simulink model of the wing-rock control system configured to use the nonlinear RBFs as the
uncertainty model feature vector. This model is identical to the previous model except that the
controller parameters have been updated.

mdl = "wingrockSHL";
open_system(mdl)

Simulate the model.

sim(mdl);

View the resulting controller performance.

open_system(mdl + "/Roll")

 Model Reference Adaptive Control of Aircraft Undergoing Wing Rock

15-47

The controller achieves a smoother second-order response for changes in the reference command.

Compare the disturbance estimated using the radial basis functions to the true disturbance.

open_system(mdl + "/Disturbance")

15 Adaptive Control

15-48

The nonlinear feature vector allows the controller to more accurately estimate the true nonlinear
disturbance.

Simulate Controller Using SHL Neural Network Feature Vector

Open a Simulink model of the wing-rock control system configured to use the SHL neural network
output as the uncertainty model feature vector. This model is identical to the previous model except
that the controller parameters have been updated.

mdl = "wingrockSHL";
open_system(mdl)

Simulate the model.

sim(mdl);

View the resulting controller performance.

open_system(mdl + "/Roll")

 Model Reference Adaptive Control of Aircraft Undergoing Wing Rock

15-49

The controller achieves a smooth second-order response for changes in the reference command.

Compare the disturbance estimated using the SHL neural network to the true disturbance.

open_system(mdl + "/Disturbance")

15 Adaptive Control

15-50

The nonlinear feature vector computed by the neural network approximator is closer to the true
disturbance than the RBF feature vector. Configuring the neural network parameters is also simpler.

Simulate Controller Using Custom Feature Vector

Open a Simulink model of the wing-rock control system configured to use an externally generated
custom uncertainty model feature vector. You can use this option when you know the structure of the
disturbance and uncertainty model. For this example, the feature vector generated by the Features
block matches the feature vector used in the External Disturbance block.

mdl = "wingrockCustom";
open_system(mdl)

 Model Reference Adaptive Control of Aircraft Undergoing Wing Rock

15-51

Simulate the model.

sim(mdl);

View the resulting controller performance.

open_system(mdl + "/Roll")

15 Adaptive Control

15-52

The controller achieves a smoother second-order response for changes in the reference command.

Compare the disturbance estimated using the custom feature vector to the true disturbance.

open_system(mdl + "/Disturbance")

 Model Reference Adaptive Control of Aircraft Undergoing Wing Rock

15-53

As expected, using a custom feature vector based on prior knowledge of the disturbance behavior
produces a more accurate model of the true disturbance.

See Also
Blocks
Model Reference Adaptive Control

Related Examples
• “Model Reference Adaptive Control” on page 15-28
• “Model Reference Adaptive Control of Satellite Spin” on page 15-34

15 Adaptive Control

15-54

Indirect Model Reference Adaptive Control of First-Order
System

This example shows how to design an indirect model reference adaptive control (MRAC) system for
reference tracking. The plant is an unknown first-order system. The indirect MRAC controller
estimates the plant parameters and implements an inversion-based controller to track a reference
model.

First-Order Unknown Plant Model

The controlled plant is the following first-order dynamic system.

ẋ = ax(t) + bu(t)

Here:

• x is the system state.
• a and b are the unknown system parameters.

Given this unknown nonlinear system, the goal is to design a controller that enables the tracking of
the following reference model.

ẋm = amxm(t) + bmr(t)

Here:

• xm is the reference model state.

• r t is the reference signal provided by the user.
• am and bm are the reference model parameters.

Reference-Tracking Controller

The indirect MRAC controller uses an estimator model to compute a and b, which are estimates of the
unknown system parameters a and b, respectively.

ẋ = ax(t) + bu(t)

To compute the control action u t , the controller uses the feedforward gain kr and feedback gain kx.

u(t) = − kxx(t) + krr(t)

The controller gains are derived from the reference model parameters (am and bm) and estimated
observer parameters (a and b).

kr =
bm
b

kx = 1
b

am− a

 Indirect Model Reference Adaptive Control of First-Order System

15-55

Configure Controller

For this example, the true reference model is as follows.

ẋ = x(t) + 3u(t)

Specify the reference model parameters, assuming that the model output corresponds to state x.

a = 1;
b = 3;
c = 1;
d = 0;

This true model is unknown to the indirect MRAC controller. Instead, the controller uses an estimator
model to estimate the unknown plant dynamics. During operation, the controller can adapt the
parameters of this model to improve its estimate of the unknown system parameters.

Specify the initial estimator parameters.

ahat = 0;
bhat = 1;

The goal of the controller is to track the performance of the reference model. Specify the parameters
of the reference model.

am = -4;
bm = 4;

Specify the initial condition of the plant.

x_0 = 0;

Specify the learning rates for updating the estimator model parameters.

gamma_a = 2; % ahat learning rate
gamma_b = 2; % bhat learning rate

Simulate Controller

Open the Simulink model.

mdl = 'mracFirstOrder';
open_system(mdl)

15 Adaptive Control

15-56

In this model

• The Actual Plant Model block implements the nominal model of the first-order unknown system.
• The Reference Command block generates a reference signal.
• The Model Reference Adaptive Control block outputs the control action u, which it derives from

the using the estimator model.

While an MRAC controller can also estimate unknown disturbances in the controlled system, for this
example there are no such disturbances. Instead, the goal of the controller is simply to estimate the
parameters of the unknown plant model. For an example that estimates unknown disturbances using
a direct MRAC controller, see “Model Reference Adaptive Control of Aircraft Undergoing Wing Rock”
on page 15-42.

Simulate the model.

sim(mdl);

View the actual plant output and the reference signal. The controller is able to make the actual plant
state track the reference signal closely.

open_system(mdl+"/state")

 Indirect Model Reference Adaptive Control of First-Order System

15-57

The Model reference Adaptive Controller block is configured to output the parameters a and b of the
estimator model using the Ahat and Bhat output ports, respectively.

open_system(mdl+"/params")

Over time the controller adapts the values of the estimator parameters. With sufficient persistency of
excitation in the reference signal, a and b converge to their true values of 1 and 3, respectively.

See Also
Blocks
Model Reference Adaptive Control

Related Examples
• “Model Reference Adaptive Control” on page 15-28
• “Indirect MRAC Control of Mass-Spring-Damper System” on page 15-59

15 Adaptive Control

15-58

Indirect MRAC Control of Mass-Spring-Damper System

This example shows how to use an indirect model reference adaptive control (MRAC) system in
Simulink for model parameter estimation of a second-order mass-spring-damper system. The
properties of the mass-spring-damper system are unknown. The indirect MRAC controller estimates
the plant parameters and implements an inversion-based controller to track a reference model.

Mass-Spring-Damper Model

The mass-spring-damper system consists of two carts of mass m1 and m2, connected to each other
and ground through springs with stiffness coefficients c0 and c1 and dampers with damping
coefficient d.

The unknown dynamical system defining the spring-mass-damper system can be written as follows.

x t˙ = Ax t + Bu t

A =

0 1 0 0

−
c0 + c1

m1
− 2d

m1

c1
m1

d
m1

0 0 0 1
c1
m2

d
m2

−
c1
m2

− 2d
m2

, B =

0 0
1

m1
0

0 0

0 1
m2

Here:

• x = p1, p1̇, p2, p2̇ is the system state vector.
• p1 and p2 are the positions of the masses.
• A and B are the parameters of the unknown system.

Given this unknown nonlinear system, the goal is to design a controller that enables the tracking of
the following reference.

 Indirect MRAC Control of Mass-Spring-Damper System

15-59

xṁ t = Amxm t + Bmr t

Am =

0 1 0 0
−25 −10 0 0

0 0 0 1
0 0 −25 −10

, Bm =

0 0
25 0
0 0
0 25

Here:

• xm contains the reference model states.
• Am and Bm are the parameters of the reference system.
• r t is the reference signal provided by the user.

Reference-Tracking Controller

The indirect MRAC controller uses an estimator model to compute A and B, which are estimates of
the unknown system parameters A and B, respectively.

ẋ = Ax(t) + Bu(t)

To compute the control action u t , the controller uses the feedforward gain kr and feedback gain kx.

u(t) = − kxx(t) + krr(t)

The controller gains are derived from the reference model parameters (Am and Bm) and estimated
observer parameters (A and B).

kr =
Bm
B

kx = 1
B

Am− A

Configure Controller

Specify the true stiffness coefficients, damping coefficient, and masses for the mass-spring-damper
system.

% Stiffness
c0 = 1;
c1 = 1;
% Damping
d = 1;
% Mass
m1 = 5;
m2 = 1;

Define the actual system dynamics using these system parameters.

A = [0 1 0 0;-(c0+c1)/m1 -2*d/m1 c1/m1 d/m1;
 0 0 0 1;c1/m2 d/m2 -c1/m2 -2*d/m2]

A = 4×4

15 Adaptive Control

15-60

 0 1.0000 0 0
 -0.4000 -0.4000 0.2000 0.2000
 0 0 0 1.0000
 1.0000 1.0000 -1.0000 -2.0000

B = [0 0;1/m1 0;0 0;0 1/m2]

B = 4×2

 0 0
 0.2000 0
 0 0
 0 1.0000

This true model is unknown to the indirect MRAC controller. Instead, the controller uses an estimator
model to estimate the unknown plant dynamics. During operation, the controller can adapt the
parameters of this model to improve its estimate of the unknown system parameters.

Ahat = [0 1 0 0;0 0 0 0;0 0 0 1;0 0 0 0];
Bhat = [0 0.1;0.1 0;0 0;0.1 0.1];

The goal of the controller is to track the performance of the reference model. Specify the parameters
of the reference model.

Am = [0 1 0 0;-25 -10 0 0;0 0 0 1;0 0 -25 -10];
Bm = [0 0;25 0;0 0;0 25];

Specify the initial condition of the plant.

x_0 = 0;

Specify the learning rates for updating the estimator model parameters.

gamma_a = 0.1; % Ahat learning rate
gamma_b = 0.1; % Bhat learning rate

Simulate Controller

Open the Simulink model.

mdl = 'mracMassSpringDamper';
open_system(mdl)

 Indirect MRAC Control of Mass-Spring-Damper System

15-61

In this model:

• The Actual Plant Model block implements the nominal model of the mass-spring-damper system.
• The Reference block generates reference signals for both masses.
• The Model Reference Adaptive Control block outputs the control action u, which it derives from

the using the estimator model.

While an MRAC controller can also estimate unknown disturbances in the controlled system, for this
example there are no such disturbances. Instead, the goal of the controller is simply to estimate the
parameters of the unknown plant model. For an example that estimates unknown disturbances using
a direct MRAC controller, see “Model Reference Adaptive Control of Aircraft Undergoing Wing Rock”
on page 15-42.

Simulate the model.

Tf = 100;
sim(mdl);

View the actual plant states, which are the positions of the masses, along with the corresponding
reference signals. The controller is able to make the actual plant states track the reference signals.

open_system(mdl + "/p1")

15 Adaptive Control

15-62

open_system(mdl + "/p2")

 Indirect MRAC Control of Mass-Spring-Damper System

15-63

The Model Reference Adaptive Controller block is configured to output the parameters A and B of the
estimator model using the Ahat and Bhat output ports, respectively. Plot the parameters.

open_system(mdl + "/Ahat")

15 Adaptive Control

15-64

open_system(mdl + "/Bhat")

 Indirect MRAC Control of Mass-Spring-Damper System

15-65

Over time the controller adapts the values of the estimator parameters. However, the estimated
parameters do not converge to the true parameters due to a lack of persistency of excitation in the
reference signals. Despite the fact that the model parameters do not converge, the controller still
converges to the reference behavior.

See Also
Blocks
Model Reference Adaptive Control

Related Examples
• “Model Reference Adaptive Control” on page 15-28
• “Indirect Model Reference Adaptive Control of First-Order System” on page 15-55

15 Adaptive Control

15-66

Active Disturbance Rejection Control
Active disturbance rejection control (ADRC) is a model-free control technique that is useful for
designing controllers for plants with unknown dynamics and internal and external disturbances. This
algorithm requires only an approximation of the plant dynamics to design controllers that provide
robust disturbance rejection with no overshoot.

You can use the Active Disturbance Rejection Control block to implement ADRC. The block uses a
first-order or second-order model approximation of the known system dynamics along with the
unknown dynamics and disturbances modeled as an extended state of the plant. Typically, you
determine this order from the open-loop step response of your plant in the operating range.

• First-order approximation — ẏ(t) = b0u(t) + f (t)
• Second-order approximation — ÿ(t) = b0u(t) + f (t)

Here:

• y(t) is the plant output.
• u(t) is the input signal.
• b0 is the critical gain, which is the estimated gain that describes the plant response to an input

u(t).
• f(t) is the total disturbance, which includes unknown dynamics and other disturbances.

The block uses an extended state observer (ESO) to estimate f(t) and implements disturbance
rejection control by reducing the effect of estimated disturbances on the known part of model
approximation.

You can implement both discrete-time and continuous-time controllers. Set the controller time domain
and sample time to match the time domain of the plant model.

Controller Structure
First-Order Approximation

For a first-order plant model approximation ẏ(t) = b0u(t) + f (t), the plant output state is x1 = y(t) and
the extended state is x2 = f(t).

The state space model is as follows.

ẋ = Ax + Bu +
0

ḟ (t)
y = Cx,

where

A =
0 1
0 0

, B =
b0
0

, C = 1 0 .

For this observable system, the block uses a Luenberger observer to provide an estimate of the plant
states and total disturbances. Using the estimated states

 Active Disturbance Rejection Control

15-67

z1 = y (t)

z2 = f (t),

the controller computes the control input u(t) as follows.

u(t) =
u0(t) − z2

b0
,

where

u0(t) = KP(r(t) − z1) .

This is an estimation-based state feedback controller, and when the estimated and actual values are
equal, the system has a first-order closed-loop behavior. This closed loop system has the pole s = –KP.

This controller is represented as the following control structure.

For controller tuning simplicity, the block sets the controller pole at (s + ωc) and the observer poles at
(s + ωo)2, where ωc and ωo are the controller and observer bandwidths, respectively.

Second-Order Approximation

For a second-order plant model approximation ÿ(t) = b0u(t) + f (t), the plant output states are x1 = y(t)
and x2 = ẏ(t), and the extended state is x3 = f(t).

The state space model is as follows.

ẋ = Ax + Bu +
0
0

ḟ (t)
y = Cx,

where

A =
0 1 0
0 0 1
0 0 0

, B =
0
b0
0

, C = 1 0 0 .

15 Adaptive Control

15-68

For this observable system, the block uses a Luenberger observer to provide an estimate of the plant
states and total disturbances. Using the estimated states

z1 = y (t)

z2 = ẏ (t)

z3 = f (t),

the controller computes the control input u(t) as follows.

u(t) =
u0(t) − z3

b0
,

where

u0(t) = KP(r(t) − z1) − KDz2 .

This is an estimation-based state feedback controller, and when the estimated and actual values are
equal, the system has a second-order closed-loop behavior.

This controller is represented as the following control structure.

For controller tuning simplicity, the block sets the controller poles at (s + ωc)2 and the observer poles
at (s + ωo)3, where ωc and ωo are the controller and observer bandwidths, respectively.

Specify Controller Parameters
To implement ADRC for your plant, it is essential you provide a reasonable guess of the critical gain
value b0 for the plant approximation. One method of doing so is as follows.

1 Simulate the plant in open loop over the operating range using a step signal with magnitude uOL.
2 Record the change in plant output over a short duration of time.

• For first-order ADRC, use the response approximation y = at and determine a as follows.

a = y(end) − y(0)
t(end) − t(0)

 Active Disturbance Rejection Control

15-69

For an example, see “Design Active Disturbance Rejection Control for Water-Tank System” on
page 15-71.

• For second-order ADRC, use the response approximation y = ½at2 and determine a as follows.

a = 2(y(end) − y(0))
(t(end) − t(0))2

For an example, see “Design Active Disturbance Rejection Control for Boost Converter” on
page 15-79.

3 You can then determine b0 from a and the step magnitude uOL.

b0 = a
uOL

Use the Critical gain parameter to set this value in the block parameters.

Then, to tune the controller response, specify the ωc and ωo values using the Controller bandwidth
and Observer bandwidth, respectively. These values depend on the performance requirements of
your controller. In general, a faster response requires a larger controller bandwidth. The observer
also needs to converge faster than the controller. Therefore, set the observer bandwidth to 5 to 10
times the controller bandwidth.

Additionally, the block allows you to specify initial conditions for states, limit controller output, and
output estimated state values.

References
[1] Herbst, Gernot. “A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control

Tool for Practitioners.” Electronics 2, no. 3 (August 15, 2013): 246–79. https://doi.org/
10.3390/electronics2030246.

[2] Zhiqiang Gao. “Scaling and Bandwidth-Parameterization Based Controller Tuning.” In
Proceedings of the 2003 American Control Conference, 2003, 6:4989–96. Denver, CO, USA:
IEEE, 2003. https://doi.org/10.1109/ACC.2003.1242516.

See Also
Active Disturbance Rejection Control

Related Examples
• “Design Active Disturbance Rejection Control for Water-Tank System” on page 15-71
• “Design Active Disturbance Rejection Control for Boost Converter” on page 15-79
• “Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM” on page 15-

91

15 Adaptive Control

15-70

Design Active Disturbance Rejection Control for Water-Tank
System

This example shows how to design active disturbance rejection control (ADRC) for a nonlinear water-
tank system.

Water-Tank System Model

This model uses an ADRC controller to control the water level of a nonlinear Water-Tank System
plant. The model contains a variant subsystem with two choices: an ADRC controller and a gain-
scheduled PID controller. The ADRC Control subsystem is set as the default active variant. The
model also includes a manual switch to operate the model in open-loop and closed-loop
configurations. It is set to an open-loop configuration by default.

Although a gain-scheduled PID controller is an effective way to control the plant output over a wide
operating range, designing experiments and tuning PID gains using the Closed-Loop PID Autotuner
require significant efforts. Using ADRC you can obtain a nonlinear controller and achieve better
performance with a simpler setup and less tuning effort. For more information on how to tune a gain-
scheduled PID controller, see “Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner
Block” on page 8-86.

Open the model.

mdl = 'WatertankADRC';
open_system(mdl)

 Design Active Disturbance Rejection Control for Water-Tank System

15-71

The water-level reference signal in this example is the same as the reference signal in the gain-
scheduled controller autotuning example. The reference water level rises gradually from H = 1 to
four operating points at H = [5, 10, 15, 20]. Each step of water-level change takes 600 seconds.

Design ADRC Controller

ADRC is a powerful tool for the controller design of a plant with unknown dynamics and internal and
external disturbances. The block models unknown dynamics and disturbances as an extended state of
the plant and estimates them using an observer. The ADRC block lets you design a controller using
only a few key tuning parameters for the control algorithm:

• Model order type (first-order or second order)
• Critical gain of the model response
• Controller and observer bandwidths

Additionally, specify the Time domain parameter to match the time domain of the plant model. In
this example, set it to continuous-time. The following sections describe how to find the remaining
tuning parameters specified in the ADRC block parameters for this model.

15 Adaptive Control

15-72

Model Order and Critical Gain

For this water-tank model, it is easy to tune these parameters. Inject a step input with amplitude 1
into the Water-Tank System subsystem and note that the open-loop water-level response shows a
first-order dynamic system behavior.

sim(mdl);
figure;
plot(logsout{2}.Values.Time,logsout{2}.Values.Data...
 ,logsout{3}.Values.Time,logsout{3}.Values.Data)
grid on
ylim([0 7])
xlabel('Time (s)')
ylabel('Height (m)')
legend('Ref','Output')

 Design Active Disturbance Rejection Control for Water-Tank System

15-73

To determine the critical gain value b0, examine the water-level response over a short interval of 0.5
seconds right after the step reference input.

x = logsout{3}.Values.Time(1:57);
y = logsout{3}.Values.Data(1:57);
figure;
plot(x,y)
xlabel('Time (s)')
ylabel('Height (m)')
grid on

15 Adaptive Control

15-74

You can now determine the critical gain for the system based on the first-order response y = a t. Over
a duration of 0.5 seconds, the water-level increases by around 0.075 m.

a = y
t = 0 . 075

0 . 5 = 0 . 15

b0 = a
u = 0 . 15

1 = 0 . 15

Find Controller Bandwidth and Observer Bandwidth

The controller bandwidth usually depends on the performance specifications, either in the frequency
domain or time domain. This example uses a relaxed controller bandwidth ωc of 0.8 rad/s. The
observer needs to converge faster than the controller, so the observer bandwidth is typically set to 5
to 10 times the controller bandwidth. As an initial tuning attempt, you can choose ωo = 10 × ωc = 8
rad/s.

Toggle the manual switch to operate the model in the closed-loop configuration.

set_param('WatertankADRC/Manual Switch','sw','1')

Simulate the model to examine the water level corresponding to a step reference change, such as
from 15 to 20.

set_param(mdl,'SignalLoggingName','adrcOut');
sim(mdl);

 Design Active Disturbance Rejection Control for Water-Tank System

15-75

figure
plot(adrcOut{1}.Values.Time,adrcOut{1}.Values.Data...
 ,adrcOut{3}.Values.Time,adrcOut{3}.Values.Data)
grid on
ylim([14 21])
xlim([1700 1950])
xlabel('Time (s)')
ylabel('Height (m)')
legend('Ref','Output')

Based on the response, you can see that the water-level response is fast enough, and the overshoot is
minimal. As a result, the ADRC block setup and parameter tuning is complete.

Performance Comparison of ADRC and PID Controller

Examine the tuned controller performance using the water-level reference signal with multiple
operating points.

Select the PID Control subsystem and simulate the model.

set_param([mdl,'/Controller'],'LabelModeActiveChoice','PID')
set_param(mdl,'SignalLoggingName','pidOut');
sim(mdl);

Compare the performance of the two controllers.

figure;
plot(adrcOut{1}.Values.Time,adrcOut{1}.Values.Data...

15 Adaptive Control

15-76

 ,adrcOut{3}.Values.Time,adrcOut{3}.Values.Data)
hold on
plot(pidOut{3}.Values.Time,pidOut{3}.Values.Data)
hold off
grid on
xlabel('Time (s)')
ylabel('Height (m)')
legend('Ref','ADRC','PID')

The water-level response shows that the ADRC controller performs much better than the gain-
scheduled PID controller and follows the water-level reference signal more closely with much less
overshoot.

You can further zoom into when the water level response increases from 15 to 20 to see the improved
performance.

figure;
plot(adrcOut{1}.Values.Time,adrcOut{1}.Values.Data...
 ,adrcOut{3}.Values.Time,adrcOut{3}.Values.Data)
hold on
plot(pidOut{3}.Values.Time,pidOut{3}.Values.Data)
hold off
grid on
xlabel('Time (s)')
ylabel('Height (m)')
legend('Ref','ADRC','PID')

 Design Active Disturbance Rejection Control for Water-Tank System

15-77

ylim([14 21])
xlim([1700 1950])

Close the model.

close_system(mdl,0);

See Also
Active Disturbance Rejection Control

Related Examples
• “Active Disturbance Rejection Control” on page 15-67
• “Design Active Disturbance Rejection Control for Boost Converter” on page 15-79
• “Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM” on page 15-

91

15 Adaptive Control

15-78

Design Active Disturbance Rejection Control for Boost
Converter

This example shows how to design active disturbance rejection control (ADRC) for a DC-DC boost
converter modeled in Simulink® using Simscape™ Electrical™ components. In this example, you also
compare the ADRC control performance with a PID controller tuned on a linearized plant model.

Typically, you control power electronics systems using PID controllers whose gains are tuned using
PID tuning tools with a linearized plant model. You can design PID controllers for linearized plant
models in the following ways.

• Estimate the plant frequency response over a range of frequencies. For an example, see “Design
Controller for Boost Converter Model Using Frequency Response Data” on page 7-77.

• Estimate the parameters of a linear model of the plant using System Identification Toolbox™
software. For an example, see “Design Controller for Power Electronics Model Using Simulated
I/O Data” on page 7-95.

Although you can tune the PID controller over a wide operating range, designing experiments and
tuning PID gains require significant efforts. Using ADRC you can obtain a nonlinear controller and
achieve better performance with a simpler setup and less tuning effort.

Boost Converter Model

This example uses a DC-DC boost converter model that converts one DC voltage to another, typically
higher, DC voltage by controlled chopping or switching of the source voltage.

mdl = 'scdBoostConverterADRC';
open_system(mdl)

This model contains a controller variant subsystem with two choices: an ADRC controller and a gain-
scheduled PID controller. The ADRC Controller subsystem is set as the default active variant. The
model also includes a manual switch to operate the model in open-loop and closed-loop
configurations. It is set to an open-loop configuration by default.

 Design Active Disturbance Rejection Control for Boost Converter

15-79

The model uses a MOSFET driven by a pulse-width modulation (PWM) signal for switching. The
controller adjusts the PWM duty cycle, Duty, based on both the reference value and output voltage
signals. The duty cycle regulates the output voltage Vout to the reference value Vref.

Simscape Electrical software contains predefined blocks for many power electronics systems. This
model contains a variant subsystem with two versions of the boost converter model:

• The Boost Converter Circuit subsystem is constructed using electrical power components.
The parameters of the circuit components are based on [1] on page 15-89.

• The Boost Converter Block subsystem is constructed using the Boost Converter block and is
configured to have the same parameters as the boost converter circuit. For more information on
this block, see Boost Converter (Simscape Electrical). The model uses this subsystem by default.

Design ADRC Controller

ADRC is a powerful tool for the controller design of a plant with unknown dynamics and internal and
external disturbances. The block models unknown dynamics and disturbances as an extended state of
the plant and estimates them using an observer. The block lets you design a controller using only a
few key tuning parameters for the control algorithm:

• Model order type (first-order or second order)
• Critical gain of the model response
• Controller and observer bandwidths

Additionally, you also specify the Time domain parameter to match the time domain of the plant
model. In this example, it is set to discrete-time and with a sample time of 5e-6 seconds. The
following sections describe how to find the remaining tuning parameters specified in the ADRC block
parameters for this model.

15 Adaptive Control

15-80

Model Order and Critical Gain

To identify the model order, simulate the plant model in the open-loop configuration. Use a step input
of 0.5 as duty cycle to drive the plant model.

set_param(mdl,'SignalLoggingName','openLoopSim');
sim(mdl);
figure;
Ref = getElement(openLoopSim,'Ref');
Vout = getElement(openLoopSim,'Output Voltage');
plot(Ref.Values.Time,Ref.Values.Data...
 ,Vout.Values.Time,Vout.Values.Data)
grid on
xlabel('Time (s)')
ylabel('Output Voltage (V)')
legend('Ref','Output')

 Design Active Disturbance Rejection Control for Boost Converter

15-81

To determine the critical gain value b0, you can examine the output voltage response over a short
interval of 0.0005 seconds right after the step reference input.

x = Vout.Values.Time(1:20091);
y = Vout.Values.Data(1:20091);
figure
plot(x,y)
xlabel('Time (s)')
ylabel('Output Voltage (V)')
grid on

15 Adaptive Control

15-82

Because this curve contains the effects of switching, use polyfit to get a better approximation of
the output voltage over this time range.

[p,~,mu] = polyfit(x,y,3);
f = polyval(p,x,[],mu);
figure;
plot(x,y,x,f)
grid on
xlabel('Time (s)')
ylabel('Output Voltage (V)')
legend('Data','Polyfit','Location','best')

 Design Active Disturbance Rejection Control for Boost Converter

15-83

f(end)

ans = 7.8594

The output voltage shows a typical shape for a second-order dynamic system. As a result, select
second-order for the Model type parameter. Based on the output voltage waveform, you can
determine the critical gain through the second-order response approximation y = 1

2at2.

Over a duration of 0.0005 seconds, the output voltage changes by about 7.8594V.

a = 2y
t2 = 2 × 7 . 8594

5e−4 2 = 0 . 63e8

b0 = a
u = 0 . 63e8

0 . 5 = 1 . 26e8

Controller Bandwidth and Observer Bandwidth

The controller bandwidth usually depends on the performance specifications, either in the frequency
domain or time domain. In this example, the controller bandwidth ωc is 2500 rad/s. The observer
needs to converge faster than the controller. In general, the observer bandwidth is set to 5 to 10
times ωc. In this example, ωo = 7 × ωc.

Toggle the manual switch to operate the model in the closed-loop configuration.

set_param('scdBoostConverterADRC/Manual Switch','sw','0')

15 Adaptive Control

15-84

Simulate the model.

set_param(mdl,'SignalLoggingName','adrcSim');
sim(mdl);
Vref = getElement(adrcSim,'Vref');
Vout_adrc = getElement(adrcSim,'Output Voltage');
figure;
plot(Vref.Values.Time,Vref.Values.Data...
 ,Vout_adrc.Values.Time,Vout_adrc.Values.Data)
grid on
xlim([0 0.03])
xlabel('Time (s)')
ylabel('Output Voltage (V)')
legend('Vref','Output')

Performance Comparison of ADRC and PID Controller

You can examine the tuned controller performance using a simulation with line and load
disturbances. The model uses the following disturbances.

• Line disturbance at t = 0.075 s, which increases the input voltage from 5 V to 10 V.
• Load disturbance at t = 0.09 s, which increases the load resistance from 3 ohms to 6 ohms.

You compare the output voltage of the boost converter controlled using the ADRC controller with a
PID controller tuned on a linear plant model obtained using frequency response estimation at the
same operating point Vref = 18 V.

 Design Active Disturbance Rejection Control for Boost Converter

15-85

Simulate the model with the PID Controller subsystem.

set_param([mdl,'/Controller'],'LabelModeActiveChoice','PID')
set_param(mdl,'SignalLoggingName','pidSim');
sim(mdl);
Vout_pid = getElement(pidSim,'Output Voltage');

Compare the performance of the two controllers.

figure;
plot(Vout_adrc.Values.Time,Vout_adrc.Values.Data...
 ,Vout_pid.Values.Time,Vout_pid.Values.Data)
grid on
xlabel('Time (s)')
ylabel('Output Voltage (V)')
legend('Vout (ADRC)','Vout (PID)')

The ADRC controller drives the initial transient to the steady state much faster than the PID
controller. You can further zoom in to take a closer look at how both controllers perform with the
disturbances.

figure;
plot(Vout_adrc.Values.Time,Vout_adrc.Values.Data...
 ,Vout_pid.Values.Time,Vout_pid.Values.Data)
grid on
xlim([0.06 0.1])
xlabel('Time (s)')

15 Adaptive Control

15-86

ylabel('Output Voltage (V)')
legend('Vout (ADRC)','Vout (PID)')

After each disturbance, the output voltage converges faster to the nominal 18 V using the ADRC
controller. With an easy tuning process, the ADRC controller outperforms the tuned PID controller at
the nominal operating point.

In addition, the ADRC controller works for a wide range of operating points. As a result, retuning is
not necessary as with PID controllers. For example, you can compare the performance of the
controllers with reference voltage of 12 V.

Set Vref to 12 V and simulate the model.

set_param([mdl,'/Vref'],'Value','12')
set_param(mdl,'SignalLoggingName','pidSim2');
sim(mdl);
Vout_pid2 = getElement(pidSim2,'Output Voltage');
set_param(mdl,'SignalLoggingName','adrcSim2');
set_param([mdl,'/Controller'],'LabelModeActiveChoice','ADRC')
sim(mdl);
Vout_adrc2 = getElement(adrcSim2,'Output Voltage');

Compare the performance.

figure;
plot(Vout_adrc2.Values.Time,Vout_adrc2.Values.Data...
 ,Vout_pid2.Values.Time,Vout_pid2.Values.Data)

 Design Active Disturbance Rejection Control for Boost Converter

15-87

grid on
xlabel('Time (s)')
ylabel('Output Voltage (V)')
legend('Vout (ADRC)','Vout (PID)','Location','best')

figure;
plot(Vout_adrc2.Values.Time,Vout_adrc2.Values.Data...
 ,Vout_pid2.Values.Time,Vout_pid2.Values.Data)
grid on
xlim([0.06 0.1])
xlabel('Time (s)')
ylabel('Output Voltage (V)')
legend('Vout (ADRC)','Vout (PID)')

15 Adaptive Control

15-88

As in the previous scenario, the ADRC controller achieves faster convergence than the PID controller.

You can set the reference voltage to values other than the original 18 V. With easy tuning, the ADRC
controller performs much better than the PID controller over a wide range of operating points.

Close the model.

close_system(mdl,0);

References

[1] Lee, S. W. "Practical Feedback Loop Analysis for Voltage-Mode Boost Converter." Application
Report No. SLVA633. Texas Instruments. January 2014. www.ti.com/lit/an/slva633/slva633.pdf

See Also
Active Disturbance Rejection Control

Related Examples
• “Active Disturbance Rejection Control” on page 15-67
• “Design Active Disturbance Rejection Control for Water-Tank System” on page 15-71

 Design Active Disturbance Rejection Control for Boost Converter

15-89

• “Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM” on page 15-
91

15 Adaptive Control

15-90

Design Active Disturbance Rejection Control for BLDC Speed
Control Using PWM

This example shows how to design active disturbance rejection control (ADRC) of the speed of a
brushless DC (BLDC) motor modeled in Simulink® using Simscape™ Electrical™ components.

In this example, you also compare the control performance of the ADRC controller with a PID
controller. Although you can tune the PID controller over a wide operating range, designing
experiments and tuning PID gains require significant efforts. Using ADRC you can obtain a nonlinear
controller and achieve better performance with a simpler setup and less tuning effort.

BLDC Motor Model

BLDC motors offer many advantages over their brushed counterparts, such as higher efficiency and
lower maintenance. The speed of this BLDC motor is controlled by implementing PWM control. To
control the motor speed, an ideal DC voltage source is modulated using pulse width modulation
(PWM) and sent through a three-phase inverter to drive the BLDC motor. This model is based on the
model discussed in the BLDC Speed Control Using PWM video.

mdl = 'BLDCMotorADRC';
open_system(mdl)

This model contains a controller variant subsystem with two choices: an ADRC controller and a PID
controller. The ADRC Controller subsystem is set as the default active variant. The model also
includes a manual switch to operate the model in open-loop and closed-loop configurations. It is set to
an open-loop configuration by default.

 Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM

15-91

https://www.mathworks.com/support/search.html/videos/motor-control-part-3-bldc-speed-control-using-pwm-1578294719821.html

In this model, a PWM control is implemented by modulating the phase voltages directly. A PWM
Generator block is used under the Commutation Logic subsystem. According to this logic, the PWM
Generator block's output helps the DC source voltage of 500 V pulse on and off to energize the
correct phases based on the sector the rotor is in.

Design ADRC Controller

ADRC is a powerful tool for the controller design of a plant with unknown dynamics and internal and
external disturbances. The block models unknown dynamics and disturbances as an extended state of
the plant and estimates them using an observer. The block lets you design a controller using only a
few key tuning parameters for the control algorithm:

• Model order type (first-order or second order)
• Critical gain of the model response
• Controller and observer bandwidths

Additionally, you specify the Time domain parameter to match the time domain of the plant model.
In this example, it is set to discrete-time with a sample time equal to the Ts_motor variable
provided with the model. The following sections describe how to find the remaining tuning
parameters specified in the ADRC block parameters for this model.

15 Adaptive Control

15-92

Model Order and Critical Gain

To identify the model order, simulate the plant model in the open-loop configuration. Assume the
saturation limits of the duty cycle from 0 to 1 and use a step input of 0.5 as duty cycle to drive the
plant model.

set_param(mdl,'SignalLoggingName','openLoopSim');
sim(mdl);
stepRef = getElement(openLoopSim,'stepRef');
speedOut = getElement(openLoopSim,'Measured speed');
figure;
plot(stepRef.Values.Time,stepRef.Values.Data...
 ,speedOut.Values.Time,speedOut.Values.Data)
grid on
xlabel('Time (s)')
ylabel('Speed (RPM)')
legend('Ref','Output')

 Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM

15-93

To determine the critical gain value b0, examine the speed response over a short interval of 0.0005
seconds right after the step reference input.

x = speedOut.Values.Time(1:11);
y = speedOut.Values.Data(1:11);
figure
plot(x,y)
xlabel('Time (s)')
ylabel('Speed(RPM)')
grid on

15 Adaptive Control

15-94

y(end)

ans = 1.1677

The speed response shows a typical shape for a second-order dynamic system. As a result, select
second-order for the Model type parameter. Based on the measured speed, you can determine the
critical gain through the second-order response approximation y = 1

2at2. Over a duration of 0.0005
seconds, the speed changes by 1.167 rpm.

a = 2y
t2 = 2 × 1 . 167

5e−4 2 = 9 . 34e6

b0 = a
u = 9 . 34e6

0 . 5 = 1 . 87e7

Controller Bandwidth and Observer Bandwidth

The controller bandwidth usually depends on the performance specifications, either in the frequency
domain or time domain. In this example, the controller bandwidth ωc is set to 1000 rad/s.

In general, the observer bandwidth ωo is set to 5 to 10 times ωc so that the observer converges faster
than the controller. In this example, specify the observer bandwidth to be the same as the controller
bandwidth. Doing so allows you to take advantage of the observer to filter out the excessive switching
noise present in a BLDC motor controlled with PWM. The following figure shows the ADRC controller
output duty cycle signal when the observer bandwidth is set to 1000 rad/s and 5000 rad/s.

 Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM

15-95

You can see that the ADRC block's output signal has much less noise when observer bandwidth is
1000 rad/s as compared to 5000 rad/s. Having such a noisy duty cycle output can render the
controller unusable in realistic systems.

Although reducing the observer bandwidth reduces the oscillation in ADRC block's output signal,
further reducing ωo may not be possible because the overall control performance can be adversely
impacted by the slow convergence of the observer.

Performance Comparison of ADRC and PID Controller

You can examine the tuned controller performance using a simulation with changing speed reference
signals.

To examine the dynamic performance of controllers, the model undergoes the following acceleration
processes.

• Between t = 0.2 s and t = 0.3 s, the speed reference ramps from 0 rpm to 500 rpm.
• Between t = 0.7 s and t = 1.0 s, the speed reference ramps from 500 rpm to 2000 rpm.

Toggle the manual switch to operate the model in the closed-loop configuration.

set_param('BLDCMotorADRC/Manual Switch','sw','0')

15 Adaptive Control

15-96

Simulate the model with the ADRC Controller subsystem.

set_param(mdl,'SignalLoggingName','adrcSim');
sim(mdl);
speedOutADRC = getElement(adrcSim,'Measured speed');

Simulate the model with the PID Controller subsystem.

set_param([mdl,'/Controller'],'LabelModeActiveChoice','PID')
set_param(mdl,'SignalLoggingName','pidSim');
sim(mdl);
speedOutPID = getElement(pidSim,'Measured speed');

Compare the performance of the two controllers.

figure;
plot(refSignal{1}.Time,refSignal{1}.Data...
 ,speedOutADRC.Values.Time,speedOutADRC.Values.Data)
hold on
plot(speedOutPID.Values.Time,speedOutPID.Values.Data)
hold off
grid on
xlabel('Time (s)')
ylabel('Speed (RPM)')
legend('Ref','ADRC','PID','location','best')

 Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM

15-97

The speed response shows that the ADRC controller performs much better than the PID controller by
following the speed reference more closely during transients and reducing the overshoot around
2000 rpm.

Close the model.

close_system(mdl,0);

See Also
Active Disturbance Rejection Control

Related Examples
• “Active Disturbance Rejection Control” on page 15-67
• “Design Active Disturbance Rejection Control for Water-Tank System” on page 15-71
• “Design Active Disturbance Rejection Control for Boost Converter” on page 15-79

15 Adaptive Control

15-98

Constraint Enforcement

• “Constraint Enforcement for Control Design” on page 16-2
• “Barrier Certificate Enforcement for Control Design” on page 16-4
• “Passivity Enforcement for Control Design” on page 16-6
• “Enforce Constraints for PID Controllers” on page 16-8
• “Learn and Apply Constraints for PID Controllers” on page 16-14
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 16-22
• “Train RL Agent for Adaptive Cruise Control with Constraint Enforcement” on page 16-33
• “Train RL Agent for Lane Keeping Assist with Constraint Enforcement” on page 16-43
• “Enforce Barrier Certificate Constraints for PID Controllers” on page 16-51
• “Enforce Barrier Certificate Constraints for Adaptive Cruise Control” on page 16-56
• “Enforce Barrier Certificate Constraints for Collision-Free Robots” on page 16-62
• “Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System” on page 16-68
• “Enforce Passivity Constraints for Quadruple-Tank System” on page 16-74
• “Enforce Passivity Constraint for Flexible Beam” on page 16-79

16

Constraint Enforcement for Control Design
Some control applications require the controller to select control actions such that the plant states do
not violate certain critical constraints. In many cases, the constraints are on plant states that the
controller does not control directly. Instead, you define a constraint function that defines the
constraint in terms of the control action signal. This constraint function can be a known relationship
or one that you must learn from experimental data.

Constraint Enforcement Block
The Constraint Enforcement block, which requires Optimization Toolbox software, computes the
modified control actions that are closest to specified control actions subject to constraints and action
bounds. The block uses a quadratic programming (QP) solver to find the control action u that
minimizes the function u− u0

2 in real time. Here, u0 is the unmodified control action from the
controller.

The solver applies the following constraints to the optimization problem.

fx + gxu ≤ c
umin ≤ u ≤ umax

Here:

• fx and gx are coefficients of the constraint function which depend on the plant states x.
• c is a bound for the constraint function.
• umin is a lower bound for the control action.
• umax is an upper bound for the control action.

Since the Constraint Enforcement block modifies the original control action, the final closed-loop
system might not achieve the design objectives of the original controller, such as stability margins.

You must verify that the combined controller and Constraint Enforcement block meet your original
control objectives. If the system does not meet your original objectives, consider updating your
original controller design. For example, you can add additional gain and phase margins to
compensate for any potential performance degradation.

Constraint Function Coefficients
Depending on your application, the coefficients fx and gx of the constraint function can be linear or
nonlinear functions of the plant states and can be either known or unknown.

For an example that uses known nonlinear constraint function coefficients, see “Enforce Constraints
for PID Controllers” on page 16-8. This example derives the constraint function from the plant
dynamics.

When you are unable to derive the constraint function from the plant directly, you must learn the
coefficients using input/output data from experiments or simulations. To learn such constraints, you
can create a function approximator and tune the approximator to reproduce the input-to-output
mapping from simulation or experimental data.

To learn linear coefficient functions, you can find a least-squares solution from the data. For examples
that use this approach, see “Train RL Agent for Adaptive Cruise Control with Constraint

16 Constraint Enforcement

16-2

Enforcement” on page 16-33 and “Train RL Agent for Lane Keeping Assist with Constraint
Enforcement” on page 16-43.

For nonlinear coefficient functions, you must tune a nonlinear function approximator. Examples of
such approximators include:

• Deep neural networks (requires Deep Learning Toolbox™ software)
• Nonlinear identified system models (requires System Identification Toolbox software)
• Fuzzy inference systems (requires Fuzzy Logic Toolbox™ software)

For examples that learn nonlinear coefficient function by training a deep neural network, see “Learn
and Apply Constraints for PID Controllers” on page 16-14 and “Train Reinforcement Learning Agent
with Constraint Enforcement” on page 16-22.

See Also
Blocks
Constraint Enforcement

Related Examples
• “Enforce Constraints for PID Controllers” on page 16-8
• “Learn and Apply Constraints for PID Controllers” on page 16-14
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 16-22

 Constraint Enforcement for Control Design

16-3

Barrier Certificate Enforcement for Control Design
In optimization-based control, a barrier certificate defines a safety set of the desired states of a
system. A control barrier function is used to find a control law such that the states remain in the
safety set.

Barrier Certificate Enforcement Block
The Barrier Certificate Enforcement block, which requires Optimization Toolbox software, computes
the modified control actions that are closest to specified control actions subject to barrier certificate
constraints and action bounds. The block uses a quadratic programming (QP) solver to find the
control action u that minimizes the function u− u0

2 in real time. Here, u0 is the unmodified control
action from the controller.

The solver applies the following constraints to the optimization problem.

qxfx + qxgxu + γhx
β ≥ 0

umin ≤ u ≤ umax

Here:

• fx and gx are functions defined by the plant dynamics ẋ = f (x) + g(x)u.
• hx is the control barrier function.
• qx is the partial derivative of the control barrier function over states x.
• γ is the constraint factor.
• β is the constraint power.
• umin is a lower bound for the control action.
• umax is an upper bound for the control action.

Since the Barrier Certificate Enforcement block modifies the original control action, the final closed-
loop system might not achieve the design objectives of the original controller, such as stability
margins.

You must verify that the combined controller and Barrier Certificate Enforcement block meet your
original control objectives. If the system does not meet your original objectives, consider updating
your original controller design. For example, you can add additional gain and phase margins to
compensate for any potential performance degradation.

Control Barrier Function
Consider plant dynamics of the following form.

ẋ = f (x) + g(x)u

The control barrier function h(x) defines a safety set x:h(x) ≥ 0 , that is, an invariant set where any
trajectory starting inside the set remains within the set.

For this invariant set, the constraint is described by:

ḣ(x, u) ≥ − α(h(x))

16 Constraint Enforcement

16-4

Therefore, you can define a constraint that depends on the control barrier function and the system
dynamics as follows.

∂h
∂x f (x) + ∂h

∂x g(x)u ≥ − α(h(x))

Here α(h(x)) is an extended class Κ function. Using the Barrier Certificate Enforcement block, you
can specify a function of the following form.

α(h(x)) = γhβ(x)

For an example that uses a simple control barrier function, see “Enforce Barrier Certificate
Constraints for PID Controllers” on page 16-51.

For an example that defines a control barrier function to avoid collisions between three robots, see
“Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System” on page 16-68. This
example defines a barrier function such that the robots reach their target position while maintaining
a distance greater than a threshold distance between any two robots.

See Also
Barrier Certificate Enforcement

Related Examples
• “Enforce Barrier Certificate Constraints for PID Controllers” on page 16-51
• “Enforce Barrier Certificate Constraints for Adaptive Cruise Control” on page 16-56
• “Enforce Barrier Certificate Constraints for Collision-Free Robots” on page 16-62
• “Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System” on page 16-68

 Barrier Certificate Enforcement for Control Design

16-5

Passivity Enforcement for Control Design
A system is passive if it cannot produce energy on its own, and can only dissipate the energy that is
stored in it initially. In many cases, you can enforce passivity on a closed loop system by modifying
the actions of the controller such that the system dissipates energy over time, and therefore has a
stable equilibrium.

Passivity Enforcement Block
The Passivity Enforcement block, which requires Optimization Toolbox software, computes the
modified control actions that are closest to specified control actions subject to passivity constraints
and action bounds. The block uses a quadratic programming (QP) solver to find the control action u
that minimizes the function u− u0

2 in real time. Here, u0 is the unmodified control action from the
controller.

The solver applies the following constraints to the optimization problem.

ρypTyp + ypT fp + ypTgpu ≤ 0
umin ≤ u ≤ umax

Here:

• ρ is the passivity index.
• yp is the passivity output function, defined as yp = hp(x).
• fp and gp are the functions defined by the passivity input function up = fp(x) + gp(x)u.
• umin is a lower bound for the control action.
• umax is an upper bound for the control action.

Since the Passivity Enforcement block modifies the original control action, the final closed-loop
system might not achieve the design objectives of the original controller, such as stability margins.

You must verify that the combined controller and Passivity Enforcement block meet your original
control objectives. If the system does not meet your original objectives, consider updating your
original controller design. For example, you can add additional gain and phase margins to
compensate for any potential performance degradation.

Passivity Functions
If the plant model is passive, then there exists a storage function such that:

V̇(x) ≤ uTy .

16 Constraint Enforcement

16-6

If the controller satisfies the following condition.

uTy ≤ − ρyTy (ρ > 0)

Then, the closed loop system becomes

V̇(x) ≤ − ρyTy ≤ 0,

and if the plant model is zero-state observable (if u = 0, and x = 0 when y = 0), then the closed-loop
system is asymptotically stable.

In general, when you have a closed-loop system with a nominal controller, you can define the
following based on the plant dynamics.

• Passivity input function — up = fp(x) + gp(x)u
• Passivity output function — yp = hp(x)

You can then make the closed-loop system satisfy the following inequality to enforce passivity.

upTyp ≤ − ρypTyp

The Passivity Enforcement block formulates this problem as a quadratic programming optimization
problem as defined in the previous section. For more information, see “About Passivity and Passivity
Indices”.

You can formulate passivity constraint depending on your control design goals, such as feedback
stability or reference tracking, depending on how you specify the passivity input function up and
passivity output function yp. For an example that uses passivity constraints for stability, see “Enforce
Passivity Constraints for Quadruple-Tank System” on page 16-74. For an example that uses passivity
constraints for vibration control in a beam, see “Enforce Passivity Constraint for Flexible Beam” on
page 16-79.

See Also
Passivity Enforcement

Related Examples
• “Constraint Enforcement for Control Design” on page 16-2
• “Barrier Certificate Enforcement for Control Design” on page 16-4
• “Enforce Passivity Constraints for Quadruple-Tank System” on page 16-74
• “Enforce Passivity Constraint for Flexible Beam” on page 16-79

 Passivity Enforcement for Control Design

16-7

Enforce Constraints for PID Controllers

This example shows how to enforce known constraints for a PID controller application using the
Constraint Enforcement block.

Overview

For this example, the plant dynamics are described by the following equations [1].

ẋ1 = − x1 + (x1
2 + 1)u1

ẋ2 = − x2 + (x2
2 + 1)u2

The goal for the plant is to track desired trajectories, defined as:

θ̇ = 0 . 1π
ẋ1d = − rcos(θ)
ẋ2d = rsin(θ)

For an example that learns and applies an unknown constraint function for the same PID control
application, see “Learn and Apply Constraints for PID Controllers” on page 16-14.

Configure model parameters and initial conditions.

r = 1.5; % Radius for desired trajectory
Ts = 0.1; % Sample time
Tf = 22; % Duration
x0_1 = -r; % Initial condition for x1
x0_2 = 0; % Initial condition for x2

Design PID Controllers

Before applying constraints, design PID controllers for tracking the reference trajectories. The
trackingWithPIDs model contains two PID controllers with gains tuned using the PID Tuner app.
For more information on tuning PID controllers in Simulink models, see “Introduction to Model-Based
PID Tuning in Simulink” on page 7-2.

mdl = 'trackingWithPIDs';
open_system(mdl)

16 Constraint Enforcement

16-8

Simulate the PID controllers and plot their tracking performance.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logData = out.logsout;
x1_traj = logData{3}.Values.Data;
x2_traj = logData{4}.Values.Data;
x1_des = logData{1}.Values.Data;
x2_des = logData{2}.Values.Data;

% Plot trajectories.
figure('Name','Tracking')
xlim([-2,2])
ylim([-2,2])
plot(x1_des,x2_des,'r')
xlabel('x1')
ylabel('x2')
hold on
plot(x1_traj,x2_traj,'b:','LineWidth',2)
hold on
plot(x1_traj(1),x2_traj(1),'g*')
hold on
plot(x1_traj(end),x2_traj(end),'go')
legend('Desired','Trajectory','Start','end')

 Enforce Constraints for PID Controllers

16-9

Constraint Function

For this example, you apply known constraints to the application using the Constraint Enforcement
block, which adjusts control actions to satisfy a constraint function.

In this example, the feasible region for the plant is given by x:x1 ≤ 1, xx ≤ 1 . Therefore, the plant

next-state condition xk + 1 =
x1 k + 1
x2 k + 1

must satisfy xk + 1 ≤
1
1

.

You can approximate the plant dynamics by the following equation.

xk + 1 ≈
1 − Ts 0

0 1 − Ts
xk +

Ts 1 + x1
2 k 0

0 Ts 1 + x2
2 k

uk

Applying the constraints to this equation produces the following constraint function.

1 − Ts 0
0 1 − Ts

xk +
Ts 1 + x1

2 k 0

0 Ts 1 + x2
2 k

uk ≤
1
1

The Constraint Enforcement block accepts constraints of the form fx + gxu ≤ c. For this application,
the coefficients of this constraint function are as follows.

16 Constraint Enforcement

16-10

fx =
1 − Ts 0

0 1 − Ts
xk, gx =

Ts 1 + x1
2 k 0

0 Ts 1 + x2
2 k

, c =
1
1

Simulate PID Controller with Constraint Enforcement

The trackingWithConstraintPID model contains the PID controllers, the plant dynamics and the
constraint implementation.

mdl = 'trackingWithKnownConstraintPID';
open_system(mdl)

To view the constraint implementation, open the Constraint subsystem. Here, the model implements
the known constraint function using a MATLAB Function block, and the Constraint Enforcement
block enforces the constraint function.

Run the model and plot the simulation results. The plot shows that the plant states are less than one.

 Enforce Constraints for PID Controllers

16-11

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logData = out.logsout;
x1_traj = zeros(size(out.tout));
x2_traj = zeros(size(out.tout));
for ct = 1:size(out.tout,1)
 x1_traj(ct) = logData{4}.Values.Data(:,:,ct);
 x2_traj(ct) = logData{5}.Values.Data(:,:,ct);
end

x1_des = logData{2}.Values.Data;
x2_des = logData{3}.Values.Data;

% Plot trajectories.
figure('Name','Tracking with Constraint');
plot(x1_des,x2_des,'r')
xlabel('x1')
ylabel('x2')
hold on
plot(x1_traj,x2_traj,'b:','LineWidth',2)
hold on
plot(x1_traj(1),x2_traj(1),'g*')
hold on
plot(x1_traj(end),x2_traj(end),'go')
legend('Desired','Trajectory','Start','End','Location','best')

16 Constraint Enforcement

16-12

The Constraint Enforcement block successfully constrains the control actions such that the plant
states remain less than one.

bdclose('trackingWithPIDs')
bdclose('trackingWithKnownConstraintPID')

References

[1] Robey, Alexander, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen
Tu, and Nikolai Matni. "Learning Control Barrier Functions from Expert Demonstrations." Preprint,
submitted April 7, 2020. https://arxiv.org/abs/2004.03315

See Also
Blocks
Constraint Enforcement

Apps
PID Tuner

Related Examples
• “Constraint Enforcement for Control Design” on page 16-2
• “Learn and Apply Constraints for PID Controllers” on page 16-14
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 16-22
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

 Enforce Constraints for PID Controllers

16-13

https://arxiv.org/abs/2004.03315

Learn and Apply Constraints for PID Controllers

This example shows how to learn constraints from data and apply these constraints for a PID control
application. First, you learn the constraint function using a deep neural network, which requires
Deep Learning Toolbox™ software. You then apply the constraints to the PID control actions using the
Constraint Enforcement block.

For this example, the plant dynamics are described by the following equations [1].

ẋ1 = − x1 + (x1
2 + 1)u1

ẋ2 = − x2 + (x2
2 + 1)u2

The goal for the plant is to track the following trajectories.

θ̇ = 0 . 1π
ẋ1d = − rcos(θ)
ẋ2d = rsin(θ)

For an example that applies a known constraint function to the same PID control application, see
“Enforce Constraints for PID Controllers” on page 16-8.

Set the random seed and configure model parameters and initial conditions.

rng(0); % Random seed
r = 1.5; % Radius for desired trajectory
Ts = 0.1; % Sample time
Tf = 22; % Duration
x0_1 = -r; % Initial condition for x1
x0_2 = 0; % Initial condition for x2
maxSteps = Tf/Ts; % Simulation steps

Design PID Controllers

Before learning and applying constraints, design PID controllers for tracking the reference
trajectories. The trackingWithPIDs model contains two PID controllers with gains tuned using the
PID Tuner app. For more information on tuning PID controllers in Simulink models, see “Introduction
to Model-Based PID Tuning in Simulink” on page 7-2.

mdl = "trackingWithPIDs";
open_system(mdl)

16 Constraint Enforcement

16-14

Simulate the PID controllers and plot their tracking performance.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logData = out.logsout;
x1_traj = logData{3}.Values.Data;
x2_traj = logData{4}.Values.Data;
x1_des = logData{1}.Values.Data;
x2_des = logData{2}.Values.Data;

% Plot trajectories.
figure("Name","Tracking")
xlim([-2,2])
ylim([-2,2])
plot(x1_des,x2_des,"r")
xlabel("x1")
ylabel("x2")
hold on
plot(x1_traj,x2_traj,"b:","LineWidth",2)
hold on
plot(x1_traj(1),x2_traj(1),"g*")
hold on
plot(x1_traj(end),x2_traj(end),"go")
legend("Desired","Trajectory","Start","End")

 Learn and Apply Constraints for PID Controllers

16-15

Constraint Function

In this example, you learn application constraints and modify the control actions of the PID
controllers to satisfy these constraints.

The feasible region for the plant is given by the constraints x:x1 ≤ 1, x2 ≤ 1 . Therefore, the
trajectories xk + 1 = x1 k + 1 x2 k + 1 ′ must satisfy xk + 1 ≤ 1.

You can approximate the plant dynamics by the following equation.

xk + 1 ≈ Axk +
g1 xk 0

0 g2 xk
uk

Applying the constraints to this equation produces the following constraint function.

Axk +
g1 xk 0

0 g2 xk
uk ≤

1
1

The Constraint Enforcement block accepts constraints of the form fx + gxu ≤ c. For this application,
the coefficients of this constraint function are as follows.

fx = Axk , gx =
g1 xk 0

0 g2 xk
, c =

1
1

16 Constraint Enforcement

16-16

Learn Constraint Function

For this example, the coefficients of the constraint function are unknown. Therefore, you must derive
them from training data. To collect training data, use the rlCollectDataPID model. This model
allows you to pass either zero or random inputs to the plant model and record the resulting plant
outputs.

mdl = "rlCollectDataPID";
open_system(mdl)

To learn the unknown matrix A, set the plant inputs to zero. When you do so, the plant dynamics
become xk + 1 ≈ Axk.

blk = mdl + "/Manual Switch";
set_param(blk,"sw","1");

Collect training data using the collectDataPID helper function. This function simulates the model
multiple times and extracts the input/output data. The function also formats the training data into an
array with six columns: x1 k , x2 k , u1 k , u2 k , x1 k + 1 , and x2 k + 1 .

numSamples = 1000;
data = collectDataPID(mdl,numSamples);

Find a least-squares solution for A using the input/output data.

inputData = data(:,1:2);
outputData = data(:,5:6);
A = inputData\outputData;

Collect the training data. To learn the unknown function gx, configure the model to use random input
values that follow a normal distribution.

% Configure model to use random input data.
set_param(blk,"sw","0");

% Collect data.
data = collectDataPID(mdl,numSamples);

Train a deep neural network to approximate the gx function using the trainConstraintPID helper
function. This function formats the data for training then creates and trains a deep neural network.
Training a deep neural network requires Deep Learning Toolbox software.

 Learn and Apply Constraints for PID Controllers

16-17

The inputs to the deep neural network are the plant states. Create the input training data by
extracting the collected state information.

inputData = data(:,1:2);

Since the output of the deep neural network corresponds to gx, you must derive output training data
using the collected input/output data and the computed A matrix.

u = data(:,3:4);
x_next = data(:,5:6);
fx = (A*inputData')';
outputData = (x_next - fx)./u;

Train the network using the input and output data.

network = trainConstraintPID(inputData,outputData);

Save the reuslting network to a MAT file.

save("trainedNetworkPID","network")

16 Constraint Enforcement

16-18

Simulate PID Controllers with Constraint Enforcement

To simulate the PID controllers with constraint enforcement, use the
trackingWithLearnedConstraintPID model. This model constrains the controller outputs before
applying them to the plant.

mdl = "trackingWithLearnedConstraintPID";
open_system(mdl)

To view the constraint implementation, open the Constraint subsystem. Here, the trained deep neural
network approximates gx based on the current plant state, and the Constraint Enforcement block
enforces the constraint function.

Simulate the model and plot the results.

% Simulate the model.
out = sim(mdl);

 Learn and Apply Constraints for PID Controllers

16-19

% Extract trajectories.
logData = out.logsout;
x1_traj = zeros(size(out.tout));
x2_traj = zeros(size(out.tout));
for ct = 1:size(out.tout,1)
 x1_traj(ct) = logData{4}.Values.Data(:,:,ct);
 x2_traj(ct) = logData{5}.Values.Data(:,:,ct);
end

x1_des = logData{2}.Values.Data;
x2_des = logData{3}.Values.Data;

% Plot trajectories.
figure("Name","Tracking with Constraint");
plot(x1_des,x2_des,"r")
xlabel("x1")
ylabel("x2")
hold on
plot(x1_traj,x2_traj,"b:","LineWidth",2)
hold on
plot(x1_traj(1),x2_traj(1),"g*")
hold on
plot(x1_traj(end),x2_traj(end),"go")
legend("Desired","Trajectory","Start","End",...
 "Location","best")

16 Constraint Enforcement

16-20

The Constraint Enforcement block successfully constrains the control actions such that the plant
states remain less than one.

References

[1] Robey, Alexander, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen
Tu, and Nikolai Matni. "Learning Control Barrier Functions from Expert Demonstrations." Preprint,
submitted April 7, 2020. https://arxiv.org/abs/2004.03315

See Also
Blocks
Constraint Enforcement

Apps
PID Tuner

Related Examples
• “Constraint Enforcement for Control Design” on page 16-2
• “Enforce Constraints for PID Controllers” on page 16-8
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 16-22
• “Introduction to Model-Based PID Tuning in Simulink” on page 7-2

 Learn and Apply Constraints for PID Controllers

16-21

https://arxiv.org/abs/2004.03315

Train Reinforcement Learning Agent with Constraint
Enforcement

This example shows how to train a reinforcement learning (RL) agent with actions constrained using
the Constraint Enforcement block. This block computes modified control actions that are closest to
the actions output by the agent subject to constraints and action bounds. Training reinforcement
learning agents requires Reinforcement Learning Toolbox™ software.

In this example, the goal of the agent is to bring a green ball as close as possible to the changing
target position of a red ball [1].

The dynamics for the green ball from velocity v to position x are governed by Newton's law with a
small damping coefficient τ:

1
s(τs + 1).

The feasible region for the ball position 0 ≤ x ≤ 1 and the velocity of the green ball is limited to the
range −1, 1 .

The position of the target red ball is uniformly random across the range 0, 1 . The agent can observe
only a noisy estimate of this target position.

Set the random seed to ensure reproducibility.

rng("default")

Configure model parameters.

Tv = 0.8; % sample time for visualizer
Ts = 0.1; % sample time for controller
tau = 0.01; % damping constant for green ball
velLimit = 1; % maximum speed for green ball
s0 = 200; % random seed
s1 = 100; % random seed
x0 = 0.2; % initial position for ball

Create Environment and Agent for Collecting Data

In this example, a constraint function is represented using a trained deep neural network. To train
the network, you must first collect training data from the environment.

To do so, first create an RL environment using the rlBallOneDim model. This model applies random
external actions through an RL Agent block to the environment.

mdl = "rlBallOneDim";
open_system(mdl)

16 Constraint Enforcement

16-22

The Environment subsystem performs the following steps.

• Applies the input velocity to the environment model and generates the resulting output
observations

• Computes the training reward r = 1 − 10 x− xr
2 +, where xr denotes the position of the red ball

• Sets the termination signal isDone to true if the ball position violates the constraint 0 ≤ x ≤ 1

For this model, the observations from the environment include the position and velocity of the green
ball and the noisy measurement of the red ball position. Define a continuous observation space for
these three values.

obsInfo = rlNumericSpec([3 1]);

The action that the agent applies to the green ball is its velocity. Create a continuous action space
and apply the required velocity limits.

actInfo = rlNumericSpec([1 1], ...
 LowerLimit=-velLimit, ...
 UpperLimit=velLimit);

Create an RL environment for this model.

agentblk = mdl + "/RL Agent";
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);

Specify a reset function, which randomly initializes the environment at the start of each training
episode or simulation.

env.ResetFcn = @(in)localResetFcn(in);

Next, create a DDPG reinforcement learning agent, which supports continuous actions and
observations, using the createDDPGAgentBall helper function. This function creates critic and

 Train Reinforcement Learning Agent with Constraint Enforcement

16-23

actor representations based on the action and observation specifications and uses the representations
to create a DDPG agent.

agent = createDDPGAgentBall(Ts,obsInfo,actInfo);

In the rlBallOneDim model, the RL Agent block does not generate actions. Instead, it is configured
to pass a random external action to the environment. The purpose for using a data-collection model
with an inactive RL Agent block is to ensure that the environment model, action and observation
signal configurations, and model reset function used during data collection match those used during
subsequent agent training.

Learn Constraint Function

In this example, the ball position signal xk + 1 must satisfy 0 ≤ xk + 1 ≤ 1. To allow for some slack, the
constraint is set to be 0 . 1 ≤ xk + 1 ≤ 0 . 9 . The dynamic model from velocity to position has a very
small damping constant, thus it can be approximated by xk + 1 ≈ xk + h xk uk. Therefore, the
constraints for green ball are given by the following equation.

xk
−xk

+
h xk
−h xk

uk ≤
0 . 9
−0 . 1

The Constraint Enforcement block accepts constraints of the form fx + gxu ≤ c. For the above
equation, the coefficients of this constraint function are as follows.

fx =
xk
−xk

, gx =
h xk
−h xk

, c =
0 . 9
−0 . 1

The function h xk is approximated by a deep neural network that is trained on the data collected by
simulating the RL agent within the environment. To learn the unknown function h xk , the RL agent
passes a random external action to the environment that is uniformly distributed in the range −1, 1 .

To collect data, use the collectDataBall helper function. This function simulates the environment
and agent and collects the resulting input and output data. The resulting training data has three
columns: xk, uk, and xk + 1.

For this example, load precollected training data. To collect the data yourself, set collectData to
true.

collectData = false;
if collectData
 count = 1050;
 data = collectDataBall(env,agent,count);
else
 load trainingDataBall data
end

Train a deep neural network to approximate the constraint function using the
trainConstraintBall helper function. This function formats the data for training then creates and
trains a deep neural network. Training a deep neural network requires Deep Learning Toolbox™
software.

For this example, to ensure reproducibility, load a pretrained network. To train the network yourself,
set trainConstraint to true.

16 Constraint Enforcement

16-24

trainConstraint = false;
if trainConstraint
 network = trainConstraintBall(data);
else
 load trainedNetworkBall network
end

The following figure shows an example of the training progress.

Validate the trained neural network using the validateNetworkBall helper function. This function
processes the input training data using the trained deep neural network. It then compares the
network output with the training output and computes the root mean-squared error (RMSE).

validateNetworkBall(data,network)

Test Data RMSE = 9.996700e-02

The small RMSE value indicates that the network successfully learned the constraint function.

Train Agent with Constraint Enforcement

To train the agent with constraint enforcement, use the rlBallOneDimWithConstraint model.
This model constrains the actions from the agent before applying them to the environment.

mdl = "rlBallOneDimWithConstraint";
open_system(mdl)

 Train Reinforcement Learning Agent with Constraint Enforcement

16-25

To view the constraint implementation, open the Constraint subsystem. Here, the trained deep neural
network approximates h xk , and the Constraint Enforcement block enforces the constraint function
and velocity bounds.

For this example the following Constraint Enforcement block parameter settings are used.

• Number of constraints — 2
• Number of actions — 1
• Constraint bound — [0.9;-0.1]

Create an RL environment using this model. The observation and action specifications match those
used for the previous data collection environment.

agentblk = mdl + "/RL Agent";
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

16 Constraint Enforcement

16-26

Specify options for training the agent. Train the RL agent for 300 episodes with 300 steps per
episode.

trainOpts = rlTrainingOptions(...
 MaxEpisodes=120, ...
 MaxStepsPerEpisode=300, ...
 Verbose=false, ...
 Plots="training-progress");

Train the agent. Training is a time-consuming process. For this example, load a pretrained agent. To
train the agent yourself, set trainAgent to true.

trainAgent = false;
if trainAgent
 trainingStats = train(agent,env,trainOpts);
else
 load("rlAgentBallParams.mat","agent")
end

The following figure shows the training results. The training process converges to a good agent
within 20 episodes.

Since Total Number of Steps equals the product of Episode Number and Episode Steps, each
training episode runs to the end without early termination. Therefore, the Constraint Enforcement
block ensures that the ball position x never violates the constraint 0 ≤ x ≤ 1.

 Train Reinforcement Learning Agent with Constraint Enforcement

16-27

Simulate the trained agent using the simWithTrainedAgentBall helper function.

simWithTrainedAgentBall(env,agent)

The agent successfully tracks the position of the red ball.

Train Agent Without Constraint Enforcement

To see the benefit of training an agent with constraint enforcement, you can train the agent without
constraints and compare the training results to the constraint enforcement case.

To train the agent without constraints, use the rlBallOneDimWithoutConstraint model. This
model applies the actions from the agent directly to the environment.

mdl = "rlBallOneDimWithoutConstraint";
open_system(mdl)

16 Constraint Enforcement

16-28

Create an RL environment using this model.

agentblk = mdl + "/RL Agent";
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

Create a new DDPG agent to train. This agent has the same configuration as the agent used in the
previous training.

agent = createDDPGAgentBall(Ts,obsInfo,actInfo);

Train the agent using the same training options as in the constraint enforcement case. For this
example, as with the previous training, load a pretrained agent. To train the agent yourself, set
trainAgent to true.

trainAgent = false;
if trainAgent
 trainingStats2 = train(agent,env,trainOpts);
else
 load("rlAgentBallCompParams.mat","agent")
end

The following figure shows the training results. The training process converges to a good agent after
50 episodes.

 Train Reinforcement Learning Agent with Constraint Enforcement

16-29

Since Total Number of Steps is less than the product of Episode Number and Episode Steps, the
training includes episodes that terminated early due to constraint violations.

Simulate the trained agent.

simWithTrainedAgentBall(env,agent)

16 Constraint Enforcement

16-30

The agent tracks the position of the red ball with more steady-state offset than the agent trained with
constraints.

Conclusion

In this example, training an RL agent with the Constraint Enforcement block ensures that the actions
applied to the environment never produce a constraint violation. As a result, the training process
converges to a good agent quickly. Training the same agent without constraints produces slower
convergence and poorer performance.

bdclose("rlBallOneDim")
bdclose("rlBallOneDimWithConstraint")
bdclose("rlBallOneDimWithoutConstraint")
close("Ball One Dim")

Local Reset Function
function in = localResetFcn(in)
% Reset function
in = setVariable(in,"x0",rand);
in = setVariable(in,"s0",randi(5000));
in = setVariable(in,"s1",randi(5000));
end

References

[1] Dalal, Gal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. "Safe Exploration in Continuous Action Spaces." Preprint, submitted January 26, 2018. https://
arxiv.org/abs/1801.08757

See Also
Blocks
Constraint Enforcement | RL Agent

 Train Reinforcement Learning Agent with Constraint Enforcement

16-31

https://arxiv.org/abs/1801.08757
https://arxiv.org/abs/1801.08757

Related Examples
• “Constraint Enforcement for Control Design” on page 16-2
• “Learn and Apply Constraints for PID Controllers” on page 16-14
• “Train RL Agent for Adaptive Cruise Control with Constraint Enforcement” on page 16-33
• “Train RL Agent for Lane Keeping Assist with Constraint Enforcement” on page 16-43

16 Constraint Enforcement

16-32

Train RL Agent for Adaptive Cruise Control with Constraint
Enforcement

This example shows how to train a reinforcement learning (RL) agent for adaptive cruise control
(ACC) using guided exploration with the Constraint Enforcement block.

Overview

In this example, the goal is to make an ego car travel at a set velocity while maintaining a safe
distance from a lead car by controlling longitudinal acceleration and braking. This example uses the
same vehicle models and parameters as the “Train DDPG Agent for Adaptive Cruise Control”
(Reinforcement Learning Toolbox) example.

Set the random seed and configure model parameters.

% Set random seed.
rng('default')

% Parameters
x0_lead = 50; % Initial position for lead car (m)
v0_lead = 25; % Initial velocity for lead car (m/s)
x0_ego = 10; % Initial position for ego car (m)
v0_ego = 20; % Initial velocity for ego car (m/s)
D_default = 10; % Default spacing (m)
t_gap = 1.4; % Time gap (s)
v_set = 30; % Driver-set velocity (m/s)
amin_ego = -3; % Minimum acceleration for driver comfort (m/s^2)
amax_ego = 2; % Maximum acceleration for driver comfort (m/s^2)
Ts = 0.1; % Sample time (s)
Tf = 60; % Duration (s)

Learn Constraint Equation

For the ACC application, the safety signals are the ego car velocity v and relative distance d between
the ego car and lead car. In this example, the constraints for these signals are 10 ≤ v ≤ 30 . 5 and
d ≥ 5. The constraints depend on the following states in x: ego car actual acceleration, ego car
velocity, relative distance, and lead car velocity.

The action u is the ego car acceleration command. The following equation describes the safety signals
in terms of the action and states.

vk + 1
dk + 1

=
f1 xk
f2 xk

+
g1 xk

g2 xk
uk

The Constraint Enforcement block accepts constraints of the form fx + gxu ≤ c. For this example, the
coefficients of this constraint function are as follows.

fx =
− f1 xk
− f2 xk
f1 xk

, gx =
−g1 xk

−g2 xk

g1 xk

, c =
−10
−5

30 . 5

 Train RL Agent for Adaptive Cruise Control with Constraint Enforcement

16-33

To learn the unknown functions f i and gi, you must first collect training data from the environment. To
do so, first create an RL environment using the rlLearnConstraintACC model.

mdl = 'rlLearnConstraintACC';
open_system(mdl)

In this model, the RL Agent block does not generate actions. Instead, it is configured to pass a
random external action to the environment. The purpose for using a data-collection model with an
inactive RL Agent block is to ensure that the environment model, action and observation signal
configurations, and model reset function used during data collection match those used during
subsequent agent training.

The random external action signal is uniformly distributed in the range [10, 6]; that is, the ego car
has a maximum braking power of -10 m/s^2 and a maximum acceleration power of 6 m/s^2.

For training, the four observations from the environment are the relative distance between the
vehicles, the velocities of the lead and ego cars, and the ego car acceleration. Define a continuous
observation space for these values.

obsInfo = rlNumericSpec([4 1]);

The action output by the agent is the acceleration command. Create a corresponding continuous
action space with acceleration limits.

actInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);

Create an RL environment for this model. Specify a reset function to set a random position for the
lead car at the start of each training episode or simulation.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

Next, create a DDPG reinforcement learning agent, which supports continuous actions and
observations, using the createDDPGAgentBACC helper function. This function creates critic and

16 Constraint Enforcement

16-34

actor representations based on the action and observation specifications and uses the representations
to create a DDPG agent.

agent = createDDPGAgentACC(Ts,obsInfo,actInfo);

To collect data, use the collectDataACC helper function. This function simulates the environment
and agent and collects the resulting input and output data. The resulting training data has nine
columns.

• Relative distance between the cars
• Lead car velocity
• Ego car velocity
• Ego car actual acceleration
• Ego acceleration command
• Relative distance between the cars in the next time step
• Lead car velocity in the next time step
• Ego car velocity in the next time step
• Ego car actual acceleration in the next time step

For this example, load precollected training data. To collect the data yourself, set collectData to
true.

collectData = false;
if collectData
 count = 1000;
 data = collectDataACC(env,agent,count);
else
 load trainingDataACC data
end

For this example, the dynamics of the ego car and lead car are linear. Therefore, you can find a least-
squares solution for the safety-signal constraints; that is, v = RvI and d = RdI, where I is xk; uk .

% Extract state and input data.
I = data(1:1000,[4,3,1,2,5]);
% Extract data for the relative distance in the next time step.
d = data(1:1000,6);
% Compute the relation from the state and input to relative distance.
Rd = I\d;
% Extract data for actual ego car velocity.
v = data(1:1000,8);
% Compute the relation from the state and input to ego car velocity.
Rv = I\v;

Validate the learned constraints using the validateConstraintACC helper function. This function
processes the input training data using the learned constraints. It then compares the network output
with the training output and computes the root mean squared error (RMSE).

validateConstraintACC(data,Rd,Rv)

Test Data RMSE for Relative Distance = 8.118162e-04
Test Data RMSE for Ego Velocity = 5.967300e-15

The small RMSE values indicate successful constraint learning.

 Train RL Agent for Adaptive Cruise Control with Constraint Enforcement

16-35

Train Agent with Constraint Enforcement

To train the agent with constraint enforcement, use the rlACCwithConstraint model. This model
constrains the acceleration command from the agent before applying it to the environment.

mdl = 'rlACCwithConstraint';
open_system(mdl)

To view the constraint implementation, open the Constraint subsystem. Here, the model generates
the values of f i and gi from the linear constraint relations. The model sends these values along with
the constraint bounds to the Constraint Enforcement block.

16 Constraint Enforcement

16-36

Create an RL environment using this model. The action specification is the same as for the constraint-
learning environment. For training, the environment produces three observations: the integral of the
velocity error, the velocity error, and the ego-car velocity.

The Environment subsystem generates an isDone signal when critical constraints are violated—
either the ego car has negative velocity (moves backwards) or the relative distance is less than zero
(ego car collides with lead car). The RL Agent block uses this signal to terminate training episodes
early.

obsInfo = rlNumericSpec([3 1]);
agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

Since the observation specification are different for training, you must also create a new DDPG agent.

agent = createDDPGAgentACC(Ts,obsInfo,actInfo);

Specify options for training the agent. Train the agent for at most 5000 episodes. Stop training if the
episode reward exceeds 260.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',260);

Train the agent. Training is a time-consuming process, so for this example, load a pretrained agent.
To train the agent yourself instead, set trainAgent to true.

trainAgent = false;
if trainAgent

 Train RL Agent for Adaptive Cruise Control with Constraint Enforcement

16-37

 trainingStats = train(agent,env,trainingOpts);
else
 load rlAgentConstraintACC agent
end

The following figure shows the training results.

Since Total Number of Steps equals the product of Episode Number and Episode Steps, each
training episode runs to the end without early termination. Therefore, the Constraint Enforcement
block ensures that the ego car never violates the critical constraints.

Run the trained agent and view the simulation results.

x0_lead = 80;
sim(mdl);

16 Constraint Enforcement

16-38

Train Agent Without Constraints

To see the benefit of training an agent with constraint enforcement, you can train the agent without
constraints and compare the training results to the constraint enforcement case.

To train the agent without constraints, use the rlACCwithoutConstraint model. This model
applies the actions from the agent directly to the environment, and the agent uses the same action
and observation specifications.

mdl = 'rlACCwithoutConstraint';
open_system(mdl)

 Train RL Agent for Adaptive Cruise Control with Constraint Enforcement

16-39

Create an RL environment using this model.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

Create a new DDPG agent to train. This agent has the same configuration as the agent used in the
previous training.

agent = createDDPGAgentACC(Ts,obsInfo,actInfo);

Train the agent using the same training options as the in the constraint enforcement case. For this
example, as with the previous training, load a pretrained agent. To train the agent yourself, set
trainAgent to true.

trainAgent = false;
if trainAgent
 trainingStats2 = train(agent,env,trainingOpts);
else
 load rlAgentACC agent
end

The following figure shows the training results.

16 Constraint Enforcement

16-40

Since Total Number of Steps is less than the product of Episode Number and Episode Steps, the
training includes episodes that terminated early due to constraint violations.

Run the trained agent and plot the simulation results.

x0_lead = 80;
sim(mdl)

 Train RL Agent for Adaptive Cruise Control with Constraint Enforcement

16-41

bdclose('rlLearnConstraintACC')
bdclose('rlACCwithConstraint')
bdclose('rlACCwithoutConstraint')

Local Reset Function

function in = localResetFcn(in)
% Reset the initial position of the lead car.
in = setVariable(in,'x0_lead',40+randi(60,1,1));
end

See Also
Blocks
Constraint Enforcement | RL Agent

Related Examples
• “Constraint Enforcement for Control Design” on page 16-2
• “Learn and Apply Constraints for PID Controllers” on page 16-14
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 16-22
• “Train RL Agent for Lane Keeping Assist with Constraint Enforcement” on page 16-43

16 Constraint Enforcement

16-42

Train RL Agent for Lane Keeping Assist with Constraint
Enforcement

This example shows how to train an reinforcement learning (RL) agent for lane keeping assist (LKA)
with constraints enforced using the Constraint Enforcement block.

Overview

In this example, the goal is to keep an ego car traveling along the centerline of a lane by adjusting the
front steering angle. This example uses the same vehicle model and parameters as the “Train DQN
Agent for Lane Keeping Assist Using Parallel Computing” (Reinforcement Learning Toolbox) example.

Set the random seed and configure model parameters.

% Set random seed.
rng(0);

% Paramters
m = 1575; % Total vehicle mass (kg)
Iz = 2875; % Yaw moment of inertia (mNs^2)
lf = 1.2; % Longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % Longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % Cornering stiffness of front tires (N/rad)
Cr = 33000; % Cornering stiffness of rear tires (N/rad)
Vx = 15; % Longitudinal velocity (m/s)
Ts = 0.1; % Sample time (s)
T = 15; % Duration (s)
rho = 0.001; % Road curvature (1/m)
e1_initial = 0.2; % Initial lateral deviation from center line (m)
e2_initial = -0.1; % Initial yaw angle error (rad)
steerLimit = 0.2618;% Maximum steering angle for driver comfort (rad)

Create Environment and Agent for Collecting Data

In this example, the constraint function enforced by the Constraint Enforcement block is unknown. To
learn the function, you must first collect training data from the environment.

To do so, first create an RL environment using the rlLearnConstraintLKA model. This model
applies random external actions through an RL Agent block to the environment.

mdl = 'rlLearnConstraintLKA';
open_system(mdl)

 Train RL Agent for Lane Keeping Assist with Constraint Enforcement

16-43

The observations from the environment are the lateral deviation e1, the relative yaw angle e2, their
derivatives, and their integrals. Create a continuous observation space for these six signals.

obsInfo = rlNumericSpec([6 1]);

The action from the RL Agent block is the front steering angle, which can take one of 31 possible
values from -15 to 15 degrees. Create a discrete action space for this signal.

actInfo = rlFiniteSetSpec((-15:15)*pi/180);

Create an RL environment for this model.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);

Specify a reset function, which randomly initializes the lateral deviation and relative yaw angle at the
start of each training episode or simulation.

env.ResetFcn = @(in)localResetFcn(in);

Next, create a DQN reinforcement learning agent, which supports discrete actions and continuous
observations, using the createDQNAgentLKA helper function. This function creates a critic
representation based on the action and observation specifications and uses the representation to
create a DQN agent.

agent = createDQNAgentLKA(Ts,obsInfo,actInfo);

In the rlLearnConstraintLKA model, the RL Agent block does not generate actions. Instead, it is
configured to pass a random external action to the environment. The purpose for using a data-
collection model with an inactive RL Agent block is to ensure that the environment model, action and
observation signal configurations, and model reset function used during data collection match those
used during subsequent agent training.

16 Constraint Enforcement

16-44

Learn Constraint Function

In this example, the safety signal is e1. The constraint for this signal is −1 ≤ e1 ≤ 1; that is, the
distance from the centerline of the lane must be less than 1. The constraint depends on the states in
x: the lateral deviation and its derivative, and the yaw angle error and its derivative. The action u is
the front steering angle. The relationship between the states and the lateral deviation is described by
the following equation.

e1 k + 1 = f xk + g xk uk

To allow for some slack, set the maximum lateral distance to be 0.9.

The Constraint Enforcement block accepts constraints of the form fx + gxu ≤ c . For the previous
equation and constraints, the coefficients of the constraint function are:

fx =
f xk
− f xk

, gx =
g xk
−g xk

, c =
0 . 9
0 . 9

To learn the unknown functions fx and gx, the RL agent passes a random external action to the
environment that is uniformly distributed in the range [–0.2618, 0.2618].

To collect data, use the collectDataLKA helper function. This function simulates the environment
and agent and collects the resulting input and output data. The resulting training data has eight
columns, the first six of which are the observations for the RL agent.

• Integral of lateral deviation
• Lateral deviation
• Integral of yaw angle error
• Yaw angle error
• Derivative of lateral deviation
• Derivative of yaw angle error
• Steering angle
• Lateral deviation in the next time step

For this example, load precollected training data. To collect the data yourself, set collectData to
true.

collectData = false;
if collectData
 count = 1050;
 data = collectDataLKA(env,agent,count);
else
 load trainingDataLKA data
end

For this example, the dynamics of the ego car are linear. Therefore, you can find a least-squares
solution for the lateral-deviation constraints.

You can apply linear approximations to learn the unknown functions fx and gx.

% Extract state and input data.
inputData = data(1:1000,[2,5,4,6,7]);

 Train RL Agent for Lane Keeping Assist with Constraint Enforcement

16-45

% Extract data for the lateral deviation in the next time step.
outputData = data(1:1000,8);
% Compute the relation from the state and input to the lateral deviation.
relation = inputData\outputData;
% Extract the components of the constraint function coefficients.
Rf = relation(1:4)';
Rg = relation(5);

Validate the learned constraints using the validateConstraintLKA helper function. This function
processes the input training data using the learned constraints. It then compares the network output
with the training output and computes the root mean squared error (RMSE).

validateConstraintLKA(data,Rf,Rg);

Test Data RMSE = 8.569169e-04

The small RMSE value indicates successful constraint learning.

Train RL Agent with Constraint Enforcement

To train the agent with constraint enforcement, use the rlLKAWithConstraint model. This model
constrains the actions from the agent before applying them to the environment.

mdl = 'rlLKAwithConstraint';
open_system(mdl)

16 Constraint Enforcement

16-46

To view the constraint implementation, open the Constraint subsystem. Here, the model generates
the values of f i and gi from the linear constraint relations. The model sends these values along with
the constraint bounds to the Constraint Enforcement block.

Create an RL environment using this model. The observation and action specifications are the same
as for the constraint-learning environment.

 Train RL Agent for Lane Keeping Assist with Constraint Enforcement

16-47

The Environment subsystem creates an isDone signal that is true when the lateral deviation
exceeds a specified constraint. The RL Agent block uses this signal to terminate training episodes
early.

agentblk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
env.ResetFcn = @(in)localResetFcn(in);

Specify options for training the agent. Train the agent for at most 5000 episodes. Stop training if the
episode reward exceeds –1.

maxepisodes = 5000;
maxsteps = ceil(T/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',-1);

Train the agent. Training is a time-consuming process, so for this example, load a pretrained agent.
To train the agent yourself instead, set trainAgent to true.

trainAgent = false;
if trainAgent
 trainingStats = train(agent,env,trainingOpts);
else
 load rlAgentConstraintLKA agent
end

The following figure shows the training results.

16 Constraint Enforcement

16-48

Since Total Number of Steps equals the product of Episode Number and Episode Steps, each
training episode runs to the end without early termination. Therefore, the Constraint Enforcement
block ensures that the lateral deviation never violates its constraints.

Run the trained agent and view the simulation results.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl);

 Train RL Agent for Lane Keeping Assist with Constraint Enforcement

16-49

bdclose('rlLearnConstraintLKA')
bdclose('rlLKAwithConstraint')

Local Reset Function

function in = localResetFcn(in)
% Set initial lateral deviation to random value.
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand));
% Set initial relative yaw angle to random value.
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand));
end

See Also
Blocks
Constraint Enforcement | RL Agent

Related Examples
• “Constraint Enforcement for Control Design” on page 16-2
• “Learn and Apply Constraints for PID Controllers” on page 16-14
• “Train Reinforcement Learning Agent with Constraint Enforcement” on page 16-22
• “Train RL Agent for Adaptive Cruise Control with Constraint Enforcement” on page 16-33

16 Constraint Enforcement

16-50

Enforce Barrier Certificate Constraints for PID Controllers

This example shows how to enforce barrier certificate constraints for a PID controller application
using the Barrier Certificate Enforcement block.

Overview

For this example, the plant dynamics are described by the following equations [1] on page 16-54.

ẋ1 = − x1 + x1
2 + 1 u1

ẋ2 = − x2 + x2
2 + 1 u2

The goal for the plant is to track desired trajectories, defined as:

θ̇ = 0 . 1π

ẋ1d = − r cos θ

ẋ2d = r sin θ

For an example that applies a predicted constraint function to the same PID control application, see
“Enforce Constraints for PID Controllers” on page 16-8.

Configure model parameters and initial conditions.

r = 1.5; % Radius for desired trajectory
Ts = 0.1; % Sample time
Tf = 22; % Duration
x0_1 = -r; % Initial condition for x1
x0_2 = 0; % Initial condition for x2

Design PID Controllers

Before applying constraints, design PID controllers for tracking the reference trajectories. The
barrierCertificatePID model contains two PID controllers with tuned gains. For more
information on tuning PID controllers in Simulink® models, see “Introduction to Model-Based PID
Tuning in Simulink” on page 7-2.

Open the Simulink model.

constrained = 0; % Disable barrier certificate constraint enforcement
mdl = 'barrierCertificatePID';
open_system(mdl)

Simulate the PID controllers and plot their tracking performance.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logData = out.logsout;
x1_traj = zeros(size(out.tout));
x2_traj = zeros(size(out.tout));

 Enforce Barrier Certificate Constraints for PID Controllers

16-51

for ct = 1:size(out.tout,1)
 x1_traj(ct) = logData{3}.Values.Data(:,:,ct);
 x2_traj(ct) = logData{4}.Values.Data(:,:,ct);
end

x1_des = logData{1}.Values.Data;
x2_des = logData{2}.Values.Data;

% Plot trajectories.
figure('Name','Tracking with Constraint');
plot(x1_des,x2_des,'r')
xlabel('x1')
ylabel('x2')
hold on
plot(x1_traj,x2_traj,'b:','LineWidth',2)
hold on
plot(x1_traj(1),x2_traj(1),'g*')
hold on
plot(x1_traj(end),x2_traj(end),'go')
legend('Desired','Trajectory','Start','End','Location','best')

Barrier Certificates

For this example, you enforce barrier certificate constraints for the same plant model and PID
controllers.

16 Constraint Enforcement

16-52

The feasible region for the plant is given by x:x1 ≤ 1, x2 ≤ 1 . Therefore, the barrier certificates are

given by h x =
1 − x1
1 − x2

≥ 0.

The partial derivative of h x over x is given by q x =
−1 0
0 −1

.

The Barrier Certificate Enforcement block accepts plant dynamics in the form ẋ = f x + g x u. For

this application, f x =
−x1
−x2

 and g x =
x1

2 + 1 0

0 x2
2 + 1

.

Simulate PID Controller with Barrier Certificate Constraint

To view the constraint implementation, open the Constraint > Constrained subsystem.

Enable barrier certificate constraint enforcement.

constrained = 1;

Run the model and plot the simulation results. The plot shows that the plant states are less than one.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logData = out.logsout;
x1_traj = zeros(size(out.tout));
x2_traj = zeros(size(out.tout));
for ct = 1:size(out.tout,1)
 x1_traj(ct) = logData{3}.Values.Data(:,:,ct);
 x2_traj(ct) = logData{4}.Values.Data(:,:,ct);
end

x1_des = logData{1}.Values.Data;
x2_des = logData{2}.Values.Data;

% Plot trajectories.

 Enforce Barrier Certificate Constraints for PID Controllers

16-53

figure('Name','Tracking with Constraint');
plot(x1_des,x2_des,'r')
xlabel('x1')
ylabel('x2')
hold on
plot(x1_traj,x2_traj,'b:','LineWidth',2)
hold on
plot(x1_traj(1),x2_traj(1),'g*')
hold on
plot(x1_traj(end),x2_traj(end),'go')
legend('Desired','Trajectory','Start','End','Location','best')

The Barrier Certificate Enforcement block successfully constrains the control actions such that the
plant states remain less than one.

Close the model.

bdclose(mdl)

References

16 Constraint Enforcement

16-54

[1] Robey, Alexander, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V. Dimarogonas, Stephen
Tu, and Nikolai Matni. "Learning Control Barrier Functions from Expert Demonstrations." Preprint,
submitted April 7, 2020. https://arxiv.org/abs/2004.03315

See Also
Barrier Certificate Enforcement

Related Examples
• “Barrier Certificate Enforcement for Control Design” on page 16-4
• “Enforce Barrier Certificate Constraints for Adaptive Cruise Control” on page 16-56
• “Enforce Barrier Certificate Constraints for Collision-Free Robots” on page 16-62
• “Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System” on page 16-68

 Enforce Barrier Certificate Constraints for PID Controllers

16-55

https://arxiv.org/abs/2004.03315

Enforce Barrier Certificate Constraints for Adaptive Cruise
Control

This example shows how to enforce barrier certificate constraints for adaptive cruise control (ACC)
using the Barrier Certificate Enforcement block.

Overview

In this example, the goal is to make an ego car travel at a set velocity while maintaining a safe
distance from a lead car by controlling longitudinal acceleration and braking.

Configure model parameters.

x0_lead = 52; % Initial position for lead car (m)
v0_lead = 25; % Initial velocity for lead car (m/s)
x0_ego = 10; % Initial position for ego car (m)
v0_ego = 20; % Initial velocity for ego car (m/s)
default_spacing = 10; % Default spacing (m)
time_gap = 1.5; % Time gap (s)
v_set = 30; % Driver-set velocity (m/s)
min_ac = -3; % Minimum acceleration for driver comfort (m/s^2)
max_ac = 2; % Maximum acceleration for driver comfort (m/s^2)
Ts = 0.1; % Sample time (s)
T = 80; % Duration (s)

Open the model.

mdl = 'barrierCertificateACC';
open_system(mdl)

Controller Design

The controller design for ACC is based on the following principles.

• If the relative distance is less than the safe distance, then the primary goal is to slow down and
maintain a safe distance.

16 Constraint Enforcement

16-56

• If the relative distance is greater than the safe distance, then the primary goal is to reach the
driver-set velocity while maintaining a safe distance.

The safe distance is defined as a function of velocity.

dsafe = τv + d0

Here:

• d0 is the default spacing.
• τ is the time gap.
• v is the longitudinal velocity of the ego vehicle.

For an example that applies the same controller structure and design principles, see “Adaptive Cruise
Control with Sensor Fusion” (Model Predictive Control Toolbox).

Specify the gains.

verr_gain = 0.5; % ACC velocity error gain
xerr_gain = 0.1; % ACC spacing error gain
vx_gain = 0.2; % ACC relative velocity gain

Before you apply any constraints, run the Simulink® model and view the results.

constrained = 0;
sim(mdl);
accPlotResults(logsout,default_spacing,time_gap,v_set);

 Enforce Barrier Certificate Constraints for Adaptive Cruise Control

16-57

Barrier Certificate Constraints

For the ACC application, the safety set is defined as the relative distance d ≥ dsafe. Therefore, the
barrier certificate is given by the safety offset h = d− dsafe ≥ 0.

The plant dynamics are described by the following equations.

ṗ = v

v̇ = u

ḋ = v− vl

Here, p is the position for the ego car and vl is the velocity for lead car.

16 Constraint Enforcement

16-58

The barrier certificate h is a function of states x =
p
v
d

 and is given by h x = d− τv− d0. The partial

derivative of h over states is given by q x = 0 −τ 1 .

The Barrier Certificate Enforcement block accepts plant dynamics in the form ẋ = f x + g x u. For

this application, f x =
v
0

v− vl

 and g x =
0
1
0

.

Simulate ACC Controller with Barrier Certificate Constraint

To view the constraint implementation, open the Constraint > Constrained subsystem.

Enable the constraints.

constrained = 1;

Run the model and plot the simulation results.

sim(mdl);
accPlotResults(logsout,default_spacing,time_gap,v_set);

 Enforce Barrier Certificate Constraints for Adaptive Cruise Control

16-59

The plot shows that the barrier certificate (safety offset) is nonnegative. The relative distance is
always greater than the defined safe distance.

The Barrier Certificate Enforcement block successfully constrains the control actions such that the
relative distance is greater than the safe distance.

Close the model.

bdclose(mdl)

See Also
Barrier Certificate Enforcement

16 Constraint Enforcement

16-60

Related Examples
• “Barrier Certificate Enforcement for Control Design” on page 16-4
• “Enforce Barrier Certificate Constraints for PID Controllers” on page 16-51
• “Enforce Barrier Certificate Constraints for Collision-Free Robots” on page 16-62
• “Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System” on page 16-68

 Enforce Barrier Certificate Constraints for Adaptive Cruise Control

16-61

Enforce Barrier Certificate Constraints for Collision-Free
Robots

This example shows how to enforce barrier certificate constraints for collision-free robots using the
Barrier Certificate Enforcement block.

Overview

In this example, the goal for the robots is to reach a target position without colliding with each other
[1] on page 16-67. The robot dynamics are modeled by double integrators in the x-y plane. Each
robot has four states (x-position, y-position, x-velocity, and y-velocity) and two control variables (x-
acceleration and y-acceleration). The velocities are constrained to [-2, 2] m/s and the accelerations
are constrained to [-10, 10] m/s^2. The PID controllers are designed for the robots to reach the
target position. Collision avoidance is achieved by enforcing barrier certificate constraints.

Open the Simulink® model.

mdl = 'twoRobotsCBF';
open_system(mdl);

Controller Design

Each robot has its own controller that brings it to the target position. In this example, the controller
is implemented as a PID-type controller.

Run the simulation and view the results.

constrained = 0;
sim(mdl);

16 Constraint Enforcement

16-62

In the figure, robot 1 (green) reaches the target position [4.9, 4.8] m and robot 2 reaches the target
position [0, 0] m. The controllers successfully bring the controlled robots to their target positions.

Open the distance scope in the Two robots > visualization subsystem. The two robots collide
with each other at around 1.3 seconds.

 Enforce Barrier Certificate Constraints for Collision-Free Robots

16-63

Barrier Certificate Constraints

For collision avoidance, the constraint is that the distance between two robots i and j stay greater
than a given threshold if the two robots are moving closer to each other [1] on page 16-67. The
barrier certificate is given by

h(x) = 2αsum(‖ ▵ pi j‖ − Ds) +
▵ pi j

T ▵ vi j
‖ ▵ pi j‖

.

Here, the variables are:

• The maximum braking power from both robots — αsum = 20

• The minimum distance between the robots — Ds = 0 . 7

• The position error vector — ▵ pi j = pi− p j

• The velocity error vector — ▵ vi j = vi− v j

The partial derivative of h x over states x = pi, p j, vi, v j
T is denoted by q x , and the analytical

results are given in the barrierGradFcn2Robots script.

The Barrier Certificate Enforcement block accepts the dynamics in the form ẋ = f (x) + g(x)u. For this
example,

f x =

0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0

x and g x =

0 0
0 0
I 0
0 I

,

and each element is a 2-by-2 matrix.

16 Constraint Enforcement

16-64

Simulate Collision-Free Controller with Barrier Certificate Constraint

To view the constraint implementation, open the Constraint > Constrained subsystem.

constrained = 1;

Close the figure before running the model.

f = findobj('Name','Two robots');
close(f)

Run the model and view the simulation results. The two robots avoid each other when they are too
close.

sim(mdl);

 Enforce Barrier Certificate Constraints for Collision-Free Robots

16-65

The distance between the two robots stays above the threshold Ds = 0 . 7.

16 Constraint Enforcement

16-66

The Barrier Certificate Enforcement block successfully constrains the control actions such that the
two robots reach their target positions in a collision-free manner.

bdclose(mdl)
f = findobj('Name','Two robots');
close(f)

References

[1] Wang, Li, Aaron D. Ames, and Magnus Egerstedt. “Safety Barrier Certificates for Collisions-Free
Multirobot Systems.” IEEE Transactions on Robotics 33, no. 3 (June 2017): 661–74. https://doi.org/
10.1109/TRO.2017.2659727.

See Also
Barrier Certificate Enforcement

Related Examples
• “Barrier Certificate Enforcement for Control Design” on page 16-4
• “Enforce Barrier Certificate Constraints for Adaptive Cruise Control” on page 16-56
• “Enforce Barrier Certificate Constraints for PID Controllers” on page 16-51
• “Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System” on page 16-68

 Enforce Barrier Certificate Constraints for Collision-Free Robots

16-67

Enforce Barrier Certificate Constraints for Collision-Free Multi-
Robot System

This example shows how to enforce barrier certificate constraints for collision-free multi-robot system
using the Barrier Certificate Enforcement block.

Overview

In this example, the goal for the three robots is to reach a target position without colliding with each
other [1]. For an example that has two robots, see “Enforce Barrier Certificate Constraints for
Collision-Free Robots” on page 16-62.

The robot dynamics are modeled by double integrators in the x-y plane. Each robot has four states (x-
position, y-position, x-velocity, and y-velocity) and two control variables (x-acceleration and y-
acceleration). The velocities are constrained to be [-2, 2] m/s and the accelerations are constrained to
be [-10, 10] m/s2. The PID controllers are designed for the robots to reach the target position. Before
you apply the constraints, the robots collide when they move closer to each other.

Open the Simulink® model.

mdl = 'barrierCertificate3Robots';
open_system(mdl);

Barrier Certificate Constraints

For collision avoidance, the constraint is that the distance between any two robots (i, j, and k) stay
greater than a given threshold if the two robots are moving closer to each other [1]. The barrier
certificate for robot i and robot j is thus given by

hi j(x) = 2αsum(‖ ▵ pi j‖ − Ds) +
▵ pi j

T ▵ vi j
‖ ▵ pi j‖

.

Here, the variables are:

16 Constraint Enforcement

16-68

• The maximum braking power from both robots — αsum = 20
• The minimum distance between the robots — Ds = 0 . 7
• The position error vector — ▵ pi j = pi− p j

• The velocity error vector — ▵ vi j = vi− v j

Similarly, the barrier certificate for robot i and robot k is given by hik and for robot j and robot k is
given by hjk. The barrier certificates for the multi-robot system are given by
h(x) = [hi j(x), hik(x), h jk(x)]T.

The partial derivative of h x over states x = pi, p j, vi, v j, pk, vk
T is denoted by q x .

This example uses Symbolic Math Toolbox™ software to derive the barrier certificates and their
gradient functions.

The getBarrierCertificateAndJacobian script provided with this example generates the
following files:

• barrierFcn3Robots.m — Barrier certificates function
• barrierGradFcn3Robots.m — Jacobian of barrier certificates

Run the script.

getBarrierCertificateAndJacobian;

ans = function_handle with value:
 @barrierFcn3Robots

ans = function_handle with value:
 @barrierGradFcn3Robots

For details on either function, open the corresponding file.

The Barrier Certificate Enforcement block accepts the dynamics in the form ẋ = f (x) + g(x)u. In this
example,

f x =
0 I
0 0

x and g x =
0
I

.

The identity matrix I is a 6-by-6 matrix.

Simulate Collision-Free Controller with Barrier Certificate Constraint

To view the constraint implementation, open the Constraint subsystem.

 Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System

16-69

Run the model and view the simulation results. The three robots avoid each other when they are too
close.

mdl = 'barrierCertificate3Robots';
sim(mdl);

16 Constraint Enforcement

16-70

Open the scope in the Three robots > visualization > distance subsystem. The distance
between any two robots is above the threshold 0.7 m.

 Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System

16-71

The Barrier Certificate Enforcement block successfully constrains the control actions such that the
three robots reach their target positions in a collision-free manner.

bdclose(mdl)
f = findobj('Name','Three robots');
close(f)

References

[1] Wang, Li, Aaron D. Ames, and Magnus Egerstedt. “Safety Barrier Certificates for Collisions-Free
Multirobot Systems.” IEEE Transactions on Robotics 33, no. 3 (June 2017): 661–74. https://doi.org/
10.1109/TRO.2017.2659727.

See Also
Barrier Certificate Enforcement

Related Examples
• “Barrier Certificate Enforcement for Control Design” on page 16-4

16 Constraint Enforcement

16-72

• “Enforce Barrier Certificate Constraints for Adaptive Cruise Control” on page 16-56
• “Enforce Barrier Certificate Constraints for PID Controllers” on page 16-51
• “Enforce Barrier Certificate Constraints for Collision-Free Robots” on page 16-62

 Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System

16-73

Enforce Passivity Constraints for Quadruple-Tank System

This example shows how to enforce passivity constraints for controlling quadruple tank using the
Passivity Enforcement block.

Overview

You can write the dynamics for a quadruple tank system as follows [1].

ẋ = f x + g x u

Here, the vector x denotes the heights of the four tanks and the vector u denotes the flows of the two
pumps. The dynamics are implemented in the script stateFcnQuadrupleTank.m.

The control objective is to select the flow of the pumps u such that x, u moves towards the
equilibrium xs, us .

Specify the initial conditions of the states.

x0 = [25;16;20;21];

Specify the equilibrium point for the quadruple-tank model.

xs = [28.1459,17.8230,18.3991,25.1192]';
us = [37,38]';

Design PID Controllers

Before applying constraints, design PID controllers for the quadruple-tank model. The
passivityTank model contains two PID controllers. For information on tuning PID controllers in
Simulink models, see “Introduction to Model-Based PID Tuning in Simulink” on page 7-2.

Disable the passivity constraint enforcement and open the model.

constrained = 0;
mdl = 'passivityTank';
open_system(mdl)

Simulate the PID controllers and plot the performance.

16 Constraint Enforcement

16-74

% Simulate the model.
out = sim(mdl);
% Extract trajectories.
logsout = out.logsout;
% Plot trajectories of state error.
e = logsout.getElement('states_error');
e_vector = e.Values.Data(:,:)';
plot(e.Values.time,e_vector)
ylim([-6 6])
grid on
legend('e1','e2','e3','e4','location','NorthEast')
title('State Error')

The errors go to zero and the closed loop system is stable.

Passivity Constraint

To define the passivity constraint, first define the state error vector:

e = x− xs.

Define the storage function as V = 1
2 e3

2 + e4
2 and take the derivative of V to obtain the following

relationship [1].

V̇ ≤ up
Typ

This means that, the system is passive from up = u1; u2 − us to yp = e4; e3 .

 Enforce Passivity Constraints for Quadruple-Tank System

16-75

The Passivity Enforcement block accepts passivity constraint in the forms up = fp x + gp x u and
yp = hp x . In this application,

fp x = − us, gp x =
1 0
0 1

, and hp x =
x4− xs, 4
x3− xs, 3

.

Simulate Controller with Passivity Constraint

To view the constraint implementation, open the Constraint > Constrained subsystem.

Enable the passivity constraint enforcement.

constrained = 1;

Run the model and plot the simulation results.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logsout = out.logsout;

% Plot trajectories of state error.
e = logsout.getElement('states_error');
e_vector = e.Values.Data(:,:)';
plot(e.Values.time,e_vector)
ylim([-6 6])
grid on
legend('e1','e2','e3','e4','location','NorthEast')
title('State Error')

16 Constraint Enforcement

16-76

The errors go to zero and the closed loop system is stable. When you enforce passivity constraint, the
errors have smaller magnitudes and smoother transient behavior.

% Plot trajectories of control inputs
u = logsout.getElement('u*');
u_vector = u.Values.Data(:,:)';
plot(u.Values.time,u_vector)
grid on
legend('u1','u2','location','NorthEast')
title('Control Input')

 Enforce Passivity Constraints for Quadruple-Tank System

16-77

The control inputs also converge to the specified equilibrium.

Close the model.

bdclose(mdl)

References

[1] Raff, Tobias, Christian Ebenbauer, and Frank Allgöwer. “Nonlinear Model Predictive Control: A
Passivity-Based Approach.” In Assessment and Future Directions of Nonlinear Model Predictive
Control, edited by Rolf Findeisen, Frank Allgöwer, and Lorenz T. Biegler, 358:151-162. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72699-9_12.

See Also
Passivity Enforcement

Related Examples
• “Passivity Enforcement for Control Design” on page 16-6
• “Enforce Passivity Constraint for Flexible Beam” on page 16-79

16 Constraint Enforcement

16-78

Enforce Passivity Constraint for Flexible Beam

This example shows how to enforce passivity constraint for vibration control in a flexible beam using
the Passivity Enforcement block.

Flexible Beam Model

The following figure depicts an active vibration control system for a flexible beam.

In this setup, the actuator delivering the force u t and the velocity sensor are collocated. You can
model the transfer function from control input u to the velocity y using finite-element analysis.
Keeping only the first six modes, you obtain a plant model of the following form.

G s = ∑i = 1
6 αi

2s

s2 + 2ξwis + wi
2 .

Configure the model parameters.

xi = 0.05;
alpha = [0.09877, -0.309, -0.891, 0.5878, 0.7071, -0.8091];
w = [1, 4, 9, 16, 25, 36];

Construct the resulting beam model G s .

G = tf(alpha(1)^2*[1,0],[1, 2*xi*w(1), w(1)^2]) + ...
 tf(alpha(2)^2*[1,0],[1, 2*xi*w(2), w(2)^2]) + ...
 tf(alpha(3)^2*[1,0],[1, 2*xi*w(3), w(3)^2]) + ...
 tf(alpha(4)^2*[1,0],[1, 2*xi*w(4), w(4)^2]) + ...
 tf(alpha(5)^2*[1,0],[1, 2*xi*w(5), w(5)^2]) + ...
 tf(alpha(6)^2*[1,0],[1, 2*xi*w(6), w(6)^2]);

Check whether the model is passive.

isPassive(G)

ans = logical
 1

With this sensor and actuator configuration, the beam is a passive system.

Open the Simulink® model and disable passivity constraint enforcement.

 Enforce Passivity Constraint for Flexible Beam

16-79

mdl = 'passivityBeam';
open_system(mdl)
constrained = 0;

Design LQG Controller

Before you apply the constraints, design an LQG controller for the beam model. LQG control is a
natural formulation for active vibration control. The LQG control setup is depicted in this figure.

The signals d and n are the process and measurement noise, respectively.

The LQG objective is to minimize

J = lim
T → ∞

E ∫0T y2 t + 0 . 001u2 t dt ,

with noise variance

E d2 t = 1, E n2 t = 0 . 01.

Design the LQG controller.

[a,b,c,d] = ssdata(G);
M = [c d;zeros(1,12) 1]; % [y;u] = M * [x;u]
QWV = blkdiag(b*b',1e-2);
QXU = M'*diag([1 1e-3])*M;
CLQG = lqg(ss(G),QXU,QWV);

16 Constraint Enforcement

16-80

Simulate the LQG controller and plot its performance.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logsout = out.logsout;

% Plot trajectories of y.
y = logsout.getElement('y');
y_vector = y.Values.Data(:,:)';
plot(y.Values.time,y_vector)
grid on
title('y')

Passivity Constraint

The beam model is passive from control input u to the velocity y.

The Passivity Enforcement block accepts passivity constraint in the form up = fp x + gp x u and
yp = hp x . In this application, fp x = 0, gp x = 1, and hp x = y.

Simulate Controller with Passivity Constraint

To view the constraint implementation, open the Constraint > Constrained subsystem.

 Enforce Passivity Constraint for Flexible Beam

16-81

Enable the passivity constraint enforcement.

constrained = 1;

Run the model and plot the simulation results.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logsout = out.logsout;

% Plot trajectories of y.
y = logsout.getElement('y');
y_vector = y.Values.Data(:,:)';
plot(y.Values.time,y_vector)
grid on
title('y')

16 Constraint Enforcement

16-82

When you enforce the passivity constraint, the vibration in flexible beam is greatly reduced.

Close the model.

bdclose(mdl)

See Also
Passivity Enforcement

Related Examples
• “Passivity Enforcement for Control Design” on page 16-6
• “Enforce Passivity Constraints for Quadruple-Tank System” on page 16-74

 Enforce Passivity Constraint for Flexible Beam

16-83

Model Verification

• “Monitor Linear System Characteristics in Simulink Models” on page 17-2
• “Define Linear System for Model Verification Blocks” on page 17-3
• “Verifiable Linear System Characteristics” on page 17-4
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
• “Verify Frequency-Domain Characteristics of an Aircraft” on page 17-27

17

Monitor Linear System Characteristics in Simulink Models
Simulink Control Design software provides Model Verification blocks to monitor time- and frequency-
domain characteristics of a linear system on page 17-3 computed from a nonlinear Simulink model
during simulation.

Use these blocks to:

• Verify that the linear system characteristics of any nonlinear Simulink model, including the
following, remain within specified bounds during simulation:

• Continuous- or discrete-time models
• Multi-rate models
• Models with time delays, represented using exact delay or Padé approximation
• Discretized linear models computed from continuous-time models
• Continuous-time models computed from discrete-time models
• Resampled discrete-time models

The linear system can be Single-Input Single-Output (SISO) or Multi-Input Multi-Output (MIMO).
• View specified bounds and bound violations on linear analysis plots.

Tip These blocks are same as the Linear Analysis Plots blocks except for different default settings
of the bound parameters.

• Save the computed linear system to the MATLAB workspace.

The verification blocks assert when the linear system characteristic does not satisfy a specified
bound, i.e., assertion fails. A warning message, reporting the assertion failure, appears at the
MATLAB prompt. When assertion fails, you can:

• Stop the simulation and bring that block into focus.
• Evaluate a MATLAB expression.

You can use these blocks with the Simulink Model Verification blocks to design complex logic for
assertion. For an example, see “Verify Model Using Simulink Control Design and Simulink Verification
Blocks” on page 17-20.

Note These blocks do not support code generation and can only be used in Normal simulation mode.

17 Model Verification

17-2

Define Linear System for Model Verification Blocks
To assert that the linear system characteristics satisfy specified bounds, the Model Verification blocks
compute a linear system from a nonlinear Simulink model.

For the software to compute a linear system, you must specify:

• Linearization inputs and outputs using the Linearization inputs/outputs block parameter.

Linearization inputs and outputs define the portion of the model to linearize. A linearization input
defines an input while a linearization output defines an output of the linearized model. To compute
a MIMO linear system, specify multiple inputs and outputs.

• When to compute the linear system

You can compute the linear system and assert bounds using the Linearize on block parameter.

• Default simulation snapshot time. Typically, simulation snapshots are the times when your
model reaches steady state.

• Multiple simulation snapshots.
• Trigger-based simulation events

For more information, see the following examples:

• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13

 Define Linear System for Model Verification Blocks

17-3

Verifiable Linear System Characteristics
The following table summarizes the linear system characteristics you can specify bounds on and
assert that the bounds are satisfied during simulation.

Block Plot Type Bounds on…
Check Bode Characteristics Bode Upper and lower Bode

magnitude
Check Gain and Phase Margins • Bode

• Nichols
• Nyquist
• Table

Gain and phase margins

Check Nichols Characteristics Nichols • Open-loop gain and phase
• Closed-loop peak gain

Check Pole-Zero Characteristics Pole-Zero Approximate second-order
characteristics, such as settling
time, percent overshoot,
damping ratio and natural
frequency, on the pole locations

Check Singular Value
Characteristics

Singular Value Upper and lower singular values

Check Linear Step Response
Characteristics

Step Response Step response characteristics

You can specify bound parameters on the Bounds tab of each block. You can also specify the bounds
programmatically. For more information, see the corresponding block reference pages.

17 Model Verification

17-4

Verify Model at Default Simulation Snapshot Time
This example shows how to assert that bounds on the linear system characteristics of a nonlinear
Simulink model, computed at the default simulation snapshot time of 0, are satisfied during
simulation.

1 Open a nonlinear Simulink model. For example:

watertank
2 Open the Simulink Library Browser. In the Simulink Editor, on the Simulation tab, click Library

Browser.
3 Add a model verification block to the Simulink model.

a In the Simulink Control Design library, select Model Verification.
b Drag and drop a block, such as the Check Pole-Zero Characteristics block, into the Simulink

Editor.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

 Verify Model at Default Simulation Snapshot Time

17-5

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization input and output to compute the closed-loop poles and zeros.

Tip If you have defined the linearization input and output in your Simulink model, click to
automatically populate the Linearization inputs/outputs table with I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the model to
select it area.

17 Model Verification

17-6

ii In the Simulink model, click the output signal of the Desired Water Level block to
select it.

The Click a signal in the model to select it area updates to display the selected
signal.

Tip You can select multiple signals at once in the Simulink model. All selected signals
appear in the Click a signal in the model to select it area.

iii
Click to add the signal to the Linearization inputs/outputs table.

b To specify an output:

 Verify Model at Default Simulation Snapshot Time

17-7

i In the Simulink model, click the output signal of the Water-Tank System block to
select it.

The Click a signal in the model to select it area updates to display the selected
signal.

ii
Click to add the signal to the Linearization inputs/outputs table.

Note To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .
iii In the Configuration drop-down list of the Linearization inputs/outputs table, select

Output Measurement for watertank/Water-Tank System: 1.

Note The I/Os include the feedback loop in the Simulink model. The software computes
the poles and zeros of the closed-loop system.

iv
Click to collapse the Click a signal in the model to select it area.

6 Specify bounds for assertion. In this example, you use the default approximate second-order
bounds, specified in Bounds tab of the Block Parameters dialog box.

17 Model Verification

17-8

View the bounds on the pole-zero map by clicking Show Plot to open a plot window.

 Verify Model at Default Simulation Snapshot Time

17-9

7 Stop the simulation if assertion fails by selecting Stop simulation when assertion fails in the
Assertion tab.

8 Click Apply to apply all changed settings to the block.
9

Simulate the model by clicking in the plot window.

Alternatively, you can simulate the model from the Simulink Editor.

The software linearizes the portion of the model between the linearization input and output at
the default simulation time of 0, specified in Snapshot times block parameter. When the
software detects that a pole violates a specified bound, the simulation stops. The Diagnostics
Viewer opens reporting the block that asserts.

17 Model Verification

17-10

Click Open to highlight the block that asserts in the Simulink model.

The closed-loop pole and zero locations of the computed linear system appear as x and o
markings in the plot window. You can also view the bound violation in the plot.

 Verify Model at Default Simulation Snapshot Time

17-11

17 Model Verification

17-12

Verify Model at Multiple Simulation Snapshots
This example shows how to:

• Add multiple bounds.
• Check that the linear system characteristics of a nonlinear Simulink model satisfy the bounds at

multiple simulation snapshots
• Modify bounds graphically
• Disable bounds during simulation

1 Open a nonlinear Simulink model. For example:

watertank

2 Open the Simulink Library Browser. In the Simulink Editor, on the Simulation tab, click Library
Browser.

3 Add a model verification block to the Simulink model.

a In the Simulink Control Design library, select Model Verification.

b Drag and drop a block, such as the Check Bode Characteristics block, into the Simulink
Editor.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

 Verify Model at Multiple Simulation Snapshots

17-13

Tip If your model already contains I/O points, the block automatically detects these points and

displays them. Click at any time to update the Linearization inputs/outputs table with
I/Os from the model.

a To specify an input:

i
Click adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the model to
select it area.

Tip You can select multiple signals at once in the Simulink model. All selected signals
appear in the Click a signal in the model to select it area.

ii In the Simulink model, click the output signal of the PID Controller block to select it.

The Click a signal in the model to select it area updates to display the selected
signal.

iii
Click to add the signal to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal and

click .

17 Model Verification

17-14

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System block to
select it.

The Click a signal in the model to select it area updates to display the selected
signal.

ii
Click to add the signal to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal and

click .

Note To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .
iii In the Configuration drop-down list of the Linearization inputs/outputs table, select

Open-loop Output for watertank/Water-Tank System : 1.

The Linearization inputs/outputs table now resembles the following figure.

 Verify Model at Multiple Simulation Snapshots

17-15

c
Click to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click the signals in the
Simulink model and select Linear Analysis Points > Input Perturbation and Linear Analysis
Points > Open-loop Output. Linearization I/O annotations appear in the model and the selected
signals appear in the Linearization inputs/outputs table.

6 Specify simulation snapshot times.

a In the Linearizations tab, verify that Simulation snapshots is selected in Linearize on.
b In the Snapshot times field, type [0 1 5 10].

7 Specify multiple bound segments for assertion in the Bounds tab of the Block Parameters dialog
box. In this example, enter the following lower magnitude bounds:

• Frequencies (rad/s) — {[0.001 0.003],[0.01 0.04]}
• Magnitudes (dB) — {[20 20],[15 15]}

Click Apply to apply the parameter changes to the block.

17 Model Verification

17-16

Click Show Plot to view the bounds on the Bode magnitude plot.

8
Simulate the model by clicking in the plot window.

Alternatively, you can simulate the model from the Simulink Editor.

The software linearizes the portion of the model between the linearization input and output at
the simulation times of 0,1, 5 and 10. When the software detects that the linear system computed
at times 0 and 1 violate a specified lower magnitude bound, warning messages appear in the
Diagnostic Viewer window. Click the link at the bottom of the Simulink model to open this
window. Click the link in the window to view the details of the assertion.

You can also view the bound violations on the plot window.

 Verify Model at Multiple Simulation Snapshots

17-17

9 Modify a bound graphically. For example, to modify the upper magnitude bound graphically:

a In the plot window, click the bound segment to select it and then drag it to the desired
location.

b Click Update block to update the new values in the Bounds tab of the Block Parameters
dialog box.

10 Disable the lower bounds to exclude them from asserting. Clear the Include lower magnitude
bounds in assertion option in the Block Parameters dialog box. Then, click Apply.

The lower bounds are now grey-out in the plot window, indicating that they are excluded from
assertion.

17 Model Verification

17-18

11 Resimulate the model to check if bounds are satisfied.

The software satisfies the specified upper magnitude bound, and therefore the software no
longer reports an assertion failure.

 Verify Model at Multiple Simulation Snapshots

17-19

Verify Model Using Simulink Control Design and Simulink
Verification Blocks

This example shows how to use a combination of Simulink® Control Design™ Simulink verification
blocks to assert that the characteristics of a linear system for an aircraft satisfy one of the following
conditions.

• Phase margin greater than 60 degrees
• Phase margin less than 60 degrees with velocity less than or equal to 90% of the cruise velocity

Open the aircraft Simulink model.

open_system('scdmultiplechecks')

The aircraft model is based on a long-haul passenger aircraft flying at cruising altitude and speed.
The aircraft starts with a full fuel load and follows a pre-specified eight-hour velocity profile. The
model is a simplified version of a velocity control loop, which adjusts the fuel flow rate to control the
aircraft velocity.

The v <= 0.9*vCruise and Assert that: PM >= 60 or if PM < 60 then v <= 0.9*vCruise blocks are
Check Static Upper Bound and Assertion blocks, respectively, from the Simulink Model Verification
library. In this example, you use these blocks with the Check Gain and Phase Margins block to design
complex logic for assertion.

The Check Gain and Phase Margins block is configured to linearize the loop seen by the Velocity
Controller block every 30 minutes of simulated time. To view the linearization settings, open the
Check Gain and Phase Margins plot and open the Linearization tab.

17 Model Verification

17-20

The Check Gain and Phase Margins block is configured to perform an assertion. The assertion fails
when the phase margin of the linearized system is greater than 60 degrees. You can view the phase
margin bound settings on the Bounds tab.

Since the loop seen by the controller contains the summation block with negative feedback, set the
feedback sign for computing the phase margin positive feedback.

To view the computed phase margins in a tabular format during simulations, set the Plot type
parameter to Tabular and click Show Plot.

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

17-21

Design assertion logic that causes the combination of verification blocks to fail their assertion when
both of the following assertion conditions are false. In other words, the assertion passes if either
condition is true

• Phase margin is greater than 60 degrees
• Phase margin is less than 60 degrees when the velocity is less than or equal to 90% of the cruise

velocity

First, configure the Check Gain and Phase Margins block to output its assertion signal. To do so, on
the Assertion tab, select Output assertion signal, and click Apply.

Next, configure the v <= 0.9*vCruise block to:

• Check if the aircraft velocity exceeds the cruise velocity by 0.9 times
• Add an assertion output port to the block
• Not stop the simulation when the assertion fails

To do so, open the bock and configure the parameters as shown in the following figure.

17 Model Verification

17-22

Finally, connect the verification blocks in the model as shown in the following figure. When both of
assertion conditions are false, the input to the Assert that: PM >= 60 or if PM < 60 then v <=
0.9*vCruise block is zero. As a result, the block fails its assertion and stops the simulation.

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

17-23

The scdmultiplechecks_final model is configured with these settings and connections.

mdl = 'scdmultiplechecks_final';
open_system(mdl)

To simulate the model, run the following code.

sim(mdl)

During the simulation, the v <= 0.9*vCruise block asserts multiple times and the Check Gain and
Phase Margins block asserts twice.

You can view the phase margins that violate the bound for the Check Gain and Phase Margins block
in the table.

17 Model Verification

17-24

The Assert that: PM >= 60 or if PM < 60 then v <= 0.9*vCruise does not encounter the assertion
condition. Therefore, the simulation does not stop.

When a block asserts, the model generates warnings. To open the Diagnostic viewer, in the model
window, click the warning link.

 Verify Model Using Simulink Control Design and Simulink Verification Blocks

17-25

In the Diagnostic Viewer, you can view the details of the assertions by clicking the link.

See Also
Check Gain and Phase Margins | Check Static Upper Bound

Related Examples
• “Monitor Linear System Characteristics in Simulink Models” on page 17-2
• “Define Linear System for Model Verification Blocks” on page 17-3
• “Verify Model at Multiple Simulation Snapshots” on page 17-13

17 Model Verification

17-26

Verify Frequency-Domain Characteristics of an Aircraft

This example shows how to check the whether the linear response of a Simulink® model satisfies
frequency-domain requirements during simulation. To do so, you can use the Linear Analysis Plots
and Model Verification libraries of Simulink Control Design™.

In this example, you check the gain and phase margins of an aircraft velocity control loop as the fuel
load changes.

Aircraft Model

Open the aircraft Simulink model.

mdl = 'scdaircraft';
open_system(mdl)

The aircraft model is based on a long-haul passenger aircraft flying at cruising altitude and speed.
The aircraft starts with a full fuel load and follows a prespecified eight hour velocity profile. The
Simulink model is a simplified version of a velocity control loop that adjusts the fuel flow rate to
control the aircraft velocity. The model includes elements to model fuel consumption and the
resulting changes in aircraft mass as well as nonlinear draft effects limiting aircraft velocity.
Constants used in the model, such as the drag coefficient, are defined in the model workspace.

Verify Loop Gain and Phase Margins

The aircraft model contains a Check Gain and Phase Margins block. This block computes the
linearization of the loop seen by the Velocity Controller block every 30 minutes of simulated time.

 Verify Frequency-Domain Characteristics of an Aircraft

17-27

The block computes the loop gain and phase margins and checks whether the following conditions
are satisfied.

• Gain margin greater than 30 dB
• Phase margin greater than 60 degrees

17 Model Verification

17-28

When computing the margins, the loop feedback sign must be specified. To determine the feedback
sign, check if the linearization path defined by the linearization inputs and outputs includes the
feedback summation.

• If the path includes the summation block, use positive feedback.
• If the path does not include the summation block, use the feedback defined by the summation

block.

In this case, the linearization defined in the Check Gain and Phase Margins block includes the
summation block with negative feedback. Therefore, compute the gain and phase margins using a
positive feedback sign.

 Verify Frequency-Domain Characteristics of an Aircraft

17-29

During the simulation, the block shows the computed gain and phase margins in a tabular format. To
open the table, click Show Plot.

On the Assertion tab, the block is configured to throw a warning when the assertion fails, that is,
when the gain and phase margins are not satisfied.

17 Model Verification

17-30

The model also includes a Nichols Plot block, which computes the loop response as the fuel mass
drops during the simulation. The Generate dynamic range events block generates a rising edge
whenever the fuel mass is a multiple of 10% of the maximum fuel mass. These rising edges trigger a
linearization and display the results on the Nichols plot. To view the Nichols plot, open the Nichols
Plot block and click Show Plot.

To check if the specified gain and phase margins are satisfied, simulate the model.

 Verify Frequency-Domain Characteristics of an Aircraft

17-31

sim(mdl);

Warning: Assertion detected in 'scdaircraft/Check Gain and Phase Margins' at
time 27020.1

17 Model Verification

17-32

The tabular display from the Gain and Phase Margin block shows the following information.

• Times when the control loop is linearized
• Corresponding computed gain and phase margins.

Margins that violate the specified bounds are shown in red. The phase margin bound is violated
towards the end of the simulation when the fuel mass and airplane velocity have dropped. The
Nichols plot indicates the small loop response variations as the fuel load and aircraft velocity change.

The table shows that the linearizations are not computed at exactly every 30 min but at small
variations of 30 min. This is because zero-crossing detection for the block is not enabled. Enabling
zero-crossing for the block ensures that the linearizations are computed at exactly 30 min intervals
but may increase the time the simulation takes to run.

To enable zero-crossing detection, you can select the Enable zero-crossing detection option on the
block Linearizations tab or use the following command.

set_param('scdaircraft/Check Gain and Phase Margins','ZeroCross','on')
sim(mdl);

Warning: Assertion detected in 'scdaircraft/Check Gain and Phase Margins' at
time 27000

 Verify Frequency-Domain Characteristics of an Aircraft

17-33

Log the Linear Systems

On the Logging tab, you can configure Linear Analysis Plots and Model Verification to log the
computed linear systems to the MATLAB® workspace.

17 Model Verification

17-34

For this model, the Check Gain and Phase Margins block is configured to save the lienar systems in
the structure LinearAircraft. This structure contains the linear systems and corresponding
simulation times in the values and time fields, respectively.

LinearAircraft

LinearAircraft =

 Verify Frequency-Domain Characteristics of an Aircraft

17-35

 struct with fields:

 time: [17x1 double]
 values: [1x1x17x1 ss]
 blockName: 'scdaircraft/Check Gain and Phase Margins'
 assertionValue: [17x1 logical]

The values field stores the linear systems as an array of LTI state-space systems. For more
information, see “Model Arrays”.

You can retrieve the individual systems by indexing into the values field.

L = LinearAircraft.values(:,:,17)

L =

 A =
 scdaircraft/ Continuous/I Filter
 scdaircraft/ -0.01122 0 0
 Continuous/I -0.01184 0 0
 Filter 0.7492 0 -0.4326

 B =
 Velocity Con
 scdaircraft/ 0.3774
 Continuous/I 0
 Filter 0

 C =
 scdaircraft/ Continuous/I Filter
 Velocity Con -1.998e-15 1 -0.4326

 D =
 Velocity Con
 Velocity Con 0

Continuous-time state-space model.

Close the model. bdclose('scdaircraft')

See Also

More About
• “Monitor Linear System Characteristics in Simulink Models” on page 17-2
• “Verifiable Linear System Characteristics” on page 17-4

17 Model Verification

17-36

Functions

18

addoutputspec
Add output specification to operating point specification

Syntax
newOpspec = addoutputspec(opspec,block,port)

Description
newOpspec = addoutputspec(opspec,block,port) adds an output specification for a Simulink
model to an existing operating point specification or array of operating point specifications. The
output specification is added for the signal that originates from the specified output port port of
block block.

To find the width of the specified port, the addoutputspec command recompiles the model.

Examples

Add Output Specification to Operating Point Specification Object

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Create a default operating point specification object for the model.

opspec = operspec(sys)

opspec =

18 Functions

18-2

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 0.543 false true -Inf Inf -Inf Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 209.48 false true -Inf Inf -Inf Inf

Inputs:

 u Known Min Max
_____ _____ _____ _____

(1.) scdspeed/Throttle perturbation
 0 false -Inf Inf

Outputs: None

The default operating point specification object has no output specifications because there are no
root-level outports in the model.

Add an output specification to the outport of the rad/s to rpm block.

newspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

Specify a known value of 2000 rpm for the output specification.

newspec.Outputs(1).Known = 1;
newspec.Outputs(1).y = 2000;

View the updated operating point specification.

newspec

newspec =

 Operating point specification for the Model scdspeed.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar
 0.543 false true -Inf Inf -Inf Inf
(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s
 209.48 false true -Inf Inf -Inf Inf

Inputs:

 addoutputspec

18-3

 u Known Min Max
_____ _____ _____ _____

(1.) scdspeed/Throttle perturbation
 0 false -Inf Inf

Outputs:

 y Known Min Max
_____ _____ _____ _____

(1.) scdspeed/rad//s to rpm
2000 true -Inf Inf

Add Output Specification to Multiple Operating Point Specification Objects

Open the Simulink model.

sys = 'scdspeed';
open_system(sys)

Create a 3-by-1 array of default operating point specification objects for the model.

opspec = operspec(sys,[3,1])

opspec =

Array of operating point specifications for the model scdspeed. To display an
 operating point specification, select an element from the array.

Add an output specification to the outport of the rad/s to rpm block.

newspec = addoutputspec(opspec,'scdspeed/rad//s to rpm',1);

This output specification is added to all of the operating point specification objects in opspec.

18 Functions

18-4

You can specify different output constraints for each specification in opspec. For example, specify
different known values for each specification.

newspec(1,1).Outputs(1).Known = 1;
newspec(1,1).Outputs(1).y = 1900;

newspec(2,1).Outputs(1).Known = 1;
newspec(2,1).Outputs(1).y = 2000;

newspec(3,1).Outputs(1).Known = 1;
newspec(3,1).Outputs(1).y = 2100;

Input Arguments
opspec — Operating point specification
OperatingSpec object | array of OperatingSpec objects

Operating point specification for a Simulink model, specified as one of the following:

• OperatingSpec object — Add output specification to a single OperatingSpec object.
• Array of OperatingSpec objects — Add the same output specification to all OperatingSpec

objects in the array. All the specification objects must have the same Model property.

To create an OperatingSpec object for your model, use the operspec function.

block — Simulink block
character vector | string

Simulink block to which to add the output specification, specified as a character vector or string that
contains its block path. The block must be in the Simulink model specified in opspec.Model.

port — Output port
positive integer

Output port to which to add the output specification, specified as a positive integer in the range [1,N],
where N is the number of output ports on the specified block.

Output Arguments
newOpspec — Updated operating point specification
OperatingSpec object | array of OperatingSpec objects

Updated operating point specification, returned as an OperatingSpec object or an array of
OperatingSpec objects with the same dimensions as opspec. newOpspec is the same as opspec,
except that it contains the new output specification in its Outputs array.

You can modify the constraints and specifications for the new output specification using dot notation.

 addoutputspec

18-5

Alternative Functionality
Steady State Manager

You can interactively add output specifications when trimming your model using the Steady State
Manager. For more information, see “Compute Operating Points from Specifications Using Steady
State Manager” on page 1-19.

Simulink Model

You can add output specifications directly in your Simulink model. To do so, right-click the signal to
which you want to add the specification, and select Linear Analysis Points > Trim Output
Constraint.

Version History
Introduced before R2006a

See Also
findop | operspec | operpoint

18 Functions

18-6

advise
Package: linearize.advisor

Find blocks that are potentially problematic for linearization

Syntax
advise(advisor)
result = advise(advisor)

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To search the LinearizationAdvisor
object for diagnostics of blocks that are potentially problematic for linearization, use the advise
function.

advise(advisor) opens the Model Linearizer with an Advisor tab open for troubleshooting the
block linearizations in advisor. For more information, see “Troubleshoot Linearization Results in
Model Linearizer” on page 4-16.

result = advise(advisor) returns a LinearizationAdvisor object that contains linearization
diagnostic information for any blocks in advisor that are potentially problematic for linearization.

Examples

Open Linearization Advisor

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize model, and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Open the Linearization Advisor in the Model Linearizer.

advise(advisor)

 advise

18-7

Find Potentially Problematic Blocks for Linearization

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find potentially problematic blocks for linearization.

result = advise(advisor)

result =
 LinearizationAdvisor with properties:

18 Functions

18-8

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearization Advice'

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor object or an
array of LinearizationAdvisor objects.

Output Arguments
result — Diagnostic information for potentially problematic blocks
LinearizationAdvisor object

Diagnostic information for potentially problematic blocks in linearization results, returned as a
LinearizationAdvisor object. result contains linearization diagnostic information for any blocks
in advisor that are on the linearization path and satisfy at least one of the following criteria:

• Have diagnostic messages regarding the block linearization
• Linearize to zero
• Have substituted linearizations

Algorithms
Calling the advise function is equivalent to performing the following custom query with the find
function:

qPath = linqueryIsOnPath;
qZero = linqueryIsZero;
qBlkRep = linqueryIsBlockSubstituted;
qDiags = linqueryHasDiagnostics;

q = qPath & (qZero | qDiags | qBlkRep);

advisor_new = find(advisor,q);

Version History
Introduced in R2017b

See Also
Apps
Model Linearizer

 advise

18-9

Functions
find | getBlockInfo | getBlockPaths | highlight

Objects
LinearizationAdvisor

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28
“Identify and Fix Common Linearization Issues” on page 4-6

18 Functions

18-10

copy
Copy operating point or operating point specification

Syntax
op_point2 = copy(op_point1)
op_spec2 = copy(op_spec1)

Description
op_point2 = copy(op_point1) returns a copy of the operating point object op_point1. You can
create op_point1 with the function operpoint.

op_spec2 = copy(op_spec1) returns a copy of the operating point specification object
op_spec1. You can create op_spec1 with the function operspec.

Note The command op_point2 = op_point1 does not create a copy of op_point1 but instead
creates a pointer to op_point1. In this case, any changes made to op_point2 are also made to
op_point1. The same is true for operating point specifications. For an example, see “Copy an
Operating-Point Specification” on page 18-181.

Examples

Copy an Operating-Point Specification

You can create new operspec variables in three ways:

• Using the operspec command
• Using assignment with the equals (=) operator
• Using the copy command

Using the = operator results in linked variables that both point to the same underlying data. Using
the copy command results in an independent operspec object. In this example, create operspec
objects both ways, and examine their behavior.

mdl = 'watertank';
open_system(mdl)
opspec1 = operspec(mdl)

opspec1 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

 copy

18-11

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 0 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

Create a new operating point specification object using assignment with the = operator.

opspec2 = opspec1;

opspec2 is an operspec object that points to the same underlying data as opspec1. Because of this
link, you cannot independently change properties of the two operspec objects. To see this, change a
property of opspec2. For instance, change the initial value for the first state from 0 to 2. The change
shows in the States section of the display.

opspec2.States(1).x = 2

opspec2 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 2 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

Examine the display of opspec1 to see that the corresponding property value of opspec1 also
changes from 0 to 2.

opspec1

opspec1 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 2 false true -Inf Inf -Inf Inf

18 Functions

18-12

(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

To create an independent copy of an operating point specification, use the copy command.

opspec3 = copy(opspec1);

Now, when you change a property of opspec3, opspec1 does not change. For instance, change the
initial value for the first state from 2 to 4.

opspec3.States(1).x = 4

opspec3 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 4 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

In opspec1, the corresponding value remains 2.

opspec1.States(1).x

ans = 2

This copy behavior occurs because operspec is a handle object. For more information about handle
objects, see “Handle Object Behavior”.

Copy an Operating Point

You can create new operating-point variables in three ways:

• Using the operpoint function
• Using assignment with the equals (=) operator
• Using the copy function

 copy

18-13

Using the = operator results in linked variables that both point to the same underlying data. Using
the copy function results in an independent operating-point object. In this example, create operating-
point objects both ways, and examine their behavior.

mdl = 'watertank';
open_system(mdl)
op1 = operpoint(mdl)

op1 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
0
(2.) watertank/Water-Tank System/H
1

Inputs: None

Create a new operating-point object using assignment with the = operator.

op2 = op1;

op2 is an operating-point object that points to the same underlying data as op1. Because of this link,
you cannot independently change properties of the two operating-point objects. To see this, change a
property of op2. For instance, change the value for the first state from 0 to 2. The change shows in
the States section of the display.

op2.States(1).x = 2

op2 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
2
(2.) watertank/Water-Tank System/H
1

Inputs: None

Examine the display of op1 to see that the corresponding property value of op1 also changes from 0
to 2.

op1

18 Functions

18-14

op1 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
2
(2.) watertank/Water-Tank System/H
1

Inputs: None

To create an independent copy of an operating-point object, use the copy function.

op3 = copy(op1);

Now, when you change a property of op3, op1 does not change. For instance, change the value for
the first state from 2 to 4.

op3.States(1).x = 4

op3 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
4
(2.) watertank/Water-Tank System/H
1

Inputs: None

In op1, the corresponding value remains 2.

op1.States(1).x

ans = 2

This copy behavior occurs because the operating-point object is a handle object. For more
information about handle objects, see “Handle Object Behavior”.

Version History
Introduced before R2006a

 copy

18-15

See Also
operpoint | operspec

18 Functions

18-16

fastRestartForLinearAnalysis
Fast restart for linear analysis

Syntax
fastRestartForLinearAnalysis(model,'on')
fastRestartForLinearAnalysis(model,'on',Name,Value)
fastRestartForLinearAnalysis(model,'off')

Description
fastRestartForLinearAnalysis(model,'on') prepares the model for single compilation
workflows by turning fast restart for linear analysis 'on'. Once a compiling function is called, the
model will remain compiled after the function is finished executing. Compiling functions can then be
later called without any additional compilations. If the linear analysis points or block substitutions
change with subsequent calls to compiling functions, the model is recompiled.

fastRestartForLinearAnalysis(model,'on',Name,Value) prepares the model for single
compilation workflows with additional options specified by one or more Name,Value pair arguments.

fastRestartForLinearAnalysis(model,'off') turns fast restart for linear analysis off and
restores the model parameters to their original value. Simulink does not let you close the model
while it is in a complied state. Use this syntax to turn fast restart for linear analysis off before closing
the model.

You can also click the link that appears on the top of the compiled Simulink model to turn
fastRestartForLinearAnalysis off. For more information, see “Tips” on page 18-22.

Examples

Linear Analysis in a Loop with Fast Restart

Trim and linearize a closed-loop engine speed control model. Use fast restart for linear analysis to
reduce the number of model compilations when looping over parameters.

Open the engine speed control model and get the analysis points for linearization. Doing so prevents
recompilation between the first call to findop and linearize.

model = 'scdspeedctrl';
open_system(model)
io = getlinio(model);
fopt = findopOptions('DisplayReport','off');

Configure the PI controller to use the base workspace variables kp and ki.

block = [model,'/PID Controller'];
set_param(block,'P','kp');
set_param(block,'I','ki');

Create a grid of parameters to vary.

 fastRestartForLinearAnalysis

18-17

vp = 0.0005:0.0005:0.003;
vi = 0.0025:0.0005:0.005;
[KP,KI] = ndgrid(vp,vi);
N = numel(KP);
sz = size(KP);

Initialize the base workspace variables kp and ki.

kp = KP(1);
ki = KI(1);

Turn fastRestartForLinearAnalysis on and specify the analysis points using io.

fastRestartForLinearAnalysis(model,'on','AnalysisPoints',io)

Perform the linear analysis in a loop. When fast restart for linear analysis is on, calling findop sends
the updated controller parameters to the model.

ops = operspec(model); % operating point specifications
for i = N:-1:1
 kp = KP(i);
 ki = KI(i);
 op = findop(model,ops,fopt); % trim the model
 [j,k] = ind2sub(sz,i);
 sysFastRestartLoop(:,:,j,k) = linearize(model,io,op); % linearize the model
end

Turn off fastRestartForLinearAnalysis and close the model.

fastRestartForLinearAnalysis(model,'off')
bdclose(model)

Linearize Model Using Multiple State Initial Conditions

When fast restart for linear analysis is on, calling compiling functions does not automatically apply
changes to state initial conditions. Therefore, you must configure the initial state using an operating
point object rather than using parameters or workspace variables.

Open the model and create linear analysis points.

mdl = 'magball';
open_system(mdl)
io(1) = linio([mdl '/Controller'],1,'input');
io(2) = linio([mdl '/Magnetic Ball Plant'],1,'openoutput');

Configure the ball height to use the hInitial workspace variable as the initial condition.

set_param([mdl '/Magnetic Ball Plant/height'],'InitialCondition','hInitial')

Turn on fast restart for linear analysis.

fastRestartForLinearAnalysis(mdl,'on')

Linearize the model using different initial height values.

hInitial = 0.05;
sys1 = linearize(mdl,io);

18 Functions

18-18

hInitial = 0.1;
sys2 = linearize(mdl,io);

The frequency responses of the linearized models are the same. Therefore, the initial condition does
not update when hInitial changes.

bode(sys1,'b',sys2,'r--')
legend('sys1','sys2')

To vary the initial state when fast restart is enabled, you must modify an operating point object
instead. Create an operating point based on the model initial conditions.

op = operpoint(mdl);

Modify the operating point for different initial conditions and linearize the model.

op.States(5).x = 0.05;
sys3 = linearize(mdl,io,op);
op.States(5).x = 0.1;
sys4 = linearize(mdl,io,op);

The frequency responses of the linearized models are different. Therefore, the initial condition
changes when the operating point object changes.

bode(sys3,'b',sys4,'r--')
legend('sys3','sys4')

 fastRestartForLinearAnalysis

18-19

Turn off fast restart for linear analysis and close the model.

fastRestartForLinearAnalysis(mdl,'off')
bdclose(mdl)

Input Arguments
model — Simulink model name
character vector | string | slTuner object | slLinearizer object

Simulink model name, specified as a character vector, string, slTuner object, or slLinearizer
object. The model must be in the current working folder or on the MATLAB path.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ...,'UseBusSignalLabels','on'

AnalysisPoints — Analysis point set
[] (default) | linearization I/O object | vector of linearization I/O objects

18 Functions

18-20

Analysis point set that contains inputs, outputs, and openings, specified as the comma-separated pair
consisting of AnalysisPoints and a linearization I/O object or a vector of linearization I/O objects.
To create AnalysisPoints:

• Define the inputs, outputs, and openings using linio.
• If the inputs, outputs, and openings are specified in the Simulink model, extract these points from

the model using getlinio.

Each linearization I/O object in AnalysisPoints must correspond to the Simulink model model or
some normal mode model reference in the model hierarchy.

If the linear analysis points change with subsequent calls to compiling functions, the model is
recompiled.

For more information on specifying linearization inputs, outputs, and openings, see “Specify Portion
of Model to Linearize” on page 2-10.

BlockSubstitutions — Substitute linearizations for blocks and model subsystems
[] (default) | structure array | string array | character vector | cell array of character vectors

Substitute linearizations for blocks and model subsystems, specified as the comma-separated pair
consisting of BlockSubstitutions and one of the following:

• A structure array
• A string array
• A character vector
• A cell array of character vectors

Use BlockSubstitutions to specify a custom linearization for a block or subsystem. For example,
you can specify linearizations for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

If the block substitutions change with subsequent calls to compiling functions, the model is
recompiled.

UseBusSignalLabels — Flag indicating whether to use bus signal channel numbers or
names
'off' (default) | 'on'

Flag indicating whether to use bus signal channel numbers or names to label the I/Os in the
linearized model, specified as the comma-separated pair consisting of UseBusSignalLabels and
one of the following:

• 'off' — Use bus signal channel numbers to label I/Os on bus signals in the linearized model.
• 'on' — Use bus signal names to label I/Os on bus signals in the linearized model. Bus signal

names appear in the results when the I/O points are at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing through only

virtual or nonvirtual subsystem boundaries

 fastRestartForLinearAnalysis

18-21

Tips
• Simulink does not let you close the model while it is in a compiled state. Turn fast restart for

linear analysis off to close the model. You can turn off fastRestartForLinearAnalysis in one
of the following ways.

• Use the syntax fastRestartForLinearAnalysis(model,'off').
• Click the link that appears on the top of the Simulink model.

• When fast restart for linear analysis is on, calling compiling functions does not automatically apply
changes to state initial conditions. Therefore, you must configure the initial state using an
operating point object rather than using parameters or workspace variables. For more
information, see “Linearize Model Using Multiple State Initial Conditions” on page 18-18.

Version History
Introduced in R2019a

See Also
slLinearizer | slTuner | linearize | findop | getlinio | operspec

Topics
“Improve Linear Analysis Performance” on page 3-96

18 Functions

18-22

find
Package: linearize.advisor

Find blocks in linearization results that match specific criteria

Syntax
result = find(advisor,query)

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

result = find(advisor,query) returns the subset of block diagnostics in advisor that match
the search criteria specified in query.

Examples

Find Blocks on Linearization Path

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,~,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create a query object for finding blocks on the linearization path.

query = linqueryIsOnPath;

Find blocks using query object.

advOnPath = find(advisor,query)

advOnPath =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]

 find

18-23

 BlockDiagnostics: [1x26 linearize.advisor.BlockDiagnostic]
 QueryType: 'On Linearization Path'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor object or an
array of LinearizationAdvisor objects.

query — Search criteria
CompoundQuery object | linqueryIsOnPath object | linqueryHasDiagnostics object |
linqueryHasOrder object | ...

Search criteria, specified as one of the following query objects or a logical combination of query
objects (CompoundQuery object).

18 Functions

18-24

Query Object Find Blocks That...
linqueryAdvise Are potentially problematic for linearization.
linqueryAllBlocks Are in the advisor object.
linqueryContributesToLinearization Numerically contribute to the model linearization

result.
linqueryHasDiagnostics Have diagnostic messages regarding their

linearization.
linqueryHasInputs Have a specified number of inputs.
linqueryHasOrder Have a specified number of states.
linqueryHasOutputs Have a specified number of outputs.
linqueryHasSampleTime Have a specified sample time.
linqueryHasZeroIOPair Have at least one input/output pair that linearizes

to zero.
linqueryIsBlockSubstituted Have a custom block linearization specified.
linqueryIsBlockType Are of a specified type.
linqueryIsExact Are linearized using their defined exact

linearization.
linqueryIsNumericallyPerturbed Are linearized using numerical perturbation.
linqueryIsOnPath Are on the linearization path.
linqueryIsZero Linearize to zero.

To create a compound query, combine these queries using AND (&), OR (|), and NOT (~) logical
operations. For example, to find all blocks on the linearization path that do not contribute to the
model linearization result, use:

compundQuery = linqueryIsOnPath & ~linqueryContributesToLinearization

Output Arguments
result — Diagnostic information for blocks that match the search criteria
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for blocks that match the search criteria specified in query, returned as:

• LinearizationAdvisor object if advisor is a single LinearizationAdvisor object.
• A LinearizationAdvisor object with the same dimensions as advisor if advisor is an array.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

 find

18-25

Functions
advise | getBlockInfo | getBlockPaths | highlight

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28

18 Functions

18-26

findop
Steady-state operating point from specifications (trimming) or simulation

Syntax
op = findop(mdl,opspec)
op = findop(mdl,opspec,param)

op = findop(___ ,options)

[op,opreport] = findop(___)

op = findop(mdl,tsnapshot)
op = findop(mdl,tsnapshot,param)

Description
op = findop(mdl,opspec) returns the operating point of the model that meets the specifications
in opspec. Typically, you trim the model at a steady-state operating point on page 18-38. The
Simulink model must be open. If opspec is an array of operating points specifications, findop
returns an array of corresponding operating points.

op = findop(mdl,opspec,param) batch trims the model for the parameter value variations
specified in param.

op = findop(___ ,options) trims the model using additional optimization algorithm options.

[op,opreport] = findop(___) returns an operating point search report, opreport, for any of
the previous syntaxes.

op = findop(mdl,tsnapshot) simulates the model using the model initial conditions, and
extracts operating points at simulation snapshot times specified in tsnapshot.

op = findop(mdl,tsnapshot,param) batch simulates the model using the parameter value
variations specified in param.and extracts operating points at simulation snapshot times.

Examples

Trim Model to Meet State Specifications

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

 findop

18-27

Trim the model to find a steady-state operating point where the water tank level is 10.

Create default operating point specification object.

opspec = operspec(mdl);

Configure specifications for the first model state. The first state must be at steady state with a lower
bound of 0. Provide an initial guess of 2 for the state value.

opspec.States(1).SteadyState = 1;
opspec.States(1).x = 2;
opspec.States(1).Min = 0;

Configure the second model state as a known state with a value of 10.

opspec.States(2).Known = 1;
opspec.States(2).x = 10;

Find the operating point that meets these specifications.

op = findop(mdl,opspec);

 Operating point search report:

opreport =

 Operating point search report for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
______ ______ ______ ______ ______ ______

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 0 1.2649 Inf 0 0 0
(2.) watertank/Water-Tank System/H
 10 10 10 0 0 0

18 Functions

18-28

Inputs: None

Outputs: None

Batch Trim Simulink Model for Parameter Variation

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Vary parameters A and b within 10% of their nominal values, and create a 3-by-4 parameter grid.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each parameter.

params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the model.

opspec = operspec(mdl);

Trim the model using the specified operating point specification and parameter grid.

opt = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,params,opt);

op is a 3-by-4 array of operating point objects that correspond to the specified parameter grid points.

Trim Model Using Specified Optimizer Type

Open the Simulink model.

 findop

18-29

mdl = 'watertank';
open_system(mdl)

Create a default operating point specification object.

opspec = operspec(mdl);

Create an option set that sets the optimizer type to gradient descent and suppresses the search
report display.

opt = findopOptions('OptimizerType','graddescent','DisplayReport','off');

Trim the model using the specified option set.

op = findop(mdl,opspec,opt);

Obtain Operating Point Search Report

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Create default operating point specification object.

opspec = operspec(mdl);

18 Functions

18-30

Configure specifications for the first model state.

opspec.States(1).SteadyState = 1;
opspec.States(1).x = 2;
opspec.States(1).Min = 0;

Configure specifications for the second model state.

opspec.States(2).Known = 1;
opspec.States(2).x = 10;

Find the operating point that meets these specifications, and return the operating point search
report. Create an option set to suppress the search report display.

opt = findopOptions('DisplayReport',false);
[op,opreport] = findop(mdl,opspec,opt);

opreport describes how closely the optimization algorithm met the specifications at the end of the
operating point search.

opreport

opreport =

 Operating point search report for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

 Min x Max dxMin dx dxMax
______ ______ ______ ______ ______ ______

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 0 1.2649 Inf 0 0 0
(2.) watertank/Water-Tank System/H
 10 10 10 0 0 0

Inputs: None

Outputs: None

dx is the time derivative for each state. Since all dx values are zero, the operating point is at steady
state.

Extract Operating Points at Simulation Snapshots

Open the Simulink model.

mdl = 'magball';
open_system(mdl)

 findop

18-31

Simulate the model, and extract operating points at 10 and 20 time units.

op = findop(mdl,[10,20]);

op is a column vector of operating points, with one element for each snapshot time.

Display the first operating point.

op(1)

ans =

 Operating point for the Model magball.
 (Time-Varying Components Evaluated at time t=10)

States:

 x

(1.) magball/Controller/PID Controller/Filter/Cont. Filter/Filter
5.4732e-07
(2.) magball/Controller/PID Controller/Integrator/Continuous/Integrator
 14.0071
(3.) magball/Magnetic Ball Plant/Current
 7.0036
(4.) magball/Magnetic Ball Plant/dhdt
8.443e-08
(5.) magball/Magnetic Ball Plant/height
 0.05

Inputs: None

Vary Parameters and Extract Operating Points at Simulation Snapshots

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

18 Functions

18-32

Specify parameter values. The parameter grids are 5-by-4 arrays.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,5),...
 linspace(0.9*b,1.1*b,4));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Simulate the model and extract operating points at 0, 5, and 10 time units.

op = findop(mdl,[0 5 10],params);

findop simulates the model for each parameter value combination, and extracts operating points at
the specified simulation times.

op is a 3-by-5-by-4 array of operating point objects.

size(op)

ans =

 3 5 4

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the current
working folder or on the MATLAB path.

opspec — Operating point specifications
OperatingSpec object | array of OperatingSpec objects

Operating point specifications for trimming the model, specified as an OperatingSpec object or an
array of OperatingSpec objects created using the operspec function.

If opspec is an array, findop returns an array of corresponding operating points using a single
model compilation.

 findop

18-33

param — Parameter samples
structure | structure array

Parameter samples for trimming, specified as one of the following:

• Structure — Vary the value of a single parameter by specifying parameters as a structure with the
following fields.

• Name — Parameter name, specified as a character vector or string. You can specify any model
parameter that is a variable in the model workspace, the MATLAB workspace, or a data
dictionary. If the variable used by the model is not a scalar variable, specify the parameter
name as an expression that resolves to a numeric scalar value. For example, use the first
element of vector V as a parameter.

parameters.Name = 'V(1)';

• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range.

parameters.Name = 'A';
parameters.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values of
parameters A and b in the 10% range.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
parameters(1).Name = 'A';
parameters(1).Value = A_grid;
parameters(2).Name = 'b';
parameters(2).Value = b_grid;

When you specify parameter value variations, findop batch trims the model for each parameter
value combination, and returns an array of corresponding operating points. If param specifies
tunable parameters only, then the software batch trims the model using a single compilation.

If you specify opspec as a single operspec object and the parameter values in param produce states
that conflict with known states in opspec, findop trims the model using the specifications in
opspec. To trim the model at state values derived from the parameter values, specify opspec as an
array of corresponding operspec objects. For an example, see “Batch Trim Simulink Model for
Parameter Variation” on page 18-29.

options — Trimming options
findopOptions option set

Trimming options, specified as a findopOptions option set.

tsnapshot — Simulation snapshot times
scalar | vector

Simulation snapshot times at which to extract the operating point of the model, specified as a scalar
for a single snapshot or a vector for multiple snapshots. findop simulates the model and computes
an operating point for the state of the model at each snapshot time.

18 Functions

18-34

Output Arguments
op — Operating point
OperatingPoint object | array of OperatingPoint objects

Operating point, returned as an OperatingPoint object or an array of OperatingPoint objects.
The dimensions of op depend on the specified parameter variations and either the operating-point
specifications or the simulation snapshot time.

Parameter Variation Find operating point for... Resulting op Dimensions
No parameter variation Single operating-point

specification, specified by
opspec

single operating-point object

Single snapshot time, specified
by tsnapshot
N1-by-...-by-Nm array of
operating-point specifications,
specified by opspec

N1-by-...-by-Nm

Ns snapshots, specified by
tsnapshot

Column vector of length Ns

N1-by-...-by-Nm parameter
grid, specified by param

Single operating-point
specification, specified by
opspec

N1-by-...-by-Nm

Single snapshot time, specified
by tsnapshot
N1-by-...-by-Nm array of
operating-point specifications,
specified by opspec
Ns snapshots, specified by
tsnapshot

Ns-by-N1-by-...-by-Nm.

For example, suppose:

• opspec is a single operating-point specification object and param specifies a 3-by-4-by-2
parameter grid. In this case, op is a 3-by-4-by-2 array of operating points.

• tsnapshot is a scalar and param specifies a 5-by-6 parameter grid. In this case, op is a 1-by-5-
by-6 array of operating points.

• tsnapshot is a row vector with three elements and param specifies a 5-by-6 parameter grid. In
this case, op is a 3-by-5-by-6 array of operating points.

Each operating-point object has the following properties:

Property Description
Model Simulink model name, returned as a character vector.

 findop

18-35

Property Description
States State operating point, returned as a vector of state objects. Each entry in States

represents the supported states of one Simulink block.

For a list of supported states for operating point objects, see “Simulink Model States
Included in Operating Point Object” on page 1-3.

Note If the block has multiple named continuous states, States contains one
structure for each named state.

Each state object has the following fields:

Field Description
Nx (read only) Number of states in the block
Block Block path, returned as a character vector.
StateName State name
x Values of all supported block states, returned as a vector of length

Nx.
Ts Sample time and offset of each supported block state, returned as a

vector. For continuous-time systems, Ts is zero.
SampleType State time rate, returned as one of the following:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete-time state

inReference
dModel

Flag indicating whether the block is inside a reference model,
returned as one of the following:

• 1 — Block is inside a reference model.
• 0 — Block is in the current model file.

Description Block state description, returned as a character vector.

Inputs Input level at the operating point, returned as a vector of input objects. Each entry in
Inputs represents the input levels of one root-level inport block in the model.

Each input object has the following fields:

Field Description
Nu (read only) Number of inport block signals
Block Inport block name
PortDimensi
ons

Dimension of signals accepted by the inport

u Inport block input levels at the operating point, returned as a vector of
length Nu.

Description Inport block input description, returned as a character vector.

18 Functions

18-36

Property Description
Time Times at which any time-varying functions in the model are evaluated, returned as a

vector.
Version Object version number

You can edit the properties of op using dot notation or the set function.

opreport — Operating point search report
OperatingReport object | array of OperatingReport objects

Operating point search report, returned as an OperatingReport object. If op is an array of
OperatingPoint objects, then opreport is an array of corresponding OperatingReport objects.

This report displays automatically, even when you suppress the output using a semicolon. To hide the
report, set the DisplayReport field in options to 'off'.

Each operating point search report has the following properties:

Property Description
Model Model property value of op
Inputs Inputs property value of op
Outputs Output values at the computed operating point. This object contains the same fields

as the Outputs property of opspec, with the addition of yspec, which is the
desired output value.

States States property value of op with the addition of dx, which contains the state
derivative values. For discrete-time states, dx is the difference between the next
state value and the current one; that is, x(k+1) – x(k).

Time Time property value of op
TerminationS
tring

Optimization termination condition, returned as a character vector.

 findop

18-37

Property Description
Optimization
Output

Optimization algorithm search results, returned as a structure with the following
fields:

Field Description
iterations Number of iterations performed during the optimization
funcCount Number of function evaluations performed during the

optimization
lssteplength Size of line search step relative to search direction (active-set

optimization algorithm only)
stepsize Displacement in the state vector at the final iteration (active-set

and interior-point optimization algorithms)
algorithm Optimization algorithm used
firstorderop
t

Measure of first-order optimization, for the trust-region-
reflective optimization algorithm; [] for other algorithms

constrviolat
ion

Maximum of constraint functions

message Exit message

For more information about the optimization algorithm, see the Optimization
Toolbox documentation.

More About
Steady-State Operating Point (Trim Condition)

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time.

A model can have several steady-state operating points. For example, a hanging damped pendulum
has two steady-state operating points at which the pendulum position does not change with time. A
stable steady-state operating point occurs when a pendulum hangs straight down. When the
pendulum position deviates slightly, the pendulum always returns to equilibrium. In other words,
small changes in the operating point do not cause the system to leave the region of good
approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long as the
pendulum points exactly upward, it remains in equilibrium. However, when the pendulum deviates
slightly from this position, it swings downward and the operating point leaves the region around the
equilibrium value.

When using optimization search to compute operating points for nonlinear systems, your initial
guesses for the states and input levels must be near the desired operating point to ensure
convergence.

When linearizing a model with multiple steady-state operating points, it is important to have the right
operating point. For example, linearizing a pendulum model around the stable steady-state operating
point produces a stable linear model, whereas linearizing around the unstable steady-state operating
point produces an unstable linear model.

18 Functions

18-38

Tips
• You can initialize an operating point search at a simulation snapshot or a previously computed

operating point using initopspec.
• Linearize the model at the operating point op using linearize.

Algorithms
By default, findop uses the optimizer graddescent-elim. To use a different optimizer, change the
value of OptimizerType in options using findopOptions.

findop automatically sets these Simulink model properties for optimization:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'
• SaveFormat = 'StructureWithTime'

After the optimization completes, Simulink restores the original model properties.

Alternative Functionality
App

As an alternative to the findop command, you can find operating points in one of the following ways.

• Compute operating points using the Steady State Manager. For an example, see “Compute
Operating Points from Specifications Using Steady State Manager” on page 1-19.

• If you are computing an operating point for linearization, you can find the operating point and
linearize the model using the Model Linearizer. For an example, see “Compute Operating Points
from Specifications Using Model Linearizer” on page 1-30.

Version History
Introduced before R2006a

R2021b: PortWidth property of operating point inputs and outputs will be removed
Not recommended starting in R2021b

The input and output PortWidth properties of operating points and operating point search reports
will be removed in a future release. Use the new Nu and Ny properties instead.

To update your code, change instances of PortWidth to either Nu or Ny as shown in the following
table.

Not Recommended Recommended
[op,report] = findop('scdplane',10);
numOut = op.Outputs(1).PortWidth;
numIn = report.Inputs(1).PortWidth;

[op,report] = findop('scdplane',10);
numOut = op.Outputs(1).Ny;
numIn = report.Inputs(1).Nu;

 findop

18-39

See Also
initopspec | linearize | findopOptions | operspec | addoutputspec

Topics
“About Operating Points” on page 1-2
“Compute Steady-State Operating Points” on page 1-5
“Find Operating Points at Simulation Snapshots” on page 1-85

18 Functions

18-40

findopOptions
Set options for finding operating points from specifications

Syntax
options = findopOptions
options = findopOptions(Name,Value)

Description
options = findopOptions returns the default operating point search options.

options = findopOptions(Name,Value) returns an option set with additional options specified
by one or more Name,Value pair arguments. Use this option set to specify options for the findop
command.

Examples

Create Option Set for Operating Point Search

Create an option set for operating point search that sets the optimizer type to gradient descent and
suppresses the display output of findop.

option = findopOptions('OptimizerType','graddescent','DisplayReport','off');

Alternatively, use dot notation to set the values of options.

options = findopOptions;
options.OptimizerType = 'graddescent';
options.DisplayReport = 'off';

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DisplayReport','off' suppresses the display of the operating point search report to
the Command Window.

OptimizerType — Optimizer type used by the optimization algorithm
'graddescent-elim' (default) | 'graddescent' | 'graddescent-proj' | 'lsqnonlin' |
'lsqnonlin-proj' | 'simplex'

 findopOptions

18-41

Optimizer type used by the optimization algorithm, specified as the comma-separated pair consisting
of 'OptimizerType' and one of the following:

• 'graddescent-elim' — Enforce an equality constraint to force the time derivatives of states to
be zero (dx/dt = 0, x(k+1) = x(k)) and output signals to be equal to their specified known
values. The optimizer fixes the states, x, and inputs, u, that are marked as Known in an operating
point specification, and optimizes the remaining variables.

• 'graddescent' — Enforce an equality constraint to force the time derivatives of states to be
zero (dx/dt = 0, x(k+1) = x(k)) and the output signals to be equal to their specified known
values. The optimizer also minimizes the error between the states, x, and inputs, u, and their
respective known values from an operating point specification. If there are not any inputs or states
marked as Known, findop attempts to minimize the deviation between the initial guesses for x
and u, and their trimmed values.

• 'graddescent-proj' — In addition to 'graddescent', enforce consistency of model initial
conditions at each function evaluation. To specify whether constraints are hard or soft, use the
ConstraintType option. This optimization method does not support analytical Jacobians.

• 'lsqnonlin' — Fix the states, x, and inputs, u, marked as Known in an operating point
specification, and optimize the remaining variables. The algorithm tries to minimize both the error
in the time derivatives of the states (dx/dt = 0, x(k+1) = x(k)) and the error between the
outputs and their specified known values.

• 'lsqnonlin-proj' — In addition to 'lsqnonlin', enforce consistency of model initial
conditions at each function evaluation. This optimization method does not support analytical
Jacobians.

• 'simplex' — Use the same cost function as lsqnonlin with the direct search optimization
routine found in fminsearch.

For more information about these optimization algorithms, see fmincon, lsqnonlin, and
fminsearch.

OptimizationOptions — Options for the optimization algorithm
structure

Options for the optimization algorithm, specified as the comma-separated pair consisting of
'OptimizationOptions' and a structure created using the optimset function.

DisplayReport — Flag indicating whether to display the operating summary report
'on' (default) | 'off' | 'iter'

Flag indicating whether to display the operating point summary report, specified as the comma-
separated pair consisting of 'DisplayReport' and one of the following:

• 'on' — Display the operating point summary report in the MATLAB command window when
running findop.

• 'off' — Suppress display of the summary report.
• 'iter' — Display an iterative update of the optimization progress.

AreParamsTunable — Flag indicating whether to recompile the model when varying
parameter values
true (default) | false

Flag indicating whether to recompile the model when varying parameter values for trimming,
specified as the comma-separated pair consisting of 'AreParamsTunable' and one of the following:

18 Functions

18-42

• true — Do not recompile the model when all varying parameters are tunable. If any varying
parameters are not tunable, recompile the model for each parameter grid point, and issue a
warning message.

• false — Recompile the model for each parameter grid point. Use this option when you vary the
values of nontunable parameters.

ConstraintType — Constraint types for 'graddescent-proj'
structure

Constraint types for 'graddescent-proj' optimizer algorithm, specified as the comma-separated
pair consisting of 'ConstraintType' and a structure with the following fields:

• dx — Type for constraints on state derivatives
• x — Type for constraints on state values
• y — Type for constraints on output values

Specify each constraint as one of the following:

• 'hard' — Enforce the constraints to be zero.
• 'soft' — Minimize the constraints.

All constraint types are 'hard' by default.

Output Arguments
options — Trimming options
findopOptions option set

Trimming options, returned as a findopOptions option set.

Version History
Introduced in R2013b

R2017b: 'graddescent_elim' value of the Optimizer property is now 'graddescent-
elim'
Behavior changed in R2017b

The 'graddescent_elim' value of the Optimizer property of a findopOptions object is now
'graddescent-elim'.

Update Code

To update your code, change the optimizer value from graddescent_elim to graddescent-elim.
The following table shows the typical usage of this property value and how to update your code.

If your code has this form: Use this code instead:
opt = findopOptions('Optimizer',...
 'graddescent_elim');

opt = findopOptions('Optimizer',...
 'graddescent-elim')

opt = findopOptions;
opt.Optimizer = 'graddescent_elim';

opt = findopOptions;
opt.Optimizer = 'graddescent-elim';

 findopOptions

18-43

See Also
findop

18 Functions

18-44

frest.createFixedTsSinestream
Package: frest

Sinestream input signal with fixed sample time

Syntax
input = frest.createFixedTsSinestream(ts)
input = frest.createFixedTsSinestream(ts,{wmin wmax})
input = frest.createFixedTsSinestream(ts,w)
input = frest.createFixedTsSinestream(ts,sys)
input = frest.createFixedTsSinestream(ts,sys,{wmin wmax})
input = frest.createFixedTsSinestream(ts,sys,w)

Description
input = frest.createFixedTsSinestream(ts) creates sinestream input signal in which each
frequency has the same fixed sample time ts in seconds. The signal has 30 frequencies between 1
and ωs, where ωs = 2π

ts
 is the sample rate in radians per second. The software adjusts the

SamplesPerPeriod option to ensure that each frequency has the same sample time. Use when your
Simulink model has linearization input I/Os on signals with discrete sample times.

input = frest.createFixedTsSinestream(ts,{wmin wmax}) creates sinestream input signal
with up to 30 frequencies logarithmically spaced between wmin and wmax in radians per second.

input = frest.createFixedTsSinestream(ts,w) creates sinestream input signal with
frequencies w, specified as a vector of frequency values in radians per second. The values of w must
satisfy w = 2π

Nts for integer N such that the sample rate ωs = 2π
ts

 is an integer multiple of each

element of w.

input = frest.createFixedTsSinestream(ts,sys) creates sinestream input signal with a
fixed sample time ts. The signal's frequencies, settling periods, and number of periods automatically
set based on the dynamics of a linear system sys.

input = frest.createFixedTsSinestream(ts,sys,{wmin wmax}) creates sinestream input
signal with up to 30 frequencies logarithmically spaced between wmin and wmax in radians per
second.

input = frest.createFixedTsSinestream(ts,sys,w) creates sinestream input signal at
frequencies w, specified as a vector of frequency values in radians per second. The values of w must
satisfy w = 2π

Nts for integer N such that the sample rate ts is an integer multiple of each element of
w.

Examples
Create a sinusoidal input signal with the following characteristics:

 frest.createFixedTsSinestream

18-45

• Sample time of 0.02 sec
• Frequencies of the sinusoidal signal are between 1 rad/s and 10 rad/s

input = frest.createFixedTsSinestream(0.02,{1, 10});

Version History
Introduced in R2009b

See Also
frest.Sinestream | frestimate

Topics
“Estimation Input Signals” on page 5-25
“Estimate Frequency Response at the Command Line” on page 5-14
“Estimate Frequency Response Using Model Linearizer” on page 5-6

18 Functions

18-46

frest.createStep
Package: frest

Create step input signal

Syntax
input = frest.createStep(Name,Value)

Description
A step input signal has an initial value of 0 and transitions to a specified step size value after a
specified step time. When performing frequency response estimation, step inputs are quick to
simulate and can be useful as a first try when you do not have much knowledge about the system you
are trying to estimate. However, the amplitude of the excitation decreases rapidly with increasing
frequency. Therefore, step signals are best used to identify low-order plants where the slowest poles
are dominant. Step inputs are not recommended for estimation across a wide range of frequencies.

When you use a step input signal for estimation, the frequencies returned in the estimated frd model
depend on the length and sampling time of the signal. They are the frequencies obtained in the fast
Fourier transform of the input signal (see the Algorithm section of frestimate).

For more information on input signals for frequency response estimation, see “Estimation Input
Signals” on page 5-25.

input = frest.createStep(Name,Value) creates a step input signal for frequency response
estimation using options specified using one or more name-value pair arguments.

Examples

Create Step Input Signal

Create a step input signal with a default sample time and the following properties:

• Step time of 5 seconds
• Step size of 0.1
• Total duration of 15 seconds

input = frest.createStep('StepTime',5,'StepSize',0.1,'FinalTime',15)

 timeseries

 Common Properties:
 Name: 'Created with frest.createStep utility'
 Time: [15001x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [15001x1 double]
 DataInfo: tsdata.datametadata

Plot the step signal.

 frest.createStep

18-47

plot(input)

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Ts',0.01 sets the input signal sample time to 0.01

Ts — Sample time
1e-3 (default) | positive scalar

Sample time of the input signal in seconds, specified as the comma-separated pair 'Ts', followed by
a positive scalar.

StepTime — Step time
1 (default) | positive scalar

Step time when the input signal transitions from 0 to StepSize, specified as the comma-separated
pair 'StepTime' followed by a positive scalar.

18 Functions

18-48

StepTime must be less than FinalTime

StepSize — Step size
1 (default) | nonzero scalar

Step size, specified as the comma-separated pair 'StepSize' followed by a nonzero scalar. The
input signal has value StepSize after StepTime seconds.

FinalTime — Input signal duration
10 (default) | positive scalar

Input signal duration in seconds, specified as the comma-separated pair 'FinalTime' followed by a
positive scalar.

FinalTime must be greater than StepTime

Output Arguments
input — Step input signal
timeseries object

Step input signal for frequency response estimation, returned as a timeseries object.

To view a plot of your input signal, type plot(input).

Version History
Introduced in R2009b

See Also
frest.simCompare | frestimate

Topics
“Estimation Input Signals” on page 5-25
“Estimate Frequency Response at the Command Line” on page 5-14
“Estimate Frequency Response Using Model Linearizer” on page 5-6

 frest.createStep

18-49

frest.findDepend
Package: frest

List of model path dependencies

Syntax
dirs = frest.findDepend(model)

Description
dirs = frest.findDepend(model) returns paths containing Simulink model dependencies
required for frequency response estimation using parallel computing. model is the Simulink model to
estimate, specified as a character vector or a string. dirs is a cell array, where each element is a
path character vector. dirs is empty when frest.findDepend does not detect any model
dependencies. Append paths to dirs when the list of paths is empty or incomplete.

frest.findDepend does not return a complete list of model dependency paths when the
dependencies are undetectable.

Examples

Specify Model Path Dependencies for Parallel Computing

To demonstrate a dependency on a file that is not in the current working folder, move the model files
to a temporary folder and return the path to that folder. The pathdepSetup helper function also
adds the temporary folder to the MATLAB® search path.

tempPath = pathdepSetup;

Open the Simulink® model.

mdl = 'scdpathdep';
open_system(mdl)

Obtain the model dependency path.

dirs = frest.findDepend(mdl)

dirs = 1×1 cell array
 {'C:/myTempFiles/tpd02d55f5_8b4c_489e_938c_ea004b9c771d'}

The resulting path is on the local drive C:/.

If you are using remote workers, specify that all workers can access your local drive. For example,
this command converts all references to the C drive to an equivalent network address that is
accessible to remote workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

18 Functions

18-50

Enable parallel computing and specify the model path dependencies.

options = frestimateOptions(...
 'UseParallel','on',...
 'ParallelPathDependencies',dirs);

You can now use these options for frequency response estimation using parallel computing.

io = getlinio(mdl);
in = frest.Sinestream('SimulationOrder','OneAtATime');
frd = frestimate(mdl,io,in,options);

After estimating the frequency response, you can close the model.

bdclose(mdl)

Return the model files to the current working folder and remove the temporary folder from the path.

pathdepCleanup(tempPath)

Version History
Introduced in R2010a

See Also
frestimate

Topics
“Speeding Up Estimation Using Parallel Computing” on page 5-72
“Dependency Analyzer Scope and Limitations”

 frest.findDepend

18-51

frest.findSources
Package: frest

Identify time-varying source blocks

Syntax
blocks = frest.findSources(model)
blocks = frest.findSources(model,io)

Description
Time-varying source blocks in a Simulink model can interfere with frequency response estimation by
driving the model away from the operating point of the linearized system. Using the
frest.findSources function, you can identify such time-varying sources in your model. You can
then disable the identified sources before estimating a frequency response using frestimate. For
more information, see “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on
page 5-54.

blocks = frest.findSources(model) finds all time-varying source blocks in the signal path of
any linearization output point marked in the Simulink model model.

blocks = frest.findSources(model,io) finds all time-varying source blocks in the signal path
of any linearization output point specified in the array of linear analysis points io.

Examples

Disable Time-Varying Source Blocks for Frequency Response Estimation

Open a model that contains time-varying source blocks.

mdl = "scdspeed_ctrlloop";
open_system(mdl)

18 Functions

18-52

Set the engine reference model to normal simulation mode for accurate linearization.

set_param("scdspeed_ctrlloop/Engine Model",...
 "SimulationMode","Normal")

Obtain the linear analysis points that are defined in the model.

io = getlinio(mdl);

Estimate the frequency response of the model without disabling the time-varying source blocks.
Define a sinestream input signal and obtain the estimated frequency response sysest.

in = frest.Sinestream(...
 "Frequency",logspace(1,2,10),...
 "NumPeriods",30,...
 "SettlingPeriods",25);
[sysest,simout] = frestimate(mdl,io,in);

To view the impact of the time-varying sources on the estimation result, compute an exact
linearization of the model and compare it to the estimated response.

sys = linearize(mdl,io);
bodemag(sys,sysest,'r*')

The estimated frequency response does not match the exact linearization. The mismatch occurs
because time-varying source blocks in the model prevent the response from reaching steady state.

Find the time-varying source blocks.

 frest.findSources

18-53

srcblks = frest.findSources(mdl);

To disable the source blocks, first create an frestimateOptions object and set the
BlocksToHoldConstant parameter to the time-varying source blocks.

opts = frestimateOptions("BlocksToHoldConstant",srcblks);

Estimate the frequency response with the time-varying source blocks disabled.

[sysest2,simout2] = frestimate(mdl,io,in,opts);

Compare the estimated response sysest2 with the exact linearization result.

bodemag(sys,sysest2,'r*')

The estimated response matches the exact linearization.

Input Arguments
model — Name of model
string | character vector

Name of the Simulink model for which you want to identify time-varying sources.

io — Linear analysis points
linearization I/O object | array of linearization I/O objects

18 Functions

18-54

Linear analysis points representing inputs, outputs, and loop openings, specified as a linearization I/O
object or an array of such objects. The frest.findSources function uses only the linearization
output points in io.

For more information on specifying linear analysis points, see “Specify Portion of Model to Linearize”
on page 2-10 and “Specify Portion of Model to Linearize at Command Line” on page 2-29.

Output Arguments
blocks — Time-varying source blocks
array of BlockPath objects

Time-varying source blocks, returned as a array of BlockPath objects. blocks includes time-varying
source blocks inside subsystems and normal-mode referenced models.

If you specify io, blocks contains all time-varying source blocks contributing to the signal at the
output analysis points in io.

If you do not specify io, blocks contains all time-varying source blocks contributing to the signals at
the output analysis points marked in model. For more information on specifying analysis points in
your model, see “Specify Portion of Model to Linearize in Simulink Model” on page 2-17.

Tips
• To disable time-varying source blocks during frequency response estimation, first create an

frestimateOptions object and set its BlocksToHoldConstant property to blocks or a
subset of blocks. Then, estimate the frequency response using frestimate.

• When model includes a reference model that contains a source block in the signal path of a
linearization output point, set the reference model to normal simulation mode before finding
sources using frest.findSources.

Alternative Functionality
• You can use the Simulink Model Advisor to determine whether time-varying source blocks exist in

the signal path of output linear analysis points in your model. To do so, use the Model Advisor
check “Simulink Control Design Checks” on page 21-2. For more information about using the
Model Advisor, see “Check Your Model Using the Model Advisor”.

• You can find and disable time-varying sources in your model when estimating frequency responses
in the Model Linearizer app.

Version History
Introduced in R2010b

See Also
frestimate | frestimateOptions

Topics
“Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-54

 frest.findSources

18-55

frest.simCompare
Package: frest

Plot time-domain simulation of nonlinear and linear models

Syntax
frest.simCompare(simout,sys,input)
frest.simCompare(simout,sys,input,x0)
[y,t] = frest.simCompare(simout,sys,input)
[y,t,x] = frest.simCompare(simout,sys,input,x0)

Description
frest.simCompare(simout,sys,input) plots both

• Simulation output, simout, of the nonlinear Simulink model

You obtain the output from the frestimate command.
• Simulation output of the linear model sys for the input signal input

The linear simulation results are offset by the initial output values in the simout data.

frest.simCompare(simout,sys,input,x0) plots the frequency response simulation output and
the simulation output of the linear model with initial state x0. Because you specify the initial state,
the linear simulation result is not offset by the initial output values in the simout data.

[y,t] = frest.simCompare(simout,sys,input) returns the linear simulation output response
y and the time vector t for the linear model sys with the input signal input. This syntax does not
display a plot. The matrix y has as many rows as time samples (length(t)) and as many columns
as system outputs.

[y,t,x] = frest.simCompare(simout,sys,input,x0) also returns the state trajectory x for
the linear state space model sys with initial state x0.

Examples

Compare Simulated Model and Linear Model in Time Domain

frest.simCompare lets you lets you examine the results of frequency response estimation in the
time domain. You can compare the simulated model response to the response of a linear model of the
system, such as one obtained by exact linearization.

Estimate the closed-loop response of the plant in the watertank model. First, open the model.

model = 'watertank';
open_system(model)

18 Functions

18-56

Define a linearization I/O set that specifies the plant, and find a steady-state operating point for
estimation.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'output');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

Create an input signal for estimation. For this example, use a step input.

input = frest.createStep('FinalTime',100);

Estimate the frequency response of the specified portion of the model, using the simout output
argument to store the data generated during the estimation process. Also, linearize the model using
the same I/O set and operating point.

[sysest,simout] = frestimate(model,op,io,input);
syslin = linearize(model,io,op);

Examine the time-domain responses of the linearized model and the Simulink model to the same input
signal.

frest.simCompare(simout,syslin,input)
legend

 frest.simCompare

18-57

In this example, the responses are virtually identical.

Version History
Introduced in R2009b

See Also
frestimate | frest.simView

18 Functions

18-58

frest.simView
Package: frest

Plot frequency response model in time- and frequency-domain

Syntax
frest.simView(simout,input,sysest)
frest.simView(simout,input,sysest,sys)

Description
frest.simView(simout,input,sysest) plots the following frequency response estimation
results:

• Time-domain simulation simout of the Simulink model
• FFT of time-domain simulation simout
• Bode of estimated system sysest

This Bode plot is available when you create the input signal using frest.Sinestream or
frest.Chirp. In this plot, you can interactively select frequencies or a frequency range for
viewing the results in all three plots.

You obtain simout and sysest from the frestimate command using the input signal input.

frest.simView(simout,input,sysest,sys) includes the linear system sys in the Bode plot
when you create the input signal using frest.Sinestream or frest.Chirp. Use this syntax to
compare the linear system to the frequency response estimation results.

Examples

Examine Estimation Results Using Simulation Results Viewer

The Simulation Results Viewer lets you examine the results of frequency response estimation
frequency by frequency. You open the viewer using the frest.simView command. To do so, store
the simulation data using the simout output argument of frestimate.

Estimate the open-loop response of the plant in the watertank model. First, open the model.

model = 'watertank';
open_system(model)

 frest.simView

18-59

Define a linearization I/O set that specifies the plant, and find a steady-state operating point for
estimation.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

Then, create an input signal for estimation, and estimate the frequency response of the specified
portion of the model. Use the simout output argument to store the estimation data.

input = frest.Sinestream('Frequency',logspace(-3,2,10));
[sysest,simout] = frestimate(model,op,io,input);

Open the Simulation Results Viewer.

frest.simView(simout,input,sysest)

18 Functions

18-60

The viewer shows you the steady-state time response and the FFT of that response for all frequencies
within the range you select on the Bode Diagram section of the viewer. These plots can help you
identify when the response deviates from the expected response. For more information about using
the Simulation Results Viewer, see “Analyze Estimated Frequency Response” on page 5-18.

If you have a linear model of the system you are estimating, you can use the model as a baseline
response for comparison in the viewer. For instance, you can compare a model obtained by exact
linearization to the estimated frequency response. Use the linearization I/O set and the operating
point to compute an exact linearization of the watertank plant.

syslin = linearize(model,io,op);

Open the Simulation Results Viewer again, this time providing syslin as an input argument.

frest.simView(simout,input,sysest,syslin)

 frest.simView

18-61

The Bode Diagram section of the viewer includes a line showing the exact response syslin. This
view can be useful to identify particular frequencies where the estimated response deviates from the
linearization.

Version History
Introduced in R2009b

See Also
frestimate | frest.simCompare

Topics
“Analyze Estimated Frequency Response” on page 5-18
“Troubleshooting Frequency Response Estimation” on page 5-44

18 Functions

18-62

frestimate
Frequency response estimation of Simulink models

Syntax
sysest = frestimate(model,io,input)
sysest = frestimate(model,op,io,input)
[sysest,simout] = frestimate(model,op,io,input)
[___] = frestimate(___ ,options)

sysest = frestimate(data,freqs,units)

Description
sysest = frestimate(model,io,input) estimates the frequency response of a Simulink model
using the specified input signal, the operating point defined by the model initial conditions, and the
analysis points specified in io.

sysest = frestimate(model,op,io,input) initializes the model at the operating point op
before estimating the frequency response. If the model initial conditions are not at steady state or not
the operating point of interest, use this syntax to specify a different operating point.

[sysest,simout] = frestimate(model,op,io,input) also returns the simulated model
output. Use this syntax when you want to examine the estimation results using the Simulation Results
Viewer (frest.simView).

[___] = frestimate(___ ,options) computes the frequency response using additional options.
You can use this syntax with any of the previous input and output argument combinations.

sysest = frestimate(data,freqs,units) estimates the frequency response using simulation
data obtained using the Frequency Response Estimator block in offline estimation mode. Use this
syntax only with data logged using that block.

Examples

Estimate Frequency Response of a Portion of a Simulink Model

Estimate the open-loop response of the plant in the watertank model. Open the model.

model = 'watertank';
open_system(model)

 frestimate

18-63

To estimate the open-loop response of the plant, define a linearization I/O set that specifies this
portion of the model with analysis points. Define an input analysis point at the controller output, and
define an open-loop output point at the plant output.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

Find a steady-state operating point for the estimation. For this example, use a steady-state operating
point derived from the model initial conditions.

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

Create an input signal for estimation. For this example, use a sinestream signal, which sends a series
of separate sinusoidal perturbations at the frequencies you specify.

input = frest.Sinestream('Frequency',logspace(-3,2,30));

Estimate the frequency response of the specified portion of the model. The result is a frequency-
response model containing responses at each of the frequencies specified in the sinestream signal.

sysest = frestimate(model,op,io,input);
size(sysest)

FRD model with 1 outputs, 1 inputs, and 30 frequency points.

Examine the measured frequency response.

bode(sysest,'*')

18 Functions

18-64

Validate Exact Linearization Results Using Estimated Frequency Response

Linearize a Simulink model and use frequency-response estimation to validate the exact linearization
results.

Open the watertank model.

model = 'watertank';
open_system(model);

 frestimate

18-65

Obtain a linearization of the open-loop response of the plant. To do so, define the linearization I/O
points, and find a steady-state operating point near the model initial conditions. Then, linearize the
model.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

syslin = linearize(model,op,io);

To check the linearization, use the same analysis points and operating point to estimate the frequency
response. For this example, use a sinestream input signal for the estimation.

input = frest.Sinestream('Frequency',logspace(-3,2,20));
sysest = frestimate(model,op,io,input);

Compare the exact linearization and the estimated response in the frequency domain using a Bode
plot.

bode(syslin,'b-',sysest,'r*')
legend('Exact linearization','Estimation')

18 Functions

18-66

Examine Estimation Results Using Simulation Results Viewer

The Simulation Results Viewer lets you examine the results of frequency response estimation
frequency by frequency. You open the viewer using the frest.simView command. To do so, store
the simulation data using the simout output argument of frestimate.

Estimate the open-loop response of the plant in the watertank model. First, open the model.

model = 'watertank';
open_system(model)

Define a linearization I/O set that specifies the plant, and find a steady-state operating point for
estimation.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

Then, create an input signal for estimation, and estimate the frequency response of the specified
portion of the model. Use the simout output argument to store the estimation data.

input = frest.Sinestream('Frequency',logspace(-3,2,10));
[sysest,simout] = frestimate(model,op,io,input);

Open the Simulation Results Viewer.

frest.simView(simout,input,sysest)

 frestimate

18-67

The viewer shows you the steady-state time response and the FFT of that response for all frequencies
within the range you select on the Bode Diagram section of the viewer. These plots can help you
identify when the response deviates from the expected response. For more information about using
the Simulation Results Viewer, see “Analyze Estimated Frequency Response” on page 5-18.

If you have a linear model of the system you are estimating, you can use the model as a baseline
response for comparison in the viewer. For instance, you can compare a model obtained by exact
linearization to the estimated frequency response. Use the linearization I/O set and the operating
point to compute an exact linearization of the watertank plant.

syslin = linearize(model,io,op);

Open the Simulation Results Viewer again, this time providing syslin as an input argument.

frest.simView(simout,input,sysest,syslin)

18 Functions

18-68

The Bode Diagram section of the viewer includes a line showing the exact response syslin. This
view can be useful to identify particular frequencies where the estimated response deviates from the
linearization.

Input Arguments
model — Simulink model
string | character vector

Simulink model, specified as a string or character vector. The model must be in the current working
folder or on the MATLAB path.

io — Analysis points set
linearization I/O object

 frestimate

18-69

Analysis points set that contain inputs, outputs, and loop openings, specified as a linearization I/O
object. The analysis point set defines the subset of the Simulink model whose frequency response you
want to estimate. To create io:

• Define the inputs, outputs, and openings using linio.
• If the inputs, outputs, and openings are specified in the Simulink model, extract these points from

the model using getlinio.

For frequency response estimation, I/O points cannot be on bus signals. io must correspond to the
Simulink model model or a normal mode model reference in the model hierarchy. (If you use
frestimate with an output analysis point in a model reference, the Total number of instances
allowed per top model configuration parameter of the referenced model must be 1.)

Specifying I/O points for estimation is similar to specifying them for linearization. For more
information on specifying linearization inputs, outputs, and openings, see “Specify Portion of Model
to Linearize” on page 2-10.

input — Input signal
sinestream signal | chirp signal | random signal | time series

Input signal for perturbing the model, specified as one of the following:

• A sinestream signal, specified using frest.Sinestream or
frest.createFixedTsSinestream

• A chirp signal, specified using frest.Chirp
• A random signal, specified using frest.Random
• A step signal, specified using frest.createStep
• An arbitrary signal, specified as a MATLAB timeseries

For more information about creating input signals for frequency response estimation, see “Estimation
Input Signals” on page 5-25.

op — Operating point
OperatingPoint object

Operating point at which to initialize the model for estimation, specified as an OperatingPoint
object created using one of the following functions.

• operpoint
• findop with either a single operating point specification or a single snapshot time

Generally, you use a steady-state operating point for estimation. If you do not specify an operating
point, the estimation process begins at the operating point specified by the model initial conditions.
This operating point consists of the initial state and input signal values stored in the model.

options — Estimation options
frestimateOptions object

Estimation options, specified as a frestimateOptions object. Available options include enabling
parallel computing for estimation (requires Parallel Computing Toolbox).

data — Response data logged for offline estimation
structure | Simulink.SimulationData.Dataset object

18 Functions

18-70

Response data logged for offline estimation using the Frequency Response Estimator block, specified
as one of the following:

• A structure obtained by writing the data from the data output port of the block to the MATLAB
workspace using a To Workspace block. The Save format parameter of the To Workspace block
must be Timeseries.

• A Simulink.SimulationData.Dataset object obtained by using Simulink data logging to write
the data at the data port to the MATLAB workspace.

For more information, see the data port description on the Frequency Response Estimator block
reference page or “Collect Frequency Response Experiment Data for Offline Estimation” on page 6-
18.

freqs — Frequencies for offline estimation
vector

Frequencies for offline estimation, specified as a vector of positive values. When you collect response
data using the Frequency Response Estimator block, you specify the frequencies for the estimation
experiment using the Frequencies parameter of the block. Use the same vector of frequencies for
freqs when you perform offline estimation with the logged data.

units — Units
"rad/s" | "Hz" | 'rad/s' | 'Hz'

Units of frequencies for offline estimation, specified as one of the strings "rad/s" or "Hz" or one of
the character vectors 'rad/s' or 'Hz'. When you collect response data using the Frequency
Response Estimator block, you specify the units of the frequencies for the estimation experiment
using the frequency units block parameter. Specify the same units when you perform offline
estimation with the logged data.

Output Arguments
sysest — Estimated frequency response
frd model

Estimated frequency response, returned as a frequency-response (frd) model object. The frd model
has as many inputs and outputs as are specified in the linearization analysis points io.

The frequencies in sysest depend on what input signal you use for estimation, as follows:

• If you use a sinestream signal created with frest.Sinestream, the frequencies in sysest are
the frequencies specified in the sinestream signal.

• If you use any other input signal, the frequencies are determined by the FFT computation that the
function performs to extract the frequency response (see “Algorithms” on page 18-72).

If you use the data input argument to provide data collected using the Frequency Response
Estimator block, then sysest is a SISO model. In this case, the frequencies in sysest are the
frequencies you supply with the freqs input argument.

simout — Simulation data
cell array of Simulink.Timeseries objects

 frestimate

18-71

Simulation data collected during the estimation process, returned as a cell array of
Simulink.Timeseries objects. The cell array has dimensions m-by-n, where m is the number of
output points in the I/O set io, and n is the number of input points. This data can be useful for:

• Examining estimation results using frest.simView (see “Examine Estimation Results Using
Simulation Results Viewer” on page 18-66)

• Examining time-domain responses using frest.simCompare

Limitations
• If you use frestimate with an output analysis point in a model reference, the Total number of

instances allowed per top model configuration parameter of the referenced model must be 1.

Tips
• For multiple-input multiple-output (MIMO) systems, frestimate injects the signal at each input

channel separately to simulate the corresponding output signals. The estimation algorithm uses
the inputs and the simulated outputs to compute the MIMO frequency response. If you want to
inject different input signals at the linearization input points of a multiple-input system, treat your
system as separate single-input systems. Perform independent frequency response estimations for
each linearization input point using frestimate, and concatenate your frequency response
results.

Algorithms
frestimate injects the input signal you specify (uest(t)) at the input analysis points. It simulates the
model and collects the response signal (yest(t)) at the output analysis points, as illustrated below for a
sinestream input.

In general, frestimate estimates the frequency response by computing the ratio of the fast Fourier
transforms output signal and the input signal:

18 Functions

18-72

Resp =
FFT yest(t)
FFT uest(t)

.

• For sinestream input signals, the function discards the data collected during the specified settling
periods of the signal at each frequency. (See “Sinestream Input Signals” on page 5-30.) If the
filtering option of the sinestream signal is active, the function then applies a bandpass filter to the
remaining signal at the corresponding frequency and discards one more period to remove any
remaining transient signals. The function uses the FFT of the resulting signal to compute Resp.
The resulting frd model contains all frequencies in the sinestream.

• For chirp input signals, the function discards any frequencies in the ratio Resp that fall outside the
frequency range specified for the chirp. The resulting frd model contains all frequencies in the
Fourier transform that fall within the chirp range.

• For other input signals, the resulting frd contains all the frequencies in the Fourier transform.

Estimation Using Data from Frequency Response Estimator Block

You can use the frestimate(data,freqs,units) syntax to perform offline estimation with data
from the Frequency Response Estimator block. In this case, frestimate uses the Ready field of the
data structure to determine which data points to include the FFT computation of Resp.

• For sinestream mode, this signal indicates which periods to discard at each frequency, determined
by the Number of settling periods block parameter.

• For superposition mode, this signal indicates which data falls within the data-collection window
determined by the Number of periods of the lowest frequency used for estimation
parameter.

frestimate interpolates Resp to generate the resulting frd model, which contains the frequencies
you specified in the block experiment parameters. For more information, see the Frequency Response
Estimator block reference page.

Alternative Functionality
App

Model Linearizer

Simulink Block

Frequency Response Estimator

Version History
Introduced in R2009b

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true using frestimateOptions (requires Parallel
Computing Toolbox).

 frestimate

18-73

For more information, see “Managing Estimation Speed and Memory” on page 5-71.

See Also
frest.Sinestream | frest.Chirp | frest.Random | frest.simView | frestimateOptions |
getSimulationTime

Topics
“Estimate Frequency Response at the Command Line” on page 5-14
“Estimate Frequency Response Using Model Linearizer” on page 5-6
“Speeding Up Estimation Using Parallel Computing” on page 5-72

External Websites
What is Frequency Response?

18 Functions

18-74

https://www.mathworks.com/discovery/frequency-response.html

frestimateOptions
Options for frequency response estimation

Syntax
options = frestimateOptions
options = frestimateOptions('OptionName',OptionValue)

Description
options = frestimateOptions creates a frequency response estimation options object,
options, with default settings. Pass this object to the function frestimate to use these options for
frequency response estimation.

options = frestimateOptions('OptionName',OptionValue) creates a frequency response
estimation options object options using the options specified by comma-separated name/value pairs.

Input Arguments
'OptionName',OptionValue

Estimation options, specified as comma-separated option name and option value pairs.

Option Name Option Value
'BlocksToHoldConstant' Block paths of time-varying source blocks to hold constant during

frequency response estimation, specified as an array of
Simulink.BlockPath objects. To identify time-varying source
blocks that can interfere with frequency response estimation, use
frest.findSources.

Default: empty
'UseParallel' Set to 'on' to enable parallel computing for estimations with the

frestimate command.

Default: 'off'
'ParallelPathDependencies' A cell array of character vectors or string array that specifies the

path dependencies required to execute the model to estimate. All
the workers in the parallel pool must have access to the folders
listed in 'ParallelPathDependencies'.

Default: empty

Examples

Identify and Disable Time-Varying Source Blocks

Open model.

 frestimateOptions

18-75

mdl = 'scdspeed_ctrlloop';
open_system(mdl)

Convert referenced subsystem to normal mode.

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal');

Obtain input/output points from the model and create sinestream input signal.

io = getlinio(mdl);
in = frest.Sinestream('Frequency',logspace(1,2,10),'NumPeriods',30,...
 'SettlingPeriods',25);

Identify time-varying sources in the model.

srcblks = frest.findSources(mdl)

srcblks =
 1x4 BlockPath array with properties:

 SubPath
 isLoadingModel
 isSavingModel

Create option set for estimation and specify the time-varying source blocks.

opts = frestimateOptions('BlocksToHoldConstant',srcblks);

Estimate the frequency response.

[sysest,simout] = frestimate(mdl,io,in,opts);

Specify Model Path Dependencies for Parallel Computing

To demonstrate a dependency on a file that is not in the current working folder, move the model files
to a temporary folder and return the path to that folder. The pathdepSetup helper function also
adds the temporary folder to the MATLAB® search path.

18 Functions

18-76

tempPath = pathdepSetup;

Open the Simulink® model.

mdl = 'scdpathdep';
open_system(mdl)

Obtain the model dependency path.

dirs = frest.findDepend(mdl)

dirs = 1×1 cell array
 {'C:/myTempFiles/tpd02d55f5_8b4c_489e_938c_ea004b9c771d'}

The resulting path is on the local drive C:/.

If you are using remote workers, specify that all workers can access your local drive. For example,
this command converts all references to the C drive to an equivalent network address that is
accessible to remote workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

Enable parallel computing and specify the model path dependencies.

options = frestimateOptions(...
 'UseParallel','on',...
 'ParallelPathDependencies',dirs);

You can now use these options for frequency response estimation using parallel computing.

io = getlinio(mdl);
in = frest.Sinestream('SimulationOrder','OneAtATime');
frd = frestimate(mdl,io,in,options);

After estimating the frequency response, you can close the model.

bdclose(mdl)

Return the model files to the current working folder and remove the temporary folder from the path.

pathdepCleanup(tempPath)

Alternatives
You can enable parallel computing for all models with no path dependencies. To do so, in the MATLAB
preferences dialog box, click Simulink Control Design. Then, select the Use the parallel pool
when you use the "frestimate" command option. This global setting persists from session to
session until you change this option.

When you select this option and use the frestimate command, you do not need to provide an
frestimateOptions object.

If your model has path dependencies, you must create your own frequency response options object
that specifies the path dependencies. Use the ParallelPathDependencies option before
beginning the estimation.

 frestimateOptions

18-77

Version History
Introduced in R2010a

See Also
frestimate | frest.findSources

18 Functions

18-78

fselect
Extract sinestream signal at specified frequencies

Syntax
input2 = fselect(input,fmin,fmax)
input2 = fselect(input,index)

Description
input2 = fselect(input,fmin,fmax) extracts a portion of the sinestream input signal input in
the frequency range between fmin and fmax. Specify fmin and fmax in the same frequency units as
the sinestream signal.

input2 = fselect(input,index) extracts a sinestream signal at specific frequencies, specified
by the vector of indices index.

Examples
Extract the second frequency in a sinestream signal:

% Create the input signal
input = frest.Sinestream('Frequency',[1 2.5 5],...
 'Amplitude',[1 2 1.5],...
 'NumPeriods',[4 6 12],...
 'RampPeriods',[0 2 6]);

% Extract a sinestream signal for the second frequency
input2 = fselect(input,2)

% Plot the extracted input signal
plot(input2)

Version History
Introduced in R2010a

See Also
frestimate | frest.Sinestream | fdel

Topics
“Time Response Not at Steady State” on page 5-44

 fselect

18-79

generateTimeseries
Generate time-domain data for input signal

Syntax
ts = generateTimeseries(input)

Description
ts = generateTimeseries(input) creates a MATLAB timeseries object ts from the input
signal input. input can be a sinestream, chirp, or random signal. For chirp and random signals, that
time vector of ts has equally spaced time values, ranging from 0 to Ts(NumSamples-1).

Examples
Create timeseries object for chirp signal:
input = frest.Chirp('Amplitude',1e-3,'FreqRange',...
 [10 500],'NumSamples',20000);
ts = generateTimeseries(input)

Version History
Introduced in R2009b

See Also
frestimate | frest.Sinestream | frest.Chirp | frest.Random

18 Functions

18-80

get
Properties of linearization I/Os and operating points

Syntax
get(ob)
get(ob,'PropertyName')

Description
get(ob) displays all properties and corresponding values of the object, ob, which can be a
linearization I/O object, an operating point object, or an operating point specification object. Create
ob using findop, getlinio, linio, operpoint, or operspec.

get(ob,'PropertyName') returns the value of the property, PropertyName, within the object,
ob. The object, ob, can be a linearization I/O object, an operating point object, or an operating point
specification object. Create ob using findop, getlinio, linio, operpoint, or operspec.

ob.PropertyName is an alternative notation for displaying the value of the property,
PropertyName, of the object, ob. The object, ob, can be a linearization I/O object, an operating point
object, or an operating point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

Examples
Create an operating point object, op, for the Simulink model, magball.

op=operpoint('magball');

Get a list of all object properties using the get function with the object name as the only input.

get(op)

This returns the properties of op and their current values.

 Model: 'magball'
 States: [5x1 opcond.StatePoint]
 Inputs: [0x1 double]
 Time: 0
 Version: 2

To view the value of a particular property of op, supply the property name as an argument to get. For
example, to view the name of the model associated with the operating point object, type:

V=get(op,'Model')

which returns

V =
magball

 get

18-81

Because op is a structure, you can also view any properties or fields using dot-notation, as in this
example.

W=op.States

This notation returns a vector of objects containing information about the states in the operating
point.

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14
(3.) magball/Magnetic Ball Plant/Current
 x: 7
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Use get to view details of W. For example:

get(W(2),'x')

returns

ans =

 14.0071

Version History
Introduced before R2006a

See Also
findop | getlinio | linio | operpoint | operspec | set

18 Functions

18-82

getBlockInfo
Package: linearize.advisor

Obtain diagnostic information for block linearizations

Syntax
blockInfo = getBlockInfo(advisor)
blockInfo = getBlockInfo(advisor,block)
blockInfo = getBlockInfo(advisor,index)

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. You can troubleshoot your linearization
results by reviewing this diagnostic information. To access the diagnostic information, use the
getBlockInfo function.

blockInfo = getBlockInfo(advisor) returns the diagnostic information for all blocks listed in
the LinearizationAdvisor object, advisor.

blockInfo = getBlockInfo(advisor,block) returns diagnostic information for blocks with
block paths specified in block.

blockInfo = getBlockInfo(advisor,index) returns diagnostic information for blocks with
indices specified in index.

Examples

Obtain Diagnostics for Potentially Problematic Blocks

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find blocks that are potentially problematic for linearization.

blocks = advise(advisor);

Obtain diagnostics for these blocks.

diags = getBlockInfo(blocks)

 getBlockInfo

18-83

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Obtain Diagnostics Using Block Names

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain diagnostic information for the saturation block.

satDiag = getBlockInfo(advisor,'scdpendulum/pendulum/Saturation')

satDiag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

You can also obtain diagnostic information for multiple blocks at once. Obtain diagnostics for the sin
blocks in the model.

sinBlocks = {'scdpendulum/pendulum/Trigonometric Function';
 'scdpendulum/angle_wrap/Trigonometric Function1'};

sinDiag = getBlockInfo(advisor,sinBlocks)

sinDiag =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

18 Functions

18-84

Obtain Diagnostics Using Indices

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain diagnostic information for the first element of advisor.BlockDiagnostics.

diag = getBlockInfo(advisor,1)

diag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

You can also obtain diagnostics for multiple blocks. For example, obtain diagnostics for the second
and third blocks listed in advisor.

diags = getBlockInfo(advisor,[2 3])

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Integrator, Second-Order Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation

Obtain Diagnostics for Blocks in Subsystem

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain block paths of linearized blocks.

 getBlockInfo

18-85

paths = getBlockPaths(advisor);

Create logical array indicating which blocks are in the angle_wrap subsystem.

index = contains(paths,'angle_wrap');

Obtain diagnostic information for these blocks.

diags = getBlockInfo(advisor,index)

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/angle_wrap/Trigonometric Function2 Yes No Perturbation
3. scdpendulum/angle_wrap/Trigonometric Function Yes No Perturbation

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor object or an
array of LinearizationAdvisor objects.

block — Block paths
character vector | cell array of character vectors

Block paths in Simulink model, specified as one of the following:

• Character vector — Obtain diagnostic information for a single block.
• Cell array of character vectors — Obtain diagnostic information for multiple blocks.

index — Block indices
positive integer | array of positive integers | boolean array

Block indices, specified as one of the following:

• Positive integer — Obtain diagnostic information for the specified element of
Advisor.BlockDiagnostics

• Array of positive integers — Obtain diagnostic information for multiple elements of
Advisor.BlockDiagnostics.

• Boolean array — For each element of index that is true, return the diagnostics for the
corresponding element of Advisor.BlockDiagnostics.

Output Arguments
blockInfo — Diagnostic information for block linearizations
BlockDiagnostic object | vector of BlockDiagnostic objects | cell array

18 Functions

18-86

Diagnostic information for block linearizations indicated by index, returned as a BlockDiagnostic
object or vector of BlockDiagnostic objects if advisor is a single LinearizationAdvisor
object.

If advisor is an array of LinearizationAdvisor objects, then blockInfo is a cell array with the
same dimensions as advisor in which each element is a vector of BlockDiagnostic objects.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor

Functions
advise | find | getBlockPaths

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28

 getBlockInfo

18-87

getBlockPaths
Package: linearize.advisor

Obtain list of blocks in LinearizationAdvisor object

Syntax
blocks = getBlockPaths(advisor)

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations, which you can use for troubleshooting
linearization results. To obtain a list of the blocks in the LinearizationAdvisor object, use the
getBlockPaths function.

blocks = getBlockPaths(advisor) returns a list of block paths for the blocks in the
LinearizationAdvisor object advisor.

Examples

Obtain List of Numerically Perturbed Blocks

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize model and obtain LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Find all blocks in linearization results that are numerically perturbed.

perturbed = find(advisor,linqueryIsNumericallyPerturbed);

Obtain list of numerically perturbed blocks.

blocks = getBlockPaths(perturbed)

blocks = 6x1 cell
 {'scdspeed/Throttle & Manifold/Intake Manifold/Convert to mass charge'}
 {'scdspeed/Combustion/Torque Gen' }
 {'scdspeed/Combustion/Torque Gen2' }
 {'scdspeed/Throttle & Manifold/Intake Manifold/Pumping1' }
 {'scdspeed/Throttle & Manifold/Throttle/f(theta)' }
 {'scdspeed/Throttle & Manifold/Throttle/g(pratio)' }

18 Functions

18-88

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object | array of LinearizationAdvisor objects

Diagnostic information for block linearizations, specified as a LinearizationAdvisor object or an
array of LinearizationAdvisor objects.

Output Arguments
blocks — Block paths
cell array of character vectors | cell array

Block paths for blocks in advisor, returned as a cell array of character vectors if advisor is a
single LinearizationAdvisor object. If advisor is an array of LinearizationAdvisor objects,
then blocks is a cell array with the same dimensions as advisor in which each element is a cell
array of character vectors.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor

Functions
advise | getBlockInfo

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28

 getBlockPaths

18-89

getInputIndex
Package: opcond

Get index of an input element of an operating point specification

Syntax
index = getInputIndex(op,block)
index = getInputIndex(op,block,element)

Description
The Inputs property of an operating point specification is an array that contains trimming
specifications for each model input. When defining a mapping function for customized trimming of
Simulink models, you can use getInputIndex to obtain the index of an input specification based on
the corresponding block path.

When trimming Simulink models using optimization-based search, some applications require
additional flexibility in defining the optimization search parameters. For such systems, you can
specify custom constraints and a custom objective function. For complex models, you can define a
mapping that selects a subset of the model states, inputs, and outputs to pass to the custom
constraint and objective functions. For more information, see “Compute Operating Points Using
Custom Constraints and Objective Functions” on page 1-59.

index = getInputIndex(op,block) returns the index of the input specification that corresponds
to block in the Inputs property of operating point specification op.

index = getInputIndex(op,block,element) returns the index of the specified element within
an input specification for an input port that has a port width greater than 1.

Examples

Get Input Index from Operating Point Specification

Open Simulink model.

mdl = 'scdtmpSetpoints';
open_system(mdl)

18 Functions

18-90

Create an operating point specification object for the model.

opspec = operspec(mdl);

opspec contains specifications for the root-level input ports of the model.

opspec.Inputs

ans =

 u Known Min Max
_____ _____ _____ _____

(1.) scdtmpSetpoints/Feed rpm
 0 false -Inf Inf
(2.) scdtmpSetpoints/Setpoints
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf

Obtain the index of the specification in opspec.Inputs that corresponds to the Feed rpm input
block.

index1 = getInputIndex(opspec,'scdtmpSetpoints/Feed rpm')

 getInputIndex

18-91

index1 =

 1 1

index1(1) is the index of the input specification object for the Feed rpm block in the
opspec.Inputs. Since this input port is a scalar signal, index1 has one row and index1(2) is 1.

If an input port is a vector signal, you can obtain the indices for all of the elements in the
corresponding input specification.

index2 = getInputIndex(opspec,'scdtmpSetpoints/Setpoints')

index2 =

 2 1
 2 2
 2 3
 2 4

Each row of index2 is the index for one element of the Setpoints input vector.

Get Index of Specified Input Element of Operating Point Specification

Open Simulink model.

mdl = 'scdtmpSetpoints';
open_system(mdl)

18 Functions

18-92

Create an operating point specification object for the model.

opspec = operspec(mdl);

opspec contains specifications for the root-level input ports of the model.

Obtain the index of the element that corresponds to the second signal in the Setpoints input vector.

index1 = getInputIndex(opspec,'scdtmpSetpoints/Setpoints',2)

index1 =

 2 2

You can also obtain the indices of multiple vector elements at the same time. For example, get the
indices for the first and third elements of the Setpoints vector.

index2 = getInputIndex(opspec,'scdtmpSetpoints/Setpoints',[1 3])

index2 =

 2 1

 getInputIndex

18-93

 2 3

Input Arguments
op — Operating point specification or operating point
OperatingSpec object | OperatingPoint object | OperatingReport object

Operating point specification or operating point for a Simulink model, specified as an
OperatingSpec, OperatingPoint, or OperatingReport object.

block — Block path
character vector | string

Block path that corresponds to an input specification in the Inputs property of op, specified as a
character vector or string that contains the path of a root-level input of a Simulink model.

To see all the blocks that have input specifications, view the Inputs property of op.

op.Inputs

element — Input element index
positive integer | vector of positive integers

Input element index, specified as a positive integer less than or equal to the port width of the input
specified by block, or as a vector of such integers. By default, if you do not specify element,
getInputIndex returns the indices of all elements in the selected input specification. For an
example, see “Get Index of Specified Input Element of Operating Point Specification” on page 18-92.

Output Arguments
index — Input index
2-element row vector | 2-column array

Input index, returned as a 2-element row vector when element is an integer, or a 2-column array
when element is a vector. Each row of index contains the index for a single model input element.

The first column of index contains the index of the corresponding input specification in the Inputs
property of op. The second column contains the element index within the input specification.

Using index, you can specify the input portion of a custom mapping for customized trimming of
Simulink models. For more information, see the CustomMappingFcn property of operspec.

Version History
Introduced in R2017a

See Also
getStateIndex | getOutputIndex | operspec | findop

Topics
“Compute Operating Points Using Custom Constraints and Objective Functions” on page 1-59

18 Functions

18-94

getinputstruct
Obtain input values from operating point

Syntax
u = getinputstruct(op)

Description
u = getinputstruct(op) extracts a structure of input values from a specified operating point
object. You can use the input structure to set initial input values for your Simulink model.

Examples

Initialize Model with Operating Point Values

Open the scdplane model and create an operating point. You can also compute a trimmed operating
point or obtain an operating point snapshot.

mdl = 'scdplane';
open_system(mdl)
op = operpoint(mdl);

Extract the state values from the operating point.

xInitial = getstatestruct(op);

Extract the input values from the operating point.

uInitial = getinputstruct(op);

To view the values of the states or inputs within this structure, use dot notation. For example, view
the input values.

uInitial.signals.values

ans = 0

Set the initial state values in the model.

set_param(mdl,'LoadInitialState','on','InitialState','xInitial')

Set the initial input values in the model.

set_param(mdl,'LoadExternalInput','on','ExternalInput','uInitial')

Input Arguments
op — Operating point
OperatingPoint object | OperatingSpec object | OperatingReport object | array

 getinputstruct

18-95

Operating point for a Simulink model, specified as an OperatingPoint, OperatingSpec, or
OperatingReport object. You can also specify a homogeneous array of any of these objects.

Output Arguments
u — Input values
structure | structure array

Input values, returned as a structure with the following fields.

• signals — Input values and information
• time — Simulation time for input values, returned as 0.

If op is an array, u is returned as a structure array with the same dimensions as op.

Version History
Introduced before R2006a

See Also
getstatestruct | operpoint

18 Functions

18-96

getlinio
Obtain linear analysis points from Simulink model, Linear Analysis Plots block, or Model Verification
block

Syntax
io = getlinio(mdl)
io = getlinio(blockpath)

Description
io = getlinio(mdl) returns the analysis points defined in the Simulink model mdl.

io = getlinio(blockpath) returns the analysis points defined for the specified Linear Analysis
Plots block or Model Verification block in a Simulink model.

Examples

Obtain Analysis Points from Simulink Model

Open Simulink model.

mdl = 'scdpwm';
open_system(mdl)

This model contains the following linear analysis points:

• Input perturbation at the output of the Step block
• Output measurement at the output of the Plant Model block

Obtain the analysis points from the model.

io = getlinio(mdl)

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdpwm/Step
- Port: 1
2. Linearization output measurement located at the following signal:

 getlinio

18-97

- Block: scdpwm/Plant Model
- Port: 1

You can use these analysis points for subsequent linearizations of the model using the linearize
command or an slLinearizer interface.

Obtain Analysis Points from Linear Analysis Plots Block

Open Simulink model.

open_system('scdcstr')

This model contains a Bode Plot block that is configured with the following linear analysis points:

• Input perturbation at the output of the Coolant Temp block
• Output measurement at the CA output of the CSTR block

Obtain the analysis points from the Bode Plot block.

io = getlinio('scdcstr/Bode Plot')

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdcstr/Coolant Temp
- Port: 1
2. Linearization output measurement located at the following signal:

18 Functions

18-98

- Block: scdcstr/CSTR
- Port: 2

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the current
working folder or on the MATLAB path.

If the model is not open or loaded into memory, getlinio loads the model into memory.

blockpath — Linear Analysis Plots block or Model Verification block
character vector | string

Linear Analysis Plots block or Model Verification block, specified as a character vector or string that
contains its full block path. The model that contains the block must be in the current working folder
or on the MATLAB path.

For more information on:

• Linear analysis plot blocks, see “Visualization During Simulation”.
• Model verification blocks, see “Model Verification”.

Output Arguments
io — Analysis point set
linearization I/O object | vector of linearization I/O objects

Analysis point set, returned as a linearization I/O object or a vector of linearization I/O objects. Use
io to specify linearization inputs, outputs, and loop openings when using the linearize command.
For more information, see “Specify Portion of Model to Linearize” on page 2-10.

Each analysis point has the following properties:

Property Description
Active Flag indicating whether to use the analysis point for linearization, specified as one of

the following:

• 'on' — Use the analysis point for linearization. This value is the default option.
• 'off' — Do not use the analysis point for linearization. Use this option if you

have an existing set of analysis points and you want to linearize a model with a
subset of these points.

Block Full block path of the block with which the analysis point is associated, specified as a
character vector.

PortNumber Output port with which the analysis point is associated, specified as an integer.

 getlinio

18-99

Property Description
Type Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model to
Linearize” on page 2-10.

BusElement Bus element name with which the analysis point is associated, specified as a
character vector or '' if the analysis point is not a bus element.

Description User-specified description of the analysis point, which you can set for convenience,
specified as a character vector.

Version History
Introduced before R2006a

See Also
linio | setlinio | linearize

Topics
“Specify Portion of Model to Linearize” on page 2-10

18 Functions

18-100

getlinplant
Compute open-loop plant model from Simulink diagram

Syntax
[sysp,sysc] = getlinplant(block,op)
[sysp,sysc] = getlinplant(block,op,options)

Description
[sysp,sysc] = getlinplant(block,op) Computes the open-loop plant seen by a Simulink
block labeled block (where block specifies the full path to the block). The plant model, sysp, and
linearized block, sysc, are linearized at the operating point op.

[sysp,sysc] = getlinplant(block,op,options) Computes the open-loop plant seen by a
Simulink block labeled block, using the linearization options specified in options.

Examples
To compute the open-loop model seen by the Controller block in the Simulink model magball, first
create an operating point object using the function findop. In this case, you find the operating point
from simulation of the model.

magball
op=findop('magball',20);

Next, compute the open-loop model seen by the block magball/Controller, with the
getlinplant function.

[sysp,sysc]=getlinplant('magball/Controller',op)

The output variable sysp gives the open-loop plant model as follows:

a =
 Current dhdt height
 Current -100 0 0
 dhdt -2.801 0 196.2
 height 0 1 0

b =
 Controller
 Current 50
 dhdt 0
 height 0

c =
 Current dhdt height
 Sum2 0 0 -1

d =
 Controller
 Sum2 0

 getlinplant

18-101

Continuous-time model.

Version History
Introduced before R2006a

See Also
findop | linearizeOptions | operpoint | operspec

18 Functions

18-102

getOffsetsForLPV
Extract LPV offsets from linearization results

Syntax
offsets = getOffsetsForLPV(info)

Description
offsets = getOffsetsForLPV(info) extracts linearization offsets from info and converts them
to the array format supported by the LPV System block.

Examples

Extract LPV Offsets from Linearization Results

Open the Simulink model.

model = 'watertank';
open_system(model)

Specify linearization I/Os.

io(1) = linio('watertank/Desired Water Level',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

Vary plant parameters A and b, and create a 3-by-4 parameter grid.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),linspace(0.9*b,1.1*b,4));
params(1).Name = 'A';
params(1).Value = A_grid;
params(2).Name = 'b';
params(2).Value = b_grid;

Create a linearization option set, setting the StoreOffsets option to true.

opt = linearizeOptions('StoreOffsets',true);

 getOffsetsForLPV

18-103

Linearize the model using the specified parameter grid, and return the linearization offsets in the
info structure.

[sys,op,info] = linearize('watertank',io,params,opt);

Extract the linearization offsets.

offsets = getOffsetsForLPV(info)

offsets =

 struct with fields:

 x: [2x1x3x4 double]
 y: [1x1x3x4 double]
 u: [1x1x3x4 double]
 dx: [2x1x3x4 double]

To configure an LPV System block, use the fields from offsets directly.

18 Functions

18-104

Input Arguments
info — Linearization information
structure

Linearization information returned by exact linearization commands, specified as a structure. This
structure has an Offsets field that contains an N1-by-...-by-Nm array of structures, where N1 to Nm
are the dimensions of the operating point array or parameter grid used for linearization. Each
structure in info.Offsets contains offset information that corresponds to a specific operating
point.

 getOffsetsForLPV

18-105

You can store and obtain linearization offsets when you linearize your model using one of the
following commands:

• linearize
• getIOTransfer
• getLoopTransfer
• getSensitivity
• getCompSensitivity

For example:

opt = linearizeOptions('StoreOffsets',true);
[sys,op,info] = linearize(mdl,io,params,opt);

You can then extract the offset information using getOffsetsForLPV.

offsets = getOffsetsForLPV(info);

Output Arguments
offsets — Linearization offsets
structure

Linearization offsets corresponding to the operating points at which the model was linearized,
returned as a structure with the following fields:

Field Description
x State offsets used for linearization, returned as an nx-by-1-by-N1-by-...-by-Nm array,

where nx is the number of states in the linearized system.
y Output offsets used for linearization, returned as an ny-by-1-by-N1-by-...-by-Nm array,

where ny is the number of outputs in the linearized system.
u Input offsets used for linearization, returned as an nu-by-1-by-N1-by-...-by-Nm array,

where nu is the number of inputs in the linearized system.
dx Derivative offsets for continuous time systems, or updated state values for discrete-

time systems, returned as an nx-by-1-by-N1-by-...-by-Nm array.

For instance, suppose that your model has three inputs, two outputs, and four states. If you linearize
your model using a 5-by-6 array of operating points, offsets contains arrays with the following
dimensions:

• offsets.x — 4-by-1-by-5-by-6
• offsets.y — 2-by-1-by-5-by-6
• offsets.u — 3-by-1-by-5-by-6
• offsets.dx — 4-by-1-by-5-by-6

To configure an LPV System block, you can use the fields of offsets directly. For an example, see
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69.

18 Functions

18-106

Version History
Introduced in R2016b

See Also
Blocks
LPV System

Functions
linearize | getIOTransfer | getLoopTransfer | getSensitivity | getCompSensitivity

Topics
“Linear Parameter-Varying Models”
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69

 getOffsetsForLPV

18-107

getOutputIndex
Package: opcond

Get index of an output element of an operating point specification

Syntax
index = getOutputIndex(op,block)
index = getOutputIndex(op,block,port)
index = getOutputIndex(op,block,port,element)

Description
The Outputs property of an operating point specification is an array that contains trimming
specifications for each model output. When defining a mapping function for customized trimming of
Simulink models, you can use getOutputIndex to obtain the index of an output specification based
on the corresponding block path.

When trimming Simulink models using optimization-based search, some applications require
additional flexibility in defining the optimization search parameters. For such systems, you can
specify custom constraints and a custom objective function. For complex models, you can define a
mapping that selects a subset of the model states, inputs, and outputs to pass to the custom
constraint and objective functions. For more information, see “Compute Operating Points Using
Custom Constraints and Objective Functions” on page 1-59.

index = getOutputIndex(op,block) returns the index of the output specification that
corresponds to block in the Outputs property of operating point specification op.

index = getOutputIndex(op,block,port) returns the index of the output specification that
corresponds to the trim output constraint added to the specified output port of the specified block.

Use this syntax when the Outputs property of op contains trim output constraints for more than one
signal originating from the same block.

index = getOutputIndex(op,block,port,element) returns the index of the specified
element within an output specification for an output with multiple elements.

Examples

Get Output Index from Operating Point Specification

Open Simulink model.

mdl = 'scdindex1';
open_system(mdl)

18 Functions

18-108

Create an operating point specification for model.

opspec = operspec(mdl);

opspec contains an array of output specifications for the model.

opspec.Outputs

ans =

 y Known Min Max
_____ _____ _____ _____

(1.) scdindex1/Out1
 0 false -Inf Inf
(2.) scdindex1/Out2
 0 false -Inf Inf

Get the index of the output specification for Out2.

idx = getOutputIndex(opspec,'scdindex1/Out2')

idx =

 2 1

The first column of idx contains the index of the output specification in opspec.Outputs. The
second column contains the element index within the output specification. In this case, there is only
one element in the output specification.

Get Index of Trim Output Specification Added To Signal

Open Simulink model.

mdl = 'scdplane';
open_system(mdl)

 getOutputIndex

18-109

Create an operating point specification for the model.

opspec = operspec(mdl);

In addition to root-level outputs of a model, the opspec.Outputs array contains specifications for
trim constraints added to signals using the addoutputspec command.

Add an output specification to the signal originating from second output port of the Aircraft Dynamics
Model block.

opspec = addoutputspec(opspec,'scdplane/Aircraft Dynamics Model',2);

View the output array of opspec.

opspec.Outputs

ans =

 y Known Min Max
_____ _____ _____ _____

(1.) scdplane/alpha (rad)
 0 false -Inf Inf
(2.) scdplane/Nz Pilot (g)
 0 false -Inf Inf

18 Functions

18-110

(3.) scdplane/Aircraft Dynamics Model
 0 false -Inf Inf

Get the index of the added output specification. When there is an output specification for only one of
the output ports of a given block, you do not need to specify the port number to get the output index.

index1 = getOutputIndex(opspec,'scdplane/Aircraft Dynamics Model')

index1 =

 3 1

Add an output specification to the signal originating from the first output of the same block.

opspec = addoutputspec(opspec,'scdplane/Aircraft Dynamics Model',1);

View the output array of opspec.

opspec.Outputs

ans =

 y Known Min Max
_____ _____ _____ _____

(1.) scdplane/alpha (rad)
 0 false -Inf Inf
(2.) scdplane/Nz Pilot (g)
 0 false -Inf Inf
(3.) scdplane/Aircraft Dynamics Model
 0 false -Inf Inf
(4.) scdplane/Aircraft Dynamics Model
 0 false -Inf Inf

There are now two output specifications that correspond to the same block, one for each output port.
Obtain the index for the output specification that corresponds with the output port 1 of the Aircraft
Dynamics Model block.

index2 = getOutputIndex(opspec,'scdplane/Aircraft Dynamics Model',1)

index2 =

 4 1

Get Output Indices for Output Specification with Multiple Elements

Open Simulink model.

mdl = 'scdtmp';
open_system(mdl)

 getOutputIndex

18-111

Create an operating point specification object for the model.

opspec = operspec(mdl);

opspec contains an output specification for the output port Out1, which is a vector signal.

opspec.Outputs

ans =

 y Known Min Max
_____ _____ _____ _____

(1.) scdtmp/Out1
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf
 0 false -Inf Inf

Obtain the indices of all the elements of Out1.

index1 = getOutputIndex(opspec,'scdtmp/Out1')

18 Functions

18-112

index1 =

 1 1
 1 2
 1 3
 1 4
 1 5
 1 6

Each row of index1 contains the index for one element of the vector signal in Out1. The first column
is the index of the output specification object for the Out1 port in the opsepc.Outputs. The second
column is the element index within the output specification.

You can also obtain the index for individual elements of an output specification, or a subset of
elements. Get the index of element number 4 of Out1.

index2 = getOutputIndex(opspec,'scdtmp/Out1',[],4)

index2 =

 1 4

Get the indices of elements 2 and 3 of Out1.

index3 = getOutputIndex(opspec,'scdtmp/Out1',[],[2 3])

index3 =

 1 2
 1 3

Input Arguments
op — Operating point specification
OperatingSpec object | OperatingReport object

Operating point specification for a Simulink model, specified as an OperatingSpec or
OperatingReport object.

block — Block path
character vector | string

Block path that corresponds to an output specification in the Outputs property of op, specified as a
character vector or string that contains the path of one of the following:

• Root-level output of the model.
• Source block for a signal in the model to which an output specification has been added. For more

information on adding output specifications to a model, see addoutputspec.

To see all the blocks that have output specifications, view the Outputs property of op.

 getOutputIndex

18-113

op.Outputs

port — Output port
integer in the range [1,N]

Output port, specified as an integer in the range [1,N], where N is the number of output ports on the
specified block. If block is a root-level output port, then N is 1.

If you do not specify port, and there is one entry in the output array of op that corresponds to the
specified block, then the default value of port is the port number of that entry. If there are multiple
entries in the output array that correspond to the specified block, then the default value of port is
the port number of the first entry. For an example, see “Get Index of Trim Output Specification Added
To Signal” on page 18-109.

To view the port number of the ith entry in the output array of op, type:

op.Outputs(i).PortNumber

element — Output element index
[1,M] (default) | positive integer | vector of positive integers

Output element index, specified as a positive integer less than or equal to the port width of the output
of the specified block, or a vector of such integers. By default, if you do not specify element,
getOutputIndex returns the indices of all elements in the selected output specification. For an
example, see “Get Output Indices for Output Specification with Multiple Elements” on page 18-111.

Output Arguments
index — Output index
2-element row vector | 2-column array

Output index, returned as a 2-element row vector when element is an integer, or a 2-column array
when element is a vector. Each row of index contains the index for a single output element.

The first column of index contains the index of the corresponding output specification in the
Outputs property of op. The second column contains the element index within the output
specification.

Using index, you can specify the output portion of a custom mapping for customized trimming of
Simulink models. For more information, see the CustomMappingFcn property of operspec.

Version History
Introduced in R2017a

See Also
getStateIndex | getInputIndex | operspec | findop

Topics
“Compute Operating Points Using Custom Constraints and Objective Functions” on page 1-59

18 Functions

18-114

getSimulationTime
Final time of simulation for frequency response estimation

Syntax
tfinal = getSimulationTime(input)

Description
tfinal = getSimulationTime(input) returns the final time of the Simulink simulation
performed during frequency response estimation using the input signal input. Altering input to
reduce the final simulation time can help reduce the time it takes to perform frequency response
estimation.

Examples

Retrieve Simulation Time for Frequency Response Estimation

Create a sinestream input signal.

input = frest.Sinestream('Amplitude',1e-3,...
 'Frequency',logspace(1,3,50),...
 'SamplesPerPeriod',40,'FreqUnits','Hz');

The sinestream signal input includes 50 frequencies spaced logarithmically between 10 Hz and
1000 Hz. Each frequency is sampled 40 times per period.

Calculate the final simulation time of an estimation using that signal.

tfinal = getSimulationTime(input)

tfinal = 4.4186

tfinal indicates that frequency response estimation of any model with this input signal would
simulate the model for 4.4186 s.

Input Arguments
input — Input signal
frest.Sinestream object | frest.Chirp object | frest.Random object

Input signal for frequency response estimation with the frestimate function, specified as one of the
following objects.

• frest.Sinestream object — Sinestream input signal
• frest.Chirp — Chirp input signal
• frest.Random — Random input signal

 getSimulationTime

18-115

• frest.PRBS — Pseudorandom binary sequence signal

You can create input signals at the command line or export signals that you create using the Model
Linearizer app.

Output Arguments
tfinal — Final simulation time
scalar

Final time for a simulation performed during frequency response estimation using the specified input
signal, returned as a scalar value.

Alternative Functionality
App

You can view the simulation time for an input signal when estimating a frequency response using the
Model Linearizer app. To do so, in the MATLAB Workspace or Linear Analysis Workspace
section, select the input signal. The app shows the simulation time in the Variable Preview section.

18 Functions

18-116

Version History
Introduced in R2012a

See Also
frestimate | frest.Sinestream | frest.Chirp | frest.Random | frest.PRBS

Topics
“Estimation Input Signals” on page 5-25
“Sinestream Input Signals” on page 5-30
“Chirp Input Signals” on page 5-34
“PRBS Input Signals” on page 5-37
“Ways to Speed up Frequency Response Estimation” on page 5-71

 getSimulationTime

18-117

getStateIndex
Get index of a state element of an operating point specification

Syntax
index = getStateIndex(op,name)
index = getStateIndex(op,name,element)

Description
The States property of an operating point specification is an array that contains trimming
specifications for each model state. When defining a mapping function for customized trimming of
Simulink models, you can use getStateIndex to obtain the index of a state specification based on
the corresponding block path or state name.

When trimming Simulink models using optimization-based search, some applications require
additional flexibility in defining the optimization search parameters. For such systems, you can
specify custom constraints and a custom objective function. For complex models, you can define a
mapping that selects a subset of the model states, inputs, and outputs to pass to the custom
constraint and objective functions. For more information, see “Compute Operating Points Using
Custom Constraints and Objective Functions” on page 1-59.

index = getStateIndex(op,name) returns the index of the state specification that corresponds
to name in the States property of operating point specification op.

index = getStateIndex(op,name,element) returns the index of the specified element within
a state specification for a block with multiple states.

Examples

Get State Index from Operating Point Specification

Open Simulink model.

mdl = 'scdindex1';
open_system(mdl)

18 Functions

18-118

Create an operating point specification for model.

opspec = operspec(mdl);

opspec contains an array of state specifications for the model.

opspec.States

ans =

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdindex1/system1
 0 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
 0 false true -Inf Inf -Inf Inf
(2.) scdindex1/system2
 0 false true -Inf Inf -Inf Inf

Get the index of the state specification that corresponds to the system2 block.

index2 = getStateIndex(opspec,'scdindex1/system2')

index2 =

 2 1

index2(1) is the index of the state specification object for system2 in opspec.States. Since this
block has a single state, index2 has a single row and index2(2) is 1.

If a block has multiple states, you can obtain the indices of all the states in the corresponding state
specification.

index1 = getStateIndex(opspec,'scdindex1/system1')

index1 =

 1 1
 1 2
 1 3

Each row of index1 contains the index of one state in the system2 block. For each row, the first
column contains the index of the state specification in opspec.States. The second column contains
the index of each state element within the specification.

Get Index of Specified State Element of Operating Point Specification

Open Simulink model.

mdl = 'scdindex1';
open_system(mdl)

 getStateIndex

18-119

Create an operating point specification for the model.

opspec = operspec(mdl);

If a block has multiple states, you can obtain the index of a specific state within the corresponding
state specification by specifying the element index. For example, get the index for the second state in
the specification for the system1 block.

index1 = getStateIndex(opspec,'scdindex1/system1',2)

index1 =

 1 2

You can also obtain the indices of a subset of the block states by specifying the element index as a
vector. For example, get the indices for the first and third states in the specification for the system1
block.

index2 = getStateIndex(opspec,'scdindex1/system1',[1 3])

index2 =

 1 1
 1 3

Get Index of Named State from Operating Point Specification

Open Simulink model.

mdl = 'scdindex2';
open_system(mdl)

18 Functions

18-120

The system1 block is a state-space system with three named states: position, velocity, and
acceleration.

Create an operating point specification for the model.

opspec = operspec(mdl);

The States property of the operating point specification object contains one entry for each named
state in system1.

opspec.States

ans =

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) position
 0 false true -Inf Inf -Inf Inf
(2.) velocity
 0 false true -Inf Inf -Inf Inf
(3.) acceleration
 0 false true -Inf Inf -Inf Inf

To obtain the index of a state specification that corresponds to a named state within a block, specify
the state name.

index1 = getStateIndex(opspec,'velocity')

index1 =

 2 1

The first column of index1 contains the index of the corresponding state specification in the
opspec.States property. The second column is 1 for a named state.

Get Index of Simscape State from Operating Point Specification

Open model.

mdl = 'scdTanks_simscape';
open_system(mdl)

 getStateIndex

18-121

Create an operating point specification for the model.

opspec = operspec(mdl);

The States property of the operating point specification object contains one state specification for
each Simscape state in the model.

To obtain the index of a specification that corresponds to a Simscape state, specify the state name.
For example, get the index of the pressure state of Tank3.

idx = getStateIndex(opspec,'scdTanks_simscape.Tank3.pressure')

idx =

 18 1

The first column of idx contains the index of the corresponding state specification in
opspec.States. The second column is 1 for a Simscape state.

View the specification in opspec.States for this state.

opspec.States(idx(1))

ans =

18 Functions

18-122

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) scdTanks_simscape.Tank3.pressure
 0 false true -Inf Inf -Inf Inf

Input Arguments
op — Operating point specification or operating point
OperatingSpec object | OperatingPoint object | OperatingReport object

Operating point specification or operating point for a Simulink model, specified as an
OperatingSpec, OperatingPoint, or OperatingReport object.

name — Block path or state name
character vector | string

Block path or state name that corresponds to a state specification in the States property of op,
specified as a character vector or string that contains one of the following:

• Block path of a block in the Simulink model that contains unnamed states.
• Name of a named state in a Simulink or Simscape block.

To see all the states that have state specifications, view the States property of op.

op.States

element — State element index
positive integer | vector of positive integers

State element index, specified as a positive integer less than or equal to the number of state elements
in the block or state specified by name, or a vector of such integers. By default, if you do not specify
element, getStateIndex returns the indices of all elements in the selected state specification. For
an example, see “Get Index of Specified State Element of Operating Point Specification” on page 18-
119.

Output Arguments
index — State index
2-element row vector | 2-column array

State index, returned as a 2-element row vector when element is an integer, or a 2-column array
when element is a vector. Each row of index contains the index for a single model state.

The first column of index contains the index of the corresponding state specification in the States
property of op. The second column contains the element index within the state specification.

Using index, you can specify the state portion of a custom mapping for customized trimming of
Simulink models. For more information, see the CustomMappingFcn property of operspec.

Version History
Introduced in R2017a

 getStateIndex

18-123

See Also
getInputIndex | getOutputIndex | operspec | findop

Topics
“Compute Operating Points Using Custom Constraints and Objective Functions” on page 1-59

18 Functions

18-124

getstatestruct
Obtain state values from operating point

Syntax
x = getstatestruct(op)

Description
x = getstatestruct(op) extracts a structure of state values from a specified operating point
object. You can use the state structure to set initial state values for your Simulink model.

Examples

Initialize Model with Operating Point Values

Open the scdplane model and create an operating point. You can also compute a trimmed operating
point or obtain an operating point snapshot.

mdl = 'scdplane';
open_system(mdl)
op = operpoint(mdl);

Extract the state values from the operating point.

xInitial = getstatestruct(op);

Extract the input values from the operating point.

uInitial = getinputstruct(op);

To view the values of the states or inputs within this structure, use dot notation. For example, view
the input values.

uInitial.signals.values

ans = 0

Set the initial state values in the model.

set_param(mdl,'LoadInitialState','on','InitialState','xInitial')

Set the initial input values in the model.

set_param(mdl,'LoadExternalInput','on','ExternalInput','uInitial')

Input Arguments
op — Operating point
OperatingPoint object | OperatingSpec object | OperatingReport object | array

 getstatestruct

18-125

Operating point for a Simulink model, specified as an OperatingPoint, OperatingSpec, or
OperatingReport object. You can also specify a homogeneous array of any of these objects.

Output Arguments
x — State values
structure | structure array

State values, returned as a structure with the following fields.

• signals — State values and information
• time — Simulation time for state values, returned as 0.

If op is an array, x is returned as a structure array with the same dimensions as op.

Version History
Introduced before R2006a

See Also
getinputstruct | operpoint

18 Functions

18-126

getxu
States and inputs from operating points

Syntax
x = getxu(op)
[x,u] = getxu(op)
[x,u,xstruct] = getxu(op)

Description
getxu extracts state and input values from an operating point. Use this function for applications that
require state and input values to be specified in vector format, such as when using an operating in an
optimization problem using fmincon.

Note Do not use getxu when setting initial state and input values using the Data Import/Export
pane of the Configuration Parameters dialog box. Instead, use getstatestruct and
getinputstruct.

x = getxu(op) extracts a vector of state values, x, from operating point, op.

[x,u] = getxu(op) also extracts a vector of input values, u, from the operating point. The
ordering of inputs in u corresponds to the root-level input port numbering in Simulink.

[x,u,xstruct] = getxu(op) also extracts a structure of state values, xstruct, from the
operating point. The structure of state values, xstruct, has the same format as that returned from a
Simulink simulation.

Examples

Extract State and Input Values from Operating Point

Create an operating point for the magball model.

op = operpoint('magball');

View the states in the operating point.

op.States

ans =
 x

(1.) magball/Controller/PID Controller/Filter/Cont. Filter/Filter
 0
(2.) magball/Controller/PID Controller/Integrator/Continuous/Integrator
14.0071

 getxu

18-127

(3.) magball/Magnetic Ball Plant/Current
7.0036
(4.) magball/Magnetic Ball Plant/dhdt
 0
(5.) magball/Magnetic Ball Plant/height
 0.05

Extract vectors of state and input values and a state structure from the operating point.

[x,u,xstruct] = getxu(op)

x = 5×1

 0
 14.0071
 7.0036
 0
 0.0500

u =

 []

xstruct = struct with fields:
 time: 0
 signals: [1x5 struct]

View the states within the state structure.

xstruct.signals

ans=1×5 struct array with fields:
 values
 dimensions
 label
 blockName
 stateName
 inReferencedModel
 sampleTime

The values field shows the state values for the operating point. The blockName field shows the
names of the block that contain each state.

Version History
Introduced before R2006a

See Also
operpoint | operspec

18 Functions

18-128

highlight
Package: linearize.advisor

Highlight linearization path in Simulink model

Syntax
highlight(advisor)

Description
highlight(advisor) highlights the blocks on the linearization path for the model linearization
associated with a LinearizationAdvisor object. The software identifies blocks that are on or off
the linearization path. Also, for blocks that are on the linearization path, the software indicates
whether they contribute to the linearization result.

Examples

Highlight Linearization Path

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Highlight the linearization path.

highlight(advisor)

 highlight

18-129

The Simulink model is highlighted as follows:

• Blue blocks are on the linearization path and contribute to the model linearization.
• Red blocks are on the linearization path and do not contribute to the model linearization.
• Gray blocks are not on the linearization path.

Input Arguments
advisor — Diagnostic information for block linearizations
LinearizationAdvisor object

Diagnostic information for block linearizations, specified as a LinearizationAdvisor object.

More About
Linearization Path

A block is on the linearization path if there is a signal path from at least one linearization input to at
least one linearization output that passes through the block.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor

18 Functions

18-130

Functions
advise | find | getBlockInfo

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28

 highlight

18-131

initopspec
Initialize operating point specification values

Syntax
opspecNew = initopspec(opspec,op)

opspecNew = initopspec(opspec,x)
opspecNew = initopspec(opspec,x,u)

opspecNew = initopspec(opspec,xstruct)
opspecNew = initopspec(opspec,xstruct,u)

Description
opspecNew = initopspec(opspec,op) updates the operating point specification opspec with
the values in the operating point op and returns a new operating point specification.

opspecNew = initopspec(opspec,x) updates the operating point specification using the state
values in the vector x.

opspecNew = initopspec(opspec,x,u) updates the operating point specification using the state
and input values in the vectors x and u, respectively.

opspecNew = initopspec(opspec,xstruct) updates the operating point specification using the
state values in the structure xstruct. You can use this syntax if your operating point specification
does not have input values.

opspecNew = initopspec(opspec,xstruct,u) updates the operating point specification using
the state and input values in the structure xstruct and vector u, respectively.

Examples

Update Operating Point Specification

Find an operating point for the model using a simulation snapshot.

mdl = 'scdplane';
op = findop(mdl,10);

Create an operating point specification for your model.

opspec = operspec(mdl);

Update the operating point specification using the computed operating point values.

newopspec = initopspec(opspec,op);

18 Functions

18-132

Input Arguments
opspec — Operating point specification
OperatingSpec object

Operating point specification for a Simulink model, specified as an OperatingSpec object. To create
an OperatingSpec object for your model, use the operspec function.

op — Operating point
OperatingPoint object | OperatingSpec object | OperatingReport object

Operating point for a Simulink model, specified as an OperatingPoint, OperatingSpec, or
OperatingReport object.

x — State values
vector

State values, specified as vector. The order of values in x must match the state order in opspec.

You can create x using getxu.

u — Input values
vector

Input values, specified as a vector. The order of values in u must match the state order in opspec.

You can create u using getxu.

xstruct — State information
structure

State information, specified as a structure. Create xstruct using getstatestruct.

Output Arguments
opspecNew — Updated operating point specification
OperatingSpec object

Updated operating point specification, returned as an OperatingSpec object.

Alternatives
As an alternative to the initopspec function, initialize operating point specification values in the
Model Linearizer app. For more information, see “Import and Export Specifications for Operating
Point Search” on page 1-54.

Version History
Introduced before R2006a

See Also
findop | getstatestruct | getxu | operpoint | operspec

 initopspec

18-133

linearize
Linear approximation of Simulink model or subsystem

Syntax
linsys = linearize(model,io)
linsys = linearize(model,io,op)
linsys = linearize(model,io,param)
linsys = linearize(model,io,blocksub)
linsys = linearize(model,io,options)
linsys = linearize(model,io,op,param,blocksub,options)

linsys = linearize(___ ,'StateOrder',stateorder)

[linsys,linop] = linearize(___)
[linsys,linop,info] = linearize(___)

Description
linsys = linearize(model,io) returns a linear approximation of the nonlinear Simulink model
model at the model operating point using the analysis points specified in io. Using io, you can
specify individual analysis points or you can specify a block or subsystem to linearize. If you omit io,
then linearize uses the root-level inports and outports of the model as analysis points.

linsys = linearize(model,io,op) linearizes the model at operating point op.

linsys = linearize(model,io,param) linearizes the model using the parameter value
variations specified in param. You can vary any model parameter with a value given by a variable in
the model workspace, the MATLAB workspace, or a data dictionary.

linsys = linearize(model,io,blocksub) linearizes the model using the substitute block or
subsystem linearizations specified in blocksub.

linsys = linearize(model,io,options) linearizes the model using additional linearization
options.

linsys = linearize(model,io,op,param,blocksub,options) linearizes the model using any
combination of op, param, blocksub, and options in any order.

linsys = linearize(___ ,'StateOrder',stateorder) specifies the order of the states in the
linearized model for any of the previous syntaxes.

[linsys,linop] = linearize(___) returns the operating point at which the model was
linearized. Use this syntax when linearizing at simulation snapshots or when varying parameters
during linearization.

[linsys,linop,info] = linearize(___) returns additional linearization information. To
select the linearization information to return in info, enable the corresponding option in options.

18 Functions

18-134

Examples

Linearize Model Using Specified I/O Set

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Specify a linearization input at the output of the PID Controller block, which is the input signal for the
Water-Tank System block.

io(1) = linio('watertank/PID Controller',1,'input');

Specify a linearization output point at the output of the Water-Tank System block. Specifying the
output point as open-loop removes the effects of the feedback signal on the linearization without
changing the model operating point.

io(2) = linio('watertank/Water-Tank System',1,'openoutput');

Linearize the model using the specified I/O set.

linsys = linearize(mdl,io);

linsys is the linear approximation of the plant at the model operating point.

Linearize Model at Specified Operating Point

Open the Simulink model.

mdl = 'magball';
open_system(mdl)

 linearize

18-135

Find a steady-state operating point at which the ball height is 0.05. Create a default operating point
specification, and set the height state to a known value.

opspec = operspec(mdl);
opspec.States(5).Known = 1;
opspec.States(5).x = 0.05;

Trim the model to find the operating point.

options = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,options);

Specify linearization input and output signals to compute the closed-loop transfer function.

io(1) = linio('magball/Desired Height',1,'input');
io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Linearize the model at the specified operating point using the specified I/O set.

linsys = linearize(mdl,io,op);

Linearize Model at Simulation Snapshot Time

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

18 Functions

18-136

To compute the closed-loop transfer function, first specify the linearization input and output signals.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

Simulate sys for 10 seconds and linearize the model.

linsys = linearize(mdl,io,10);

Batch Linearize Model for Parameter Variations

Open the Simulink model.

mdl = 'scdcascade';
open_system(mdl)

Specify parameter variations for the outer-loop controller gains, Kp1 and Ki1. Create parameter
grids for each gain value.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);
[Kp1_grid,Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

Create a parameter value structure with fields Name and Value.

params(1).Name = 'Kp1';
params(1).Value = Kp1_grid;
params(2).Name = 'Ki1';
params(2).Value = Ki1_grid;

params is a 6-by-4 parameter value grid, where each grid point corresponds to a unique combination
of Kp1 and Ki1 values.

Define linearization input and output points for computing the closed-loop response of the system.

io(1) = linio('scdcascade/setpoint',1,'input');
io(2) = linio('scdcascade/Sum',1,'output');

 linearize

18-137

Linearize the model at the model operating point using the specified parameter values.

linsys = linearize(mdl,io,params);

Specify Substitute Block Linearization and Linearize Model

Open the Simulink model.

mdl = 'scdpwm';
open_system(mdl)

Extract linearization input and output from the model.

io = getlinio(mdl);

Linearize the model at the model operating point.

linsys = linearize(mdl,io)

linsys =

 D =
 Step
 Plant Model 0

Static gain.

The discontinuities in the Voltage to PWM block cause the model to linearize to zero. To treat this
block as a unit gain during linearization, specify a substitute linearization for this block.

blocksub.Name = 'scdpwm/Voltage to PWM';
blocksub.Value = 1;

Linearize the model using the specified block substitution.

linsys = linearize(mdl,blocksub,io)

linsys =

 A =
 State Space(State Space(
 State Space(0.9999 -0.0001
 State Space(0.0001 1

 B =
 Step

18 Functions

18-138

 State Space(0.0001
 State Space(5e-09

 C =
 State Space(State Space(
 Plant Model 0 1

 D =
 Step
 Plant Model 0

Sample time: 0.0001 seconds
Discrete-time state-space model.

Specify Sample Time of Linearized Model

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

To linearize the Water-Tank System block, specify a linearization input and output.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'openoutput');

Create a linearization option set, and specify the sample time for the linearized model.

options = linearizeOptions('SampleTime',0.1);

Linearize the plant using the specified options.

linsys = linearize(mdl,io,options)

linsys =

 A =
 H
 H 0.995

 linearize

18-139

 B =
 PID Controll
 H 0.02494

 C =
 H
 Water-Tank S 1

 D =
 PID Controll
 Water-Tank S 0

Sample time: 0.1 seconds
Discrete-time state-space model.

The linearized plant is a discrete-time state-space model with a sample time of 0.1.

Linearize Block or Subsystem at Model Operating Point

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Specify the full block path for the block you want to linearize.

blockpath = 'watertank/Water-Tank System';

Linearize the specified block at the model operating point.

linsys = linearize(mdl,blockpath);

Linearize Block or Subsystem at Trimmed Operating Point

Open Simulink model.

mdl = 'magball';
open_system(mdl)

18 Functions

18-140

Find a steady-state operating point at which the ball height is 0.05. Create a default operating point
specification, and set the height state to a known value.

opspec = operspec(mdl);
opspec.States(5).Known = 1;
opspec.States(5).x = 0.05;

options = findopOptions('DisplayReport','off');
op = findop(mdl,opspec,options);

Specify the block path for the block you want to linearize.

blockpath = 'magball/Magnetic Ball Plant';

Linearize the specified block at the specified operating point.

linsys = linearize(mdl,blockpath,op);

Specify State Order in Linearized Model

Open the Simulink model.

mdl = 'magball';
open_system(mdl)

Linearize the plant at the model operating point.

 linearize

18-141

blockpath = 'magball/Magnetic Ball Plant';
linsys = linearize(mdl,blockpath);

View the default state order for the linearized plant.

linsys.StateName

ans =

 3x1 cell array

 {'height' }
 {'Current'}
 {'dhdt' }

Linearize the plant and reorder the states in the linearized model. Set the rate of change of the height
as the second state.

stateorder = {'magball/Magnetic Ball Plant/height';...
 'magball/Magnetic Ball Plant/dhdt';...
 'magball/Magnetic Ball Plant/Current'};
linsys = linearize(mdl,blockpath,'StateOrder',stateorder);

View the new state order.

linsys.StateName

ans =

 3x1 cell array

 {'height' }
 {'dhdt' }
 {'Current'}

Linearize Model at Multiple Snapshot Times

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

18 Functions

18-142

To compute the closed-loop transfer function, first specify the linearization input and output signals.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'output');

Simulate sys and linearize the model at 0 and 10 seconds. Return the operating points that
correspond to these snapshot times; that is, the operating points at which the model was linearized.

[linsys,linop] = linearize(mdl,io,[0,10]);

Batch Linearize Plant Model and Obtain Linearization Offsets

Open the Simulink model.

mdl = 'watertank';
open_system(mdl)

Vary parameters A and b within 10% of their nominal values.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,4));

Create a parameter structure array, specifying the name and grid points for each parameter.

params(1).Name = 'A';
params(1).Value = A_grid;

 linearize

18-143

params(2).Name = 'b';
params(2).Value = b_grid;

Create a default operating point specification for the model.

opspec = operspec(mdl);

Trim the model using the specified operating point specification, parameter grid. Suppress the
display of the operating point search report.

opt = findopOptions('DisplayReport','off');
[op,opreport] = findop(mdl,opspec,params,opt);

op is a 3-by-4 array of operating point objects that correspond to the specified parameter grid points.

Specify the block path for the plant model.

blockpath = 'watertank/Desired Water Level';

To store offsets during linearization, create a linearization option set and set StoreOffsets to true.

options = linearizeOptions('StoreOffsets',true);

Batch linearize the plant at the trimmed operating points, using the specified I/O points and
parameter variations.

[linsys,linop,info] = linearize(mdl,blockpath,op,params,options);

You can use the offsets in info.Offsets when configuring an LPV System block.

info.Offsets

ans =

 3x4 struct array with fields:

 x
 dx
 u
 y
 StateName
 InputName
 OutputName
 Ts

Input Arguments
model — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the current
working folder or on the MATLAB path.

io — Analysis points
linearization I/O object | vector of linearization I/O objects | string | character vector

18 Functions

18-144

Analysis points for linearizing model, specified as one of the following:

• Linearization I/O object or a vector of linearization I/O objects — Specify a list of one or more
inputs, outputs, and loop openings. To create the list of analysis points:

• Define the inputs, outputs, and openings using the linio function.
• If the inputs, outputs, and openings are specified in the Simulink model, extract these points

from the model using the getlinio function.
• String or character vector — Specify the full path of a block or subsystem to linearize. The

software treats the inports and outports of the specified block as open-loop inputs and outputs,
which isolates the block from the rest of the model before linearization.

The analysis points defined in io must correspond to the Simulink model model or some normal-
mode model reference in the model hierarchy.

If you omit io, then linearize uses the root-level inports and outports of the model as analysis
points.

For more information on specifying linearization inputs, outputs, and openings, see “Specify Portion
of Model to Linearize” on page 2-10.

op — Operating point
OperatingPoint object | array of OperatingPoint objects | vector of positive scalars

Operating point for linearization, specified as one of the following:

• OperatingPoint object, created using:

• operpoint
• findop with either a single operating point specification, or a single snapshot time.

• Array of OperatingPoint objects, specifying multiple operating points. To create an array of
OperatingPoint objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more information, see

“Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70.
• Batch trim your model using parameter variations. For more information, see “Batch Compute

Steady-State Operating Points for Parameter Variation” on page 1-74.
• Vector of positive scalars representing one or more simulation snapshot times. The software

simulates sys and linearizes the model at the specified snapshot times.

If you also specify parameter variations using param, the software simulates the model for each
snapshot time and parameter grid point combination. This operation can be computationally
expensive.

If you specify parameter variations using param, and the parameters:

• Affect the model operating point, then specify op as an array of operating points with the same
dimensions as the parameter value grid. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before linearization. For more
information, see “Batch Linearize Model at Multiple Operating Points Derived from Parameter
Variations” on page 3-16.

 linearize

18-145

• Do not affect the model operating point, then specify op as a single operating point.

blocksub — Substitute linearizations for blocks and subsystems
structure | structure array

Substitute linearizations for blocks and subsystems, specified as a structure or an n-by-1 structure
array, where n is the number of blocks for which you want to specify a linearization. Use blocksub to
specify a custom linearization for a block or subsystem. For example, you can specify linearizations
for blocks that do not have analytic linearizations, such as blocks with discontinuities or triggered
subsystems.

To study the effects of varying the linearization of a block on the model dynamics, you can batch
linearize your model by specifying multiple substitute linearizations for a block.

If you substitute a linearization with a sample time that differs from that of the original block or
subsystem, it is best practice to set the overall linearization sample time (options.SampleTime) to
a nondefault value.

Each substitute linearization structure has the following fields.

Name — Block path
character vector | string

Block path of the block for which you want to specify the linearization, specified as a character vector
or string.

Value — Substitute linearization
double | double array | LTI model | model array | structure

Substitute linearization for the block, specified as one of the following:

• Double — Specify the linearization of a SISO block as a gain.
• Array of doubles — Specify the linearization of a MIMO block as an nu-by-ny array of gain values,

where nu is the number of inputs and ny is the number of outputs.
• LTI model, uncertain state-space model, or uncertain real object — The I/O configuration of the
specified model must match the configuration of the block specified by Name. Using an uncertain
model requires Robust Control Toolbox software.

• Array of LTI models, uncertain state-space models, or uncertain real objects — Batch linearize the
model using multiple block substitutions. The I/O configuration of each model in the array must
match the configuration of the block for which you are specifying a custom linearization. If you:

• Vary model parameters using param and specify Value as a model array, the dimensions of
Value must match the parameter grid size.

• Specify op as an array of operating points and Value as a model array, the dimensions of
Value must match the size of op.

• Define block substitutions for multiple blocks, and specify Value as an array of LTI models for
one or more of these blocks, the dimensions of the arrays must match.

• Structure with the following fields.

18 Functions

18-146

Field Description
Specification Block linearization, specified as a character vector that contains

one of the following:

• MATLAB expression
• Name of a “Custom Linearization Function” on page 18-152 in

your current working folder or on the MATLAB path

The specified expression or function must return one of the
following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires

Robust Control Toolbox software)

The I/O configuration of the returned model must match the
configuration of the block specified by Name.

Type Specification type, specified as one of the following:

• 'Expression'
• 'Function'

ParameterNames Linearization function parameter names, specified as a cell array of
character vectors. Specify ParameterNames only when Type =
'Function' and your block linearization function requires input
parameters. These parameters only impact the linearization of the
specified block.

You must also specify the corresponding
blocksub.Value.ParameterValues field.

ParameterValues Linearization function parameter values, specified as a vector of
doubles. The order of parameter values must correspond to the
order of parameter names in
blocksub.Value.ParameterNames. Specify ParameterValues
only when Type = 'Function' and your block linearization
function requires input parameters.

param — Parameter samples
structure | structure array

Parameter samples for linearization, specified as one of the following:

• Structure — Vary the value of a single parameter by specifying parameters as a structure with the
following fields.

• Name — Parameter name, specified as a character vector or string. You can specify any model
parameter that is a variable in the model workspace, the MATLAB workspace, or a data
dictionary. If the variable used by the model is not a scalar variable, specify the parameter
name as an expression that resolves to a numeric scalar value. For example, use the first
element of vector V as a parameter.

parameters.Name = 'V(1)';

 linearize

18-147

• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range.

parameters.Name = 'A';
parameters.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values of
parameters A and b in the 10% range.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
parameters(1).Name = 'A';
parameters(1).Value = A_grid;
parameters(2).Name = 'b';
parameters(2).Value = b_grid;

For more information, see “Specify Parameter Samples for Batch Linearization” on page 3-43.

If param specifies tunable parameters only, the software batch linearizes the model using a single
model compilation.

To compute the offsets required by the LPV System block, specify param, and set
options.StoreOffsets to true. You can then return additional linearization information in info,
and extract the offsets using getOffsetsForLPV.

stateorder — State order in linearization results
cell array of character vectors

State order in linearization results, specified as a cell array of block paths or state names. The order
of the block paths and states in stateorder indicates the order of the states in linsys.

You can specify block paths for any blocks in model that have states, or any named states in model.

You do not have to specify every block and state from model in stateorder. The states you specify
appear first in linsys, followed by the remaining states in their default order.

options — Linearization algorithm options
linearizeOptions option set

Linearization algorithm options, specified as a linearizeOptions option set.

Output Arguments
linsys — Linearization result
state-space model | array of state-space models

Linearization result, returned as a state-space model or an array of state-space models.

For most models, linsys is returned as an ss object or an array of ss objects. However, if model
contains one of the following blocks in the linearization path defined by io, then linsys returns the
specified type of state-space model.

18 Functions

18-148

Block linsys Type
Block with a substitution specified as a genss
object or tunable model object

genss

Block with a substitution specified as an
uncertain model, such as uss

uss

Sparse Second Order block mechss
Descriptor State-Space block configured to
linearize to a sparse model

sparss

The dimensions of linsys depend on the specified parameter variations and block substitutions, and
the operating points at which you linearize the model.

Note If you specify more than one of op, param, or blocksub.Value as an array, then their
dimensions must match.

Parameter Variation Block Substitution Linearize At... Resulting linsys
Dimensions

No parameter variation No block substitution Model operating point Single state-space
modelSingle operating point,

specified as an
OperatingPoint
object or snapshot time
using op
N1-by-...-by-Nm array
of OperatingPoint
objects, specified by op

N1-by-...-by-Nm

Ns snapshots, specified
as a vector of snapshot
times using op

Column vector of length
Ns

N1-by-...-by-Nm model
array for at least one
block, specified by
blocksub.Value

Model operating point N1-by-...-by-Nm

Single operating point,
specified as an
OperatingPoint
object or snapshot time
using op
N1-by-...-by-Nm array
of operating points,
specified as an array of
OperatingPoint
objects using op
Ns snapshots, specified
as a vector of snapshot
times using op

Ns-by-N1-by-...-by-Nm

 linearize

18-149

Parameter Variation Block Substitution Linearize At... Resulting linsys
Dimensions

N1-by-...-by-Nm
parameter grid,
specified by param

Either no block
substitution or an N1-
by-...-by-Nm model
array for at least one
block, specified by
blocksub.Value

Model operating point N1-by-...-by-Nm

Single operating point,
specified as an
OperatingPoint
object or snapshot time
using op
N1-by-...-by-Nm array
of OperatingPoint
objects, specified by op
Ns snapshots, specified
as a vector of snapshot
times using op

Ns-by-N1-by-...-by-Nm

For example, suppose:

• op is a 4-by-3 array of OperatingPoint objects and you do not specify parameter variations or
block substitutions. In this case, linsys is a 4-by-3 model array.

• op is a single OperatingPoint object and param specifies a 3-by-4-by-2 parameter grid. In this
case, linsys is a 3-by-4-by-2 model array.

• op is a row vector of positive scalars with two elements and you do not specify param. In this
case, linsys is a column vector with two elements.

• op is a column vector of positive scalars with three elements and param specifies a 5-by-6
parameter grid. In this case, linsys is a 3-by-5-by-6 model array.

• op is a single operating point object, you do not specify parameter variations, and
blocksub.Value is a 2-by-3 model array for one block in the model. In this case, linsys is a 2-
by-3 model array.

• op is a column vector of positive scalars with four elements, you do not specify parameter
variations, and blocksub.Value is a 1-by-2 model array for one block in the model. In this case,
linsys is a 4-by-1-by-2 model array.

For more information on model arrays, see “Model Arrays”.

linop — Operating point
OperatingPoint object | array of OperatingPoint objects

Operating point at which the model was linearized, returned as an OperatingPoint object or an
array of OperatingPoint objects with the same dimensions as linsys. Each element of linop is
the operating point at which the corresponding linsys model was obtained.

If you specify op as a single operating pointOperatingPoint object or an array of
OperatingPoint objects, then linop is a copy of op. If you specify op as a single operating point
object and also specify parameter variations using param, then linop is an array with the same
dimensions as the parameter grid. In this case, the elements of linop are scalar expanded copies of
op.

To determine whether the model was linearized at a reasonable operating point, view the states and
inputs in linop.

18 Functions

18-150

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets that correspond to the operating point at which the model was linearized,
returned as [] if options.StoreOffsets is false. Otherwise, Offsets is returned as one of the
following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with the same

dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx, where nx

is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length ny, where ny

is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu, where nu

is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for discrete-time

systems, returned as a column vector of length nx.
StateName State names, returned as a cell array that contains nx elements that match the names in

linsys.StateName.
InputName Input names, returned as a cell array that contains nu elements that match the names

in linsys.InputName.
OutputNam
e

Output names, returned as a cell array that contains ny elements that match the names
in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the sample
time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets. To do so,
first convert them to the required format using getOffsetsForLPV. For an example, see
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor objects

Linearization diagnostic information, returned as [] if options.StoreAdvisor is false.
Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor object.
• If linsys is an array of state-space models, Advisor is an array of LinearizationAdvisor

objects with the same dimensions as linsys.

 linearize

18-151

LinearizationAdvisor objects store linearization diagnostic information for individual linearized
blocks. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

More About
Custom Linearization Function

You can specify a substitute linearization for a block or subsystem in your Simulink model using a
custom function on the MATLAB path.

Your custom linearization function must have one BlockData input argument, which is a structure
that the software creates and passes to the function. BlockData has the following fields:

Field Description
BlockName Name of the block for which you are specifying a custom linearization.
Parameters Block parameter values, specified as a structure array with Name and Value fields.

Parameters contains the names and values of the parameters you specify in the
blocksub.Value.ParameterNames and blocksub.Value.ParameterValues
fields.

Inputs Input signals to the block for which you are defining a linearization, specified as a
structure array with one structure for each block input. Each structure in Inputs
has the following fields:

Field Description
BlockName Full block path of the block whose output connects to the

corresponding block input.
PortIndex Output port of the block specified by BlockName that

connects to the corresponding block input.
Values Value of the signal specified by BlockName and

PortIndex. If this signal is a vector signal, then Values
is a vector with the same dimension.

ny Number of output channels of the block linearization.
nu Number of input channels of the block linearization.
BlockLineari
zation

Current default linearization of the block, specified as a state-space model. You can
specify a block linearization that depends on the default linearization using
BlockLinearization.

Your custom function must return a model with nu inputs and ny outputs. This model must be one of
the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires Robust Control Toolbox software)

For example, the following function multiplies the current default block linearization, by a delay of Td
= 0.5 seconds. The delay is represented by a Thiran filter with sample time Ts = 0.1. The delay
and sample time are parameters stored in BlockData.

18 Functions

18-152

function sys = myCustomFunction(BlockData)
 Td = BlockData.Parameters(1).Value;
 Ts = BlockData.Parameters(2).Value;
 sys = BlockData.BlockLinearization*Thiran(Td,Ts);
end

Save this function to a location on the MATLAB path.

To use this function as a custom linearization for a block or subsystem, specify the
blocksub.Value.Specification and blocksub.Value.Type fields.

blocksub.Value.Specification = 'myCustomFunction';
blocksub.Value.Type = 'Function';

To set the delay and sample time parameter values, specify the blocksub.Value.ParameterNames
and blocksub.Value.ParameterValues fields.

blocksub.Value.ParameterNames = {'Td','Ts'};
blocksub.Value.ParameterValues = [0.5 0.1];

Algorithms
Model Properties for Linearization

By default, linearize automatically sets the following Simulink model properties:

• BufferReuse = 'off'
• RTWInlineParameters = 'on'
• BlockReductionOpt = 'off'
• SaveFormat = 'StructureWithTime'

After linearization, Simulink restores the original model properties.

Block-by-Block Linearization

Simulink Control Design software linearizes models using a block-by-block approach. The software
individually linearizes each block in your Simulink model and produces the linearization of the overall
system by combining the individual block linearizations.

The software determines the input and state levels for each block from the operating point, and
obtains the Jacobian for each block at these levels.

For some blocks, the software cannot compute an analytical linearization in this manner. For example:

• Some nonlinearities do not have a defined Jacobian.
• Some discrete blocks, such as state charts and triggered subsystems, tend to linearize to zero.
• Some blocks do not implement a Jacobian.
• Custom blocks, such as S-Function blocks and MATLAB Function blocks, do not have analytical

Jacobians.

You can specify a custom linearization for any such blocks for which you know the expected
linearization. If you do not specify a custom linearization, the software linearizes the model by
perturbing the block inputs and states and measuring the response to these perturbations. For each
input and state, the default perturbation level is:

 linearize

18-153

• 10−5 1 + x for double-precision values.
• 0.005 1 + x for single-precision values.

Here, x is the value of the corresponding input or state at the operating point. For information on how
to change perturbation levels for individual blocks, see “Change Perturbation Level of Blocks
Perturbed During Linearization” on page 2-150.

For more information, see “Linearize Nonlinear Models” on page 2-3 and “Exact Linearization
Algorithm” on page 2-177

Full-Model Numerical Perturbation

You can linearize your system using full-model numerical perturbation, where the software computes
the linearization of the full model by perturbing the values of root-level inputs and states. To do so,
create a linearizeOptions object and set the LinearizationAlgorithm property to one of the
following:

• 'numericalpert' — Perturb the inputs and states using forward differences; that is, by adding
perturbations to the input and state values. This perturbation method is typically faster than the
'numericalpert2' method.

• 'numericalpert2' — Perturb the inputs and states using central differences; that is, by
perturbing the input and state values in both positive and negative directions. This perturbation
method is typically more accurate than the 'numericalpert' method.

For each input and state, the software perturbs the model and computes a linear model based on the
model response to these perturbations. You can configure the state and input perturbation levels
using the NumericalPertRel linearization options.

Block-by-block linearization has several advantages over full-model numerical perturbation:

• Most Simulink blocks have a preprogrammed linearization that provides an exact linearization of
the block.

• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model simulation.
• Structurally nonminimal states are automatically removed.
• You can specify linearizations that include uncertainty (requires Robust Control Toolbox software).
• You can obtain detailed diagnostic information.
• When linearizing multirate models, you can use different rate conversion methods. Full-model

numerical perturbation can only use zero-order-hold rate conversion.

For more information, see “Linearize Nonlinear Models” on page 2-3 and “Exact Linearization
Algorithm” on page 2-177.

Alternatives
As an alternative to the linearize function, you can linearize models using one of the following
methods.

• To interactively linearize models, use the Model Linearizer app. For an example, see “Linearize
Simulink Model at Model Operating Point” on page 2-54.

18 Functions

18-154

• To obtain multiple transfer functions without modifying the model or creating an analysis point set
for each transfer function, use an slLinearizer interface. For an example, see “Vary Parameter
Values and Obtain Multiple Transfer Functions” on page 3-21.

Although both Simulink Control Design software and the Simulink linmod function perform block-by-
block linearization, Simulink Control Design linearization functionality has a more flexible user
interface and uses Control System Toolbox numerical algorithms. For more information, see
“Linearization Using Simulink Control Design Versus Simulink” on page 2-8.

Version History
Introduced in R2006a

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a linearizeOptions object and set the
StoreOffsets option to true. Then, linearize the model.

You can extract the offsets from the info output argument and convert them into the required format
for the LPV System block using the getOffsetsForLPV function.

R2014a: Block substitution input argument

You can specify a substitute linearization for a Simulink block or subsystem using the blocksub
input argument of the linearize function.

See Also
linearizeOptions | slLinearizer | findop | Model Linearizer

Topics
“Linearize Simulink Model at Model Operating Point” on page 2-54
“Linearize at Trimmed Operating Point” on page 2-66

 linearize

18-155

“Batch Linearize Model for Parameter Variations at Single Operating Point” on page 3-13

18 Functions

18-156

linearizeOptions
Set linearization options

Syntax
options = linearizeOptions
options = linearizeOptions(Name,Value)

Description
options = linearizeOptions returns the default linearization option set.

options = linearizeOptions(Name,Value) returns an option set with additional options
specified by one or more Name,Value pair arguments.

Examples

Create Option Set for Linearization

Create a linearization option set that sets the rate conversion method to the Tustin method with
prewarping at a frequency of 10 rad/s. Additionally, instruct the linearization not to omit blocks
outside the linearization path.

options = linearizeOptions('RateConversionMethod','prewarp',...
 'PreWarpFreq',10,...
 'BlockReduction','off');

Alternatively, use dot notation to set the values of options.

options = linearizeOptions;
options.RateConversionMethod = 'prewarp';
options.PreWarpFreq = 10;
options.BlockReduction = 'off';

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RateConversionMethod','prewarp' sets the rate conversion method to the Tustin
method with prewarping.

LinearizationAlgorithm — Algorithm used for linearization
'blockbyblock' (default) | 'numericalpert'

 linearizeOptions

18-157

Algorithm used for linearization, specified as the comma-separated pair consisting of
'LinearizationAlgorithm' and one of the following:

• 'blockbyblock' — Individually linearize each block in the model, and combine the results to
produce the linearization of the specified system.

• 'numericalpert' — Full-model numerical-perturbation linearization in which root-level inports
and states are perturbed using forward differences; that is, by adding perturbations to the input
and state values. This perturbation method is typically faster than the 'numericalpert2'
method.

• 'numericalpert2' — Full-model numerical-perturbation linearization in which root-level inports
and states are numerically perturbed using central differences; that is, by perturbing the input
and state values in both positive and negative directions. This perturbation method is typically
more accurate than the 'numericalpert' method.

The numerical perturbation linearization methods ignore linear analysis points set in the model and
use root-level inports and outports instead.

Block-by-block linearization has several advantages over full-model numerical perturbation:

• Many Simulink blocks have a preprogrammed exact linearization.
• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model simulation.
• Structurally nonminimal states are automatically removed.
• You can specify linearizations that include uncertainty (requires Robust Control Toolbox software).
• You can obtain detailed diagnostic information about the linearization.

SampleTime — Sample time of linearization result
-1 (default) | 0 | positive scalar

Sample time of linearization result, specified as the comma-separated pair consisting of
'SampleTime' and one of the following:

• -1 — Set the sample time to the least common multiple of the nonzero sample times in the model.
• 0 — Create a continuous-time model.
• Positive scalar — Specify the sample time for discrete-time systems.

UseFullBlockNameLabels — Flag indicating whether to truncate names of I/Os and states
'off' (default) | 'on'

Flag indicating whether to truncate names of I/Os and states in the linearized model, specified as the
comma-separated pair consisting of 'UseFullBlockNameLabels' and either:

• 'off' — Use truncated names for the I/Os and states in the linearized model.
• 'on' — Use the full block path to name the I/Os and states in the linearized model.

UseBusSignalLabels — Flag indicating whether to use bus signal channel numbers or
names
'off' (default) | 'on'

Flag indicating whether to use bus signal channel numbers or names to label the I/Os in the
linearized model, specified as the comma-separated pair consisting of 'UseBusSignalLabels' and
one of the following:

18 Functions

18-158

• 'off' — Use bus signal channel numbers to label I/Os on bus signals in the linearized model.
• 'on' — Use bus signal names to label I/Os on bus signals in the linearized model. Bus signal

names appear in the results when the I/O points are located at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing through only

virtual or nonvirtual subsystem boundaries

StoreOffsets — Flag indicating whether to compute linearization offsets
false (default) | true

Flag indicating whether to compute linearization offsets for inputs, outputs, states, and state
derivatives or updated states, specified as the comma-separated pair consisting of 'StoreOffsets'
and one of the following:

• false — Do not compute linearization offsets.
• true — Compute linearization offsets.

You can configure an LPV System block using linearization offsets. For an example, see “Approximate
Nonlinear Behavior Using Array of LTI Systems” on page 3-69

StoreAdvisor — Flag indicating whether to store diagnostic information
false (default) | true

Flag indicating whether to store diagnostic information during linearization, specified as the comma-
separated pair consisting of 'StoreAdvisor' and one of the following:

• false — Do not store linearization diagnostic information.
• true — Store linearization diagnostic information.

Linearization commands store and return diagnostic information in a LinearizationAdvisor
object. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

BlockReduction — Flag indicating whether to omit blocks that are not on the linearization
path
'on' (default) | 'off'

Flag indicating whether to omit blocks that are not in the linearization path, specified as the comma-
separated pair consisting of 'BlockReduction' and one of the following:

• 'on' — Return a linearized model that does not include states from noncontributing linearization
paths.

• 'off' — Return a linearized model that includes all the states of the model.

Dead linearization paths can include:

• Blocks that linearize to zero.
• Switch blocks that are not active along the path.

 linearizeOptions

18-159

• Disabled subsystems.
• Signals marked as open-loop linearization points.

For example, if this flag set to 'on', the linearization result of the model shown in the following
figure includes only two states. It does not include states from the two blocks outside the
linearization path. These states do not appear because these blocks are on a dead linearization path
with a block that linearizes to zero (the zero gain block).

This option applies only when LinearizationAlgorithm is 'blockbyblock'. BlockReduction
is always treated as 'on' when LinearizationAlgorithm is 'numericalpert' or
'numericalpert2'.

IgnoreDiscreteStates — Flag indicating whether to remove discrete-time states
'off' (default) | 'on'

Flag indicating whether to remove discrete-time states from the linearization, specified as the
comma-separated pair consisting of 'IgnoreDiscreteStates' and one of the following:

• 'off' — Always include discrete-time states.
• 'on' — Remove discrete states from the linearization. Use this option when performing

continuous-time linearization (SampleTime = 0) to accept the D value for all blocks with
discrete-time states.

This option applies only when LinearizationAlgorithm is 'blockbyblock'.

RateConversionMethod — Rate conversion method
'zoh' (default) | 'tustin' | 'prewarp' | 'upsampling_zoh' | 'upsampling_tustin' |
'upsampling_prewarp'

Method used for rate conversion when linearizing a multirate system, specified as the comma-
separated pair consisting of 'RateConversionMethod' and one of the following:

• 'zoh' — Zero-order hold rate conversion method
• 'tustin' — Tustin (bilinear) method
• 'prewarp' — Tustin method with frequency prewarp. When you use this method, set the

PreWarpFreq option to the desired prewarp frequency.
• 'upsampling_zoh' — Upsample discrete states when possible, and use 'zoh' otherwise.
• 'upsampling_tustin' — Upsample discrete states when possible, and use 'tustin'

otherwise.
• 'upsampling_prewarp' — Upsample discrete states when possible, and use 'prewarp'

otherwise. When you use this method, set the PreWarpFreq option to the desired prewarp
frequency.

18 Functions

18-160

For more information on rate conversion and linearization of multirate models, see:

• “Linearize Multirate Models” on page 2-141
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147
• “Continuous-Discrete Conversion Methods”

Note If you use a rate conversion method other than 'zoh', the converted states no longer have the
same physical meaning as the original states. As a result, the state names in the resulting LTI system
change to '?'.

This option applies only when LinearizationAlgorithm is 'blockbyblock'.

PreWarpFreq — Prewarp frequency
0 (default) | positive scalar

Prewarp frequency in rad/s, specified as the comma-separated pair consisting of 'PreWarpFreq'
and a nonnegative scalar. This option applies only when RateConversionMethod is either
'prewarp' or 'upsampling_prewarp'.

UseExactDelayModel — Flag indicating whether to compute linearization with exact delays
'off' (default) | 'on'

Flag indicating whether to compute linearization with exact delays, specified as the comma-separated
pair consisting of 'UseExactDelayModel' and one of the following:

• 'off' — Return a linear model with approximate delays.
• 'on' — Return a linear model with exact delays.

This option applies only when LinearizationAlgorithm is 'blockbyblock'.

AreParamsTunable — Flag indicating whether to recompile the model when varying
parameter values
true (default) | false

Flag indicating whether to recompile the model when varying parameter values for linearization,
specified as the comma-separated pair consisting of 'AreParamsTunable' and one of the following:

• true — Do not recompile the model when all varying parameters are tunable. If any varying
parameters are not tunable, recompile the model for each parameter grid point, and issue a
warning message.

• false — Recompile the model for each parameter grid point. Use this option when you vary the
values of nontunable parameters.

For more information about model compilation when you linearize with parameter variation, see
“Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7.

NumericalPertRel — Numerical perturbation level
1e-5 (default) | positive scalar

Numerical perturbation level, specified as the comma-separated pair consisting of
'NumericalPertRel' and a positive scalar. This option applies only when
LinearizationAlgorithm is 'numericalpert' or 'numericalpert2'.

 linearizeOptions

18-161

The perturbation levels for the system states are:

NumericalPertRel+10−3 × NumericalPertRel × x

The perturbation levels for the system inputs are:

NumericalPertRel+10−3 × NumericalPertRel × u

You can override these values using the NumericalXPert or NumericalUPert options.

NumericalXPert — State perturbation levels
[] (default) | operating point object

State perturbation levels, specified as the comma-separated pair consisting of 'NumericalXPert'
and an operating point object. This option applies only when LinearizationAlgorithm is
'numericalpert' or 'numericalpert2'.

To set individual perturbation levels for each state:

1 Create an operating point object for the model using the operpoint command.

xPert = operpoint('watertank');
2 Set the state values in the operating point object to the perturbation levels.

xPert.States(1).x = 2e-3;
xPert.States(2).x = 3e-3;

3 Set the value of the NumericalXPert option to the operating point object.

opt = linearizeOptions('LinearizationAlgorithm','numericalpert');
opt.NumericalXPert = xPert;

If NumericalXPert is empty, [], the linearization algorithm derives the state perturbation levels
using NumericalPertRel.

NumericalUPert — Input perturbation levels
[] (default) | operating point object

Input perturbation levels, specified as the comma-separated pair consisting of 'NumericalUPert'
and an operating point object. This option applies only when LinearizationAlgorithm is
'numericalpert' or 'numericalpert2'.

To set individual perturbation levels for each input:

1 Create an operating point object for the model using the operpoint command.

uPert = operpoint('watertank');
2 Set the input values in the operating point object to the perturbation levels.

uPert.Inputs(1).x = 3e-3;
3 Set the value of the NumericalUPert option to the operating point object.

opt = linearizeOptions('LinearizationAlgorithm','numericalpert');
opt.NumericalUPert = uPert;

If NumericalUPert is empty, [], the linearization algorithm derives the input perturbation levels
using NumericalPertRel.

18 Functions

18-162

Output Arguments
options — Linearization options
linearizeOptions option set

Linearization options, returned as a linearizeOptions option set.

Version History
Introduced in R2013b

See Also
linearize | slLinearizer | ulinearize | linlft

 linearizeOptions

18-163

linio
Create linear analysis point for Simulink model, Linear Analysis Plots block, or Model Verification
block

Syntax
io = linio(block,port)
io = linio(block,port,type)
io = linio(block,port,type,[],busElement)

Description
io = linio(block,port) creates a linearization I/O object that represents an input perturbation
analysis point for the signal that originates from the specified output port of a Simulink block.

io = linio(block,port,type) creates an analysis point of the specified type.

io = linio(block,port,type,[],busElement) creates an analysis point for an element of a
bus signal.

Examples

Create Analysis Points for Simulink Model

Open Simulink model.

open_system('magball')

To specify multiple analysis points for linearization, create a vector of linearization I/O objects.

Create an input perturbation analysis point at the output port of the Controller block.

io(1) = linio('magball/Controller',1);

Create an open-loop output analysis point at the output of the Magnetic Ball Plant block. An open-
loop output point is an output measurement followed by a loop opening.

18 Functions

18-164

io(2) = linio('magball/Magnetic Ball Plant',1,'openoutput');

View the specified analysis points.

io

1x2 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: magball/Controller
- Port: 1
2. Linearization open-loop output located at the following signal:
- Block: magball/Magnetic Ball Plant
- Port: 1

You can use these analysis points to linearize only the Magnetic Ball Plant subsystem. To do so, pass
io to the linearize command or to an slLinearizer interface.

Unlike specifying analysis points directly in the Simulink model, when you create analysis points
using linio, no annotations are added to the model.

Select Individual Bus Element as Analysis Point

Open Simulink model.

mdl = 'scdbusselection';
open_system(mdl)

 linio

18-165

The COUNTERBUS signal, which originates from the COUNTERBUSCreator block, contains multiple
bus elements.

Specify the upper_saturation_limit bus element as a linearization input. Select this element
using dot notation, since it is within the nested limits bus.

io = linio('scdbusselection/COUNTERBUSCreator',1,'input',[],...
 'limits.upper_saturation_limit');

Input Arguments
block — Simulink block
character vector | string

Simulink block from which the analysis point originates, specified as a character vector or string that
contains its full block path. For example, to mark an analysis point at an output of the Controller
block in the magball model, specify block as 'magball/Controller'.

port — Output port
positive integer

Output port of block from which the analysis point originates, specified as a positive integer.

port must be a valid port number for the specified block.

18 Functions

18-166

type — Analysis point type
'input' (default) | 'output' | 'loopbreak' | ...

Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model to Linearize” on page 2-
10.

busElement — Bus element name
character vector | string

Bus element name, specified as a character vector or string. When adding elements within a nested
bus structure, use dot notation to access the elements of the nested bus. For an example, see “Select
Individual Bus Element as Analysis Point” on page 18-165.

Output Arguments
io — Analysis point
linearization I/O object

Analysis point, returned as a linearization I/O object. Use io to specify a linearization input, output,
or loop opening when using the linearize command. For more information, see “Specify Portion of
Model to Linearize” on page 2-10.

Each linearization I/O object has the following properties:

Property Description
Active Flag indicating whether to use the analysis point for linearization, specified as one of

the following:

• 'on' — Use the analysis point for linearization. This value is the default option.
• 'off' — Do not use the analysis point for linearization. Use this option if you

have an existing set of analysis points and you want to linearize a model with a
subset of these points.

Block Full block path of the block with which the analysis point is associated, specified as a
character vector.

PortNumber Output port with which the analysis point is associated, specified as an integer.

 linio

18-167

Property Description
Type Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model to
Linearize” on page 2-10.

BusElement Bus element name with which the analysis point is associated, specified as a
character vector or '' if the analysis point is not a bus element.

Description User-specified description of the analysis point, which you can set for convenience,
specified as a character vector.

Alternative Functionality
Model Linearizer

You can interactively configure analysis points using the Model Linearizer. For more information
see, “Specify Portion of Model to Linearize in Model Linearizer” on page 2-22.

Simulink Model

You can also specify analysis points directly in a Simulink model. When you do so, the analysis points
are saved within the model. For more information, see “Specify Portion of Model to Linearize in
Simulink Model” on page 2-17.

slLinearizer and slTuner Interfaces

If you want to obtain multiple open-loop or closed-loop transfer functions from the linearized system
without recompiling the model, you can specify linear analysis points using an slLinearizer
interface. For more information, see “Mark Signals of Interest for Batch Linearization” on page 3-9.
Similarly, if you want to tune a control system and obtain multiple open-loop or closed-loop transfer
functions from the resulting system, you can specify linear analysis points using an slTuner
interface. For more information, see “Mark Signals of Interest for Control System Analysis and
Design” on page 2-38.

Version History
Introduced before R2006a

See Also
getlinio | setlinio | linearize

18 Functions

18-168

Topics
“Specify Portion of Model to Linearize” on page 2-10

 linio

18-169

linlft
Linearize model while removing contribution of specified blocks

Syntax
lin_fixed = linlft(sys,io,blocks)
[lin_fixed,lin_blocks] = linlft(___)
[___] = linlft(___ ,opt)

Description
lin_fixed = linlft(sys,io,blocks) linearizes the Simulink model named sys while removing
the contribution of certain blocks. Specify sys as a character vector or string. Specify the full block
path of the blocks to ignore in the cell array of character vectors or string array called blocks. The
linearization occurs at the operating point specified in the Simulink model, which includes the
ignored blocks. You can optionally specify linearization points (linear analysis points) in the I/O object
io. The resulting linear model lin_fixed has this form:

The top channels In and Out correspond to the linearization points you specify in the I/O object io.
The remaining channels correspond to the connection to the ignored blocks.

When you use linlft and specify the 'block-by-block' linearization algorithm in
linearizeOptions, you can use all the variations of the input arguments for linearize.

You can linearize the ignored blocks separately using linearize, and then combine the linearization
results using linlftfold.

[lin_fixed,lin_blocks] = linlft(___) returns the linearizations for each of the blocks
specified in blocks. If blocks contains a single block path, lin_blocks is a single state-space (ss)
model. If blocks is an array identifying multiple blocks, lin_blocks is a cell array of state-space
models. The full block path for each block in lin_blocks is stored in the Notes property of the
state-space model.

[___] = linlft(___ ,opt) uses additional linearization options, specified as a
linearizeOptions option set.

Examples

Combine Linearizations for Portions of Model

In this example, the scdtopmdl model contains two subsystems in the feedforward path.

• Fixed portion, which contains everything except the Parameter Varying Controller model
reference

• Parameter Varying Controller model, which references the scdrefmdl model

Open the top-level model.

18 Functions

18-170

topmdl = 'scdtopmdl';
open_system(topmdl)

Linearize this model without the Parameter Varying Controller block.

io = getlinio(topmdl);
blocks = {'scdtopmdl/Parameter Varying Controller'};
sys_fixed = linlft(topmdl,io,blocks);

Linearize the controller model.

refmdl = 'scdrefmdl';
load_system(refmdl);
sys_pv = linearize(refmdl);

Combine the linearization results.

BlockSubs(1) = struct('Name',blocks{1},'Value',sys_pv);

Version History
Introduced in R2009b

See Also
linlftfold | linearize | linio | getlinio | operpoint | linearizeOptions

 linlft

18-171

linlftfold
Combine linearization results from specified blocks and model

Syntax
lin = linlftfold(lin_fixed,blocksubs)

Description
lin = linlftfold(lin_fixed,blocksubs) combines the following linearization results into one
linear model lin:

• Linear model lin_fixed, which does not include the contribution of specified blocks in your
Simulink model.

Compute lin_fixed using linlft.
• Block linearizations for the blocks excluded from lin_fixed

You specify the block linearizations in a structure array blocksubs, which contains two fields:

• 'Name' is a character vector or string specifying the block path of the Simulink block to
replace.

• 'Value' is the value of the linearization for each block.

Examples

Combine Linearizations for Portions of Model

In this example, the scdtopmdl model contains two subsystems in the feedforward path.

• Fixed portion, which contains everything except the Parameter Varying Controller model
reference

• Parameter Varying Controller model, which references the scdrefmdl model

Open the top-level model.

topmdl = 'scdtopmdl';
open_system(topmdl)

18 Functions

18-172

Linearize this model without the Parameter Varying Controller block.

io = getlinio(topmdl);
blocks = {'scdtopmdl/Parameter Varying Controller'};
sys_fixed = linlft(topmdl,io,blocks);

Linearize the controller model.

refmdl = 'scdrefmdl';
load_system(refmdl);
sys_pv = linearize(refmdl);

Combine the linearization results.

BlockSubs(1) = struct('Name',blocks{1},'Value',sys_pv);

Version History
Introduced in R2009b

See Also
linlft | linearize | linio | getlinio | operpoint

 linlftfold

18-173

operpoint
Create operating point for Simulink model

Syntax
op = operpoint(mdl)

Description
op = operpoint(mdl) returns the operating point of Simulink model mdl. You can compute a
linear model of your system at this operating point using the linearize function.

Examples

Create Operating Point for Simulink Model

Open Simulink model.

open_system('magball')

Create operating point for the model.

op = operpoint('magball')

op =

 Operating point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

 x

(1.) magball/Controller/PID Controller/Filter/Cont. Filter/Filter

18 Functions

18-174

 0
(2.) magball/Controller/PID Controller/Integrator/Continuous/Integrator
14.0071
(3.) magball/Magnetic Ball Plant/Current
7.0036
(4.) magball/Magnetic Ball Plant/dhdt
 0
(5.) magball/Magnetic Ball Plant/height
 0.05

Inputs: None

op lists each block in the model that has states. There are no root-level inports in this model,
therefore op does not contain inputs.

Copy an Operating Point

You can create new operating-point variables in three ways:

• Using the operpoint function
• Using assignment with the equals (=) operator
• Using the copy function

Using the = operator results in linked variables that both point to the same underlying data. Using
the copy function results in an independent operating-point object. In this example, create operating-
point objects both ways, and examine their behavior.

mdl = 'watertank';
open_system(mdl)
op1 = operpoint(mdl)

op1 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
0
(2.) watertank/Water-Tank System/H
1

Inputs: None

Create a new operating-point object using assignment with the = operator.

op2 = op1;

op2 is an operating-point object that points to the same underlying data as op1. Because of this link,
you cannot independently change properties of the two operating-point objects. To see this, change a

 operpoint

18-175

property of op2. For instance, change the value for the first state from 0 to 2. The change shows in
the States section of the display.

op2.States(1).x = 2

op2 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
2
(2.) watertank/Water-Tank System/H
1

Inputs: None

Examine the display of op1 to see that the corresponding property value of op1 also changes from 0
to 2.

op1

op1 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
2
(2.) watertank/Water-Tank System/H
1

Inputs: None

To create an independent copy of an operating-point object, use the copy function.

op3 = copy(op1);

Now, when you change a property of op3, op1 does not change. For instance, change the value for
the first state from 2 to 4.

op3.States(1).x = 4

op3 =
 Operating point for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

18 Functions

18-176

x
_

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
4
(2.) watertank/Water-Tank System/H
1

Inputs: None

In op1, the corresponding value remains 2.

op1.States(1).x

ans = 2

This copy behavior occurs because the operating-point object is a handle object. For more
information about handle objects, see “Handle Object Behavior”.

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the current
working folder or on the MATLAB path.

Output Arguments
op — Operating point
OperatingPoint object

Operating point, returned as an OperatingPoint object with the following properties.

Property Description
Model Simulink model name, returned as a character vector.

 operpoint

18-177

Property Description
States State operating point, returned as a vector of state objects. Each entry in States

represents the supported states of one Simulink block.

For a list of supported states for operating point objects, see “Simulink Model States
Included in Operating Point Object” on page 1-3.

Note If the block has multiple named continuous states, States contains one
structure for each named state.

Each state object has the following fields:

Field Description
Nx (read only) Number of states in the block
Block Block path, returned as a character vector.
StateName State name
x Values of all supported block states, returned as a vector of length

Nx.
Ts Sample time and offset of each supported block state, returned as a

vector. For continuous-time systems, Ts is zero.
SampleType State time rate, returned as one of the following:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete-time state

inReference
dModel

Flag indicating whether the block is inside a reference model,
returned as one of the following:

• 1 — Block is inside a reference model.
• 0 — Block is in the current model file.

Description Block state description, returned as a character vector.

Inputs Input level at the operating point, returned as a vector of input objects. Each entry in
Inputs represents the input levels of one root-level inport block in the model.

Each input object has the following fields:

Field Description
Nu (read only) Number of inport block signals
Block Inport block name
PortDimensi
ons

Dimension of signals accepted by the inport

u Inport block input levels at the operating point, returned as a vector of
length Nu.

Description Inport block input description, returned as a character vector.

18 Functions

18-178

Property Description
Time Times at which any time-varying functions in the model are evaluated, returned as a

vector.
Version Object version number

Tips
• You can create new operating points of in three ways:

• Construct a new object using the operpoint function.
• Create a new variable by assignment with the equals (=) operator.
• Copy an operating point object using the copy command.

Using operpoint or copy creates a new, independent object. When you use assignment, there is
a link between the old and new variable. For an example, see “Copy an Operating Point” on page
18-175.

Alternative Functionality
The operpoint function returns an operating point with the initial state and input values of the
model. To create an operating point that meets your application specifications, use the findop
function. For more information, see “Compute Steady-State Operating Points” on page 1-5.

Version History
Introduced before R2006a

R2021b: PortWidth property of operating point inputs will be removed
Not recommended starting in R2021b

The input PortWidth property of operating points will be removed in a future release. Use the new
Nu property instead.

To update your code, change instances of PortWidth to Nu as shown in the following table.

Not Recommended Recommended
op = operpoint('scdplane');
numIn = op.Inputs(1).PortWidth;

op = operpoint('scdplane');
numIn = op.Inputs(1).Nu;

See Also
linearize | operspec | update | copy | findop

Topics
“About Operating Points” on page 1-2

 operpoint

18-179

operspec
Operating point specifications

Syntax
opspec = operspec(mdl)
opspec = operspec(mdl,dim)

Description
opspec = operspec(mdl) returns the default operating point specification object for the Simulink
model mdl. Use opspec for steady-state operating point trimming using findop.

opspec = operspec(mdl,dim) returns an array of default operating point specification objects
with the specified dimensions, dim.

Examples

Create Operating Point Specification Object

Open Simulink model.

sys = 'watertank';
open_system(sys)

Create the default operating point specification object for the model.

opspec = operspec(sys)

opspec =

 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

18 Functions

18-180

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 0 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

opspec contains specifications for the two states in the model. Since the model has no root level
inports or outports, opspec does not contain input or output specifications. To add output
specifications, use addoutputspec.

Modify the operating point specifications for each state using dot notation. For example, configure
the first state to:

• Be at steady state.
• Have a lower bound of 0.
• Have an initial value of 2 for trimming.

opspec.States(1).SteadyState = 1;
opspec.States(1).x = 2;
opspec.States(1).Min = 0;

Copy an Operating-Point Specification

You can create new operspec variables in three ways:

• Using the operspec command
• Using assignment with the equals (=) operator
• Using the copy command

Using the = operator results in linked variables that both point to the same underlying data. Using
the copy command results in an independent operspec object. In this example, create operspec
objects both ways, and examine their behavior.

mdl = 'watertank';
open_system(mdl)
opspec1 = operspec(mdl)

opspec1 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax

 operspec

18-181

___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 0 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

Create a new operating point specification object using assignment with the = operator.

opspec2 = opspec1;

opspec2 is an operspec object that points to the same underlying data as opspec1. Because of this
link, you cannot independently change properties of the two operspec objects. To see this, change a
property of opspec2. For instance, change the initial value for the first state from 0 to 2. The change
shows in the States section of the display.

opspec2.States(1).x = 2

opspec2 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 2 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

Examine the display of opspec1 to see that the corresponding property value of opspec1 also
changes from 0 to 2.

opspec1

opspec1 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

18 Functions

18-182

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 2 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

To create an independent copy of an operating point specification, use the copy command.

opspec3 = copy(opspec1);

Now, when you change a property of opspec3, opspec1 does not change. For instance, change the
initial value for the first state from 2 to 4.

opspec3.States(1).x = 4

opspec3 =
 Operating point specification for the Model watertank.
 (Time-Varying Components Evaluated at time t=0)

States:

 x Known SteadyState Min Max dxMin dxMax
___________ ___________ ___________ ___________ ___________ ___________ ___________

(1.) watertank/PID Controller/Integrator/Continuous/Integrator
 4 false true -Inf Inf -Inf Inf
(2.) watertank/Water-Tank System/H
 1 false true 0 Inf -Inf Inf

Inputs: None

Outputs: None

In opspec1, the corresponding value remains 2.

opspec1.States(1).x

ans = 2

This copy behavior occurs because operspec is a handle object. For more information about handle
objects, see “Handle Object Behavior”.

Create Array of Operating Point Specification Objects

Open Simulink model.

sys = 'watertank';
open_system(sys)

 operspec

18-183

Create a 2-by-3 array of operating point specification objects. You can batch trim model at multiple
operating points using such arrays.

opspec = operspec(sys,[2,3]);

Each element of opspec contains a default operating point specification object for the model.

Modify the operating point specification objects using dot notation. For example, configure the
second state of the specification object in row 1, column 3.

opspec(1,3).States(2).SteadyState = 1;
opspec(1,3).States(1).x = 2;

You can also create multidimensional arrays of operating point specification objects. For example,
create a 3-by-4-by-5 array.

opspec = operspec(sys,[3,4,5]);

Input Arguments
mdl — Simulink model
character vector | string

Simulink model name, specified as a character vector or string.

dim — Array dimensions
integer | row vector of integers

Array dimensions, specified as one of the following:

• Integer — Create a column vector of dim operating point specification objects.
• Row vector of integers — Create an array of operating point specification objects with the

dimensions specified by dim.

For example, to create a 4-by-5 array of operating point specification objects, use:

opspec = operspec(mdl,[4,5]);

To create a multidimensional array of operating point specification objects, specify additional
dimensions. For example, to create a 2-by-3-by-4 array, use:

18 Functions

18-184

opspec = operspec(mdl,[2,3,4]);

Output Arguments
opspec — Operating point specifications
OperatingSpec object | array of OperatingSpec objects

Operating point specifications, returned as an OperatingSpec object or an array of such objects.

You can modify the operating point specifications using dot notation. For example, if opspec is a
single OperatingSpec object, opspec.States(1).x accesses the state values of the first model
state. If opspec is an array of OperatingSpec objects opspec(2,3).Inputs(1).u accesses the
input level of the first inport block for the specification in row 2, column 3.

Each OperatingSpec object has the following properties.

Property Description
Model Simulink model name, returned as a character vector.

 operspec

18-185

Property Description
States State operating point specifications, returned as a vector of state specification objects.

Each entry in States represents the supported states of one Simulink block.

For a list of supported states for operating point objects, see “Simulink Model States
Included in Operating Point Object” on page 1-3. Edit the properties of this object using
dot notation or the set function.

Note If the block has multiple named continuous states, States contains one
structure for each named state.

Each state specification object has the following fields:

Field Description
Nx (read-only) Number of states in the block
Block Block path, returned as a character vector.
StateName State name
x Values of all supported block states, specified as a vector of length Nx.

If the corresponding flag in Known field of States is 1, x contains the
known state values. Otherwise, x contains initial guesses for the state
values.

Ts (Only for discrete-time states) Sample time and offset of each
supported block state, returned as a vector.

SampleType State time rate, returned as one of the following:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete-time state

inReference
dModel

Flag indicating whether the block is inside a reference model,
returned as one of the following:

• 1 — Block is inside a reference model.
• 0 — Block is in the current model file.

Known Flags indicating whether state values are known during trimming,
specified as a logical vector of length Nx.

• 1 — Known value that is fixed during operating point search
• 0 (default) — Unknown value found by optimization

To fix a state during an operating point search, set the corresponding
Known flag to 1, and specify the value for that state using the x
property of States.

SteadyState Flags indicating whether output values are at steady state during
trimming, specified as a logical vector of length Nx.

• 1 (default) — Equilibrium state

18 Functions

18-186

Property Description
Field Description

• 0 — Nonequilibrium state
Min Minimum bounds on state values, specified as a vector of length Nx.

By default, the minimum bound for each state is -Inf.
Max Maximum bounds on state values, specified as a vector of length Nx.

By default, the maximum bound for each state is Inf.
dxMin Minimum bounds on state derivatives that are not at steady-state,

specified as a vector of length Nx. By default, the minimum bound for
each state derivative is -Inf. When you specify a derivative bound,
you must also set SteadyState to 0.

dxMax Maximum bounds on state derivatives that are not at steady-state,
specified as a vector of length Nx. By default, the maximum bound for
each state derivative is Inf. When you specify a derivative bound, you
must also set SteadyState to 0.

Description Block state description, specified as a character vector.

 operspec

18-187

Property Description
Inputs Input level specifications at the operating point, returned as a vector of input

specification objects. Each entry in Inputs represents the input levels of one root-level
inport block in the model.

Each input specification object has the following fields:

Field Description
Nu (read only) Number of inport block signals
Block Inport block name
PortDimensi
ons

Dimension of signals accepted by the inport

u Inport block input levels at the operating point, returned as a vector of
length PortWidth.

If the corresponding flag in Known field of Inputs is 1, u contains the
known input values. Otherwise, u contains initial guesses for the input
values.

Known Flags indicating whether input levels are known during trimming,
specified as a logical vector of length PortWidth.

• 1 — Known input level that is fixed during operating point search
• 0 (default) — Unknown input level found by optimization

To fix an input level during an operating point search, set the
corresponding Known flag to 1, and specify the input value using the u
property of Inputs.

Min Minimum bounds on input levels, specified as a vector of length
PortWidth. By default, the minimum bound for each input is -Inf.

Max Maximum bounds on input levels, specified as a vector of length
PortWidth. By default, the maximum bound for each input is Inf.

Description Inport block input description, specified as a character vector.

18 Functions

18-188

Property Description
Outputs Output level specifications at the operating point, returned as a vector of output

specification objects. Each entry in Outputs represents the output levels of one root-
level outport block of the model or one trim output constraint in the model.

You can specify additional trim output constraints using addoutputspec.

Each output specification object has the following fields:

Field Description
Ny (read only) Number of outport block signals
Block Outport block name
PortNumber Number of this outport in the model
y Outport block output levels at the operating point, specified as a

vector of length PortWidth.

If the corresponding flag in Known field of Outputs is 1, y contains
the known output values. Otherwise, y contains initial guesses for the
output values.

Known Flags indicating whether output levels are known during trimming,
specified as a logical vector of length PortWidth.

• 1 — Known output level that is fixed during operating point search
• 0 (default) — Unknown output level found by optimization

To fix an output level during an operating point search, set the
corresponding Known flag to 1, and specify the output value using the
y property of Outputs.

Min Minimum bounds on output levels, specified as a vector of length
PortWidth. By default, the minimum bound for each output is -Inf.

Max Maximum bounds the output levels, specified as a vector of length
PortWidth. By default, the maximum bound for each output is Inf.

Description Outport block input description, specified as a character vector.

Time Times at which the time-varying functions in the model are evaluated, returned as a
vector.

CustomObj
Fcn

Function providing an additional custom objective function for trimming, specified as a
handle to the custom function, or a character vector or string that contains the function
name. The custom function must be on the MATLAB path or in the current working
folder.

You can specify a custom objective function as an algebraic combination of model
states, inputs, and outputs. For more information, see “Compute Operating Points
Using Custom Constraints and Objective Functions” on page 1-59.

 operspec

18-189

Property Description
CustomCon
strFcn

Function providing additional custom constraints for trimming, specified as a handle to
the custom function, or a character vector or string that contains the function name.
The custom function must be on the MATLAB path or in the current working folder.

You can specify custom equality and inequality constraints as algebraic combinations of
model states, inputs, and outputs. For more information, see “Compute Operating
Points Using Custom Constraints and Objective Functions” on page 1-59.

CustomMap
pingFcn

Function that maps model states, inputs, and outputs to the vectors accepted by
CustomConstrFcn and CustomObjFcn, specified as a handle to the custom function,
or a character vector or string that contains the function name. The custom function
must be on the MATLAB path or in the current working folder.

For complex models, you can pass subsets of the model inputs, outputs, and states to
the custom constraint and objective functions using a custom mapping function. If you
specify a custom mapping, you must use the mapping for both the custom constraint
function and the custom objective function. For more information, see “Compute
Operating Points Using Custom Constraints and Objective Functions” on page 1-59.

Tips
• To display the operating point specification object properties, use get.
• You can create new operspec variables of in 3 ways:

• Construct a new object with the operspec command.
• Create a new variable by assignment with the equals (=) operator.
• Copy an operspec object using the copy command.

Using operspec or copy creates a new, independent object. When you use assignment, there is a
link between the old and new variable. For an example, see “Copy an Operating-Point
Specification” on page 18-181.

Version History
Introduced before R2006a

R2021b: PortWidth property of operating point specification inputs and outputs will be
removed
Not recommended starting in R2021b

The input and output PortWidth properties of operating point specifications will be removed in a
future release. Use the new Nu and Ny properties instead.

To update your code, change instances of PortWidth to either Nu or Ny as shown in the following
table.

Not Recommended Recommended
op = operspec('scdplane');
numOut = op.Outputs(1).PortWidth;
numIn = op.Inputs(1).PortWidth;

op = operspec('scdplane');
numOut = op.Outputs(1).Ny;
numIn = op.Inputs(1).Nu;

18 Functions

18-190

See Also
findop | addoutputspec | update | copy

 operspec

18-191

set
Set properties of linearization I/Os and operating points

Syntax
set(ob)
set(ob,'PropertyName',val)

Description
set(ob) displays all editable properties of the object, ob, which can be a linearization I/O object, an
operating point object, or an operating point specification object. Create ob using findop,
getlinio, linio, operpoint, or operspec.

set(ob,'PropertyName',val) sets the property, PropertyName, of the object, ob, to the value,
val. The object, ob, can be a linearization I/O object, an operating point object, or an operating point
specification object. Create ob using findop, getlinio, linio, operpoint, or operspec.

ob.PropertyName = val is an alternative notation for assigning the value, val, to the property,
PropertyName, of the object, ob. The object, ob, can be a linearization I/O object, an operating point
object, or an operating point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

Examples
Create an operating point object for the Simulink model, magball:

op_cond=operpoint('magball');

Use the set function to get a list of all editable properties of this object:

set(op_cond)

This function returns the properties of op_cond.

ans =
 Model: {}
 States: {}
 Inputs: {}
 Time: {}

To set the value of a particular property of op_cond, provide the property name and the desired
value of this property as arguments to set. For example, to change the name of the model associated
with the operating point object from 'magball' to 'Magnetic Ball', type:

set(op_cond,'Model','Magnetic Ball')

To view the property value and verify that the change was made, type:

op_cond.Model

which returns

18 Functions

18-192

ans =
Magnetic Ball

Because op_cond is a structure, you can set any properties or fields using dot-notation. First,
produce a list of properties of the second States object within op_cond, as follows:

set(op_cond.States(2))

which returns

ans =

 Nx: {}
 Block: {}
 StateName: {}
 x: {}
 Ts: {}
 SampleType: {}
 inReferencedModel: {}
 Description: {}

Now, use dot-notation to set the x property to 8:

op_cond.States(2).x=8;

To view the property and verify that the change was made, type

op_cond.States(2)

which displays

(1.) magball/Magnetic Ball Plant/Current
 x: 8

Version History
Introduced before R2006a

See Also
findop | get | linio | operpoint | operspec | setlinio

 set

18-193

setlinio
Save linear analysis points to Simulink model, Linear Analysis Plots block, or Model Verification block

Syntax
setlinio(mdl,io)
setlinio(blockpath,io)
oldio = setlinio(___)

Description
setlinio(mdl,io) writes the analysis points specified in io to the Simulink model mdl.

setlinio(blockpath,io) sets the specified analysis points to the specified Linear Analysis Plots
block or Model Verification block.

oldio = setlinio(___) returns the current set of analysis points in the model or block and
replaces them with io using any of the previous syntaxes.

Examples

Set Analysis Points in Simulink Model

Open Simulink model.

model = 'magball';
open_system(model)

Create a vector of analysis points for linearizing the plant model:

• Input perturbation at the output of the Controller block
• Open-loop output at the output of the Magnetic Ball Plant block

io(1) = linio('magball/Controller',1,'input');
io(2) = linio('magball/Magnetic Ball Plant',1,'openoutput');

18 Functions

18-194

Write the analysis points to the magball model.

setlinio(model,io);

The analysis points in io are added to the model as annotations. You can then save the model to store
the analysis points with the model.

Set Analysis Points in Linear Analysis Plots Block

Open Simulink model.

open_system('scdcstr')

Create analysis points for finding the transfer function between the coolant temperature and the
residual concentration.

• Input perturbation at the output of the Coolant Temp block
• Output measurement at the CA output of the CSTR block

io(1) = linio('scdcstr/Coolant Temp',1,'input');
io(2) = linio('scdcstr/CSTR',2,'output');

Set the analysis points in the Bode Plot block.

setlinio('scdcstr/Bode Plot',io);

View the analysis points in the Bode Plot Block Parameters dialog box.

open_system('scdcstr/Bode Plot')

 setlinio

18-195

During simulation, the software linearizes the model using the specified analysis, and plots the
magnitude and phase responses for the resulting linear system.

Save Old Analysis Points When Storing New Analysis Points

Open Simulink model.

mdl = 'scdpwm';
open_system(mdl)

18 Functions

18-196

This model is configured with analysis points for finding the combined transfer function of the PWM
and plant blocks.

Create analysis points for finding the transfer function of just the plant model.

io(1) = linio('scdpwm/Voltage to PWM',1,'input');
io(2) = linio('scdpwm/Plant Model',1,'output');

Store the analysis points to the model, and save the previous analysis point configuration.

oldio = setlinio(mdl,io)

2x1 vector of Linearization IOs:

1. Linearization input perturbation located at the following signal:
- Block: scdpwm/Step
- Port: 1
2. Linearization output measurement located at the following signal:
- Block: scdpwm/Plant Model
- Port: 1

Input Arguments
mdl — Simulink model name
character vector | string

Simulink model name, specified as a character vector or string. The model must be in the current
working folder or on the MATLAB path.

If the model is not open or loaded into memory, setlinio loads the model into memory.

io — Analysis point set
linearization I/O object | vector of linearization I/O objects

Analysis point set, specified as a linearization I/O object or a vector of linearization I/O objects.

Each linearization I/O object has the following properties:

 setlinio

18-197

Property Description
Active Flag indicating whether to use the analysis point for linearization, specified as one of

the following:

• 'on' — Use the analysis point for linearization. This value is the default option.
• 'off' — Do not use the analysis point for linearization. Use this option if you

have an existing set of analysis points and you want to linearize a model with a
subset of these points.

Block Full block path of the block with which the analysis point is associated, specified as a
character vector.

PortNumber Output port with which the analysis point is associated, specified as an integer.
Type Analysis point type, specified as one of the following:

• 'input' — Input perturbation
• 'output' — Output measurement
• 'loopbreak' — Loop break
• 'openinput' — Open-loop input
• 'openoutput' — Open-loop output
• 'looptransfer' — Loop transfer
• 'sensitivity' — Sensitivity
• 'compsensitivity' — Complementary sensitivity

For more information on analysis point types, see “Specify Portion of Model to
Linearize” on page 2-10.

BusElement Bus element name with which the analysis point is associated, specified as a
character vector or '' if the analysis point is not a bus element.

Description User-specified description of the analysis point, which you can set for convenience,
specified as a character vector.

blockpath — Linear Analysis Plots block or Model Verification block
character vector | string

Linear Analysis Plots block or Model Verification block, specified as a character vector or string that
contains its full block path. The model that contains the block must be in the current working folder
or on the MATLAB path.

For more information on:

• Linear analysis plot blocks, see “Visualization During Simulation”.
• Model verification blocks, see “Model Verification”.

Output Arguments
oldio — Old analysis point set
linearization I/O object | vector of linearization I/O objects

Old analysis point set, returned as a linearization I/O object or a vector of linearization I/O objects.

18 Functions

18-198

Alternative Functionality
Simulink Model

You can also specify analysis points directly in a Simulink model. For more information, see “Specify
Portion of Model to Linearize in Simulink Model” on page 2-17.

Version History
Introduced before R2006a

See Also
linio | getlinio | linearize | slLinearizer

Topics
“Specify Portion of Model to Linearize” on page 2-10

 setlinio

18-199

setxu
Set states and inputs in operating points

Syntax
op_new = setxu(op_point,x,u)

Description
setxu set state and input values for an operating point. Use this function for applications that
require state and input values to be specified in vector format, such as when using an operating in an
optimization problem using fmincon.

op_new = setxu(op_point,x,u) returns a new operating point with the specified state and input
values (x and u, respectively). Specify x as either a vector or structure with the same format as those
returned from a Simulink simulation. Specifying x as a structure with time is not supported. Specify u
as a vector. You can obtain both x and u from another operating point object with the getxu function.

Examples

Initialize Operating Point Object Using State Values from Simulation

Export state values from a simulation and use the exported values to initialize an operating point
object.

Open the Simulink model. This example uses the model scdplane.

mdl = 'scdplane';
open_system(mdl)

You can save the final states of the model to the workspace after a simulation. In the Simulink editor,
on the Modeling tab, click Model Settings. Then, in the Configuration Parameters dialog box, select
the Final states parameter.

Simulate the model. After the simulation, the xFinal variable appears in the workspace. This
variable is a vector containing the final state values.

sim(mdl)

Create an operating point object for scdplane.

op_point = operpoint(mdl)

 Operating Point for the Model scdplane.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdplane/Actuator Model
 x: 0

18 Functions

18-200

(2.) scdplane/Aircraft Dynamics Model/Transfer Fcn.1
 x: 0
(3.) scdplane/Aircraft Dynamics Model/Transfer Fcn.2
 x: 0
(4.) scdplane/Controller/Alpha-sensor Low-pass Filter
 x: 0
(5.) scdplane/Controller/Pitch Rate Lead Filter
 x: 0
(6.) scdplane/Controller/Proportional plus integral compensator
 x: 0
(7.) scdplane/Controller/Stick Prefilter
 x: 0
(8.) scdplane/Dryden Wind Gust Models/Q-gust model
 x: 0
(9.) scdplane/Dryden Wind Gust Models/W-gust model
 x: 0
 x: 0

Inputs:

(1.) scdplane/u
 u: 0

All states are initially set to 0.

Initialize the states in the operating point object to the values in xFinal. Set the input to be 9.

newop = setxu(op_point,xFinal,9)

 Operating Point for the Model scdplane.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) scdplane/Actuator Model
 x: -0.032
(2.) scdplane/Aircraft Dynamics Model/Transfer Fcn.1
 x: 0.56
(3.) scdplane/Aircraft Dynamics Model/Transfer Fcn.2
 x: 678
(4.) scdplane/Controller/Alpha-sensor Low-pass Filter
 x: 0.392
(5.) scdplane/Controller/Pitch Rate Lead Filter
 x: 0.133
(6.) scdplane/Controller/Proportional plus integral compensator
 x: 0.166
(7.) scdplane/Controller/Stick Prefilter
 x: 0.1
(8.) scdplane/Dryden Wind Gust Models/Q-gust model
 x: 0.114
(9.) scdplane/Dryden Wind Gust Models/W-gust model
 x: 0.46
 x: -2.05

Inputs:

 setxu

18-201

(1.) scdplane/u
 u: 9

Alternatives
As an alternative to the setxu function, set states and inputs of operating points using the Model
Linearizer app.

Version History
Introduced before R2006a

See Also
getxu | initopspec | operpoint | operspec

18 Functions

18-202

addOpening
Add signal to list of openings for slLinearizer or slTuner interface

Syntax
addOpening(s,pt)

addOpening(s,blk,port_num)
addOpening(s,blk,port_num,bus_elem_name)

Description
addOpening(s,pt) adds the specified point (signal) to the list of permanent openings on page 18-
208 for the slLinearizer or slTuner interface, s.

Use permanent openings to isolate a specific model component for the purposes of linearization and
tuning. Suppose you have a large-scale model capturing aircraft dynamics and you want to perform
linear analysis on the airframe only. You can use permanent openings to exclude all other components
of the model. Another example is when you have cascaded loops within your model and you want to
analyze a specific loop.

addOpening(s,blk,port_num) adds the signal at the specified output port of the specified block
as a permanent opening for s.

addOpening(s,blk,port_num,bus_elem_name) adds the specified bus element as a permanent
opening.

Examples

Add Opening Using Signal Name

Suppose you want to analyze only the inner-loop dynamics of the scdcascade model. Add the outer-
loop feedback signal, y1m, as a permanent opening of an slLinearizer interface.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

 addOpening

18-203

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add the y1m signal as a permanent opening of sllin.

addOpening(sllin,'y1m');

View the currently defined analysis points within sllin.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
1 Permanent openings:

Opening 1:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m

Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Add Opening Using Block Path and Port Number

Suppose you want to analyze only the inner-loop dynamics of the scdcascade model. Add the outer-
loop feedback signal, y1m, as a permanent opening of an slLinearizer interface.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

18 Functions

18-204

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add the y1m signal as a permanent opening of sllin.

addOpening(sllin,'scdcascade/Sum',1);

The y1m signal originates at the first (and only) port of the scdcascade/Sum block.

Add Bus Elements as Openings

Open the scdbusselection model.

mdl = 'scdbusselection';
open_system(mdl);

 addOpening

18-205

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

The COUNTERBUS signal of scdbusselection contains multiple bus elements. Add the
upper_saturation_limit and data bus elements as openings to sllin. When adding elements
within a nested bus structure, use dot notation to access the elements of the nested bus, for example
limits.upper_saturation_limit.

blk = {'scdbusselection/COUNTERBUSCreator','scdbusselection/COUNTERBUSCreator'};
port_num = [1 1];
bus_elem_name = {'limits.upper_saturation_limit','data'};

Both bus elements originate at the first (and only) port of the scdbusselection/
COUNTERBUSCreator block. Therefore, blk and port_num repeat the same element twice.

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

18 Functions

18-206

pt — Opening
character vector | string | cell array of character vectors | string array | vector of linearization I/O
objects

Opening to add to the list of permanent openings on page 18-208 for s, specified as:

• Character vector or string — Signal identifier that can be any of the following:

• Signal name, for example 'torque'
• Block path for a block with a single output port, for example 'Motor/PID'
• Path to block and port originating the signal, for example 'Engine Model/1' or 'Engine

Model/torque'
• Cell array of character vectors or string array — Specifies multiple signal identifiers. For example,

pt = {'Motor/PID','Engine Model/1'}.
• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1)
pt(2) = linio('scdcascade/Sum',1,'output')

Here, pt(1) specifies an input, and pt(2) specifies an output. However, the software ignores the
I/O types and adds them both to the list of permanent openings for s.

blk — Block path identifying block where opening originates
character vector (default) | string | cell array of character vectors | string array

Block path identifying the block where the opening originates, specified as a character vector or cell
array of character vectors.

Dimensions of blk:

• For a single opening, specify blk as a character vector or string.

For example, blk = 'scdcascade/C1'.
• For multiple openings, specify blk as a cell array of character vectors or string array. blk,

port_num, and bus_elem_name (if specified) must have the same size.

For example, blk = {'scdcascade/C1','scdcascade/Sum'}.

port_num — Port where opening originates
positive integer (default) | vector of positive integers

Port where the opening originates, specified as a positive integer or a vector of positive integers.

Dimensions of port_num:

• For a single opening, specify port_num as a positive integer.

For example, port_num = 1.
• For multiple openings, specify port_num as a vector of positive integers. blk, port_num, and

bus_elem_name (if specified) must have the same size.

For example, port_num = [1 1].

 addOpening

18-207

bus_elem_name — Bus element name
character vector (default) | string | cell array of character vectors | string array

Bus element name, specified as a character vector or cell array of character vectors.

Dimensions of bus_elem_name:

• For a single opening, specify bus_elem_name as a character vector or string.

For example, bus_elem_name = 'data'.
• For multiple openings, specify bus_elem_name as a cell array of character vectors or string array.

blk, port_num, and bus_elem_name (if specified) must have the same size.

For example, bus_elem_name = {'limits.upper_saturation_limit','data'}.

More About
Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Version History
Introduced in R2013b

See Also
slLinearizer | slTuner | addPoint | addBlock | linio | removeOpening |
removeAllOpenings

18 Functions

18-208

addPoint
Add signal to list of analysis points for slLinearizer or slTuner interface

Syntax
addPoint(s,pt)

addPoint(s,blk,port_num)
addPoint(s,blk,port_num,bus_elem_name)

Description
addPoint(s,pt) adds the specified point to the list of analysis points on page 18-214 for the
slLinearizer or slTuner interface, s.

Analysis points are model signals that can be used as input, output, or loop-opening locations for
analysis and tuning purposes. You use analysis points as inputs to the linearization commands of s:
getIOTransfer, getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to
the linearization commands, analysis points can specify any open- or closed-loop transfer function in a
model. You can also use analysis points to specify tuning goals for systune.

addPoint(s,blk,port_num) adds the point that originates at the specified output port of the
specified block as an analysis point for s.

addPoint(s,blk,port_num,bus_elem_name) adds the specified bus element as an analysis
point.

Examples

Add Analysis Point Using Signal Name

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

 addPoint

18-209

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add u1 and y1 as analysis points for sllin.

addPoint(sllin,{'u1','y1'});

View the currently defined analysis points within sllin.

sllin

slLinearizer linearization interface for "scdcascade":

2 Analysis points:

Point 1:
- Block: scdcascade/C1
- Port: 1
- Signal Name: u1
Point 2:
- Block: scdcascade/G1
- Port: 1
- Signal Name: y1

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Add Analysis Points Using Block Path and Port Number

Suppose you want to linearize the magball model and obtain a transfer function from the reference
input to the plant output. Add the signals originating at the Desired Height and Magnetic Ball
Plant blocks as analysis points to an slLinearizer interface.

18 Functions

18-210

Open the magball model.

mdl = 'magball';
open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Add the signals originating at the Design Height and Magnetic Ball Plant blocks as analysis
points of sllin. Both signals originate at the first (and only) port of the respective blocks.

blk = {'magball/Desired Height','magball/Magnetic Ball Plant'};
port_num = [1 1];
addPoint(sllin,blk,port_num);

Add Bus Elements as Analysis Points

Open the scdbusselection model.

mdl = 'scdbusselection';
open_system(mdl);

 addPoint

18-211

Create an slLinearizer interface model.

sllin = slLinearizer(mdl);

The COUNTERBUS signal of scdbusselection contains multiple bus elements. Add the
upper_saturation_limit and data bus elements as analysis points to sllin. When adding
elements within a nested bus structure, use dot notation to access the elements of the nested bus, for
example limits.upper_saturation_limit.

blk = {'scdbusselection/COUNTERBUSCreator','scdbusselection/COUNTERBUSCreator'};
port_num = [1 1];
bus_elem_name = {'limits.upper_saturation_limit','data'};
addPoint(sllin,blk,port_num,bus_elem_name);

Both bus elements originate at the first (and only) port of the scdbusselection/
COUNTERBUSCreator block. Therefore, blk and port_num repeat the same element twice.

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

18 Functions

18-212

pt — Analysis point
character vector | string | cell array of character vectors | string array | vector of linearization I/O
objects

Analysis point to add to the list of analysis points on page 18-214 for s, specified as:

• Character vector or string — Signal identifier that can be any of the following:

• Signal name, for example 'torque'
• Block path for a block with a single output port, for example 'Motor/PID'
• Path to block and port originating the signal, for example 'Engine Model/1' or 'Engine

Model/torque'
• Cell array of character vectors or string array — Specifies multiple signal identifiers.
• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1)
pt(2) = linio('scdcascade/Sum',1,'output')

Here, pt(1) specifies an input, and pt(2) specifies an output. The interface adds all the signals
specified by pt and ignores the I/O types. The interface also adds all 'loopbreak' type signals
as permanent openings.

blk — Block path identifying block where analysis point originates
character vector (default) | string | cell array of character vectors | string array

Block path identifying the block where the analysis point originates, specified as a:

• Character vector or string to specify a single point, for example blk = 'scdcascade/C1'.
• Cell array of character vectors or string array to specify multiple points, for example blk =

{'scdcascade/C1','scdcascade/Sum'}.

blk, port_num, and bus_elem_name (if specified) must have the same size.

port_num — Port where analysis point originates
positive integer (default) | vector of positive integers

Port where the analysis point originates, specified as a:

• Positive integer to specify a single point, for example port_num = 1.
• Vector of positive integers to specify multiple points, for example port_num = [1 1].

blk, port_num, and bus_elem_name (if specified) must have the same size.

bus_elem_name — Bus element name
character vector (default) | string | cell array of character vectors | string array

Bus element name, specified as a:

• Character vector or string to specify a single point, for example bus_elem_name = 'data'.
• Cell array of character vectors or string array to specify multiple points, for example

bus_elem_name = {'limits.upper_saturation_limit','data'}.

blk, port_num, and bus_elem_name (if specified) must have the same size.

 addPoint

18-213

More About
Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

18 Functions

18-214

Version History
Introduced in R2013b

See Also
slLinearizer | slTuner | addOpening | linio | removePoint | removeAllPoints

 addPoint

18-215

getCompSensitivity
Complementary sensitivity function at specified point using slLinearizer or slTuner interface

Syntax
linsys = getCompSensitivity(s,pt)
linsys = getCompSensitivity(s,pt,temp_opening)
linsys = getCompSensitivity(___ ,mdl_index)

[linsys,info] = getCompSensitivity(___)

Description
linsys = getCompSensitivity(s,pt) returns the complementary sensitivity function on page
18-225 at the specified analysis point for the model associated with the slLinearizer or slTuner
interface, s.

The software enforces all the permanent openings on page 18-226 specified for s when it calculates
linsys. If you configured either s.Parameters, or s.OperatingPoints, or both,
getCompSensitivity performs multiple linearizations and returns an array of complementary
sensitivity functions.

linsys = getCompSensitivity(s,pt,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to calculate the
complementary sensitivity function of an inner loop with the outer loop open.

linsys = getCompSensitivity(___ ,mdl_index) returns a subset of the batch linearization
results. mdl_index specifies the index of the linearizations of interest, in addition to any of the input
arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the complementary sensitivity
function for only a subset of the batch linearization results.

[linsys,info] = getCompSensitivity(___) returns additional linearization information.

Examples

Obtain Complementary Sensitivity Function at Analysis Point

Obtain the complementary sensitivity function, calculated at the plant output, for the
ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

18 Functions

18-216

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the complementary sensitivity function at the plant output, use the y signal as the
analysis point. Add this point to sllin.

addPoint(sllin,'y');

Obtain the complementary sensitivity function at y.

sys = getCompSensitivity(sllin,'y');
tf(sys)

ans =

 From input "y" to output "y":
 -3

 s + 8

Continuous-time transfer function.

The software adds a linearization output at y, followed by a linearization input, dy.

sys is the transfer function from dy to y, which is equal to .

 getCompSensitivity

18-217

Specify Temporary Loop Opening for Complementary Sensitivity Function Calculation

For the scdcascade model, obtain the complementary sensitivity function for the inner-loop at y2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the complementary sensitivity transfer function for the inner loop at y2, use the y2
signal as the analysis point. To eliminate the effects of the outer loop, break the outer loop at y1m.
Add both these points to sllin.

addPoint(sllin,{'y2','y1m'});

Obtain the complementary sensitivity function for the inner loop at y2.

sys = getCompSensitivity(sllin,'y2','y1m');

Here, 'y1m', the third input argument, specifies a temporary opening for the outer loop.

Obtain Complementary Sensitivity Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For most
linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10%
range. For this example, calculate the complementary sensitivity function for the inner loop for the
maximum value of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl);

18 Functions

18-218

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the complementary sensitivity of the inner loop, use the y2 signal as the analysis point.
To eliminate the effects of the outer loop, break the outer loop at y1m. Add both these points to
sllin.

addPoint(sllin,{'y2','y1m'})

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the complementary sensitivity transfer function at y2.

sys = getCompSensitivity(sllin,'y2','y1m',mdl_index);

Obtain Offsets from Complementary Sensitivity Function

Open Simulink model.

 getCompSensitivity

18-219

mdl = 'watertank';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add an analysis point at the tank output port.

addPoint(sllin,'watertank/Water-Tank System');

Calculate the complementary sensitivity function at y, and obtain the corresponding linearization
offsets.

[sys,info] = getCompSensitivity(sllin,'watertank/Water-Tank System');

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [2x1 double]
 dx: [2x1 double]
 u: 1
 y: 1
 StateName: {2x1 cell}
 InputName: {'watertank/Water-Tank System'}
 OutputName: {'watertank/Water-Tank System'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

18 Functions

18-220

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

pt — Analysis point signal name
character vector | string | cell array of character vectors | string array

Analysis point on page 18-226 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify pt as the block name. To use a point not in the list of
analysis points for s, first add the point using addPoint.

You can specify pt as a uniquely matching portion of the full signal name or block name. Suppose
that the full signal name of an analysis point is 'LoadTorque'. You can specify pt as 'Torque'
as long as 'Torque' is not a portion of the signal name for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, pt = {'y1m','y2m'}.

To calculate linsys, the software adds a linearization output, followed by a linearization input at pt.

Consider the following model:

Specify pt as 'y':

The software computes linsys as the transfer function from dy to y.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a linearization
output, followed by a linearization input at each point.

 getCompSensitivity

18-221

du and dy are linearization inputs, and u and y are linearization outputs. The software computes
linsys as a MIMO transfer function with a transfer function from each linearization input to each
linearization output.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s. To
determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify temp_opening as the block name. To use a point
not in the list of analysis points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You can specify
temp_opening as 'Torque' as long as 'Torque' is not a portion of the signal name for any
other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose that you vary
two parameters, par1 and par2, and want to extract the linearization for the combination of par1
> 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical indexing and
returns a logical array. This logical array is the same size as params(1).Value and
params(2).Value. Each entry contains the logical evaluation of the expression for
corresponding entries in params(1).Value and params(2).Value.

18 Functions

18-222

• Vector of positive integers — Linear index of linearizations of interest. Suppose that you vary two
parameters, par1 and par2, and want to extract the linearization for the combination of par1 >
0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical array. find
returns the linear index of every true entry in the logical array

Output Arguments
linsys — Complementary sensitivity function
state-space model

Complementary sensitivity function, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software calculates
linsys using the default model parameter values. The software uses the model initial conditions
as the linearization operating point. linsys is returned as a state-space model.

• If you configured s.Parameters only, the software computes a linearization for each parameter
grid point. linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.OperatingPoints only, the software computes a linearization for each
specified operating point. linsys is returned as a state-space model array of the same size as
s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single operating point,
the software computes a linearization for each parameter grid point. The software uses the
specified operating point as the linearization operating point. linsys is returned as a state-space
model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple operating point
objects, the software computes a linearization for each parameter grid point. The software
requires that s.OperatingPoints is the same size as the parameter grid specified by
s.Parameters. The software computes each linearization using corresponding operating points
and parameter grid points. linsys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple simulation
snapshot times, the software simulates and linearizes the model for each snapshot time and
parameter grid point combination. Suppose that you specify a parameter grid of size p and N
snapshot times. linsys is returned as a state-space model array of size N-by-p.

For most models, linsys is returned as an ss object or an array of ss objects. However, if your
model contains one of the following blocks in the linearization path defined by pt, then linsys
returns the specified type of state-space model.

Block linsys Type
Block with a substitution specified as a genss
object or tunable model object

genss

Block with a substitution specified as an
uncertain model, such as uss

uss

 getCompSensitivity

18-223

Block linsys Type
Sparse Second Order block mechss
Descriptor State-Space block configured to
linearize to a sparse model

sparss

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise, Offsets is
returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with the same

dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx, where nx

is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length ny, where ny

is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu, where nu

is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for discrete-time

systems, returned as a column vector of length nx.
StateName State names, returned as a cell array that contains nx elements that match the names in

linsys.StateName.
InputName Input names, returned as a cell array that contains nu elements that match the names

in linsys.InputName.
OutputNam
e

Output names, returned as a cell array that contains ny elements that match the names
in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the sample
time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets. To do so,
first convert them to the required format using getOffsetsForLPV. For an example, see
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is false.
Otherwise, Advisor is returned as one of the following:

18 Functions

18-224

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor object.
• If linsys is an array of state-space models, Advisor is an array of LinearizationAdvisor

objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual linearized
blocks. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

More About
Complementary Sensitivity Function

The complementary sensitivity function at a point is the transfer function from an additive
disturbance at the point to a measurement at the same point. In contrast to the sensitivity function,
the disturbance is added after the measurement.

To compute the complementary sensitivity function at an analysis point, x, the software adds a
linearization output at x, followed by a linearization input, dx. The complementary sensitivity function
is the transfer function from dx to x.

Analysis Point in Simulink
Model

How getCompSensitivity
Interprets Analysis Point

Complementary Sensitivity
Function
Transfer function from dx to x

For example, consider the following model where you compute the complementary sensitivity
function at y:

Here, the software adds a linearization output at y, followed by a linearization input, dy. The
complementary sensitivity function at y, T, is the transfer function from dy to y. T is calculated as
follows:

 getCompSensitivity

18-225

y = − GK(y + dy)
y = − GKy − GKdy
(I + GK)y = − GKdy

y = − (IGKdy

∴ T = − (IGK

Here I is an identity matrix of the same size as GK. The complementary sensitivity transfer function at
y is equal to -1 times the closed-loop transfer function from r to y.

Generally, the complementary sensitivity function, T, computed from reference signals to plant
outputs, is equal to I–S. Here S is the sensitivity function at the point, and I is the identity matrix of
commensurate size. However, because getCompSensitivity adds the linearization output and
input at the same point, T, as returned by getCompSensitivity, is equal to S–I.

The software does not modify the Simulink model when it computes the complementary sensitivity
function.

Analysis Point

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Loop Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear

18 Functions

18-226

analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Version History
Introduced in R2013b

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a linearizeOptions or slTunerOptions object and
set the StoreOffsets option to true. Then, create an slLinearizer or slTuner interface for the
model.

You can extract the offsets from the info output argument of getCompSensitivity and convert
them into the required format for the LPV System block using the getOffsetsForLPV function.

See Also
slLinearizer | slTuner | addPoint | addOpening | getIOTransfer | getLoopTransfer |
getSensitivity

 getCompSensitivity

18-227

Topics
“How the Software Treats Loop Openings” on page 2-31
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on page
3-28
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33

18 Functions

18-228

getIOTransfer
Transfer function for specified I/O set using slLinearizer or slTuner interface

Syntax
linsys = getIOTransfer(s,in,out)
linsys = getIOTransfer(s,in,out,temp_opening)

linsys = getIOTransfer(s,ios)

linsys = getIOTransfer(___ ,mdl_index)

[linsys,info] = getIOTransfer(___)

Description
linsys = getIOTransfer(s,in,out) returns the transfer function for the specified inputs and
outputs on page 18-238 for the model associated with the slLinearizer or slTuner interface, s.

The software enforces all the permanent openings on page 18-242 specified for s when it calculates
linsys. For information on how getIOTransfer treats in and out, see “Transfer Functions” on
page 18-238. If you configured either s.Parameters, or s.OperatingPoints, or both,
getIOTransfer performs multiple linearizations and returns an array of transfer functions.

linsys = getIOTransfer(s,in,out,temp_opening) considers additional, temporary, openings
at the point specified by temp_opening. Use an opening, for example, to obtain the transfer function
of the controller in series with the plant, with the feedback loop open.

linsys = getIOTransfer(s,ios) returns the transfer function for the inputs and outputs
specified by ios for the model associated with s. Use the linio command to create ios. The
software enforces the linearization I/O type of each signal specified in ios when it calculates
linsys. The software also enforces all the permanent loop openings specified for s.

linsys = getIOTransfer(___ ,mdl_index) returns a subset of the batch linearization results.
mdl_index specifies the index of the linearizations of interest, in addition to any of the input
arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the transfer function for only a
subset of the batch linearization results.

[linsys,info] = getIOTransfer(___) returns additional linearization information.

Examples

Obtain Closed-Loop Transfer Function from Reference to Plant Output

Obtain the closed-loop transfer function from the reference signal, r, to the plant output, y, for the
ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

 getIOTransfer

18-229

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the closed-loop transfer function from the reference signal, r, to the plant output, y, add
both points to sllin.

addPoint(sllin,{'r','y'});

Obtain the closed-loop transfer function from r to y.

sys = getIOTransfer(sllin,'r','y');
tf(sys)

ans =

 From input "r" to output "y":
 3

 s + 8

Continuous-time transfer function.

The software adds a linearization input at r, dr, and a linearization output at y.

18 Functions

18-230

sys is the transfer function from dr to y, which is equal to .

Specify Temporary Loop Opening to Get Plant Model

Obtain the plant model transfer function, G, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the plant model transfer function, use u as the input point and y as the output point. To
eliminate the effects of feedback, you must break the loop. You can break the loop at u, e, or y. For
this example, break the loop at u. Add these points to sllin.

addPoint(sllin,{'u','y'});

Obtain the plant model transfer function.

sys = getIOTransfer(sllin,'u','y','u');
tf(sys)

ans =

 From input "u" to output "y":
 1

 s + 5

Continuous-time transfer function.

 getIOTransfer

18-231

The second input argument specifies u as the input, while the fourth input argument specifies u as a
temporary loop opening.

sys is the transfer function from du to y, which is equal to .

Obtain Open-Loop Response Transfer Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For most
linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10%
range. For this example, calculate the open-loop response transfer function for the inner loop, from
e2 to y2, for the maximum value of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

18 Functions

18-232

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the open-loop transfer function for the inner loop, use e2 and y2 as analysis points. To
eliminate the effects of the outer loop, break the loop at e2. Add e2 and y2 to sllin as analysis
points.

addPoint(sllin,{'e2','y2'})

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the open-loop transfer function from e2 to y2.

sys = getIOTransfer(sllin,'e2','y2','e2',mdl_index);

Obtain Offsets from Input/Output Transfer Function

Open Simulink model.

mdl = 'scdcascade';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

 getIOTransfer

18-233

Add analysis points to calculate the closed-loop transfer function.

addPoint(sllin,{'r','y1m'});

Calculate the input/output transfer function, and obtain the corresponding linearization offsets.

[sys,info] = getIOTransfer(sllin,'r','y1m');

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [6x1 double]
 dx: [6x1 double]
 u: 1
 y: 0
 StateName: {6x1 cell}
 InputName: {'r'}
 OutputName: {'y1m'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

in — Input analysis point signal name
character vector | string | cell array of character vectors | string array

Input analysis point on page 18-242 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify in as the block name. To use a point not in the list of
analysis points for s, first add the point using addPoint.

You can specify in as a uniquely matching portion of the full signal name or block name. Suppose
that the full signal name of an analysis point is 'LoadTorque'. You can specify in as 'Torque'
as long as 'Torque' is not a portion of the signal name for any other analysis point of s.

For example, in = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, in = {'y1m','y2m'}.

18 Functions

18-234

out — Output analysis point signal name
character vector | string | cell array of character vectors | string array

Output analysis point on page 18-242 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify out as the block name. To use a point not in the list
of analysis points for s, first add the point using addPoint.

You can specify out as a uniquely matching portion of the full signal name or block name.
Suppose that the full signal name of an analysis point is 'LoadTorque'. You can specify out as
'Torque' as long as 'Torque' is not a portion of the signal name for any other analysis point of
s.

For example, out = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, out = {'y1m','y2m'}.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s. To
determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify temp_opening as the block name. To use a point
not in the list of analysis points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You can specify
temp_opening as 'Torque' as long as 'Torque' is not a portion of the signal name for any
other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, temp_opening = {'y1m','y2m'}.

ios — Linearization I/Os
linearization I/O object

Linearization I/Os, created using linio, specified as a linearization I/O object.

ios must specify signals that are in the list of analysis points for s. To view the list of analysis points,
type s. To use a point that is not in the list of analysis points for s, you must first add the point to the
list using addPoint.

For example:

 getIOTransfer

18-235

ios(1) = linio('scdcascade/setpoint',1,'input');
ios(2) = linio('scdcascade/Sum',1,'output');

Here, ios(1) specifies an input, and ios(2) specifies an output.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose that you vary
two parameters, par1 and par2, and want to extract the linearization for the combination of par1
> 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical indexing and
returns a logical array. This logical array is the same size as params(1).Value and
params(2).Value. Each entry contains the logical evaluation of the expression for
corresponding entries in params(1).Value and params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose that you vary two
parameters, par1 and par2, and want to extract the linearization for the combination of par1 >
0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical array. find
returns the linear index of every true entry in the logical array

Output Arguments
linsys — Transfer function for specified I/Os
state-space model

Transfer function for specified I/Os, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software calculates
linsys using the default model parameter values. The software uses the model initial conditions
as the linearization operating point. linsys is returned as a state-space model.

• If you configured s.Parameters only, the software computes a linearization for each parameter
grid point. linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.OperatingPoints only, the software computes a linearization for each
specified operating point. linsys is returned as a state-space model array of the same size as
s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single operating point,
the software computes a linearization for each parameter grid point. The software uses the
specified operating point as the linearization operating point. linsys is returned as a state-space
model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple operating point
objects, the software computes a linearization for each parameter grid point. The software

18 Functions

18-236

requires that s.OperatingPoints is the same size as the parameter grid specified by
s.Parameters. The software computes each linearization using corresponding operating points
and parameter grid points. linsys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple simulation
snapshot times, the software simulates and linearizes the model for each snapshot time and
parameter grid point combination. Suppose that you specify a parameter grid of size p and N
snapshot times. linsys is returned as a state-space model array of size N-by-p.

For most models, linsys is returned as an ss object or an array of ss objects. However, if your
model contains one of the following blocks in the linearization path defined by in and out, then
linsys returns the specified type of state-space model.

Block linsys Type
Block with a substitution specified as a genss
object or tunable model object

genss

Block with a substitution specified as an
uncertain model, such as uss

uss

Sparse Second Order block mechss
Descriptor State-Space block configured to
linearize to a sparse model

sparss

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise, Offsets is
returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with the same

dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx, where nx

is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length ny, where ny

is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu, where nu

is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for discrete-time

systems, returned as a column vector of length nx.

 getIOTransfer

18-237

Field Description
StateName State names, returned as a cell array that contains nx elements that match the names in

linsys.StateName.
InputName Input names, returned as a cell array that contains nu elements that match the names

in linsys.InputName.
OutputNam
e

Output names, returned as a cell array that contains ny elements that match the names
in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the sample
time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets. To do so,
first convert them to the required format using getOffsetsForLPV. For an example, see
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is false.
Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor object.
• If linsys is an array of state-space models, Advisor is an array of LinearizationAdvisor

objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual linearized
blocks. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

More About
Transfer Functions

A transfer function is an LTI system response at a linearization output point to a linearization input.
You perform linear analysis on transfer functions to understand the stability, time-domain
characteristics, or frequency-domain characteristics of a system.

You can calculate multiple transfer functions for a given block diagram. Consider the
ex_scd_simple_fdbk model:

You can calculate the transfer function from the reference input signal to the plant output signal. The
reference input (also referred to as setpoint), r, originates at the Reference block, and the plant

18 Functions

18-238

output, y, originates at the G block. This transfer function is also called the overall closed-loop
transfer function. To calculate this transfer function, the software adds a linearization input at r, dr,
and a linearization output at y.

The software calculates the overall closed-loop transfer function as the transfer function from dr to y,
which is equal to (I+GK)-1GK.

Observe that the transfer function from r to y is equal to the transfer function from dr to y.

You can calculate the plant transfer function from the plant input, u, to the plant output, y. To isolate
the plant dynamics from the effects of the feedback loop, introduce a loop break (or opening) at y, e,
or, as shown, at u.

The software breaks the loop and adds a linearization input, du, at u, and a linearization output at y.
The plant transfer function is equal to the transfer function from du to y, which is G.

Similarly, to obtain the controller transfer function, calculate the transfer function from the controller
input, e, to the controller output, u. Break the feedback loop at y, e, or u.

You can use getIOTransfer to obtain various open-loop and closed-loop transfer functions. To
configure the transfer function, specify analysis points on page 18-242 as inputs, outputs, and
openings (temporary or permanent on page 18-242), in any combination. The software treats each
combination uniquely. Consider the following code that shows some different ways that you can use
the analysis point, u, to obtain a transfer function:

sllin = slLinearizer('ex_scd_simple_fdbk')

addPoint(sllin,{'u','e','y'})

T0 = getIOTransfer(sllin,'e','y','u');
T1 = getIOTransfer(sllin,'u','y');
T2 = getIOTransfer(sllin,'u','y','u');
T3 = getIOTransfer(sllin,'y','u');
T4 = getIOTransfer(sllin,'y','u','u');

 getIOTransfer

18-239

T5 = getIOTransfer(sllin,'u','u');
T6 = getIOTransfer(sllin,'u','u','u');

In T0, u specifies a loop break. In T1, u specifies only an input, whereas in T2, u specifies an input
and an opening, also referred to as an open-loop input. In T3, u specifies only an output, whereas in
T4, u specifies an output and an opening, also referred to as an open-loop output. In T5, u specifies
an input and an output, also referred to as a complementary sensitivity point. In T6, u specifies an
input, an output, and an opening, also referred to as a loop transfer point. The table describes how
getIOTransfer treats the analysis points, with an emphasis on the different uses of u.

u Specifies... How getIOTransfer Treats Analysis
Points

Transfer Function

Loop break

Example code:

T0 = getIOTransfer(...
 sllin,'e','y','u')

The software stops the signal flow at u, adds
a linearization input, de, at e, and a
linearization output at y. Since there is not
path from de to e, the transfer function is
zero.

y = G0
y = 0

∴ T0 = 0

Input

Example code:

T1 = getIOTransfer(...
 sllin,'u','y')

The software adds a linearization input, du,
at u, and a linearization output at y.

y = G du− Ky
y = Gdu− GKy
I + GK y = Gdu

y = I + GK −1Gdu

∴ T1 = I + GK −1G

Open-loop input

Example code:

T2 = getIOTransfer(...
 sllin,'u','y','u')

The software breaks the signal flow and
adds a linearization input, du, at u, and a
linearization output at y.

y = G du + 0
y = Gdu

∴ T2 = G

18 Functions

18-240

u Specifies... How getIOTransfer Treats Analysis
Points

Transfer Function

Output

Example code:

T3 = getIOTransfer(...
 sllin,'y','u')

The software adds a linearization input, dy,
at y and a linearization output at u.

u = − K dy + Gu
u = − Kdy − KGu
I + KG u = − Kdy

u = − I + KG −1Kdy

∴ T3 = − I + KG −1K

Open-loop output

Example code:

T4 = getIOTransfer(...
 sllin,'y','u','u')

The software adds a linearization input, dy,
at y and adds a linearization output and
breaks the signal flow at u.

u = − K dy + G0
u = − Kdy

∴ T4 = − K

Complementary
sensitivity point

Example code:

T5 = getIOTransfer(...
 sllin,'u','u')

Tip You also can obtain the
complementary sensitivity
function using
getCompSensitivity.

The software adds a linearization output and
a linearization input, du, at u.

u = − KG du + u
u = − KGdu− KGu
I + KG u = − KGdu

u = − I + KG −1KGdu

∴ T5 = − I + KG −1KG

Loop transfer function
point

Example code:

T6 = getIOTransfer(...
 sllin,'u','u','u')

Tip You also can obtain the
loop transfer function using
getLoopTransfer.

The software adds a linearization output,
breaks the loop, and adds a linearization
input, du, at u.

u = − KG du + 0
u = − KGdu

∴ T6 = − KG

The software does not modify the Simulink model when it computes the transfer function.

 getIOTransfer

18-241

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

18 Functions

18-242

Version History
Introduced in R2013b

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a linearizeOptions or slTunerOptions object and
set the StoreOffsets option to true. Then, create an slLinearizer or slTuner interface for the
model.

You can extract the offsets from the info output argument of getIOTransfer and convert them into
the required format for the LPV System block using the getOffsetsForLPV function.

See Also
slLinearizer | slTuner | addPoint | addOpening | getLoopTransfer | getSensitivity |
getCompSensitivity

Topics
“How the Software Treats Loop Openings” on page 2-31
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on page
3-28
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33

 getIOTransfer

18-243

getLoopTransfer
Open-loop transfer function at specified point using slLinearizer or slTuner interface

Syntax
linsys = getLoopTransfer(s,pt)
linsys = getLoopTransfer(s,pt,sign)

linsys = getLoopTransfer(s,pt,temp_opening)
linsys = getLoopTransfer(s,pt,temp_opening,sign)

linsys = getLoopTransfer(___ ,mdl_index)

[linsys,info] = getLoopTransfer(___)

Description
linsys = getLoopTransfer(s,pt) returns the point-to-point open-loop transfer function on page
18-254 at the specified analysis point for the model associated with the slLinearizer or slTuner
interface, s.

The software enforces all the permanent loop openings on page 18-256 specified for s when it
calculates linsys. If you configured either s.Parameters, or s.OperatingPoints, or both,
getLoopTransfer performs multiple linearizations and returns an array of loop transfer functions.

linsys = getLoopTransfer(s,pt,sign) specifies the feedback sign for computing the open-
loop response. By default, linsys is the positive-feedback open-loop transfer function.

Set sign to -1 to compute the negative-feedback open-loop transfer function for applications that
assume the negative-feedback definition of linsys. Many classical design and analysis techniques,
such as the Nyquist or root locus design techniques, use the negative-feedback convention.

The closed-loop sensitivity at pt is equal to feedback(1,linsys,sign).

linsys = getLoopTransfer(s,pt,temp_opening) considers additional, temporary, openings at
the point specified by temp_opening. Use an opening, for example, to calculate the loop transfer
function of an inner loop, measured at the plant input, with the outer loop open.

linsys = getLoopTransfer(s,pt,temp_opening,sign) specifies temporary openings and the
feedback sign.

linsys = getLoopTransfer(___ ,mdl_index) returns a subset of the batch linearization
results. mdl_index specifies the index of the linearizations of interest, in addition to any of the input
arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the loop transfer function for only
a subset of the batch linearization results.

[linsys,info] = getLoopTransfer(___) returns additional linearization information.

18 Functions

18-244

Examples

Obtain Loop Transfer Function at Analysis Point

Obtain the loop transfer function, calculated at e, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the loop transfer function at e, add this point to sllin as an analysis point.

addPoint(sllin,'e');

Obtain the loop transfer function at e.

sys = getLoopTransfer(sllin,'e');
tf(sys)

ans =

 From input "e" to output "e":
 -3

 s + 5

Continuous-time transfer function.

The software adds a linearization output, breaks the loop, and adds a linearization input, de, at e.

 getLoopTransfer

18-245

sys is the transfer function from de to e. Because the software assumes positive-feedback, it returns
sys as .

Obtain Negative-Feedback Loop Transfer Function at Analysis Point

Obtain the negative-feedback loop transfer function, calculated at e, for the ex_scd_simple_fdbk
model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the loop transfer function at e, add this point to sllin as an analysis point.

addPoint(sllin,'e');

Obtain the loop transfer function at e.

sys = getLoopTransfer(sllin,'e',-1);
tf(sys)

18 Functions

18-246

ans =

 From input "e" to output "e":
 3

 s + 5

Continuous-time transfer function.

The software adds a linearization output, breaks the loop, and adds a linearization input, de, at e.

sys is the transfer function from de to e. Because the third input argument indicates negative-
feedback, the software returns sys as .

Specify Temporary Loop Opening for Loop Transfer Function Calculation

Obtain the loop transfer function for the inner loop, calculated at e2, for the scdcascade model.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

 getLoopTransfer

18-247

To calculate the loop transfer function for the inner loop, use the e2 signal as the analysis point. To
eliminate the effects of the outer loop, break the outer loop at y1m. Add these points to sllin.

addPoint(sllin,{'e2','y1m'});

Obtain the inner-loop loop transfer function at e2.

sys = getLoopTransfer(sllin,'e2','y1m');

Here, 'y1m', the third input argument, specifies a temporary loop opening. The software assumes
positive-feedback when it calculates sys.

Obtain Loop Transfer Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For most
linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller, in the 10%
range. For this example, calculate the loop transfer function for the inner loop at e2 for the maximum
values of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

18 Functions

18-248

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the loop transfer function for the inner loop, use the e2 signal as the analysis point. To
eliminate the effects of the outer loop, break the outer loop at y1m. Add these points to sllin.

addPoint(sllin,{'e2','y1m'});

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the inner-loop loop transfer function at e2, with the outer loop open.

sys = getLoopTransfer(sllin,'e2','y1m',-1,mdl_index);

The fourth input argument specifies negative-feedback for the loop transfer calculation.

Obtain Offsets from Loop Transfer Function

Open Simulink model.

mdl = 'watertank';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add an analysis point at the tank output port.

addPoint(sllin,'watertank/Water-Tank System');

Calculate the loop transfer function at the analysis point, and obtain the corresponding linearization
offsets.

 getLoopTransfer

18-249

[sys,info] = getLoopTransfer(sllin,'watertank/Water-Tank System');

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [2x1 double]
 dx: [2x1 double]
 u: 1
 y: 1
 StateName: {2x1 cell}
 InputName: {'watertank/Water-Tank System'}
 OutputName: {'watertank/Water-Tank System'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

pt — Analysis point signal name
character vector | string | cell array of character vectors | string array

Analysis point on page 18-255 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify pt as the block name. To use a point not in the list of
analysis points for s, first add the point using addPoint.

You can specify pt as a uniquely matching portion of the full signal name or block name. Suppose
that the full signal name of an analysis point is 'LoadTorque'. You can specify pt as 'Torque'
as long as 'Torque' is not a portion of the signal name for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, pt = {'y1m','y2m'}.

To calculate linsys, the software adds a linearization output, followed by a loop break, and then a
linearization input at pt. Consider the following model:

18 Functions

18-250

Specify pt as 'u'.

The software computes linsys as the transfer function from du to u.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a linearization
output, loop break, and a linearization input at each point.

du and dy are linearization inputs, and, u and y are linearization outputs. The software computes
linsys as a MIMO transfer function with a transfer function from each linearization input to each
linearization output.

sign — Feedback sign
+1 (default) | -1

Feedback sign, specified as one of the following values:

• +1 (default) — getLoopTransfer returns the positive-feedback open-loop transfer function.
• -1 — getLoopTransfer returns the negative-feedback open-loop transfer function. The

negative-feedback transfer function is -1 times the positive-feedback transfer function.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

 getLoopTransfer

18-251

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s. To
determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify temp_opening as the block name. To use a point
not in the list of analysis points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You can specify
temp_opening as 'Torque' as long as 'Torque' is not a portion of the signal name for any
other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose that you vary
two parameters, par1 and par2, and want to extract the linearization for the combination of par1
> 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical indexing and
returns a logical array. This logical array is the same size as params(1).Value and
params(2).Value. Each entry contains the logical evaluation of the expression for
corresponding entries in params(1).Value and params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose that you vary two
parameters, par1 and par2, and want to extract the linearization for the combination of par1 >
0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical array. find
returns the linear index of every true entry in the logical array

Output Arguments
linsys — Point-to-point open-loop transfer function
state-space object

Point-to-point open-loop transfer function, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software calculates
linsys using the default model parameter values. The software uses the model initial conditions
as the linearization operating point. linsys is returned as a state-space model.

18 Functions

18-252

• If you configured s.Parameters only, the software computes a linearization for each parameter
grid point. linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.OperatingPoints only, the software computes a linearization for each
specified operating point. linsys is returned as a state-space model array of the same size as
s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single operating point,
the software computes a linearization for each parameter grid point. The software uses the
specified operating point as the linearization operating point. linsys is returned as a state-space
model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple operating point
objects, the software computes a linearization for each parameter grid point. The software
requires that s.OperatingPoints is the same size as the parameter grid specified by
s.Parameters. The software computes each linearization using corresponding operating points
and parameter grid points. linsys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple simulation
snapshot times, the software simulates and linearizes the model for each snapshot time and
parameter grid point combination. Suppose that you specify a parameter grid of size p and N
snapshot times. linsys is returned as a state-space model array of size N-by-p.

For most models, linsys is returned as an ss object or an array of ss objects. However, if your
model contains one of the following blocks in the linearization path defined by pt, then linsys
returns the specified type of state-space model.

Block linsys Type
Block with a substitution specified as a genss
object or tunable model object

genss

Block with a substitution specified as an
uncertain model, such as uss

uss

Sparse Second Order block mechss
Descriptor State-Space block configured to
linearize to a sparse model

sparss

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise, Offsets is
returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with the same

dimensions as linsys.

Each offset structure has the following fields:

 getLoopTransfer

18-253

Field Description
x State offsets used for linearization, returned as a column vector of length nx, where nx

is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length ny, where ny

is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu, where nu

is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for discrete-time

systems, returned as a column vector of length nx.
StateName State names, returned as a cell array that contains nx elements that match the names in

linsys.StateName.
InputName Input names, returned as a cell array that contains nu elements that match the names

in linsys.InputName.
OutputNam
e

Output names, returned as a cell array that contains ny elements that match the names
in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the sample
time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets. To do so,
first convert them to the required format using getOffsetsForLPV. For an example, see
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is false.
Otherwise, Advisor is returned as one of the following:

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor object.
• If linsys is an array of state-space models, Advisor is an array of LinearizationAdvisor

objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual linearized
blocks. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

More About
Loop Transfer Function

The loop transfer function at a point is the point-to-point open-loop transfer function from an additive
disturbance at a point to a measurement at the same point.

To compute the loop transfer function at an analysis point, x, the software adds a linearization output,
inserts a loop break, and adds a linearization input, dx. The software computes the transfer function
from dx to x, which is equal to the loop transfer function at x.

18 Functions

18-254

Analysis Point in Simulink
Model

How getLoopTransfer
Interprets Analysis Point

Loop Transfer Function

Transfer function from dx to x

For example, consider the following model where you compute the loop transfer function at e:

Here, at e, the software adds a linearization output, inserts a loop break, and adds a linearization
input, de. The loop transfer function at e, L, is the transfer function from de to e. L is calculated as
follows:

e = − GKde
∴ L = − GK

To compute -KG, use u as the analysis point for getLoopTransfer.

The software does not modify the Simulink model when it computes the loop transfer function.

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

 getLoopTransfer

18-255

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Version History
Introduced in R2013b

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

18 Functions

18-256

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a linearizeOptions or slTunerOptions object and
set the StoreOffsets option to true. Then, create an slLinearizer or slTuner interface for the
model.

You can extract the offsets from the info output argument of getLoopTransfer and convert them
into the required format for the LPV System block using the getOffsetsForLPV function.

See Also
slLinearizer | slTuner | addPoint | addOpening | getIOTransfer | getSensitivity |
getCompSensitivity

Topics
“How the Software Treats Loop Openings” on page 2-31
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on page
3-28
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33

 getLoopTransfer

18-257

getOpenings
Get list of openings for slLinearizer or slTuner interface

Syntax
op_names = getOpenings(s)

Description
op_names = getOpenings(s) returns the names of the permanent openings of s, which can be
either an slLinearizer interface or an slTuner interface.

Examples

Obtain Permanent Opening Names of slLinearizer Interface

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

Create an slLinearizer interface to the model, and add some analysis points to the interface.

sllin = slLinearizer(mdl,{'u1','y1'});

Suppose you are interested in analyzing only the inner loop. To do so, add y1m as a permanent
opening of sllin.

addOpening(sllin,'y1m');

In larger models, you may want to open multiple loops to isolate the system of interest.

18 Functions

18-258

After performing some additional steps, such as adding more points of interest and extracting
transfer functions, suppose you want a list of all the openings of sllin.

op_names = getOpenings(sllin)

op_names =

 1x1 cell array

 {'scdcascade/Sum/1[y1m]'}

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

Output Arguments
op_names — Permanent opening names
cell array of character vectors

Permanent opening names, returned as a cell array of character vectors.

Each entry of op_names follows the pattern, full block path/outport number/[signal
name].

Version History
Introduced in R2014a

See Also
getIOTransfer | addOpening | removeOpening | slLinearizer | slTuner

 getOpenings

18-259

getPoints
Get list of analysis points for slLinearizer or slTuner interface

Syntax
pt_names = getPoints(s)

Description
pt_names = getPoints(s) returns the names of the analysis points of s, which can be either an
slLinearizer interface or an slTuner interface. Use the analysis point names to extract transfer
functions using commands such as getIOTransfer and to specify tuning goals for an slTuner
interface.

Examples

Obtain Analysis Point Names of slLinearizer Interface

Open Simulink model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl)

Create an slLinearizer interface to the model, and add some analysis points to the interface.

sllin = slLinearizer(mdl,{'r','e','u','y'});

Get the names of all the analysis points associated with sllin.

pt_names = getPoints(sllin)

pt_names =

 4x1 cell array

 {'ex_scd_simple_fdbk/Reference/1[r]' }
 {'ex_scd_simple_fdbk/Sum/1[e]' }

18 Functions

18-260

 {'ex_scd_simple_fdbk/K (controller)/1[u]'}
 {'ex_scd_simple_fdbk/G (plant)/1[y]' }

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

Output Arguments
pt_names — Analysis point names
cell array of character vectors

Analysis point names, returned as a cell array of character vectors.

Each entry of pt_names follows the pattern, full block path/outport number/[signal
name].

Version History
Introduced in R2014a

See Also
getIOTransfer | addPoint | removePoint | slLinearizer | slTuner

Topics
“Mark Signals of Interest for Control System Analysis and Design” on page 2-38

 getPoints

18-261

getSensitivity
Sensitivity function at specified point using slLinearizer or slTuner interface

Syntax
linsys = getSensitivity(s,pt)
linsys = getSensitivity(s,pt,temp_opening)
linsys = getSensitivity(___ ,mdl_index)

[linsys,info] = getSensitivity(___)

Description
linsys = getSensitivity(s,pt) returns the sensitivity function on page 18-271 at the specified
analysis point for the model associated with the slLinearizer or slTuner interface, s.

The software enforces all the permanent openings on page 18-272 specified for s when it calculates
linsys. If you configured either s.Parameters, or s.OperatingPoints, or both,
getSensitivity performs multiple linearizations and returns an array of sensitivity functions.

linsys = getSensitivity(s,pt,temp_opening) considers additional, temporary, openings at
the point specified by temp_opening. Use an opening, for example, to calculate the sensitivity
function of an inner loop, with the outer loop open.

linsys = getSensitivity(___ ,mdl_index) returns a subset of the batch linearization results.
mdl_index specifies the index of the linearizations of interest, in addition to any of the input
arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the sensitivity function for only a
subset of the batch linearization results.

[linsys,info] = getSensitivity(___) returns additional linearization information.

Examples

Sensitivity Function at Analysis Point

For the ex_scd_simple_fdbk model, obtain the sensitivity at the plant input, u.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';
open_system(mdl);

18 Functions

18-262

In this model:

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the sensitivity at the plant input, u, add u as an analysis point to sllin.

addPoint(sllin,'u');

Obtain the sensitivity at the plant input, u.

sys = getSensitivity(sllin,'u');
tf(sys)

ans =

 From input "u" to output "u":
 s + 5

 s + 8

Continuous-time transfer function.

The software uses a linearization input, du, and linearization output u to compute sys.

sys is the transfer function from du to u, which is equal to .

 getSensitivity

18-263

Specify Temporary Loop Opening for Sensitivity Function Calculation

For the scdcascade model, obtain the inner-loop sensitivity at the output of G2, with the outer loop
open.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the sensitivity at the output of G2, use the y2 signal as the analysis point. To eliminate
the effects of the outer loop, break the outer loop at y1m. Add both these points to sllin.

addPoint(sllin,{'y2','y1m'});

Obtain the sensitivity at y2 with the outer loop open.

sys = getSensitivity(sllin,'y2','y1m');

Here, 'y1m', the third input argument, specifies a temporary opening of the outer loop.

Obtain Sensitivity Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For most
linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10%
range. For this example, obtain the sensitivity at the output of G2, with the outer loop open, for the
maximum values of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';
open_system(mdl)

18 Functions

18-264

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';
params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';
params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the sensitivity at the output of G2, use the y2 signal as the analysis point. To eliminate
the effects of the outer loop, break the outer loop at y1m. Add both these points to sllin as analysis
points.

addPoint(sllin,{'y2','y1m'});

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value == max(Kp2_range) & params(2).Value == max(Ki2_range);

Obtain the sensitivity at the output of G2 for the specified parameter combination.

sys = getSensitivity(sllin,'y2','y1m',mdl_index);

Obtain Offsets from Sensitivity Function

Open Simulink model.

 getSensitivity

18-265

mdl = 'watertank';
open_system(mdl)

Create a linearization option set, and set the StoreOffsets option.

opt = linearizeOptions('StoreOffsets',true);

Create slLinearizer interface.

sllin = slLinearizer(mdl,opt);

Add an analysis point at the tank output port.

addPoint(sllin,'watertank/Water-Tank System');

Calculate the sensitivity function at the analysis point, and obtain the corresponding linearization
offsets.

[sys,info] = getSensitivity(sllin,'watertank/Water-Tank System');

View offsets.

info.Offsets

ans =

 struct with fields:

 x: [2x1 double]
 dx: [2x1 double]
 u: 1
 y: 1
 StateName: {2x1 cell}
 InputName: {'watertank/Water-Tank System'}
 OutputName: {'watertank/Water-Tank System'}
 Ts: 0

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

18 Functions

18-266

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

pt — Analysis point signal name
character vector | string | cell array of character vectors | string array

Analysis point on page 18-272 signal name, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify pt as the block name. To use a point not in the list of
analysis points for s, first add the point using addPoint.

You can specify pt as a uniquely matching portion of the full signal name or block name. Suppose
that the full signal name of an analysis point is 'LoadTorque'. You can specify pt as 'Torque'
as long as 'Torque' is not a portion of the signal name for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, pt = {'y1m','y2m'}.

To calculate linsys, the software adds a linearization input, followed by a linearization output at pt.

Consider the following model:

Specify pt as 'u':

The software computes linsys as the transfer function from du to u.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a linearization
input, followed by a linearization output at each point.

 getSensitivity

18-267

du and dy are linearization inputs, and, u and y are linearization outputs. The software computes
linsys as a MIMO transfer function with a transfer function from each linearization input to each
linearization output.

temp_opening — Temporary opening signal name
character vector | string | cell array of character vectors | string array

Temporary opening signal name, specified as:

• Character vector or string — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s. To
determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose that an analysis point does not have a signal name, but only a
block name and port number. You can specify temp_opening as the block name. To use a point
not in the list of analysis points for s, first add the point using addPoint.

You can specify temp_opening as a uniquely matching portion of the full signal name or block
name. Suppose that the full signal name of an analysis point is 'LoadTorque'. You can specify
temp_opening as 'Torque' as long as 'Torque' is not a portion of the signal name for any
other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose that you vary
two parameters, par1 and par2, and want to extract the linearization for the combination of par1
> 0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = params(1).Value>0.5 & params(2).Value <= 5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical indexing and
returns a logical array. This logical array is the same size as params(1).Value and
params(2).Value. Each entry contains the logical evaluation of the expression for
corresponding entries in params(1).Value and params(2).Value.

18 Functions

18-268

• Vector of positive integers — Linear index of linearizations of interest. Suppose that you vary two
parameters, par1 and par2, and want to extract the linearization for the combination of par1 >
0.5 and par2 <= 5. Use:

params = s.Parameters;
mdl_index = find(params(1).Value>0.5 & params(2).Value <= 5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical array. find
returns the linear index of every true entry in the logical array

Output Arguments
linsys — Sensitivity function
state-space model

Sensitivity function, returned as described in the following:

• If you did not configure s.Parameters and s.OperatingPoints, the software calculates
linsys using the default model parameter values. The software uses the model initial conditions
as the linearization operating point. linsys is returned as a state-space model.

• If you configured s.Parameters only, the software computes a linearization for each parameter
grid point. linsys is returned as a state-space model array of the same size as the parameter
grid.

• If you configured s.OperatingPoints only, the software computes a linearization for each
specified operating point. linsys is returned as a state-space model array of the same size as
s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single operating point,
the software computes a linearization for each parameter grid point. The software uses the
specified operating point as the linearization operating point. linsys is returned as a state-space
model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple operating point
objects, the software computes a linearization for each parameter grid point. The software
requires that s.OperatingPoints is the same size as the parameter grid specified by
s.Parameters. The software computes each linearization using corresponding operating points
and parameter grid points. linsys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple simulation
snapshot times, the software simulates and linearizes the model for each snapshot time and
parameter grid point combination. Suppose that you specify a parameter grid of size p and N
snapshot times. linsys is returned as a state-space model array of size N-by-p.

For most models, linsys is returned as an ss object or an array of ss objects. However, if your
model contains one of the following blocks in the linearization path defined by pt, then linsys
returns the specified type of state-space model.

Block linsys Type
Block with a substitution specified as a genss
object or tunable model object

genss

Block with a substitution specified as an
uncertain model, such as uss

uss

 getSensitivity

18-269

Block linsys Type
Sparse Second Order block mechss
Descriptor State-Space block configured to
linearize to a sparse model

sparss

info — Linearization information
structure

Linearization information, returned as a structure with the following fields:

Offsets — Linearization offsets
[] (default) | structure | structure array

Linearization offsets, returned as [] if s.Options.StoreOffsets is false. Otherwise, Offsets is
returned as one of the following:

• If linsys is a single state-space model, then Offsets is a structure.
• If linsys is an array of state-space models, then Offsets is a structure array with the same

dimensions as linsys.

Each offset structure has the following fields:

Field Description
x State offsets used for linearization, returned as a column vector of length nx, where nx

is the number of states in linsys.
y Output offsets used for linearization, returned as a column vector of length ny, where ny

is the number of outputs in linsys.
u Input offsets used for linearization, returned as a column vector of length nu, where nu

is the number of inputs in linsys.
dx Derivative offsets for continuous time systems or updated state values for discrete-time

systems, returned as a column vector of length nx.
StateName State names, returned as a cell array that contains nx elements that match the names in

linsys.StateName.
InputName Input names, returned as a cell array that contains nu elements that match the names

in linsys.InputName.
OutputNam
e

Output names, returned as a cell array that contains ny elements that match the names
in linsys.OutputName.

Ts Sample time of the linearized system, returned as a scalar that matches the sample
time in linsys.Ts. For continuous-time systems, Ts is 0.

If Offsets is a structure array, you can configure an LPV System block using the offsets. To do so,
first convert them to the required format using getOffsetsForLPV. For an example, see
“Approximate Nonlinear Behavior Using Array of LTI Systems” on page 3-69.

Advisor — Linearization diagnostic information
[] (default) | LinearizationAdvisor object | array of LinearizationAdvisor objects

Linearization diagnostic information, returned as [] if s.Options.StoreAdvisor is false.
Otherwise, Advisor is returned as one of the following:

18 Functions

18-270

• If linsys is a single state-space model, Advisor is a LinearizationAdvisor object.
• If linsys is an array of state-space models, Advisor is an array of LinearizationAdvisor

objects with the same dimensions as linsys.

LinearizationAdvisor objects store linearization diagnostic information for individual linearized
blocks. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

More About
Sensitivity Function

The sensitivity function, also referred to simply as sensitivity, measures how sensitive a signal is to an
added disturbance. Sensitivity is a closed-loop measure. Feedback reduces the sensitivity in the
frequency band where the open-loop gain is greater than 1.

To compute the sensitivity at an analysis point, x, the software injects a disturbance signal, dx, at the
point. Then, the software computes the transfer function from dx to x, which is equal to the
sensitivity function at x.

Analysis Point in Simulink
Model

How getSensitivity
Interprets Analysis Point

Sensitivity Function

Transfer function from dx to x

For example, consider the following model where you compute the sensitivity function at u:

Here, the software injects a disturbance signal (du) at u. The sensitivity at u, Su, is the transfer
function from du to u. The software calculates Su as follows:

u = du− KGu
(I + KG)u = du

u = (Idu

∴ Su = (I

 getSensitivity

18-271

Here, I is an identity matrix of the same size as KG.

Similarly, to compute the sensitivity at y, the software injects a disturbance signal (dy) at y. The
software computes the sensitivity function as the transfer function from dy to y. This transfer
function is equal to (I+GK)-1, where I is an identity matrix of the same size as GK.

The software does not modify the Simulink model when it computes the sensitivity transfer function.

Analysis Point

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

18 Functions

18-272

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Version History
Introduced in R2013b

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a linearizeOptions or slTunerOptions object and
set the StoreOffsets option to true. Then, create an slLinearizer or slTuner interface for the
model.

You can extract the offsets from the info output argument of getSensitivity and convert them
into the required format for the LPV System block using the getOffsetsForLPV function.

See Also
slLinearizer | slTuner | addPoint | addOpening | getIOTransfer | getLoopTransfer |
getCompSensitivity

Topics
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on page
3-28
“Analyze Command-Line Batch Linearization Results Using Response Plots” on page 3-33
“How the Software Treats Loop Openings” on page 2-31

 getSensitivity

18-273

refresh
Resynchronize slLinearizer or slTuner interface with current model state

Syntax
refresh(s)

Description
refresh(s) resynchronizes the slLinearizer or slTuner interface, s, with the current state of
the model. The interface recompiles the model for the next call to functions that either return
transfer functions (such as getIOTransfer and getLoopTransfer) or functions that tune model
parameters (such as systune or looptune). This model recompilation ensures that the interface
uses the current model state when computing linearizations. Block parameterizations and values for
tuned blocks are preserved. Use setBlockParam to sync blocks with the model.

Use this command after you make changes to the model that impact linearization. Changes that
impact linearization include modifying parameter values and reconfiguring blocks and signals.

Examples

Resynchronize slLinearizer Interface with Current Model State

Create an slLinearizer interface.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points, and parameter
values. Then, you linearize the model using the getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity commands. The first time you call one of these
commands with sllin, the software stores the state of the model in sllin and uses it to compute
the linearization.

You can change the model after your first call to getIOTransfer, getLoopTransfer,
getSensitivity, or getCompSensitivity with sllin. Some changes impact the linearization,
such as changing parameter values. If your change impacts the linearization, call refresh to get
expected linearization results. For this example, change the proportional gain of the C2 PID
controller block.

set_param('scdcascade/C2','P','10')

Trigger the interface to recompile the model for the next call to getIOTransfer,
getLoopTransfer, getSensitivity, or getCompSensitivity.

refresh(sllin);

18 Functions

18-274

Resynchronize slTuner Interface with Current Model State

Create an slTuner interface.

st = slTuner('scdcascade','C2');

Generally, you configure the interface with analysis points, openings, operating points, and parameter
values. Then, you tune the model block parameters using the systune and looptune commands.
You can also analyze various transfer functions in the model using commands such as
getIOTransfer and getLoopTransfer. The first time you call one of these commands with st, the
software stores the state of the model in st and uses it to compute the linearization.

You can change the model after your first call to one of these commands. Some changes impact the
linearization, such as changing parameter values. If your change impacts the linearization, call
refresh to get expected linearization results. For this example, change the proportional gain of the
C1 PID controller block.

set_param('scdcascade/C1','P','10')

Trigger the interface to recompile the model for the next call to commands such as getIOTransfer,
getLoopTransfer, or systune.

refresh(st);

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

Version History
Introduced in R2013b

See Also
slLinearizer | slTuner | systune | looptune | getIOTransfer | getLoopTransfer |
getSensitivity | getCompSensitivity

 refresh

18-275

removeAllOpenings
Remove all openings from list of permanent openings in slLinearizer or slTuner interface

Syntax
removeAllOpenings(s)

Description
removeAllOpenings(s) removes all openings from the list of permanent openings on page 18-277
in the slLinearizer or slTuner interface, s. This function does not modify the Simulink model
associated with s.

Examples

Remove All Openings from slLinearizer Interface

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points, and parameter
values. For this example, add two openings to the interface.

addOpening(sllin,{'y2m','y1m'});

'y2m' and 'y1m' are the names of two feedback signals in the scdcascade model. The
addOpening command adds these signals to the list of openings for sllin.

Remove all the openings from sllin.

removeAllOpenings(sllin);

To verify that all openings have been removed, display the contents of sllin, and examine the
information about the interface openings.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

18 Functions

18-276

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

More About
Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Version History
Introduced in R2013b

See Also
slLinearizer | slTuner | addOpening | removeOpening

 removeAllOpenings

18-277

removeAllPoints
Remove all points from list of analysis points in slLinearizer or slTuner interface

Syntax
removeAllPoints(s)

Description
removeAllPoints(s) removes all points from the list of analysis points on page 18-279 for the
slLinearizer or slTuner interface, s. This function does not modify the model associated with s.

Examples

Remove All Analysis Points

Create an slLinearizer interface for the scdcascade model. Add analysis points for the r, e1, and
y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove all signals from the list of interface analysis points.

removeAllPoints(sllin);

To verify that all analysis points have been removed, display the contents of sllin, and examine the
information about the interface analysis points.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

18 Functions

18-278

More About
Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Version History
Introduced in R2013b

See Also
slTuner | removePoint | slLinearizer | addPoint

 removeAllPoints

18-279

removeOpening
Remove opening from list of permanent loop openings in slLinearizer or slTuner interface

Syntax
removeOpening(s,op)

Description
removeOpening(s,op) removes the specified opening, op, from the list of permanent openings on
page 18-283 for the slLinearizer or slTuner interface, s. You can specify op to remove either a
single or multiple openings.

removeOpening does not modify the model associated with s.

Examples

Remove Opening Using Signal Name

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points, and parameter
values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The addOpening
command adds these signals to the list of permanent openings for sllin.

Remove the 'y1m' opening from sllin.

removeOpening(sllin,'y1m');

Remove Multiple Openings Using Signal Names

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points, and parameter
values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The addOpening
command adds these signals to the list of permanent openings for sllin.

18 Functions

18-280

Remove the 'y1m' and 'y2m' openings from sllin.

removeOpening(sllin,{'y1m','y2m'});

Remove Opening Using Index

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, loop openings, operating points, and
parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The addOpening
command adds these signals to the list of permanent openings for sllin.

Determine the index number of the opening you want to remove. To do this, display the contents of
the interface, which includes opening index numbers, in the Command Window.

For this example, remove the 'y1m' opening from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
3 Permanent openings:

Opening 1:
- Block: scdcascade/Sum3
- Port: 1
- Signal Name: y2m
Opening 2:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m
Opening 3:
- Block: scdcascade/C1
- Port: 1
- Signal Name: u1

Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that 'y1m' is the second opening of sllin .

Remove the opening from the interface.

removeOpening(sllin,2);

 removeOpening

18-281

Remove Multiple Openings Using Index

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points, and parameter
values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The addOpening
command adds these signals to the list of permanent openings for sllin.

Determine the index numbers of the openings you want to remove. To do this, display the contents of
the interface, which includes opening index numbers, in the Command Window.

For this example, remove the 'y2m' and 'y1m' openings from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use the addPoint command to add new points.
3 Permanent openings:

Opening 1:
- Block: scdcascade/Sum3
- Port: 1
- Signal Name: y2m
Opening 2:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m
Opening 3:
- Block: scdcascade/C1
- Port: 1
- Signal Name: u1

Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that 'y2m' and 'y1m' are the first and second openings of sllin .

Remove the openings from the interface.

removeOpening(sllin,[1 2]);

18 Functions

18-282

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

op — Opening
character vector | string | cell array of character vectors | string array | positive integer | vector of
positive integers

Opening on page 18-283 to remove from the list of permanent openings for s, specified as:

• Character vector or string — Opening signal name.

To determine the signal name associated with an opening, type s. The software displays the
contents of s in the MATLAB command window, including the opening signal names, block names,
and port numbers. Suppose an opening does not have a signal name, but only a block name and
port number. You can specify op as the block name.

You can specify op as a uniquely matching portion of the full signal name or block name. Suppose
the full signal name of an opening is 'LoadTorque'. You can specify op as 'Torque' as long as
'Torque' is not a portion of the signal name for any other opening of s.

For example, op = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple opening names. For example,

op = {'y1m','y2m'}.
• Positive integer — Opening index.

To determine the index of an opening, type s. The software displays the contents of s in the
MATLAB command window, including the opening indices. For example, op = 1.

• Vector of positive integers — Specifies multiple opening indices. For example, op = [1 2].

More About
Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

 removeOpening

18-283

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Version History
Introduced in R2013b

See Also
slTuner | removeAllOpenings | addOpening | slLinearizer | removePoint

18 Functions

18-284

removePoint
Remove point from list of analysis points in slLinearizer or slTuner interface

Syntax
removePoint(s,pt)

Description
removePoint(s,pt) removes the specified point, pt, from the list of analysis points on page 18-288
for the slLinearizer or slTuner interface, s. You can specify pt to remove either a single or
multiple points.

removePoint does not modify the model associated with s.

Examples

Remove Analysis Point Using Signal Name

Create an slLinearizer interface for the scdcascade model. Add analysis points for the r, e1, and
y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove the y1m point from the interface.

removePoint(sllin,'y1m');

Remove Multiple Analysis Points Using Signal Name

Create an slLinearizer interface for the scdcascade model. Add analysis points for the r, e1, and
y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove the y1m and e1 points from the interface.

removePoint(sllin,{'y1m','e1'});

Remove Analysis Point Using Index

Create an slLinearizer interface for the scdcascade model. Add analysis points for the r, e1, and
y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

 removePoint

18-285

Determine the index number of the point you want to remove. To do this, display the contents of the
interface, which includes analysis point index numbers, in the Command Window.

For this example, remove the y1m point from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

3 Analysis points:

Point 1:
- Block: scdcascade/setpoint
- Port: 1
- Signal Name: r
Point 2:
- Block: scdcascade/Sum1
- Port: 1
- Signal Name: e1
Point 3:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that y1m is the third analysis point of sllin .

Remove the point from the interface.

removePoint(sllin,3);

Remove Multiple Analysis Points Using Index

Create an slLinearizer interface for the scdcascade model. Add analysis points for the r, e1, and
y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Determine the index numbers of the points you want to remove. To do this, display the contents of the
interface, which includes analysis point index numbers, in the Command Window.

For this example, remove the e1 and y1m points from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

3 Analysis points:

18 Functions

18-286

Point 1:
- Block: scdcascade/setpoint
- Port: 1
- Signal Name: r
Point 2:
- Block: scdcascade/Sum1
- Port: 1
- Signal Name: e1
Point 3:
- Block: scdcascade/Sum
- Port: 1
- Signal Name: y1m

No permanent openings. Use the addOpening command to add new permanent openings.
Properties with dot notation get/set access:
 Parameters : []
 OperatingPoints : [] (model initial condition will be used.)
 BlockSubstitutions : []
 Options : [1x1 linearize.LinearizeOptions]

The displays shows that e1 and y1m are the second and third analysis points of sllin .

Remove the points from the interface.

removePoint(sllin,[2 3]);

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an slTuner
interface.

pt — Analysis point
character vector | string | cell array of character vectors | string array | positive integer | vector of
positive integers

Analysis point on page 18-288 to remove from the list of analysis points for s, specified as:

• Character vector or string — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis point signal names, block
names, and port numbers. Suppose an analysis point does not have a signal name, but only a block
name and port number. You can specify pt as the block name.

You can specify pt as a uniquely matching portion of the full signal name or block name. Suppose
the full signal name of an analysis point is 'LoadTorque'. You can specify pt as 'Torque' as
long as 'Torque' is not a portion of the signal name for any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of character vectors or string array — Specifies multiple analysis point names. For

example, pt = {'y1m','y2m'}.

 removePoint

18-287

• Positive integer or — Analysis point index.

To determine the index of an analysis point, type s. The software displays the contents of s in the
MATLAB command window, including the analysis points indices.

For example, pt = 1.
• Vector of positive integers — Specifies multiple analysis point indices. For example, pt = [1 2].

More About
Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Version History
Introduced in R2013b

See Also
slTuner | removeAllPoints | addPoint | slLinearizer | removeOpening

18 Functions

18-288

addBlock
Add block to list of tuned blocks for slTuner interface

Syntax
addBlock(st,blk)

Description
addBlock(st,blk) adds the block referenced by blk to the list of tuned blocks on page 18-290 of
the slTuner interface, st.

Examples

Add Block to slTuner Interface

Open the Simulink model.

mdl = 'scdcascade';
open_system(mdl)

Create an slTuner interface for the Simulink model, and add a block to the list of tuned blocks of the
interface.

st = slTuner(mdl,'C1');
addBlock(st,'C2');

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

 addBlock

18-289

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string | cell array of character vectors | string array

Block to add to the list of tuned blocks on page 18-290 for st, specified as:

• Character vector or string — Block path. You can specify the full block path or a partial path. The
partial path must match the end of the full block path and unambiguously identify the block to
add. For example, you can refer to a block by its name, provided the block name appears only
once in the Simulink model.

For example, blk = 'scdcascade/C1'.
• Cell array of character vectors or string array — Multiple block paths.

For example, blk = {'scdcascade/C1','scdcascade/C2'}.

More About
Tuned Block

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Version History
Introduced in R2014a

See Also
slTuner | removeBlock | addPoint | addOpening

18 Functions

18-290

getBlockParam
Get parameterization of tuned block in slTuner interface

Syntax
blk_param = getBlockParam(st,blk)
[blk_param1,...,blk_paramN] = getBlockParam(st,blk1,...,blkN)

S = getBlockParam(st)

Description
getBlockParam lets you retrieve the current parameterization of a tuned block on page 18-294 in an
slTuner interface.

An slTuner interface parameterizes each tuned Simulink block as a Control Design Block, or a
generalized parametric model of type genmat or genss. This parameterization specifies the tuned
variables“Tuned Variables” on page 18-295 for commands such as systune.

blk_param = getBlockParam(st,blk) returns the parameterization used to tune the Simulink
block, blk.

[blk_param1,...,blk_paramN] = getBlockParam(st,blk1,...,blkN) returns the
parameterizations of one or more specified blocks.

S = getBlockParam(st) returns a structure containing the parameterizations of all the tuned
blocks of st.

Examples

Get Parameterization of Tuned Block

Create an slTuner interface for the scdcascade model.

open_system('scdcascade');
st = slTuner('scdcascade',{'C1','C2'});

 getBlockParam

18-291

Examine the block parameterization of one of the tuned blocks.

blk_param = getBlockParam(st,'C1')

Tunable continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

and tunable parameters Kp, Ki.

Type "pid(blk_param)" to see the current value.

The block C1 is a PID Controller block. Therefore, its parameterization in st is a tunablePID
Control Design Block.

Get Parameterizations of Multiple Tuned blocks

Create an slTuner interface for the scdhelicopter model.

open_system('scdhelicopter')
st = slTuner('scdhelicopter',{'PI1','PI2','PI3','SOF'});

18 Functions

18-292

Retrieve the parameterizations for the PI controllers in the model.

[parPI1,parPI2,parPI3] = getBlockParam(st,'PI1','PI2','PI3');

Get Parameterizations of All Tuned Blocks

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

Retrieve the parameterizations for both tuned blocks in st.

blockParams = getBlockParam(st)

 getBlockParam

18-293

blockParams =

 struct with fields:

 C1: [1x1 tunablePID]
 C2: [1x1 tunablePID]

blockParams is a structure with field names corresponding to the names of the tunable blocks in st.
The field values of blockParams are tunablePID models, because C1 and C2 are both PID
Controller blocks.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can specify the
full block path or any portion of the block path that uniquely identifies the block among the other
tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Output Arguments
blk_param — Parameterization of tuned block
control design block | generalized model | tunable surface | []

Parameterization of the specified tuned block, returned as one of the following:

• A tunable Control Design Block.
• A tunable genss model, tunable genmat matrix, or tunableSurface, if you specified such a

parameterization for blk using setBlockParam.
• An empty array ([]), if slTuner cannot parameterize blk. You can use setBlockParam to

specify a parameterization for such blocks.

S — Parameterizations of all tuned blocks
structure

Parameterization of all tuned blocks in st, returned as a structure. The field names in S are the
names of the tuned blocks in st, and the corresponding field values are block parameterizations as
described in blk_param.

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear

18 Functions

18-294

elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Tuned Variables

Within an slTuner interface, tuned variables are any Control Design Blocks involved in the
parameterization of a tuned Simulink block, either directly or through a generalized parametric
model. Tuned variables are the parameters manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To access the
values of the tuned variables within the block parameterization, use getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of tuned
variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned variable.
To modify the block value, you can use either setBlockValue or setTunedValue. Similarly, you can
retrieve the block value using either getBlockValue or getTunedValue.

Version History
Introduced in R2011b

See Also
slTuner | setBlockParam | getBlockValue | getTunedValue | genss | tunablePID

Topics
“How Tuned Simulink Blocks Are Parameterized”

 getBlockParam

18-295

getBlockRateConversion
Get rate conversion settings for tuned block in slTuner interface

Syntax
method = getBlockRateConversion(st,blk)
[method,pwf] = getBlockRateConversion(st,blk)

[IF,DF] = getBlockRateConversion(st,blk)

Description
When you use systune with Simulink, tuning is performed at the sampling rate specified by the Ts
property of the slTuner interface. When you use writeBlockValue to write tuned parameters back
to the Simulink model, each tuned block value is automatically converted from the sample time used
for tuning, to the sample time of the Simulink block. The rate conversion method associated with
each tuned block specifies how this resampling operation should be performed. Use
getBlockRateConversion to query the block conversion rate and use setBlockRateConversion
to modify it.

method = getBlockRateConversion(st,blk) returns the rate conversion method associated
with the tuned block on page 18-298, blk.

[method,pwf] = getBlockRateConversion(st,blk) also returns the prewarp frequency. When
method is not 'tustin', the prewarp frequency is always 0.

[IF,DF] = getBlockRateConversion(st,blk) returns the discretization methods for the
integrator and derivative filter terms when blk is a PID Controller block.

Examples

Get Rate Conversion Settings of Tuned PID Block

Create an slTuner interface for the Simulink model scdcascade. Examine the block rate
conversion settings of one of the tuned blocks.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

18 Functions

18-296

[IF,DF] = getBlockRateConversion(st,'C1')

IF =

 'Trapezoidal'

DF =

 'Trapezoidal'

C1 is a PID block. Therefore, its rate-conversion settings are expressed in terms of integrator and
derivative filter methods. For a continuous-time PID block, the rate-conversion methods are set to
Trapezoidal by default. To override this setting, use setBlockRateConversion.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can specify the
full block path or any portion of the block path that uniquely identifies the block among the other
tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Output Arguments
method — Rate conversion method
'zoh' | 'foh' | 'tustin' | 'matched'

 getBlockRateConversion

18-297

Rate conversion method associated with blk, returned as one of the following:

• 'zoh' — Zero-order hold on the inputs
• 'foh — Linear interpolation of inputs
• 'tustin' — Bilinear (Tustin) approximation
• 'matched' — Matched pole-zero method (for SISO blocks only)

pwf — Prewarp frequency for Tustin method
positive scalar

Prewarp frequency for the Tustin method, returned as a positive scalar.

If the rate conversion method associated with blk is zero-order hold or Tustin without prewarp, then
pwf is 0.

IF,DF — Integrator and filter methods
'ForwardEuler' | 'BackwardEuler' | 'Trapezoidal'

Integrator and filter methods for rate conversion of PID Controller block, each returned as
'ForwardEuler', 'BackwardEuler', or 'Trapezoidal'. For continuous-time PID blocks, the
default methods are 'Trapezoidal' for both integrator and derivative filter. For discrete-time PID
blocks, IF and DF are determined by the Integrator method and Filter method settings in the
Simulink block. See the Discrete PID Controller and pid reference pages for more details about
integrator and filter methods.

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

18 Functions

18-298

Version History
Introduced in R2014a

See Also
slTuner | setBlockRateConversion | writeBlockValue

Topics
“Tuning of a Digital Motion Control System”
“Continuous-Discrete Conversion Methods”

 getBlockRateConversion

18-299

getBlockValue
Get current value of tuned block parameterization in slTuner interface

Syntax
value = getBlockValue(st,blk)
[val1,val2,...] = getBlockValue(st,blk1,blk2,...)

S = getBlockValue(st)

Description
getBlockValue lets you access the current value of the parameterization of a tuned block on page
18-304 in an slTuner interface.

An slTuner interface parameterizes each tuned Simulink block as a Control Design Block, or a
generalized parametric model of type genmat or genss. This parameterization specifies the tuned
variables on page 18-304 for commands such as systune.

value = getBlockValue(st,blk) returns the current value of the parameterization of a tunable
block, blk, in an slTuner interface.

[val1,val2,...] = getBlockValue(st,blk1,blk2,...) returns the current values of the
parameterizations of one or more tuned blocks of st.

S = getBlockValue(st) returns a structure containing the current values of the
parameterizations of all tuned blocks of st.

Examples

Get Current Value of Tuned Block Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

18 Functions

18-300

Examine the current parameterization value of one of the tuned blocks.

val = getBlockValue(st,'C1')

val =

 1
 Kp + Ki * ---
 s

 with Kp = 0.158, Ki = 0.042

Name: C1
Continuous-time PI controller in parallel form.

Get Current Values of Multiple Tuned Block Parameterizations

Create an slTuner interface for the scdhelicopter model.

open_system('scdhelicopter')
st = slTuner('scdhelicopter',{'PI1','PI2','PI3','SOF'});

 getBlockValue

18-301

Retrieve the values of parameterizations for the PI controller blocks in the model.

[valPI1,valPI2,valPI3] = getBlockParam(st,'PI1','PI2','PI3');

Get Current Values of All Tuned Block Parameterizations

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

Retrieve the parameterization values for both tuned blocks in st.

blockValues = getBlockValue(st)

18 Functions

18-302

blockValues =

 struct with fields:

 C1: [1x1 pid]
 C2: [1x1 pid]

blockValues is a structure with field names corresponding to the names of the tunable blocks in st.
The field values of blockValues are pid models, because C1 and C2 are both PID Controller blocks.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can specify the
full block path or any portion of the block path that uniquely identifies the block among the other
tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Output Arguments
value — Current value of block parameterization
numeric LTI model

Current value of block parameterization, returned as a numeric LTI model, such as pid, ss, or tf.

When the tuning results have not been applied to the Simulink model using writeBlockValue, the
value returned by getBlockValue can differ from the actual Simulink block value.

Note Use writeBlockValue to align the block parameterization values with the actual block values
in the Simulink model.

S — Current values of all block parameterizations
structure

Current values of all block parameterizations in st, returned as a structure. The names of the fields
in S are the names of the tuned blocks in st, and the field values are the corresponding numeric LTI
models.

You can use this structure to transfer the tuned values from one slTuner interface to another
slTuner interface with the same tuned block parameterizations.

S = getBlockValue(st1);
setBlockValue(st2,S);

 getBlockValue

18-303

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Tuned Variables

Within an slTuner interface, tuned variables are any Control Design Blocks involved in the
parameterization of a tuned Simulink block, either directly or through a generalized parametric
model. Tuned variables are the parameters manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To access the
values of the tuned variables within the block parameterization, use getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of tuned
variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned variable.
To modify the block value, you can use either setBlockValue or setTunedValue. Similarly, you can
retrieve the block value using either getBlockValue or getTunedValue.

Version History
Introduced in R2011b

See Also
slTuner | setBlockValue | getBlockParam | getTunedValue

18 Functions

18-304

Topics
“How Tuned Simulink Blocks Are Parameterized”

 getBlockValue

18-305

getTunedValue
Get current value of tuned variable in slTuner interface

Syntax
value = getTunedValue(st,var)
[value1,value2,...] = getTunedValue(st,var1,var2,...)

S = getTunedValue(st)

Description
getTunedValue lets you access the current value of a tuned variable on page 18-311 within an
slTuner interface.

An slTuner interface parameterizes each tuned block on page 18-310 as a Control Design Block, or
a generalized parametric model of type genmat or genss. This parameterization specifies the tuned
variables for commands such as systune.

value = getTunedValue(st,var) returns the current value of the tuned variable, var, in the
slTuner interface, st.

[value1,value2,...] = getTunedValue(st,var1,var2,...) returns the current values of
multiple tuned variables.

S = getTunedValue(st) returns a structure containing the current values of all tuned variables in
st.

Examples

Query Value of Single Tunable Element within Custom Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

18 Functions

18-306

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized state-space
(genss) model containing two tunable parameters, Ki and Kp.

Typically, you would use a tuning command such as systune to tune the values of the parameters in
the custom parameterization.

After tuning, use getTunedValue to query the tuned value of Ki.

KiTuned = getTunedValue(st,'Ki')

KiTuned =

 1

To query the value of the tuned block as a whole, C1, use getBlockValue.

Query Value of Multiple Tunable Elements within Custom Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

 getTunedValue

18-307

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized state-space
(genss) model containing tunable parameters Kp and Ki.

Typically, you would use a tuning command such as systune to tune the values of the parameters in
the custom parameterization.

After tuning, use getTunedValue to query the tuned values of both Kp and Ki.

[KiTuned,KpTuned] = getTunedValue(st,'Ki','Kp')

KiTuned =

 1

KpTuned =

 1

Query Value of All Tuned Elements in slTuner Interface with Custom Parameterizations

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

18 Functions

18-308

Set a custom parameterization for tuned block C1.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

Typically, you would use a tuning command such as systune to tune the values of the parameters in
the custom parameterization.

After tuning, use getTunedValue to query the tuned values of the parameterizations of all the tuned
blocks in st.

S = getTunedValue(st)

S =

 struct with fields:

 C2: [1x1 pid]
 Ki: 1
 Kp: 1

The tuned values are returned in a structure that contains fields for:

• The tuned block, C2, which is parameterized as a Control Design Block.
• The tunable elements, Kp and Ki, within block C2, which is parameterized as a custom genss

model.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

var — Tuned variable
character vector | string

 getTunedValue

18-309

Tuned variable within st, specified as a character vector or string. A tuned variable is any Control
Design Block, such realp, tunableSS, or tunableGain, involved in the parameterization of a tuned
Simulink block, either directly or through a generalized parametric model. To get a list of all tuned
variables within st, use getTunedValue(st).

var can refer to the following:

• For a block parameterized by a Control Design Block, the name of the block. For example, if the
parameterization of the block is

C = tunableSS('C')

then set var = 'C'.
• For a block parameterized by a genmat/genss model, M, the name of any Control Design Block

listed in M.Blocks. For example, if the parameterization of the block is

a = realp('a',1);
C = tf(a,[1 a]);

then set var = 'a'.

Output Arguments
value — Current value of tuned variable
numeric scalar | numeric array | state-space model

Current value of tuned variable in st, returned as a numeric scalar or array or a state-space model.
When the tuning results have not been applied to the Simulink model using writeBlockValue, the
value returned by getTunedValue can differ from the Simulink block value.

Note Use writeBlockValue to align the block parameterization values with the actual block values
in the Simulink model.

S — Current values of all tuned variables
structure

Current values of all tuned variables in st, returned as a structure. The names of the fields in S are
the names of the tuned variables in st, and the field values are the corresponding numeric scalars or
arrays.

You can use this structure to transfer the tuned variable values from one slTuner interface to
another slTuner interface with the same tuned variables, as follows:

S = getTunedValue(st1);
setTunedValue(st2,S);

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear

18 Functions

18-310

elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Tuned Variables

Within an slTuner interface, tuned variables are any Control Design Blocks involved in the
parameterization of a tuned Simulink block, either directly or through a generalized parametric
model. Tuned variables are the parameters manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To access the
values of the tuned variables within the block parameterization, use getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of tuned
variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned variable.
To modify the block value, you can use either setBlockValue or setTunedValue. Similarly, you can
retrieve the block value using either getBlockValue or getTunedValue.

Version History
Introduced in R2015b

See Also
slTuner | setTunedValue | getBlockParam | getBlockValue | tunableSurface

Topics
“How Tuned Simulink Blocks Are Parameterized”

 getTunedValue

18-311

looptune
Tune MIMO feedback loops in Simulink using slTuner interface

Syntax
[st,gam,info] = looptune(st0,controls,measurements,wc)
[st,gam,info] = looptune(st0,controls,measurements,wc,req1,...,reqN)
[st,gam,info] = looptune(___ ,opt)

Description
[st,gam,info] = looptune(st0,controls,measurements,wc) tunes the free parameters on
page 18-317 of the control system of the Simulink model associated with the slTuner interface, st0,
to achieve the following goals:

• Bandwidth — Gain crossover for each loop falls in the frequency interval wc
• Performance — Integral action at frequencies below wc
• Robustness — Adequate stability margins and gain roll-off at frequencies above wc

controls and measurements specify the controller output signals and measurement signals that
are subject to the goals, respectively. st is the updated slTuner interface, gam indicates the
measure of success in satisfying the goals, and info gives details regarding the optimization run.

Tuning is performed at the sample time specified by the Ts property of st0. For tuning algorithm
details, see “Algorithms” on page 18-317.

[st,gam,info] = looptune(st0,controls,measurements,wc,req1,...,reqN) tunes the
feedback loop to meet additional goals specified in one or more tuning goal objects, req. Omit wc to
drop the default loop shaping goal associated with wc. Note that the stability margin goals remain in
force.

[st,gam,info] = looptune(___ ,opt) specifies further options, including target gain and phase
margins, number of runs, and computation options for the tuning algorithm. Use looptuneOptions
to create opt.

If you specify multiple runs using the RandomStarts property of opt, looptune performs only as
many runs required to achieve the target objective value of 1. Note that all tuning goals should be
normalized so that a maximum value of 1 means that all design goals are met.

Examples

Tune Controller to Achieve Specified Bandwidth

Tune the PID Controller in the rct_engine_speed model to achieve the specified bandwidth.

Open the Simulink model.

mdl = 'rct_engine_speed';
open_system(mdl);

18 Functions

18-312

Create an slTuner interface for the model.

st0 = slTuner(mdl,'PID Controller');

Add the PID Controller output, u, as an analysis point to st0.

addPoint(st0,'u');

Based on first-order characteristics, the crossover frequency should exceed 1 rad/s for the closed-
loop response to settle in less than 5 seconds. So, tune the PID loop using 1 rad/s as the target 0 dB
crossover frequency.

wc = 1;
st = looptune(st0,'u','Speed',wc);

Final: Peak gain = 0.979, Iterations = 4
Achieved target gain value TargetGain=1.

In the call to looptune, 'u' specifies the control signal, and 'Speed' specifies the measured signal.

Compare the tuned and initial response.

stepplot(getIOTransfer(st0,'Ref','Speed'),getIOTransfer(st,'Ref','Speed'));
legend('Initial','Speed');

 looptune

18-313

View the tuned block value.

showTunable(st)

Block 1: rct_engine_speed/PID Controller =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 0.00062, Ki = 0.00303, Kd = 0.000168, Tf = 0.01

Name: PID_Controller
Continuous-time PIDF controller in parallel form.

To write the tuned values back to the Simulink model, use writeBlockValue.

Input Arguments
st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

18 Functions

18-314

controls — Controller output
character vector | cell array of character vectors

Controller output name, specified as one of the following:

• Character vector — Name of an analysis point of st0.

You can specify the full name or any portion of the name that uniquely identifies the analysis point
among the other analysis points of st0.

For example, 'u'.
• Cell array of character vectors — Multiple analysis point names.

For example, {'u','y'}.

measurements — Measurement
character vector | cell array of character vectors

Measurement signal name, specified as one of the following:

• Character vector — Name of an analysis point of st0.

You can specify the full name or any portion of the name that uniquely identifies the analysis point
among the other analysis points of st0.

For example, 'u'.
• Cell array of character vector — Multiple analysis point names.

For example, {'u','y'}.

wc — Target crossover region
[wcmin,wcmax] | positive scalar

Target crossover region, specified as one of the following:

• [wcmin,wcmax] — looptune attempts to tune all loops in the control system so that the open-
loop gain crosses 0 dB within the target crossover region.

• Positive scalar — Specifies the target crossover region as [wc/10^0.1,wc*10^0.1] or wc +/- 0.1
decades.

Specify wc in the working time units, that is, the time units of the model.

req1,...,reqN — Design goals
TuningGoal objects

Design goals, specified as one or more TuningGoal objects.

For a complete list of the design goals you can specify, see “Tuning Goals”.

opt — Tuning algorithm options
options set created using looptuneOptions

Tuning algorithm options, specified as an options set created using looptuneOptions.

Available options include:

 looptune

18-315

• Number of additional optimizations to run starting from random initial values of the free
parameters

• Tolerance for terminating the optimization
• Flag for using parallel processing
• Specification of target gain and phase margin

Output Arguments
st — Tuned interface
slTuner interface

Tuned interface, returned as an slTuner interface.

gam — Parameter indicating degree of success at meeting all tuning constraints
scalar

Parameter indicating degree of success at meeting all tuning constraints, returned as a scalar.

A value of gam <= 1 indicates that all goals are satisfied. A value of gam >> 1 indicates failure to
meet at least one requirement. Use loopview to visualize the tuned result and identify the
unsatisfied requirement.

For best results, use the RandomStart option in looptuneOptions to obtain several minimization
runs. Setting RandomStart to an integer N > 0 causes looptune to run the optimization N
additional times, beginning from parameter values it chooses randomly. You can examine gam for
each run to help identify an optimization result that meets your design goals.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure with the following fields:

Di,Do — Optimal input and output scalings
state-space models

Optimal input and output scalings, return as state-space models.

The scaled plant is given by Do\G*Di.

Specs — Design goals used for tuning
vector of TuningGoal requirement objects

Design goals used for tuning, returned as a vector of TuningGoal requirement objects.

Runs — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure. For details, see
“Algorithms” on page 18-317.

The contents of Runs are the info output of the call to systune performed by looptune. For
information about the fields of Runs, see the info output argument description on the systune
reference page.

18 Functions

18-316

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Algorithms
looptune automatically converts target bandwidth, performance goals, and additional design goals
into weighting functions that express the goals as an H∞ optimization problem. looptune then uses
systune to optimize tunable parameters to minimize the H∞ norm.

For information about the optimization algorithms, see [1].

looptune computes the H∞ norm using the algorithm of [2] and structure-preserving eigensolvers
from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

Version History
Introduced in R2014a

References
[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE Transactions on Automatic

Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the H∞ Norm of a Transfer
Function Matrix." Systems & Control Letters, 14, no.4 (April 1990): 287–93.

 looptune

18-317

http://slicot.org

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true using looptuneOptions.

See Also
looptune (for genss) | looptuneOptions | TuningGoal.Tracking | TuningGoal.Gain |
TuningGoal.Margins | slTuner | addPoint | getIOTransfer | getLoopTransfer |
writeBlockValue | systune | hinfstruct

Topics
“Tune Control Systems in Simulink”
“Decoupling Controller for a Distillation Column”
“Tuning of a Digital Motion Control System”
“Tuning of a Two-Loop Autopilot”
“Structure of Control System for Tuning With looptune”
“Set Up Your Control System for Tuning with looptune”

18 Functions

18-318

looptuneSetup
Construct tuning setup for looptune to tuning setup for systune using slTuner interface

Syntax
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

Description
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs) converts a tuning
setup for looptune into an equivalent tuning setup for systune. The argument looptuneInputs is
a sequence of input arguments for looptune that specifies the tuning setup. For example,

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,Req1,Req2,loopopt)

generates a set of arguments such that looptune(st0,wc,Req1,Req2,loopopt) and
systune(st0,SoftReqs,HardReqs,sysopt) produce the same results.

Use this command to take advantage of additional flexibility that systune offers relative to
looptune. For example, looptune requires that you tune all channels of a MIMO feedback loop to
the same target bandwidth. Converting to systune allows you to specify different crossover
frequencies and loop shapes for each loop in your control system. Also, looptune treats all tuning
requirements as soft requirements, optimizing them, but not requiring that any constraint be exactly
met. Converting to systune allows you to enforce some tuning requirements as hard constraints,
while treating others as soft requirements.

You can also use this command to probe into the tuning requirements enforced by looptune.

Examples

Convert looptune Problem into systune Problem

Convert a set of looptune inputs for tuning a Simulink model into an equivalent set of inputs for
systune.

Suppose you have created and configured an slTuner interface, st0, for tuning with looptune.
Suppose also that you used looptune to tune the feedback loop defined in st0 to within a bandwidth
of wc = [wmin,wmax]. Convert these variables into a form that allows you to use systune for
further tuning.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,controls,measurements);

The command returns the closed-loop system and tuning requirements for the equivalent systune
command, systune(st0,SoftReqs,HardReqs,sysopt). The arrays SoftReqs and HardReqs
contain the tuning requirements implicitly imposed by looptune. These requirements enforce the
target bandwidth and default stability margins of looptune.

If you used additional tuning requirements when tuning the system with looptune, add them to the
input list of looptuneSetup. For example, suppose you used a TuningGoal.Tracking

 looptuneSetup

18-319

requirement, Req1, and a TuningGoal.Rejection requirement, Req2. Suppose also that you set
algorithm options for looptune using looptuneOptions. Incorporate these requirements and
options into the equivalent systune command.
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,Req1,Req2,loopopt);

The resulting arguments allow you to construct the equivalent tuning problem for systune.

Convert Distillation Column Problem for Tuning With systune

Set up the control system of the Simulink® model rct_distillation for tuning with looptune.
Then, convert the setup to a systune problem, and examine the resulting arguments. The results
reflect the tuning requirements implicitly enforced when tuning with looptune.

Create an slTuner interface to the Simulink model, and specify the blocks to be tuned. Configure the
interface for tuning with looptune by adding analysis points that define the separation between the
plant and the controller. Also add the analysis points needed for imposing tuning requirements.

open_system('rct_distillation')

tuned_blocks = {'PI_L','PI_V','DM'};
st0 = slTuner('rct_distillation',tuned_blocks);

addPoint(st0,{'L','V','y','r','dL','dV'});

This system is now ready for tuning with looptune, using tuning goals that you specify. For example,
specify a target bandwidth range. Create a tuning requirement that imposes reference tracking in
both channels of the system, and a disturbance rejection requirement.

wc = [0.1,0.5];
req1 = TuningGoal.Tracking('r','y',15,0.001,1);
max_disturbance_gain = frd([0.05 5 5],[0.001 0.1 10],'TimeUnit','min');
req2 = TuningGoal.Gain({'dL','dV'},'y',max_disturbance_gain);

controls = {'L','V'};

18 Functions

18-320

measurement = 'y';

[st,gam,info] = looptune(st0,controls,measurement,wc,req1,req2);

Final: Peak gain = 1.04, Iterations = 61

looptune successfully tunes the system to these requirements. However, you might want to switch
to systune to take advantage of additional flexibility in configuring your problem. For example,
instead of tuning both channels to a loop bandwidth inside wc, you might want to specify different
crossover frequencies for each loop. Or, you might want to enforce the tuning requirements, req1
and req2, as hard constraints, and add other requirements as soft requirements.

Convert the looptune input arguments to a set of input arguments for systune.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,controls,measurement,wc,req1,req2);

This command returns a set of arguments you can feed to systune for equivalent results to tuning
with looptune. In other words, the following command is equivalent to the looptune command.

[st,fsoft,ghard,info] = systune(st0,SoftReqs,HardReqs,sysopt);

Final: Peak gain = 1.04, Iterations = 61

Examine the tuning requirements returned by looptuneSetup. When tuning this control system
with looptune, all requirements are treated as soft requirements. Therefore, HardReqs is empty.
SoftReqs is an array of TuningGoal requirements. These requirements together enforce the
bandwidth and margins of the looptune command, plus the additional requirements that you
specified.

SoftReqs

SoftReqs =

 5x1 heterogeneous SystemLevel (LoopShape, Tracking, Gain, ...) array with properties:

 Models
 Openings
 Name

For example, examine the first entry in SoftReqs.

SoftReqs(1)

ans =

 LoopShape with properties:

 LoopGain: [1x1 zpk]
 CrossTol: 0.3495
 Focus: [0 Inf]
 Stabilize: 1
 LoopScaling: 'on'
 Location: {'y'}
 Models: NaN
 Openings: {0x1 cell}

 looptuneSetup

18-321

 Name: 'Open loop GC'

looptuneSetup expresses the target crossover frequency range wc as a TuningGoal.LoopShape
requirement. This requirement constrains the open-loop gain profile to the loop shape stored in the
LoopGain property, with a crossover frequency and crossover tolerance (CrossTol) determined by
wc. Examine this loop shape.

bodemag(SoftReqs(1).LoopGain,logspace(-2,0)),grid

The target crossover is expressed as an integrator gain profile with a crossover between 0.1 and 0.5
rad/s, as specified by wc. If you want to specify a different loop shape, you can alter this
TuningGoal.LoopShape requirement before providing it to systune.

looptune also tunes to default stability margins that you can change using looptuneOptions. For
systune, stability margins are specified using TuningGoal.Margins requirements. Here,
looptuneSetup has expressed the default stability margins as soft TuningGoal.Margins
requirements. For example, examine the fourth entry in SoftReqs.

SoftReqs(4)

ans =

 Margins with properties:

 GainMargin: 7.6000

18 Functions

18-322

 PhaseMargin: 45
 ScalingOrder: 0
 Focus: [0 Inf]
 Location: {2x1 cell}
 Models: NaN
 Openings: {0x1 cell}
 Name: 'Margins at plant inputs'

The last entry in SoftReqs is a similar TuningGoal.Margins requirement constraining the margins
at the plant outputs. looptune enforces these margins as soft requirements. If you want to convert
them to hard constraints, pass them to systune in the input vector HardReqs instead of the input
vector SoftReqs.

Input Arguments
looptuneInputs — Control system and requirements configured for tuning with looptune
valid looptune input sequence

Control system and requirements configured for tuning with looptune, specified as a valid
looptune input sequence. For more information about the arguments in a valid looptune input
sequence, see the looptune reference page.

Output Arguments
st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, returned as an slTuner interface. st0 is
identical to the slTuner interface you use as input to looptuneSetup.

SoftReqs — Soft tuning requirements
vector of TuningGoal requirement objects

Soft tuning requirements for tuning with systune, returned as a vector of TuningGoal requirement
objects.

looptune expresses most of its implicit tuning requirements as soft tuning requirements. For
example, a specified target loop bandwidth is expressed as a TuningGoal.LoopShape requirement
with integral gain profile and crossover at the target frequency. Additionally, looptune treats all of
the explicit requirements you specify (Req1,...ReqN) as soft requirements. SoftReqs contains all
of these tuning requirements.

HardReqs — Hard tuning requirements
vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning with systune, returned as a vector of
TuningGoal requirement objects.

Because looptune treats most tuning requirements as soft requirements, HardReqs is usually
empty. However, if you change the default MaxFrequency option of the looptuneOptions set,
loopopt, then this requirement appears as a hard TuningGoal.Poles constraint.

 looptuneSetup

18-323

sysopt — Algorithm options for systune tuning
systuneOptions options set

Algorithm options for systune tuning, returned as a systuneOptions options set.

Some of the options in the looptuneOptions set, loopopt, are converted into hard or soft
requirements that are returned in HardReqs and SoftReqs. Other options correspond to options in
the systuneOptions set.

Version History
Introduced in R2014a

See Also
slTuner | looptune | systune | looptuneOptions | systuneOptions | looptuneSetup (for
genss)

18 Functions

18-324

loopview
Graphically analyze results of control system tuning using slTuner interface

Syntax
loopview(st,controls,measurements)

loopview(st,info)

Description
loopview(st,controls,measurements) plots characteristics of the control system described by
the slTuner interface st. Use loopview to analyze the performance of a tuned control system you
obtain using looptune.

loopview plots:

• The gains of the open-loop frequency response measured at the plant inputs (controls analysis
points) and at plant outputs (measurements analysis points)

• The (largest) gain of the sensitivity and complementary sensitivity functions at the plant inputs or
outputs

loopview(st,info) uses the info structure returned by looptune and also plots the target and
tuned values of tuning constraints imposed on the system. Use this syntax to assist in troubleshooting
when tuning fails to meet all requirements.

Additional plots with this syntax include:

• Normalized multi-loop disk margins at the plant inputs and outputs. For more information about
disk margins, see “Stability Analysis Using Disk Margins” (Robust Control Toolbox).

• Target vs. achieved response for any additional tuning goal you used with looptune.

Examples

Graphically Analyze Results of Control System Tuning

Tune the Simulink® model, rct_engine_speed, to achieve a specified settling time. Use loopview
to graphically analyze the tuning results.

Open the model.

mdl = 'rct_engine_speed';
open_system(mdl);

 loopview

18-325

Create an slTuner interface for the model and specify the PID Controller block to be tuned.

st0 = slTuner(mdl,'PID Controller');

Specify a requirement to achieve a 2 second settling time for the Speed signal when tracking the
reference signal.

req = TuningGoal.Tracking('Ref','Speed',2);

Tune the PID Controller block.

addPoint(st0,'u')

control = 'u';
measurement = 'Speed';

wc = 1;

[st1,gam,info] = looptune(st0,control,measurement,wc);

Final: Peak gain = 0.979, Iterations = 4
Achieved target gain value TargetGain=1.

View the response of the model for the tuned block values.

loopview(st1,control,measurement);

18 Functions

18-326

Compare the performance of the tuned block against the tuning goals.

figure
loopview(st1,info);

 loopview

18-327

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

controls — Controller output
character vector | cell array of character vectors

Controller output name, specified as one of the following:

• Character vector — Name of an analysis point of st.

You can specify the full name or any portion of the name that uniquely identifies the analysis point
among the other analysis points of st.

For example, 'u'.
• Cell array of character vectors — Multiple analysis point names.

For example, {'u','y'}.

measurements — Measurement
character vector | cell array of character vectors

Measurement signal name, specified as one of the following:

18 Functions

18-328

• Character vector — Name of an analysis point of st.

You can specify the full name or any portion of the name that uniquely identifies the analysis point
among the other analysis points of st.

For example, 'u'.
• Cell array of character vector — Multiple analysis point names.

For example, {'u','y'}.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, specified as the structure returned by looptune.

Alternative Functionality
For analyzing Control System Toolbox models tuned with looptune, use loopview.

Version History
Introduced in R2014a

See Also
loopview | looptune | slTuner

Topics
“Decoupling Controller for a Distillation Column”
“Tuning of a Two-Loop Autopilot”
“Mark Signals of Interest for Control System Analysis and Design” on page 2-38

 loopview

18-329

removeBlock
Remove block from list of tuned blocks in slTuner interface

Syntax
removeBlock(st,blk)

Description
removeBlock(st,blk) removes the specified block from the list of tuned blocks on page 18-331 for
the slTuner interface, st. You can specify blk to remove either a single or multiple blocks.

removeBlock does not modify the Simulink model associated with st.

Examples

Remove Block From List of Tuned Blocks of slTuner Interface

Create an slTuner interface for the scdcascade model. Add C1 and C2 as tuned blocks to the
interface.

st = slTuner('scdcascade',{'C1','C2'});

Remove C1 from the list of tuned blocks of st.

removeBlock(st,'C1');

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string | cell array of character vectors | string array | positive integer | vector of
positive integers

Block to remove from the list of tuned blocks on page 18-331 for st, specified as one of the following:

• Character vector or string — Full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st. For example, blk = 'scdcascade/C1'.

• Cell array of character vectors or string array — Specifies multiple blocks. For example, blk =
{'C1','C2'}.

• Positive integer — Block index. For example, blk = 1.
• Vector of positive integers — Specifies multiple block indices. For example, blk = [1 2].

18 Functions

18-330

To determine the name or index associated with a tuned block, type st. The software displays the
contents of st in the MATLAB command window, including the tuned block names.

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Version History
Introduced in R2014a

See Also
addBlock | slTuner | addPoint | addOpening

 removeBlock

18-331

setBlockParam
Set parameterization of tuned block in slTuner interface

Syntax
setBlockParam(st,blk,tunable_mdl)
setBlockParam(st,blk1,tunable_mdl1,...,blkN,tunable_mdlN)

setBlockParam(st,blk)
setBlockParam(st)

Description
setBlockParam lets you override the default parameterization for a tuned block on page 18-335 in
an slTuner interface. You can also specify the parameterization for non-atomic components such as
Subsystem or S-Function blocks.

An slTuner interface parameterizes each tuned Simulink block as a Control Design Block, or a
generalized parametric model of type genmat or genss. This parameterization specifies the tuned
variables on page 18-335 for commands such as systune.

setBlockParam(st,blk,tunable_mdl) assigns a tunable model as the parameterization of the
specified block of an slTuner interface.

setBlockParam(st,blk1,tunable_mdl1,...,blkN,tunable_mdlN) assigns parameterizations
to multiple blocks at once.

setBlockParam(st,blk) reverts to the default parameterization for the block referenced by blk
and initializes the block with the current block value in Simulink.

setBlockParam(st) reverts all the tuned blocks of st to their default parameterizations.

Examples

Set Parameterization of Tuned Block

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

18 Functions

18-332

Both C1 and C2 are PI controllers. Examine the default parameterization of C1.

getBlockParam(st,'C1')

Tunable continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value.

The default parameterization is a tunable PI controller (tunablePID).

Reparameterize C1 as a proportional controller. Initialize the proportional gain to 4.2, and assign the
parameterization to the block.

G = tunableGain('C1',4.2);
setBlockParam(st,'C1',G);

Tuning commands, such as systune, now use this proportional controller parameterization of the C1
block of st. The custom parameterization is compatible with the default parameterization of the
Simulink® block. Therefore, you can use writeBlockValue to write the tuned values back to the
block.

You can also use setBlockParam to set multiple block parameterizations at once, without requiring
multiple recompilations of the model. For example, reparameterize both C1 and C2 as PID controllers.

C1PID = tunablePID('C1PID','PID');
C2PID = tunablePID('C2PID','PID');
setBlockParam(st,'C1',C1PID,'C2',C2PID);

Revert Parameterization of Tuned Block to Default

Create an slTuner interface for the scdcascade model.

 setBlockParam

18-333

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

Modify the parameterization of C2 to be a tunable gain and examine the result.

G = tunableGain('C2',5);
setBlockParam(st,'C2',G);
getBlockParam(st,'C2')

Tunable gain "C2" with 1 outputs, 1 inputs, and 1 tunable parameters.

Type "ss(ans)" to see the current value.

Revert the parameterization of C2 back to the default PI controller and examine the result.

setBlockParam(st,'C2');
getBlockParam(st,'C2')

Tunable continuous-time PID controller "C2" with formula:

 1
 Kp + Ki * ---
 s

and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string | cell array of character vectors | string array

18 Functions

18-334

Block in the list of tuned blocks for st, specified as a character vector or string. You can specify the
full block path or any portion of the block path that uniquely identifies the block among the other
tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

When reverting to the default block parameterization using setBlockParam(st,blk), you can
specify blk as a cell array of character vectors or string array to revert multiple blocks.
Example: {'C1','C2'}

tunable_mdl — Block parameterization
control design block | generalized state-space model | generalized matrix | tunable gain surface

Block parameterization, specified as one of the following:

• Control Design Block
• Generalized state-space (genss) model
• Generalized matrix (genmat)
• Tunable gain surface, modeled by tunableSurface

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Tuned Variables

Within an slTuner interface, tuned variables are any Control Design Blocks involved in the
parameterization of a tuned Simulink block, either directly or through a generalized parametric
model. Tuned variables are the parameters manipulated by tuning commands such as systune.

 setBlockParam

18-335

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To access the
values of the tuned variables within the block parameterization, use getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of tuned
variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned variable.
To modify the block value, you can use either setBlockValue or setTunedValue. Similarly, you can
retrieve the block value using either getBlockValue or getTunedValue.

Version History
Introduced in R2011b

See Also
slTuner | getBlockParam | setBlockValue | setTunedValue | writeBlockValue | systune |
genss

Topics
“How Tuned Simulink Blocks Are Parameterized” on page 10-26

18 Functions

18-336

setBlockRateConversion
Set rate conversion settings for tuned block in slTuner interface

Syntax
setBlockRateConversion(st,blk,method)
setBlockRateConversion(st,blk,'tustin',pwf)

setBlockRateConversion(st,blk,IF,DF)

Description
When you use systune with Simulink, tuning is performed at the sampling rate specified by the Ts
property of the slTuner interface. When you use writeBlockValue to write tuned parameters back
to the Simulink model, each tuned block value is automatically converted from the sample time used
for tuning, to the sample time of the Simulink block. The rate conversion method associated with
each tuned block specifies how this resampling operation should be performed. Use
getBlockRateConversion to query the block conversion rate and use setBlockRateConversion
to modify it.

setBlockRateConversion(st,blk,method) sets the rate conversion method of a tuned block on
page 18-339 in the slTuner interface, st.

setBlockRateConversion(st,blk,'tustin',pwf) sets the Tustin method as the rate
conversion method for blk, with pwf as the prewarp frequency.

setBlockRateConversion(st,blk,IF,DF) sets the discretization methods for the integrator and
derivative filter terms when blk is a continuous-time PID Controller block. For discrete-time PID
blocks, these methods are specified in the Simulink block and cannot be modified in the slTuner
interface.

Examples

Set Rate Conversion Settings of Tuned PID Block

Create an slTuner interface for the Simulink model scdcascade. Set the block rate conversion
settings of one of the tuned blocks.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

 setBlockRateConversion

18-337

Examine the default block rate conversion for the PID Controller block C1.

[IF,DF] = getBlockRateConversion(st,'C1')

IF =

 'Trapezoidal'

DF =

 'Trapezoidal'

By default, both the integrator and derivative filter controller methods are Trapezoidal. Set the
integrator to BackwardEuler and the derivative to ForwardEuler.

IF = 'BackwardEuler';
DF = 'ForwardEuler';
setBlockRateConversion(st,'C1',IF,DF);

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string

Block in the list of tuned blocks for st, specified as a character vector or string. You can specify the
full block path or any portion of the block path that uniquely identifies the block among the other
tuned blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

18 Functions

18-338

method — Rate conversion method
'zoh' | 'foh' | 'tustin' | 'matched'

Rate conversion method associated with blk, specified as one of the following:

• 'zoh' — Zero-order hold on the inputs. This method is the default rate-conversion method for
most dynamic blocks.

• 'foh' — Linear interpolation of inputs.
• 'tustin' — Bilinear (Tustin) approximation. Optionally, specify a prewarp frequency with the

pwf argument for better frequency-domain matching between the original and rate-converted
dynamics near the prewarp frequency.

• 'matched' — Matched pole-zero method. This method is available for SISO blocks only.

For more detailed information about these rate-conversion methods, see “Continuous-Discrete
Conversion Methods”.

pwf — Prewarp frequency for Tustin method
positive scalar

Prewarp frequency for the Tustin method, specified as a positive scalar.

IF,DF — Integrator and filter methods
'ForwardEuler' | 'BackwardEuler' | 'Trapezoidal'

Integrator and filter methods for rate conversion of PID Controller block, each specified as one of the
following:

• 'ForwardEuler' — Integrator or derivative-filter state discretized as Ts/(z-1)
• 'BackwardEuler' — Ts*z/(z-1)
• 'Trapezoidal' — (Ts/2)*(z+1)/(z-1)

For continuous-time PID blocks, the default methods are 'Trapezoidal' for both integrator and
derivative filter. This method is the same as the Tustin method.

For discrete-time PID blocks, IF and DF are determined by the Integrator method and Filter
method settings in the Simulink block and cannot be changed with setBlockRateConversion.

See the Discrete PID Controller and pid reference pages for more details about integrator and filter
methods.

More About
Tuned Block

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

 setBlockRateConversion

18-339

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Tips
• For Model Discretizer blocks, the rate conversion method is specified in the Simulink block and

cannot be modified with setBlockRateConversion.
• For static blocks such as Gain or Lookup Table blocks, the block rate conversion method is

ignored.

Version History
Introduced in R2014a

See Also
slTuner | writeBlockValue | getBlockRateConversion

Topics
“Tuning of a Digital Motion Control System”
“Continuous-Discrete Conversion Methods”

18 Functions

18-340

setBlockValue
Set value of tuned block parameterization in slTuner interface

Syntax
setBlockValue(st,blk,value)

setBlockValue(st,blkValues)

Description
setBlockValue lets you initialize or modify the current value of the parameterization of a tuned
block on page 18-344 in an slTuner interface.

An slTuner interface parameterizes each tuned Simulink block as a Control Design Block, or a
generalized parametric model of type genmat or genss. This parameterization specifies the tuned
variables on page 18-345 for commands such as systune.

setBlockValue(st,blk,value) sets the current value of the parameterization of a block in the
slTuner interface, st.

setBlockValue(st,blkValues) updates the values of the parameterizations of multiple blocks
using the structure, blkValues.

Examples

Set Value of Tuned Block Parameterization

Create an slTuner interface for the scdcascade model, and set the value of the parametrization of
one of the tuned blocks.

Create an slTuner interface.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

 setBlockValue

18-341

Both C1 and C2 are PI controllers. Examine the default parameterization of C1.

getBlockParam(st,'C1')

Tunable continuous-time PID controller "C1" with formula:

 1
 Kp + Ki * ---
 s

and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value.

The default parameterization is a PI controller with two tunable parameters, Kp and Ki.

Set the value of the parameterization of C1.

C = pid(4.2);
setBlockValue(st,'C1',C);

Examine the value of the parameterization of C1.

getBlockValue(st,'C1')

ans =

 Kp = 4.2

Name: C1
P-only controller.

Examine the parameterization of C1.

getBlockParam(st,'C1')

Tunable continuous-time PID controller "C1" with formula:

 1

18 Functions

18-342

 Kp + Ki * ---
 s

and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value.

Observe that although the current block value is a P-only controller, the block parameterization
continues to be a PI-controller.

Set Value of Multiple Tuned Block Parameterizations

Create an slTuner interface.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

Create a block value structure with field names that correspond to the tunable blocks in st.

blockValues = getBlockValue(st);
blockValues.C1 = pid(0.2,0.1);
blockValues.C2 = pid(2.3);

Set the values of the parameterizations of the tunable blocks in st using the defined structure.

setBlockValue(st,blockValues);

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blk — Block
character vector | string

 setBlockValue

18-343

Block in the list of tuned blocks for st, specified as a character vector or string. You can specify the
full block path or any portion of the path that uniquely identifies the block among the other tuned
blocks of st.
Example: blk = 'scdcascade/C1', blk = "C1"

Note setBlockValue allows you to modify only the overall value of the parameterization of blk. To
modify the values of elements within custom block parameterizations, such as generalized state-space
models, use setTunedValue.

value — Value of block parameterization
numeric LTI model | control design block

Value of block parameterization, specified as a numeric LTI model or a Control Design Block, such
tunableGain or tunablePID. The value of value must be compatible with the parameterization of
blk. For example, if blk is parameterized as a PID controller, then value must be an tunablePID
block, a numeric pid model, or a numeric tf model that represents a PID controller.

setBlockValue updates the value of the parameters of the tuned block based on the parameters of
value. Using setBlockValue does not change the structure of the parameterization of the tuned
block. To change the parameterization of blk, use setBlockParam. For example, you can use
setBlockParam to change a block parameterization from tunablePID to a three-pole tunableTF
model.

blkValues — Values of multiple block parameterizations
structure

Values of multiple block parameterizations, specified as a structure with fields specified as numeric
LTI models or Control Design Blocks. The field names are the names of blocks in st. Only blocks
common to st and blkValues are updated, while all other blocks in st remain unchanged.

To specify blkValues, you can retrieve and modify the block parameterization value structure from
st.

blkValues = getblockValue(st);
blkValues.C1 = pid(0.1,0.2);

Note For Simulink blocks whose names are not valid field names, specify the corresponding field
name in blkValues as it appears in the block parameterization.

blockParam = getBlockParam(st,'B-1');
fieldName = blockParam.Name;
blockValues = struct(fieldName,newB1);

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that

18 Functions

18-344

support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Tuned Variables

Within an slTuner interface, tuned variables are any Control Design Blocks involved in the
parameterization of a tuned Simulink block, either directly or through a generalized parametric
model. Tuned variables are the parameters manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To access the
values of the tuned variables within the block parameterization, use getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of tuned
variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned variable.
To modify the block value, you can use either setBlockValue or setTunedValue. Similarly, you can
retrieve the block value using either getBlockValue or getTunedValue.

Version History
Introduced in R2011b

See Also
slTuner | getBlockValue | setTunedValue | setBlockParam | writeBlockValue

Topics
“Fixed-Structure Autopilot for a Passenger Jet”
“How Tuned Simulink Blocks Are Parameterized”

 setBlockValue

18-345

setTunedValue
Set current value of tuned variable in slTuner interface

Syntax
setTunedValue(st,var,value)
setTunedValue(st,varValues)
setTunedValue(st,model)

Description
setTunedValue lets you initialize or modify the current value of a tuned variable on page 18-351
within an slTuner interface.

An slTuner interface parameterizes each tuned block on page 18-350 as a Control Design Block, or
a generalized parametric model of type genmat or genss. This parameterization specifies the tuned
variables for commands such as systune.

setTunedValue(st,var,value) sets the current value of the tuned variable, var, in the slTuner
interface, st.

setTunedValue(st,varValues) sets the values of multiple tuned variables in st using the
structure, varValues.

setTunedValue(st,model) updates the values of the tuned variables in st to match their values in
the generalized model model. To propagate tuned values from one model to another, use this syntax.

Examples

Set Value of Single Tunable Element within Custom Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

18 Functions

18-346

Set a custom parameterization for one of the tunable blocks.

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized state-space
(genss) model containing two tunable parameters, Ki and Kp.

Initialize the value of Ki to 10 without changing the value of Kp.

setTunedValue(st,'Ki',10);

Set Value of Multiple Tunable Elements within Custom Parameterization

Create an slTuner interface for the scdcascade model.

open_system('scdcascade')
st = slTuner('scdcascade',{'C1','C2'});

Set a custom parameterization for one of the tunable blocks.

 setTunedValue

18-347

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);
setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized state-space
(genss) model containing two tunable parameters, Ki and Kp.

Create a structure of tunable element values, setting Kp to 5 and Ki to 10.

S = struct('Kp',5,'Ki',10);

Set the values of the tunable elements in st.

setTunedValue(st,S);

Set Value of Tuned Block Parameterization Using Generalized State-Space Model

Convert an slTuner interface for the Simulink® model rct_diskdrive to a genss model to tune
the model blocks using hinfstruct. After tuning, update the slTuner interface with the tuned
parameters and write the parameter values to the Simulink model for validation.

Use of hinfstruct requires a Robust Control Toolbox license.

Create an slTuner interface for rct_diskdrive. Add C and F as tuned blocks of the interface.

open_system('rct_diskdrive');
st = slTuner('rct_diskdrive',{'C','F'});

The default parameterization of the transfer function block, F, is a transfer function with two free
parameters. Because F is a low-pass filter, you must constrain its coefficients. To do so, specify a
custom parameterization of F with filter coefficient a.

a = realp('a',1);
setBlockParam(st,'F',tf(a,[1 a]));

Convert st to a genss model.

18 Functions

18-348

m = getIOTransfer(st,{'r','n'},{'y','e'});

Typically, for tuning with hinfstruct, you append weighting functions to the genss model that
depend on your design requirements. You then tune the augmented model. For more information, see
“Fixed-Structure H-infinity Synthesis with hinfstruct” (Robust Control Toolbox).

For this example, instead of tuning the model, manually adjust the tuned variable values.

m.Blocks.C.Kp.Value = 0.00085;
m.Blocks.C.Ki.Value = 0.01;
m.Blocks.a.Value = 5500;

After tuning, update the block parameterization values in st.

setTunedValue(st,m);

This is equivalent to setBlockValue(st,m.Blocks).

To validate the tuning result in Simulink, first update the Simulink model with the tuned values.

writeBlockValue(st);

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

var — Tuned variable
character vector | string

Tuned variable within st, specified as a character vector or string. A tuned variable is any Control
Design Block, such realp, tunableSS, or tunableGain, involved in the parameterization of a tuned
Simulink block, either directly or through a generalized parametric model. To get a list of all tuned
variables within st, use getTunedValue(st).

var can refer to the following:

• For a block parameterized by a Control Design Block, the name of the block. For example, if the
parameterization of the block is

C = tunableSS('C')

then set var = 'C'.
• For a block parameterized by a genmat/genss model, M, the name of any Control Design Block

listed in M.Blocks. For example, if the parameterization of the block is

a = realp('a',1);
C = tf(a,[1 a]);

then set var = 'a'.

value — Value of tuned variable
numeric scalar | numeric array | state-space model

 setTunedValue

18-349

Value of tuned variable in st, specified as a numeric scalar, a numeric array or a state-space model
that is compatible with the tuned variable. For example, if var is a scalar element such as a PID gain,
value must be a scalar. If var is a 2–by–2 tunableGain, then value must be a 2–by–2 scalar array.

varValues — Values of multiple tuned variables
structure

Values of multiple tuned variables in st, specified as a structure with fields specified as numeric
scalars, numeric arrays, or state-space models. The field names are the names of tuned variables in
st. Only blocks common to st and varValues are updated, while all other blocks in st remain
unchanged.

To specify varValues, you can retrieve and modify the tuned variable structure from st.

varValues = getTunedValue(st);
varValues.Ki = 10;

model — Tuned model
generalized LTI model

Tuned model that has some parameters in common with st, specified as a Generalized LTI Model.
Only variables common to st and model are updated, while all other variables in st remain
unchanged.

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

18 Functions

18-350

Tuned Variables

Within an slTuner interface, tuned variables are any Control Design Blocks involved in the
parameterization of a tuned Simulink block, either directly or through a generalized parametric
model. Tuned variables are the parameters manipulated by tuning commands such as systune.

For Simulink blocks parameterized by a generalized model or a tunable surface:

• getBlockValue provides access to the overall value of the block parameterization. To access the
values of the tuned variables within the block parameterization, use getTunedValue.

• setBlockValue cannot be used to modify the block value. To modify the values of tuned
variables within the block parameterization, use setTunedValue.

For Simulink blocks parameterized by a Control Design Block, the block itself is the tuned variable.
To modify the block value, you can use either setBlockValue or setTunedValue. Similarly, you can
retrieve the block value using either getBlockValue or getTunedValue.

Version History
Introduced in R2015b

See Also
slTuner | getTunedValue | setBlockParam | setBlockValue | writeBlockValue |
tunableSurface

Topics
“How Tuned Simulink Blocks Are Parameterized”

 setTunedValue

18-351

showTunable
Show value of parameterizations of tunable blocks of slTuner interface

Syntax
showTunable(st)

Description
showTunable(st) displays the values of the parametric models associated with each tunable block
on page 18-353 in the slTuner interface, st.

Examples

Display Tunable Block Values

Open the Simulink model.

mdl = 'scdcascade';
open_system(mdl)

Create an slTuner interface for the model, and add C1 and C2 as tuned blocks of the interface.

st = slTuner(mdl,{'C1','C2'});

Display the default values of the tuned blocks.

showTunable(st);

Block 1: scdcascade/C1 =

 1

18 Functions

18-352

 Kp + Ki * ---
 s

 with Kp = 0.158, Ki = 0.042

Name: C1
Continuous-time PI controller in parallel form.

Block 2: scdcascade/C2 =

 1
 Kp + Ki * ---
 s

 with Kp = 1.48, Ki = 4.76

Name: C2
Continuous-time PI controller in parallel form.

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

 showTunable

18-353

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Version History
Introduced in R2014a

See Also
slTuner | writeBlockValue | getBlockValue | setBlockValue

18 Functions

18-354

systune
Tune control system parameters in Simulink using slTuner interface

Syntax
[st,fSoft] = systune(st0,SoftGoals)
[st,fSoft,gHard] = systune(st0,SoftGoals,HardGoals)
[st,fSoft,gHard] = systune(___ ,opt)
[st,fSoft,gHard,info] = systune(___)

Description
systune tunes fixed-structure control systems subject to both soft and hard design goals. systune
can tune multiple fixed-order, fixed-structure control elements distributed over one or more feedback
loops. For an overview of the tuning workflow, see “Automated Tuning Workflow” on page 10-6.

This command tunes control systems modeled in Simulink. For tuning control systems represented in
MATLAB, use systune for genss models.

[st,fSoft] = systune(st0,SoftGoals) tunes the free parameters of the control system in
Simulink. The Simulink model, tuned blocks on page 18-362, and analysis points on page 18-362 of
interest are specified by the slTuner interface, st0. systune tunes the control system parameters
to best meet the performance goals, SoftGoals. The command returns a tuned version of st0 as st.
The best achieved soft constraint values are returned as fSoft.

If the st0 contains real parameter uncertainty, systune automatically performs robust tuning to
optimize the constraint values for worst-case parameter values. systune also performs robust tuning
against a set of plant models obtained at different operating points or parameter values. See “Input
Arguments” on page 18-357.

Tuning is performed at the sample time specified by the Ts property of st0.

[st,fSoft,gHard] = systune(st0,SoftGoals,HardGoals) tunes the control system to best
meet the soft goals, subject to satisfying the hard goals. It returns the best achieved values, fSoft
and gHard, for the soft and hard goals. A goal is met when its achieved value is less than 1.

[st,fSoft,gHard] = systune(___ ,opt) specifies options for the optimization for any of the
input argument combinations in previous syntaxes.

[st,fSoft,gHard,info] = systune(___) also returns detailed information about each
optimization run for any of the input argument combinations in previous syntaxes.

Examples

Tune Control System to Soft Constraints

Tune the control system in the rct_airframe2 model to soft goals for tracking, roll off, stability
margin, and disturbance rejection.

 systune

18-355

Open the Simulink model.

mdl = 'rct_airframe2';
open_system(mdl);

Create and configure an slTuner interface to the model.

st0 = slTuner(mdl,'MIMO Controller');

st0 is an slTuner interface to the rct_aircraft2 model with the MIMO Controller block
specified as the tunable portion of the control system.

The model already has linearization input points on the signals az ref, delta fin, az, q, and e.
These signals are therefore available as analysis points for tuning goals and linearization.

Specify the tracking requirement, roll-off requirement, stability margins, and disturbance rejection
requirement.

req1 = TuningGoal.Tracking('az ref','az',1);
req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
req3 = TuningGoal.Margins('delta fin',7,45);
max_gain = frd([2 200 200],[0.02 2 200]);
req4 = TuningGoal.Gain('delta fin','az',max_gain);

req1 constrains az to track az ref. The next requirement, req2, imposes a roll-off requirement by
specifying a gain profile for the open-loop, point-to-point transfer function measured at delta fin.
The next requirement, req3, imposes open-loop gain and phase margins on that same point-to-point
transfer function. Finally, req4 rejects disturbances to az injected at delta fin, by specifying a
maximum gain profile between those two points.

Tune the model using these tuning goals.

18 Functions

18-356

opt = systuneOptions('RandomStart',3);
rng(0);
[st,fSoft,~,info] = systune(st0,[req1,req2,req3,req4],opt);

Final: Soft = 1.13, Hard = -Inf, Iterations = 94
Final: Soft = 1.13, Hard = -Inf, Iterations = 78
Final: Soft = 1.13, Hard = -Inf, Iterations = 72
Final: Soft = 40, Hard = -Inf, Iterations = 76

st is a tuned version of st0.

The RandomStart option specifies that systune must perform three independent optimization runs
that use different (random) initial values of the tunable parameters. These three runs are in addition
to the default optimization run that uses the current value of the tunable parameters as the initial
value. The call to rng seeds the random number generator to produce a repeatable sequence of
numbers.

systune displays the final result for each run. The displayed value, Soft, is the maximum of the
values achieved for each of the four performance goals. The software chooses the best run overall,
which is the run yielding the lowest value of Soft. The last run fails to achieve closed-loop stability,
which corresponds to Soft = Inf.

Examine the best achieved values of the soft constraints.

fSoft

fSoft =

 1.1327 1.1327 0.5140 1.1327

Only req3, the stability margin requirement, is met for all frequencies. The other values are close to,
but exceed, 1, indicating violations of the goals for at least some frequencies.

Use viewGoal to visualize the tuned control system performance against the goals and to determine
whether the violations are acceptable. To evaluate specific open-loop or closed-loop transfer functions
for the tuned parameter values, you can use linearization commands such as getIOTransfer and
getLoopTransfer. After validating the tuned parameter values, if you want to apply these values to
the Simulink® model, you can use writeBlockValue.

Input Arguments
st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

If you specify parameter variation or linearization at multiple operating points when you create st0,
then systune performs robust tuning against all the plant models. If you specify an uncertain (uss)
model as a block substitution when you create st0, then systune performs robust tuning, optimizing
the parameters against the worst-case parameter values. For more information about robust tuning
approaches, see “Robust Tuning Approaches” (Robust Control Toolbox). (Using uncertain models
requires a Robust Control Toolbox license.)

 systune

18-357

SoftGoals — Soft goals (objectives)
vector of TuningGoal objects

Soft goals (objectives) for tuning the control system described by st0, specified as a vector of
TuningGoal objects. For a complete list, see “Tuning Goals”.

systune tunes the tunable parameters of the control system to minimize the maximum value of the
soft tuning goals, subject to satisfying the hard tuning goals (if any).

HardGoals — Hard goals (constraints)
vector of TuningGoal objects

Hard goals (constraints) for tuning the control system described by st0, specified as a vector of
TuningGoal objects. For a complete list, see “Tuning Goals”.

A hard goal is satisfied when its value is less than 1. systune tunes the tunable parameters of the
control system to minimize the maximum value of the soft tuning goals, subject to satisfying all the
hard tuning goals.

opt — Tuning algorithm options
options set created using systuneOptions

Tuning algorithm options, specified as an options set created using systuneOptions.

Available options include:

• Number of additional optimizations to run starting from random initial values of the free
parameters

• Tolerance for terminating the optimization
• Flag for using parallel processing

See the systuneOptions reference page for more details about all available options.

Output Arguments
st — Tuned interface
slTuner interface

Tuned interface, returned as an slTuner interface.

fSoft — Best achieved values of soft goals
vector

Best achieved values of soft goals, returned as a vector.

Each tuning goal evaluates to a scalar value, and systune minimizes the maximum value of the soft
goals, subject to satisfying all the hard goals.

fSoft contains the value of each soft goal for the best overall run. The best overall run is the run
that achieved the smallest value for max(fSoft), subject to max(gHard)<1.

gHard — Achieved values of hard goals
vector

18 Functions

18-358

Achieved values of hard goals, returned as a vector.

gHard contains the value of each hard goal for the best overall run (the run that achieved the
smallest value for max(fSoft), subject to max(gHard)<1. All entries of gHard are less than 1 when
all hard goals are satisfied. Entries greater than 1 indicate that systune could not satisfy one or
more design constraints.

info — Detailed information about optimization runs
structure

Detailed information about each optimization run, returned as a data structure. The fields of info are
summarized in the following table.

Field Value
Run Run number, returned as a scalar. If you use the RandomStart

option of systuneOptions to perform multiple optimization runs,
info is a structure array, and info.Run is the index.

Iterations Total number of iterations performed during the run, returned as a
scalar. If you use RandomStart, info.Iterations(j) is the
number of iterations performed in the jth run before termination.

f Best overall soft constraint value, returned as a scalar. systune
converts the soft tuning goals to a function of the free parameters
of the control system. The command then tunes the parameters to
minimize that function subject to the hard goals. (See “Algorithms”
on page 18-363.) info.f is the maximum soft goal value at the
final iteration. This value is meaningful only when the hard goals
are satisfied. If the value is less than 1, then the soft goals are also
attained.

g Best overall hard constraint value, returned as a scalar. systune
converts the hard tuning goals to a function of the free parameters
of the control system. The command then tunes the parameters to
drive those values below 1. (See “Algorithms” on page 18-363.)
info.g is the largest hard goal value at the final iteration. If this
value is less than 1, then the hard goals are satisfied.

x Tuned parameter values, returned as a vector. This vector contains
the values of the tunable parameters at the end of the run. info.x
can also include the values of additional variables such as loop
scalings, if systune uses them (see info.LoopScaling).

MinDecay Minimum decay rate of tuned system dynamics, returned as a two-
element row vector.

info.MinDecay(1) is the minimum decay rate of the closed-loop
poles.

info.MinDecay(2) is the minimum decay rate of the dynamics of
tuned blocks with stability constraints. For more information about
stabilized dynamics and decay rates, see the MinDecay option of
systuneOptions.

 systune

18-359

Field Value
fSoft Individual soft constraint values, returned as a vector. systune

converts each soft tuning goal to a normalized value that is a
function of the free parameters of the control system. The
command then tunes the parameters to minimize that value
subject to the hard goals. (See “Algorithms” on page 18-363.)
info.fSoft contains the individual values of the soft goals at the
end of each run. These values appear in fSoft in the same order
in which you specify goals in the SoftReqs input argument to
systune.

gHard Individual hard constraint values, returned as a vector. systune
converts each hard tuning goal to a normalized value that is a
function of the free parameters of the control system. The
command then tunes the parameters to minimize those values. A
hard goal is satisfied if its value is less than 1. (See “Algorithms” on
page 18-363.) info.gHard contains the individual values of the
hard goals at the end of each run. These values appear in gHard in
the same order in which you specify goals in the HardReqs input
argument to systune.

Blocks Tuned values of tunable blocks and parameters in the tuned
control system, returned as a structure whose fields are the names
of tunable elements and whose values are the corresponding tuned
values.

When you perform multiple runs by setting the RandomStart
option to a positive value, you can use this field to examine control
system performance with the results from other runs. For instance,
use the following code to apply the tuned values from the jth run.

stj = setBlockValue(st0,info(j).Blocks)

18 Functions

18-360

Field Value
LoopScaling Optimal diagonal scaling for evaluating MIMO tuning

requirements, returned as a state-space model.

When applied to multiloop control systems, tuning goals that
involve an open-loop response can be sensitive to the scaling of the
loop transfer functions to which they apply. This sensitivity can
lead to poor optimization results. systune automatically corrects
scaling issues and returns the optimal diagonal scaling matrix D as
a state-space model in info.LoopScaling.

The loop channels associated with each diagonal entry of D are
listed in info.LoopScaling.InputName. The scaled loop
transfer is D\L*D, where L is the open-loop transfer measured at
the locations info.LoopScaling.InputName.

Tuning goals affected by such loop scaling include:

• TuningGoal.LoopShape
• TuningGoal.MinLoopGain and TuningGoal.MaxLoopGain
• TuningGoal.Sensitivity
• TuningGoal.Rejection
• TuningGoal.Margins

info also contains the following fields, whose entries are meaningful when you use systune for
robust tuning of control systems with uncertainty.

Field Value
wcPert Worst combinations of uncertain parameters, returned as a

structure array. Each structure contains one set of uncertain
parameter values. The perturbations with the worst performance
are listed first.

wcf Worst soft-goal value, returned as a scalar. This value is the largest
soft goal value (f) over the uncertainty range when using the
tuned controller.

wcg Worst hard-goal value, returned as a scalar. This value is the
largest hard goal value (g) over the uncertainty range when using
the tuned controller.

wcDecay Smallest closed-loop decay rate over the uncertainty range when
using the tuned controller, returned as a scalar. A positive value
indicates robust stability. For more information about stabilized
dynamics and decay rates, see the MinDecay option of
systuneOptions.

 systune

18-361

More About
Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose parameters
are to be tuned to satisfy tuning goals. You can tune most Simulink blocks that represent linear
elements such as gains, transfer functions, or state-space models. (For the complete list of blocks that
support tuning, see “How Tuned Simulink Blocks Are Parameterized” on page 10-26). You can also
tune more complex blocks such as SubSystem or S-Function blocks by specifying an equivalent
tunable linear model.

Use tuning commands such as systune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock.

To interact with the tuned blocks use:

• getBlockParam, getBlockValue, and getTunedValue to access the tuned block
parameterizations and their current values.

• setBlockParam, setBlockValue, and setTunedValue to modify the tuned block
parameterizations and their values.

• writeBlockValue to update the blocks in a Simulink model with the current values of the tuned
block parameterizations.

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

18 Functions

18-362

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Algorithms
x is the vector of tunable parameters in the control system to tune. systune converts each soft and
hard tuning requirement SoftReqs(i) and HardReqs(j) into normalized values fi(x) and gj(x),
respectively. systune then solves the constrained minimization problem:

Minimize max
i

f i x subject to max
j

g j x < 1, for xmin < x < xmax.

xmin and xmax are the minimum and maximum values of the free parameters of the control system.

When you use both soft and hard tuning goals, the software approaches this optimization problem by
solving a sequence of unconstrained subproblems of the form:

min
x

max αf x , g x .

The software adjusts the multiplier α so that the solution of the subproblems converges to the
solution of the original constrained optimization problem.

systune returns the slTuner interface with parameters tuned to the values that best solve the
minimization problem. systune also returns the best achieved values of fi(x) and gj(x), as fSoft and
gHard respectively.

For information about the functions fi(x) and gj(x) for each type of constraint, see the reference pages
for each TuningGoal requirement object.

systune uses the nonsmooth optimization algorithms described in [1],[2],[3],[4]

systune computes the H∞ norm using the algorithm of [5] and structure-preserving eigensolvers
from the SLICOT library. For information about the SLICOT library, see http://slicot.org.

Alternative Functionality
Tune interactively using Control System Tuner.

Version History
Introduced in R2014a

References
[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on Automatic

Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Apkarian, P. and D. Noll, "Nonsmooth Optimization for Multiband Frequency-Domain Control
Design," Automatica, 43 (2007), pp. 724–731.

[3] Apkarian, P., P. Gahinet, and C. Buhr, "Multi-model, multi-objective tuning of fixed-structure
controllers," Proceedings ECC (2014), pp. 856–861.

 systune

18-363

http://slicot.org

[4] Apkarian, P., M.-N. Dao, and D. Noll, "Parametric Robust Structured Control Design," IEEE
Transactions on Automatic Control, 2015.

[5] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the H∞ Norm of a Transfer
Function Matrix." Systems & Control Letters, 14, no.4 (April 1990): 287–93.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true using systuneOptions.

See Also
systune (for genss) | systuneOptions | slTuner | addPoint | getIOTransfer |
getLoopTransfer | writeBlockValue | looptune | hinfstruct

Topics
“Tune Control Systems in Simulink”
“Control of a Linear Electric Actuator”
“Interpret Numeric Tuning Results” on page 10-138
“Tuning Goals”
“Robust Tuning Approaches” (Robust Control Toolbox)

18 Functions

18-364

writeBlockValue
Update block values in Simulink model

Syntax
writeBlockValue(st)
writeBlockValue(st,blockid)
writeBlockValue(st,m)

Description
writeBlockValue(st) writes tuned parameter values from the slTuner interface, st, to the
Simulink model that st describes. Use this command, for example, to validate parameters of a
control system that you tuned using systune or looptune.

writeBlockValue skips blocks that cannot represent their tuned value in a straightforward and
lossless manner. For example, suppose you tune an user defined Subsystem or S-Function block.
writeBlockValue will skip this block because there is no clear way to map the tuned value to a
Subsystem or S-Function block. Similarly, if you parameterize a Gain block as a second-order transfer
function, writeBlockValue will skip this block, unless the transfer function value is a static gain.

writeBlockValue(st,blockid) only updates the block or blocks referenced by blockid.

writeBlockValue(st,m) writes tuned parameter values from a generalized model, m, to the
Simulink model described by the slTuner interface, st.

Examples

Update Simulink Model with All Tuned Parameters

Create an slTuner interface for the model.

st = slTuner('scdcascade',{'C1','C2'});

Specify the tuning goals and necessary analysis points.

tg1 = TuningGoal.StepTracking('r','y1m',5);

addPoint(st,{'r','y1m'});

tg2 = TuningGoal.Poles();
tg2.MaxFrequency = 10;

Tune the controller.

[sttuned,fSoft] = systune(st,[tg1 tg2]);

Final: Soft = 1.28, Hard = -Inf, Iterations = 37

After validating the tuning results, update the model to use the tuned controller values.

 writeBlockValue

18-365

writeBlockValue(sttuned);

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blockid — Blocks to update
character vector | string | cell array of character vectors | string array

Blocks to update with tuned values, specified as a:

• Character vector or string, to update one block.
• Cell array of character vectors or string array, to update multiple blocks.

The blocks in blockid must be in the TunedBlocks property of the slTuner interface st. You can
specify a full block path, or any portion of the block path that uniquely identifies the block among the
other tuned blocks of st.
Example: blk = {'scdcascade/C1','scdcascade/C2'}
Example: "C1"

m — Tuned control system
generalized state-space

Tuned control system, specified as a generalized state-space model (genss).

Typically, m is the output of a tuning function like systune, looptune, or hinfstruct. The model m
must have some tunable parameters in common with st. For example, m can be a generalized model
that you obtained by linearizing your Simulink model, and then tuned to meet some design
requirements.

Version History
Introduced in R2014a

See Also
slTuner | getBlockValue | setBlockValue | showTunable | writeLookupTableData

Topics
“Tuning of a Digital Motion Control System”
“Control of a Linear Electric Actuator”
“How Tuned Simulink Blocks Are Parameterized”

18 Functions

18-366

slTunerOptions
Set slTuner interface options

Syntax
options = slTunerOptions
options = slTunerOptions(Name,Value)

Description
options = slTunerOptions returns the default slTuner interface option set.

options = slTunerOptions(Name,Value) returns an option set with additional options specified
by one or more Name,Value pair arguments.

Examples

Create Option Set for slTuner Interface

Create an option set for an slTuner interface that sets the rate conversion method to the Tustin
method with prewarping at a frequency of 10 rad/s.

options = slTunerOptions('RateConversionMethod','prewarp',...
 'PreWarpFreq',10);

Alternatively, use dot notation to set the values of options.

options = slTunerOptions;
options.RateConversionMethod = 'prewarp';
options.PreWarpFreq = 10;

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'RateConversionMethod','prewarp' sets the rate conversion method to the Tustin
method with prewarping.

SampleTime — Linearization sample time
0 (default) | positive scalar

Linearization sample time, specified as the comma-separated pair consisting of 'SampleTime' and
one of the following:

 slTunerOptions

18-367

• 0 — Create a continuous-time model.
• Positive scalar — Specify the sample time for discrete-time systems.

UseFullBlockNameLabels — Flag indicating whether to truncate names of I/Os and states
'off' (default) | 'on'

Flag indicating whether to truncate names of I/Os and states in the linearized model, specified as the
comma-separated pair consisting of 'UseFullBlockNameLabels' and either:

• 'off' — Use truncated names for the I/Os and states in the linearized model.
• 'on' — Use the full block path to name the I/Os and states in the linearized model.

UseBusSignalLabels — Flag indicating whether to use bus signal channel numbers or
names
'off' (default) | 'on'

Flag indicating whether to use bus signal channel numbers or names to label the I/Os in the
linearized model, specified as the comma-separated pair consisting of 'UseBusSignalLabels' and
one of the following:

• 'off' — Use bus signal channel numbers to label I/Os on bus signals in the linearized model.
• 'on' — Use bus signal names to label I/Os on bus signals in the linearized model. Bus signal

names appear in the results when the I/O points are located at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing through only

virtual or nonvirtual subsystem boundaries

StoreOffsets — Flag indicating whether to compute linearization offsets
false (default) | true

Flag indicating whether to compute linearization offsets for inputs, outputs, states, and state
derivatives or updated states, specified as the comma-separated pair consisting of 'StoreOffsets'
and one of the following:

• false — Do not compute linearization offsets.
• true — Compute linearization offsets.

You can configure an LPV System block using linearization offsets. For an example, see “Approximate
Nonlinear Behavior Using Array of LTI Systems” on page 3-69

StoreAdvisor — Flag indicating whether to store diagnostic information
false (default) | true

Flag indicating whether to store diagnostic information during linearization, specified as the comma-
separated pair consisting of 'StoreAdvisor' and one of the following:

• false — Do not store linearization diagnostic information.
• true — Store linearization diagnostic information.

18 Functions

18-368

Linearization commands store and return diagnostic information in a LinearizationAdvisor
object. For an example of troubleshooting linearization results using a LinearizationAdvisor
object, see “Troubleshoot Linearization Results at Command Line” on page 4-28.

RateConversionMethod — Rate conversion method
'zoh' (default) | 'tustin' | 'prewarp' | 'upsampling_zoh' | 'upsampling_tustin' |
'upsampling_prewarp'

Method used for rate conversion when linearizing a multirate system, specified as the comma-
separated pair consisting of 'RateConversionMethod' and one of the following:

• 'zoh' — Zero-order hold rate conversion method
• 'tustin' — Tustin (bilinear) method
• 'prewarp' — Tustin method with frequency prewarp. When you use this method, set the

PreWarpFreq option to the desired prewarp frequency.
• 'upsampling_zoh' — Upsample discrete states when possible, and use 'zoh' otherwise.
• 'upsampling_tustin' — Upsample discrete states when possible, and use 'tustin'

otherwise.
• 'upsampling_prewarp' — Upsample discrete states when possible, and use 'prewarp'

otherwise. When you use this method, set the PreWarpFreq option to the desired prewarp
frequency.

For more information on rate conversion and linearization of multirate models, see:

• “Linearize Multirate Models” on page 2-141
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147
• “Continuous-Discrete Conversion Methods”

Note If you use a rate conversion method other than 'zoh', the converted states no longer have the
same physical meaning as the original states. As a result, the state names in the resulting LTI system
change to '?'.

PreWarpFreq — Prewarp frequency
0 (default) | positive scalar

Prewarp frequency in rad/s, specified as the comma-separated pair consisting of 'PreWarpFreq'
and a nonnegative scalar. This option applies only when RateConversionMethod is either
'prewarp' or 'upsampling_prewarp'.

AreParamsTunable — Flag indicating whether to recompile the model when varying
parameter values
true (default) | false

Flag indicating whether to recompile the model when varying parameter values for linearization,
specified as the comma-separated pair consisting of 'AreParamsTunable' and one of the following:

• true — Do not recompile the model when all varying parameters are tunable. If any varying
parameters are not tunable, recompile the model for each parameter grid point, and issue a
warning message.

 slTunerOptions

18-369

• false — Recompile the model for each parameter grid point. Use this option when you vary the
values of nontunable parameters.

For more information about model compilation when you linearize with parameter variation, see
“Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7.

Output Arguments
options — slTuner interface options
slTunerOptions option set

slTuner interface options, returned as an slTunerOptions option set.

Version History
Introduced in R2014a

See Also
slTuner

18 Functions

18-370

update
Package: opcond

Update operating point object with structural changes in model

Syntax
update(op)

Description
update(op) updates an operating point object, op, to reflect any changes in the associated Simulink
model, such as states being added or removed.

Examples
Open the magball model:

magball

Create an operating point object for the model:

op = operpoint('magball')

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14.0071
(3.) magball/Magnetic Ball Plant/Current
 x: 7 .0036
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05

Inputs: None

Add an Integrator block to the model, as shown in the following figure.

 update

18-371

Update the operating point to include this new state:

update(op)

View the updated operating point, which now contains a state for the integrator.

op

 Operating Point for the Model magball.
 (Time-Varying Components Evaluated at time t=0)

States:

(1.) magball/Controller/PID Controller/Filter
 x: 0
(2.) magball/Controller/PID Controller/Integrator
 x: 14.0071
(3.) magball/Magnetic Ball Plant/Current
 x: 7.0036
(4.) magball/Magnetic Ball Plant/dhdt
 x: 0
(5.) magball/Magnetic Ball Plant/height
 x: 0.05
(6.) magball/Integrator
 x: 0

Inputs: None

Alternatives
As an alternative to the update function, update operating point objects using the Sync with Model
button in the Model Linearizer app.

Version History
Introduced before R2006a

See Also
operpoint | operspec

18 Functions

18-372

writeLookupTableData
Update portion of tuned lookup table

Syntax
writeLookupTableData(st,blockid,breakpoints)
writeLookupTableData(st,blockid,ix1,…,ixN)

Description
When tuning lookup table blocks with systune, use this function to update only a portion of the table
data in the Simulink model. This function is useful when retuning a single point or a portion of the
lookup table. To update the entire lookup table, use writeBlockValue.

writeLookupTableData(st,blockid,breakpoints) writes tuned gain values from an slTuner
interface to a portion of a lookup table in the associated Simulink model. Each row of breakpoints
identifies an entry in the lookup table to update. blockid must identify a single block in the
TunedBlocks property of the slTuner interface.

writeLookupTableData(st,blockid,ix1,…,ixN) updates a rectangular portion of the table
data. The index vectors ix1,…,ixN select specific breakpoints along each table dimension.

Examples

Update Specific Entries in Lookup Table

Suppose you have an slTuner interface st to a Simulink model that contains a 2-D Lookup Table
block Kp Lookup. The block is listed in slTuner.TunedBlocks. Suppose further that you have
retuned for design points corresponding to the (3,5) and (4,6) breakpoints in the lookup table. Update
the lookup table with the new values.

breakpoints = [3 5;4 6];
writeLookupTableData(st,'Kp Lookup',breakpoints)

Update Rectangular Portion of Lookup Table

Suppose you have retuned design points between the third and fifth values of the first scheduling
variable, and the seventh and tenth values of the second scheduling variables. Update the lookup
table with the new values.

 writeLookupTableData

18-373

ix1 = 3:5;
ix2 = 7:10;
writeLookupTableData(st,'Kp Lookup',ix1,ix2)

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner interface.

blockid — Lookup table
character vector | string

Lookup table to update with tuned values, specified as a character vector or string. The block
identified by blockid must be a lookup-table block in the TunedBlocks property of the slTuner
interface st. You can specify a full block path, or any portion of the block path that uniquely identifies
the block among the other tuned blocks of st.
Example: 'scdcascade/Kp Lookup'
Example: "Kp Lookup"

breakpoints — Lookup-table entries
integer array

Lookup-table entries to update, specified as an integer array. Each row of breakpoints specifies a
table entry by its (i1,i2,…,iN) subscripts. For instance:

• To update the data associated with the first and third breakpoints in a 1-D Lookup Table block, use
breakpoints = [1;3].

• To update the data associated with the (3,5) and (4,6) entries in a 2-D Lookup Table block, use
breakpoints = [3 5;4 6].

ix1,…,ixN — Portion of lookup table
vectors

Portion of lookup table to update, specified as index vectors that select specific breakpoints along
each table dimension. For instance, to update a 2-D Lookup Table block, specify two index vectors
that identify the rows and columns to update. If you want to update the portion of the table blocked
out by entries 3 through 5 in the first dimension and 7 through 10 in the second dimension, use ix1
= 3:5 and ix2 = 7:10.

Tips
• If you use writeBlockValue to update other retuned blocks in your model, exclude the lookup

table blockid from the list of blocks to update with that function.

Version History
Introduced in R2017b

18 Functions

18-374

See Also
writeBlockValue

Topics
“Validate Gain-Scheduled Control Systems” on page 11-36

 writeLookupTableData

18-375

Blocks

19

Active Disturbance Rejection Control
Design controller for plants with unknown dynamics and disturbances

Libraries:
Simulink Control Design

Description
The Active Disturbance Rejection Control block lets you design active disturbance rejection control
(ADRC) for a plant with unknown dynamics and internal and external disturbances. ADRC is a model-
free control technique that requires only an approximation of the plant dynamics to design controllers
that provide robust disturbance rejection.

The block uses a first-order or second-order model approximation of the known system dynamics
along with the unknown dynamics and disturbances modeled as an extended state of the plant.
Typically, you determine this order from the open-loop step response of your plant in the operating
range.

• First-order approximation — ẏ(t) = b0u(t) + f (t)
• Second-order approximation — ÿ(t) = b0u(t) + f (t)

Here:

• y(t) is the plant output.
• u(t) is the input signal.
• b0 is the critical gain, which is the estimated gain that describes the plant response to an input

u(t).
• f(t) is the total disturbance, which includes unknown dynamics and other disturbances.

The block uses an extended state observer (ESO) to estimate f(t) and implements disturbance
rejection control by reducing the effect of estimated disturbances on the known part of model
approximation. To tune ADRC, set appropriate time domain, model type and critical gain, controller
and observer bandwidths, and initial conditions.

For more information, see “Active Disturbance Rejection Control” on page 15-67.

Ports
Input

r — Reference signal
scalar

Provide the reference signal for the controlled system to follow.

19 Blocks

19-2

y — Plant output
scalar

Provide the output signal of the plant.

Output

u — Control input
scalar

Connect the control input signal to the plant input.

xhat — Estimated extended states
vector

Estimated extended states of the plant model from the extended state observer.

If the Model type is first-order, xhat is a vector of length two, with estimated states y and f (t).

If the Model type is second-order, xhat is a vector of length three, with estimated states y , ẏ , and
f (t).

Dependencies

To enable this output port, select the Estimated extended states parameter.

Parameters
Parameters Tab

Time domain — Controller time domain
discrete-time (default) | continuous-time

Specify the controller time domain.

When you select discrete-time, specify the sample time using the Sample time parameter.

Programmatic Use
Block Parameter: 'time_domain'
Type: character vector
Values: 'discrete-time' | 'continuous-time'
Default: 'discrete-time'

Sample time — Controller sample time
0.01 (default) | finite positive scalar

Specify the sample time value for the discrete-time controller.

Dependencies

To enable this parameter, set the Time domain parameter to discrete-time.

Programmatic Use
Block Parameter: 'Ts'
Type: character vector

 Active Disturbance Rejection Control

19-3

Values: finite positive scalar
Default: '0.01'

Model type — Plant order type
first-order (default) | second-order

Specify the model type of your plant as one of the following.

• first-order — Select this option if your plant exhibits first-order dynamic system behavior.
• second-order — Select this option if your plant exhibits second-order dynamic system behavior.

Programmatic Use
Block Parameter: 'model_type'
Type: character vector
Values: 'first-order' | 'second-order'
Default: 'first-order'

Critical gain — Critical gain
1 (default) | finite nonzero scalar

Specify the critical gain b0 that describes the model behavior.
Programmatic Use
Block Parameter: 'b0'
Type: character vector
Values: finite nonzero scalar
Default: '1'

Controller bandwidth (rad/sec) — Controller bandwidth
1 (default) | finite positive scalar

Specify the controller bandwidth. This parameter determines the speed of the controller response. In
general, a faster response requires a larger controller bandwidth.
Programmatic Use
Block Parameter: 'wc'
Type: character vector
Values: finite positive scalar
Default: '1'

Observer bandwidth (rad/sec) — Observer bandwidth
10 (default) | finite positive scalar

Specify the observer bandwidth. Typically, this is set to 5 to 10 times the controller bandwidth so that
the observer converges faster than the controller.
Programmatic Use
Block Parameter: 'wo'
Type: character vector
Values: finite positive scalar
Default: '10'

Block Tab

Initial conditions — Initial state values for extended state observer
0 (default) | scalar | vector

19 Blocks

19-4

Specify the initial state values for extended state observer as a scalar or vector of length n.

If Model type is first-order, n = 2. Otherwise, n = 3.

Programmatic Use
Block Parameter: 'x0'
Type: character vector
Values: finite scalar | vector
Default: '0'

Limit output (u) — Limit block output to specified saturation limits
off (default) | on

Option to limit block output to specified saturation limits. Specify the output saturation limits using
the Upper limit and Lower limit parameters.

Programmatic Use
Block Parameter: 'ulim_checkbox'
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Upper limit — Upper saturation limit for block output
inf (default) | scalar

Specify the upper limit for the block output. The block output is held at this value whenever it would
otherwise exceed this value.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: 'umax'
Type: character vector
Values: scalar
Default: 'inf'

Lower limit — Lower saturation limit for block output
–inf (default) | scalar

Specify the lower limit for the block output. The block output is held at this value whenever it would
otherwise go below this value.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: 'umin'
Type: character vector
Values: scalar
Default: '–inf'

Estimated extended states (xhat) — Output estimated states from observer
off (default) | on

 Active Disturbance Rejection Control

19-5

Option to output states from the extended state observer.

If the Model type is first-order, the block outputs y and f (t).

If the Model type is second-order, the block outputs y , ẏ , and f (t).

Programmatic Use
Block Parameter: 'xhat_checkbox'
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Active Disturbance Rejection Control” on page 15-67

19 Blocks

19-6

Barrier Certificate Enforcement
Modify control actions to satisfy barrier certificate constraints and action bounds

Libraries:
Simulink Control Design

Description
The Barrier Certificate Enforcement block computes the modified control actions that are closest to
specified control actions subject to barrier certificate constraints and action bounds.

The block uses a quadratic programming (QP) solver to find the control action u that minimizes the
function u− u0

2. Here, u0 is the unmodified control action.

The solver applies the following constraints to the optimization problem.

qxfx + qxgxu + γhx
β ≥ 0

umin ≤ u ≤ umax

Here:

• fx and gx are functions defined by the plant dynamics ẋ = f (x) + g(x)u.
• hx is the control barrier function.
• qx is the partial derivative of the control barrier function over states x.
• γ is the constraint factor.
• β is the constraint power.
• umin is a lower bound for the control action.
• umax is an upper bound for the control action.

The Barrier Certificate Enforcement block requires Optimization Toolbox software.

For more information on barrier certificate enforcement, see “Barrier Certificate Enforcement for
Control Design” on page 16-4.

Ports
Input

u0 — Control actions
scalar | vector

Unmodified control actions, specified as a scalar or a vector.

 Barrier Certificate Enforcement

19-7

If the Number of actions parameter is 1, connect u0 to a scalar signal. Otherwise, connect u0 to a
vector signal with length equal to Number of actions.

fx — State function
scalar | vector

State function f(x) in the following plant dynamics equation.

ẋ = f (x) + g(x)u

Connect fx to an Nx-by-1 signal, where Nx is equal to the Number of states parameter.

gx — Input function
scalar | vector | matrix

Input function g(x) in the following plant dynamics equation.

ẋ = f (x) + g(x)u

Connect gx to an Nx-by-Nu signal, where Nx is equal to the Number of states parameter and Nu is
equal to the Number of actions parameter.

hx — Control barrier function
scalar | vector

Control barrier function, defined as the following safety set for plant states.

x:h(x) ≥ 0

Connect hx to an Nc-by-1 signal, where Nc is equal to the Number of barrier certificates
parameter.

qx — Partial derivative of control barrier function
scalar | vector | matrix

Partial derivative of the control barrier function over plant states.

q(x) = ∂h
∂x

Connect qx to an Nc-by-Nx signal, where Nc is equal to the Number of barrier certificates
parameter and Nx is equal to the Number of states parameter.

umax — Action signal upper bounds
scalar | vector

To specify run-time upper bounds to the action signals, enable this input port. If this port is disabled,
the block does not apply any upper bounds to the control actions.

If the Number of actions parameter is 1, connect umax to a scalar signal. Otherwise, connect umax
to a vector signal with length equal to Number of actions.

Dependencies

To enable this input port, select the Use external source for upper bound parameter.

19 Blocks

19-8

umin — Action signal lower bounds
scalar | vector

To specify run-time lower bounds to the action signals, enable this input port. If this port is disabled,
the block does not apply any lower bounds to the control actions.

If the Number of actions parameter is 1, connect umin to a scalar signal. Otherwise, connect umin
to a vector signal with length equal to Number of actions.

Dependencies

To enable this input port, select the Use external source for lower bound parameter.

Output

u* — Modified control action
scalar | vector

Modified control action returned by the QP solver.

If the solver finds a solution before reaching the maximum number of iterations, u* outputs this
optimal solution.

If the solver reaches the maximum number of iterations, optimization stops and u* outputs a
suboptimal solution.

If the initial optimization problem is infeasible, the returned control action depends on the whether
the block is configured to ignore constraint or action bounds. For more information, see the exitflag
parameter.

If the Number of actions parameter is 1, u* outputs a scalar signal. Otherwise, u* outputs a vector
signal with length equal to Number of actions.

exitflag — Optimization status
1 | 0 | negative integer

Optimization status of the QP solver. The following table shows the possible status values.

Exit Flag Description
1 The solver converged to an optimal solution with

all constraints and bounds active. In this case, u*
outputs the optimal control actions.

0 The solver reached the maximum number of
iterations. The control actions output in u* might
be suboptimal.

 Barrier Certificate Enforcement

19-9

Exit Flag Description
negative integer The initial optimization problem was infeasible

and one of the following scenarios applies.

• Rerunning the optimization without action
bounds did not produce a feasible solution.

• Rerunning the optimization without constraint
bounds did not produce a feasible solution.

In this case, the control actions output in u* are
zero.

Dependencies

To enable this output port, select the Optimization status parameter.

Parameters
Parameters Tab

Number of states — Number of plant states
1 (default) | positive integer

Specify the number of states in your plant.

Programmatic Use
Block Parameter: nx
Type: character vector
Default: '1'

Number of actions — Number of control actions
1 (default) | positive integer

Specify the number of actions to apply bounds to and optimize.

Programmatic Use
Block Parameter: nu
Type: character vector
Default: '1'

Number of barrier certificates — Number of barrier certificate constraints
1 (default) | positive integer

Specify the number of barrier certificate constraints to enforce.

Programmatic Use
Block Parameter: nc
Type: character vector
Default: '1'

Constraint factor — Constraint factor
10 (default) | positive scalar | vector

Specify the constraint factor γ in the barrier certificate constraint.

19 Blocks

19-10

If the Number of barrier certificates parameter is 1, specify Constraint factor as a finite positive
scalar. Otherwise, you can specify Constraint factor as either a finite positive scalar value or a
column vector of positive scalars with length equal to Number of barrier certificates.
Programmatic Use
Block Parameter: gamma
Type: character vector
Default: '10'

Constraint power — Constraint power
1 (default) | positive odd integer | vector

Specify the constraint power β in the barrier certificate constraint.

If the Number of barrier certificates parameter is 1, specify Constraint power as a positive odd
integer. Otherwise, you can specify Constraint power as either a positive odd integer or a column
vector of positive odd integers with length equal to Number of barrier certificates.
Programmatic Use
Block Parameter: beta
Type: character vector
Default: '1'

Use external source for upper bound — Add upper action bound input port
off (default) | on

Select this parameter to add the umax input port for external upper action bounds.

Programmatic Use
Block Parameter: external_umax
Type: character vector
Values: 'off'|'on'
Default: 'off'

Use external source for lower bound — Add lower action bound input port
off (default) | on

Select this parameter to add the umin input port for external lower action bounds.

Programmatic Use
Block Parameter: external_umin
Type: character vector
Values: 'off'|'on'
Default: 'off'

Block Tab

Sample time — Optimization sample time
0.1 (default) | positive scalar

Specify the sample time for running the optimization.

Programmatic Use
Block Parameter: Ts
Type: character vector
Default: '0.1'

 Barrier Certificate Enforcement

19-11

Maximum iterations — Maximum optimization iterations
200 (default) | positive integer

Specify the maximum number of optimization iterations.

Programmatic Use
Block Parameter: maxiter
Type: character vector
Default: '200'

Constraint tolerance — Tolerance for constraint violations
1e-6 (default) | nonnegative scalar

Specify a tolerance value for constraint violations.

Programmatic Use
Block Parameter: tol
Type: character vector
Default: '1e-6'

Optimization status — Add exit flag output port
off (default) | on

Select this parameter to add the exitflag output port for the optimization status of the QP solver.

Programmatic Use
Block Parameter: exitflag
Type: character vector
Values: 'off'|'on'
Default: 'off'

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Barrier Certificate Enforcement block supports code generation for double-precision signals only.

See Also
Constraint Enforcement

Topics
“Barrier Certificate Enforcement for Control Design” on page 16-4

19 Blocks

19-12

Bode Plot, Check Bode Characteristics
Bode plot of linear system computed from nonlinear Simulink model

Libraries:
Simulink Control Design / Linear Analysis Plots
Simulink Control Design / Model Verification

Description
The Bode Plot and Check Bode Characteristics blocks compute a linear system from a nonlinear
Simulink model and plot the linear system on a Bode plot during simulation. These blocks are
identical except for the default settings on the Bounds tab.

• The Bode Plot does not define default bounds.
• The Check Bode Characteristics block defines default bounds and enables these bounds for

assertion.

For more information on frequency domain analysis of linear systems, see “Frequency-Domain
Responses”.

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs and then plots the magnitude and phase of the linear system. You also can save
the linear system as a variable in the MATLAB workspace.

The Simulink model can be continuous-time, discrete-time, or multirate, and can have time delays.
The linear system can be single-input single-output (SISO) or multi-input multi-output (MIMO). For
MIMO systems, the block displays plots for all input/output combinations.

You can specify piecewise-linear frequency-dependent upper and lower magnitude bounds and view
them on the Bode plot. You can also check that the bounds are satisfied during simulation.

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

To compute and plot the magnitude and phase of various portions of your model, you can add multiple
Bode Plot and Check Bode Characteristics blocks.

These blocks do not support code generation and can be used only in Normal simulation mode.

 Bode Plot, Check Bode Characteristics

19-13

Ports
Input

Trigger — External trigger signal
scalar

Use this input port (indicated by) to connect an external trigger signal for computing the model
linearization. To specify the type of trigger signal to detect, use the Trigger type parameter.
Dependencies

To enable this port, set the Linearize on parameter to External trigger.

Output

z–1 — Assertion signal
1 | 0

Output the value of the assertion signal as a logical value. If any bound specified on the Bounds tab
is violated, the assertion signal is false (0). Otherwise, this signal is true (1).

By default, the data type of the output signal is double. To set the output data type as Boolean, in the
Simulink model, in the Configuration Parameters dialog box, select the Implement logic signals as
Boolean data parameter. This setting applies to all blocks in the model that generate logic signals.

You can use the assertion signal to design complex assertion logic. For an example, see “Verify Model
Using Simulink Control Design and Simulink Verification Blocks” on page 17-20.
Dependencies

To enable this port, select the Output assertion signal parameter.

Parameters
Show Plot — Open plot

button

To view Bode plots computed during a simulation, click this button before starting the simulation. If
you specify bounds on the Bounds tab, they are also shown on the plot.

To show the plot when opening the block, select the Show plot on block open parameter.

For more information on using the plot, see “Using the Plot” on page 19-30.

Show plot on block open — Open plot when opening block

off (default) | on

Select this parameter to open the plot when opening the block. You can then perform tasks, such as
adding or modifying bounds, in the plot window instead of using the block parameters. To access the

block parameters from the plot window, select Edit or click .

For more information on using the plot, see “Using the Plot” on page 19-30.

19 Blocks

19-14

Programmatic Use
Block Parameter: LaunchViewOnOpen
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Response Optimization — Open Response Optimizer

button

Open the Response Optimizer app to optimize the model response to meet the design requirements
specified on the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

For more information on response optimization, see “Design Optimization to Meet Step Response
Requirements (GUI)” (Simulink Design Optimization) and “Design Optimization to Meet Time-Domain
and Frequency-Domain Requirements (GUI)” (Simulink Design Optimization).

Linearizations

To specify the portion of the model to linearize and other linearization settings, use the parameters on
the Linearizations tab. The default settings on this tab are the same for the Bode Plot and Check
Bode Characteristics blocks.

Linearization inputs/outputs — Specify portion of model to linearize

linear analysis points

To specify the portion of the model to linearize, select signals from the Simulink model and add them
as linearization inputs or outputs.

In the table, the Block:Port:Bus Element column shows the following information for each signal.

• Source block

 Bode Plot, Check Bode Characteristics

19-15

• Output port of the source block to which the signal is connected
• Bus element name (if the signal is in a bus)

In the Configuration column, select the type of linear analysis point from the following types. For
more information on linear analysis points, see “Specify Portion of Model to Linearize” on page 2-10.

• Open-loop Input — Specifies a linearization input point after a loop opening
• Open-loop Output — Specifies a linearization output point before a loop opening
• Loop Transfer — Specifies an output point before a loop opening followed by an input
• Input Perturbation — Specifies an additive input to a signal
• Output Measurement — Takes a measurement at a signal
• Loop Break — Specifies a loop opening
• Sensitivity — Specifies an additive input followed by an output measurement
• Complementary Sensitivity — Specifies an output followed by an additive input

Note If you simulate the model without specifying a linearization input or output, the software
generates a warning in the MATLAB Command Window and does not compute a linear system.

Edit Linearization Inputs and Outputs

To add linearization inputs and outputs:

1
To expand the signal selection area, click .

The dialog box expands to display a Click a signal in the model to select it area.
2 In the Simulink model, select one or more signals.

The selected signals appear in the Model signal table.

3 (Optional) For bus signals, expand the bus to select individual elements.

Tip For large buses or other large lists of signals, you can filter the signal names. In the Filter
by name box, enter search text. The name match is case-sensitive.

To modify the filtering options, click . For more information on filtering options, see the
Enable regular expression and Show filtered results as a flat list parameters.

4
To add the selected signal to the Linearization inputs/outputs table, click .

5 In the Configuration column, specify the signal type.

19 Blocks

19-16

Alternatively, if you have linearization inputs and outputs defined in your model, you can add them to

the Linearization inputs/outputs table by clicking .

To remove a signal from the Linearization inputs/outputs table, select the signal and click .

To highlight the source block of a signal in the Simulink model, select the signal in the Linearization

inputs/outputs table and click .

Enable regular expression — Enable signal searching using regular expressions

on (default) | off

Select this option to enable the use of MATLAB regular expressions for filtering signal names. For
example, entering t$ in the Filter by name text box displays all signals whose names end with a
lowercase t (and their immediate parents). For more information, see “Regular Expressions”.
Dependencies

To enable this parameter, click next to the Filter by name text box.

Show filtered results as a flat list — Display filtered bus signal hierarchy using flat list

off (default) | on

Select this option to display the list of filtered signals in a flat list format. The flat list format uses dot
notation to reflect the hierarchy of bus signals. The signals are filtered based on the text in the Filter
by name text box.

The following figure shows an example of the flat list format for a filtered set of nested bus signals.

Dependencies

To enable this parameter, click next to the Filter by name text box.

Linearize on — When to compute linear model

 Bode Plot, Check Bode Characteristics

19-17

Simulation snapshots (default) | External trigger

Use this parameter to specify when you want to compute a linear model.

To compute linear models at specified simulation snapshot times, set this parameter to Simulation
snapshots. Specify snapshot times using the Snapshot times parameter.

Use simulation snapshots when you:

• Know one or more times when the model is at a steady-state operating point
• Want to compute linear systems at specific times

To compute linear models at trigger-based simulation events, set this parameter to External
trigger. Selecting this option adds a trigger input port to the block, to which you connect your
external trigger signal. To specify the type of trigger to detect, use the Trigger type parameter.

Use an external trigger when a signal generated during simulation indicates that the model is at a
steady-state condition of interest. For example, for an aircraft model, you might want to compute the
linear system whenever the fuel mass is a given fraction of the maximum fuel mass.

Programmatic Use
Block Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

Snapshot times — Simulation times at which to compute linear model

0 (default) | positive real value | vector of positive real values

To compute a linear system at specific simulation times, such as a time that you know the model
reaches a steady state operating point, specify one or more snapshot times. To specify multiple
snapshot times, specify this parameter as a vector of positive values.

Snapshot times must be less than or equal to the simulation time specified in the Simulink model.

For examples of linearizing a model at simulation snapshot times, see:

• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13

Dependencies

To enable this parameter, set the Linearize on parameter to Simulation snapshots

Programmatic Use
Block Parameter: SnapshotTimes
Type: character vector
Value: '0' | positive real value | vector of positive real values
Default: '0'

Trigger type — Type of external trigger to detect

19 Blocks

19-18

Rising edge (default) | Falling edge

Specify the trigger to detect in the external trigger signal as one of the following types.

• Rising edge — Use the rising edge of the trigger signal; that is, when the signal changes from 0
to 1.

• Falling edge — Use the falling edge of the trigger signal; that is, when the signal changes from
1 to 0.

Dependencies

To enable this parameter, set the Linearize on parameter to External trigger.

Programmatic Use
Block Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select this option to enable zero-crossing detection.

When you set the Linearize on parameter to Simulation snapshots, enabling zero-crossing
detection ensures that the software computes the linear model at the exact snapshot times you
specify in the Snapshot times parameter.

When you set the Linearize on parameter to External trigger, enabling zero-crossing detection
ensures that the software computes the linear model at the exact time that the external trigger is
detected. To specify the type of trigger, use the Trigger type parameter.

If you clear this option, the software computes the linear system at simulation times selected by the
variable-step Simulink solver, which might not correspond to an exact snapshot time or the exact time
when a trigger signal is detected.

For example, consider the case where the variable-step solver selects simulation times Tn–1 and Tn. As
shown in the following figure, the specified snapshot time Tsnap can be between the selected
simulation times. If you enable zero-crossing detection, the solver also simulates the model at time
Tsnap and computes the linear model at this point.

Similarly, the external trigger can be detected at a time Ttrig that is between the selected simulation
times. If you enable zero-crossing detection, the solver also simulates the model at time Ttrig and
computes the linear model at this point.

 Bode Plot, Check Bode Characteristics

19-19

In both cases, if you do not enable zero-crossing detection, the software computes the linear model at
either Tn–1 or Tn.

For more information on zero-crossing detection, see “Zero-Crossing Detection”.

Dependencies

This parameter is ignored when you use a fixed-step Simulink solver.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Use exact delays — Use exact delays in linear model

off (default) | on

Select this option to compute a linear model with exact delays. If you clear this option, the linear
model uses Padé approximations of any delays.

For more information on linearizing models with delays, see “Linearize Models with Delays” on page
2-77.

Programmatic Use
Block Parameter: UseExactDelayModel
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Linear system sample time — Sample time of linear system

'auto' (default) | positive finite value | 0

To compute a linear system with the specified sample time, the software coverts sample times in the
model using the method you specify in the Sample time rate conversion method parameter.

You can set the sample time to one of the following values.

• auto — If all blocks in the model are continuous-time, use a sample time of 0. Otherwise, set the
sample time to the least common multiple of the nonzero sample times in the model.

• Positive finite value — Create a discrete-time model with the specified sample time
• 0 — Create a continuous-time model

19 Blocks

19-20

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: 'auto' | positive finite value | '0'
Default: 'auto'

Sample time rate conversion method — Rate conversion method

Zero-Order Hold (default) | Tustin (bilinear) | Tustin with Prewarping | ...

Method for converting sample times during linearization, specified as one of the following values.

• Zero-Order Hold — Zero-order hold, where the control inputs are assumed piecewise constant
over the sample time Ts. This method usually performs better in the time domain.

• Tustin (bilinear) — Bilinear (Tustin) approximation without frequency prewarping. The
software rounds off fractional time delays to the nearest multiple of the sampling time. This
method usually performs better in the frequency domain.

• Tustin with Prewarping — Bilinear (Tustin) approximation with frequency prewarping.
Specify the prewarp frequency using the Prewarp frequency parameter. This method usually
performs better in the frequency domain. Use this method to ensure matching in a frequency
region of interest.

• Upsampling when possible, Zero-Order Hold otherwise — Upsample a discrete-time
system when possible; otherwise, use a zero-order hold.

• Upsampling when possible, Tustin otherwise — Upsample a discrete-time system when
possible; otherwise, use a Tustin approximation.

• Upsampling when possible, Tustin with Prewarping otherwise — Upsample a
discrete-time system when possible; otherwise, use a Tustin approximation with frequency
prewarping.

You can upsample only when you convert a discrete-time system to a new faster sample time that is
an integer multiple of the sample time of the original system.

For more information on rate conversion and linearization of multirate models, see:

• “Multirate Linearization Algorithm” on page 2-142
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147
• “Continuous-Discrete Conversion Methods”

Note If you use a rate conversion method other than Zero-Order Hold, the converted states no
longer have the same physical meaning as the original states. As a result, the state names in the
resulting LTI system change to '?'.

Dependencies

To enable this parameter, set the Linear system sample time parameter to a value other than auto.

Programmatic Use
Block Parameter: RateConversionMethod
Type: character vector

 Bode Plot, Check Bode Characteristics

19-21

Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Prewarp frequency — Prewarp frequency for Tustin rate conversion

'10' (default) | positive scalar

Prewarp frequency for Tustin rate conversion in radians per second, specified as a scalar value less
than the Nyquist frequency before and after resampling.
Dependencies

To enable this parameter, set the Sample time rate conversion method parameter to one of the
following values.

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

Programmatic Use
Block Parameter: PreWarpFreq
Type: character vector
Value: positive scalar
Default: '10'

Use full block names — Use full block path in state, input, and output names

off (default) | on

To show the state, input, and output names of the computed linear system using their full block path,
select this parameter. For example, in the scdcstr model used in the “Plot Linear System
Characteristics of a Chemical Reactor” on page 2-95 example, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

If you clear this parameter, only the names of the states, inputs, and outputs are used, which is useful
when the signal names are unique and you know their locations in your Simulink model. In the
preceding example, the state name of the integrator block appears as Integrator1.

The computed linear system is a state-space object (ss). The state, input, and output names for the
system appear in the following state-space object properties.

Input, Output, or State Name State-Space Object Property
Linearization input names InputName
Linearization output names OutputName
State names StateName

Programmatic Use
Block Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Use bus signal names — Use bus signal names in linear system

19 Blocks

19-22

off (default) | on

When you select an entire bus as a linearization input or output, select this parameter to use the
signal names of the individual bus elements in the computed linear system. If you do not enable this
option, the bus channel numbers are used instead.

Note Selecting an entire bus signal is not recommended. Instead, select individual bus elements.

Bus signal names appear when the linearization input or output is from one of the following blocks.

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing through only virtual or

nonvirtual subsystem boundaries

Dependencies

Using this parameter is not supported when your model contains mux/bus mixtures.

Programmatic Use
Block Parameter: UseBusSignalLabels
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Bounds

To define magnitude bounds for your Bode plot and specify whether to check for violations of these
bounds, use the parameters on the Bounds tab. The default settings on this tab are different for the
Bode Plot and Check Bode Characteristics blocks.

Include upper magnitude bound in assertion — Check whether Bode magnitude violates upper
bounds

on | off

Select this parameter to check whether the magnitude of the Bode plot violates the upper bounds
specified in the corresponding Magnitudes and Frequencies parameters.

By default, this parameter is cleared for the Bode Plot block and selected for the Check Bode
Characteristics block.

Dependencies

This parameter is used for assertion only if you select the Enable assertion parameter.

Programmatic Use
Block Parameter: EnableUpperBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Bode Plot block, 'on' for Check Bode Characteristics block

 Bode Plot, Check Bode Characteristics

19-23

Frequencies — Frequencies for upper magnitude bound segments

vector | matrix | cell array

To define upper bounds for your Bode plot, specify the start and end frequencies for each bound
segment in radians per second. To specify no upper bounds, set this parameter to [].

By default, the frequencies are [] for the Bode Plot block and [10 100] for the Check Bode
Characteristics block.

To specify:

• A single bound with one edge, specify a two-element vector of positive finite values.
• A single bound with multiple edges, specify an N-by-2 array, where N is the number of edges. For

example, enter [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Multiple bounds, specify an M-element cell array of matrices, where M is the number of bounds.

Set the magnitude values for the bounds using the corresponding Magnitudes parameter. The
dimensions of the Frequencies and Magnitudes parameters must match.

You can also add bound segments in the plot window. For more information, see “Using the Plot” on
page 19-30.
Dependencies

To check whether the magnitude bounds are violated during simulation, select both the Include
upper magnitude bound in assertion and Enable assertion parameters.
Programmatic Use
Block Parameter: UpperBoundFrequencies
Type: character vector
Value: vector of positive finite numbers | matrix of positive finite numbers | cell array of matrices
with positive finite numbers
Default: '[]' for Bode Plot block, '[10 100]' for Check Bode Characteristics block

Magnitudes — Magnitudes for upper bound segments

vector | matrix | cell array

To define upper bounds for your Bode plot, specify the magnitudes at each corresponding frequency
point in decibels. To specify no upper bounds, set this parameter to [].

By default, the magnitudes are [] for the Bode Plot block and [-20 -20] for the Check Bode
Characteristics block.

To specify:

• A single bound with one edge, specify a two-element vector of finite magnitude values.
• A single bound with multiple edges, specify an N-by-2 array, where N is the number of edges. For

example, enter [-10 -10;-20 -20] for two edges with magnitudes [-10 -10] and [-20
-20].

• Multiple bounds, specify an M-element cell array of matrices, where M is the number of bounds.

Set the frequency values for the bounds using the corresponding Frequencies parameter. The
dimensions of the Magnitude and Frequencies parameters must match.

19 Blocks

19-24

You can also add bound segments in the plot window. For more information, see “Using the Plot” on
page 19-30.

Dependencies

To check whether the magnitude bounds are violated during simulation, select both the Include
upper magnitude bound in assertion and Enable assertion parameters.

Programmatic Use
Block Parameter: UpperBoundFrequencies
Type: character vector
Value: vector of finite numbers | matrix of finite numbers | cell array of matrices with finite numbers
Default: '[]' for Bode Plot block, '[-20 -20]' for Check Bode Characteristics block

Include lower magnitude bound in assertion — Check whether Bode magnitude violates lower
bounds

on | off

Select this parameter to check whether the magnitude of the Bode plot violates the lower bounds
specified in the corresponding Magnitudes and Frequencies parameters.

By default, this parameter is cleared for the Bode Plot block and selected for the Check Bode
Characteristics block.

Dependencies

This parameter is used for assertion only if you select the Enable assertion parameter.

Programmatic Use
Block Parameter: EnableLowerBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Bode Plot block, 'on' for Check Bode Characteristics block

Frequencies — Frequencies for lower magnitude bound segments

vector | matrix | cell array

To define lower bounds for your Bode plot, specify the start and end frequencies for each bound
segment in radians per second. To specify no lower bounds, set this parameter to [].

By default, the frequencies are [] for the Bode Plot block and [0.1 1] for the Check Bode
Characteristics block.

To specify:

• A single bound with one edge, specify a two-element vector of positive finite values.
• A single bound with multiple edges, specify an N-by-2 array, where N is the number of edges. For

example, enter [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Multiple bounds, specify an M-element cell array of matrices, where M is the number of bounds.

Set the magnitude values for the bounds using the corresponding Magnitudes parameter. The
dimensions of the Frequencies and Magnitudes parameters must match.

 Bode Plot, Check Bode Characteristics

19-25

You can also add bound segments in the plot window. For more information, see “Using the Plot” on
page 19-30.

Dependencies

To check whether the magnitude bounds are violated during simulation, select both the Include
lower magnitude bound in assertion and Enable assertion parameters.

Programmatic Use
Block Parameter: LowerBoundFrequencies
Type: character vector
Value: vector of positive finite numbers | matrix of positive finite numbers | cell array of matrices
with positive finite numbers
Default: '[]' for Bode Plot block, '[0.1 1]' for Check Bode Characteristics block

Magnitudes — Magnitudes for lower bound segments

vector | matrix | cell array

To define lower bounds for your Bode plot, specify the magnitudes at each corresponding frequency
point in decibels. To specify no lower bounds, set this parameter to [].

By default, the magnitudes are [] for the Bode Plot block and [20 20] for the Check Bode
Characteristics block.

To specify:

• A single bound with one edge, specify a two-element vector of finite magnitude values.
• A single bound with multiple edges, specify an N-by-2 array, where N is the number of edges. For

example, enter [20 20; 40 40] for two edges with magnitudes [20 20] and [40 40].
• Multiple bounds, specify an M-element cell array of matrices, where M is the number of bounds.

Set the frequency values for the bounds using corresponding the Frequencies parameter. The
dimensions of the Magnitude and Frequencies parameters must match.

You can also add bound segments in the plot window. For more information, see “Using the Plot” on
page 19-30.

Dependencies

To check whether the magnitude bounds are violated during simulation, select both the Include
lower magnitude bound in assertion and Enable assertion parameters.

Programmatic Use
Block Parameter: LowerBoundFrequencies
Type: character vector
Value: vector of finite numbers | matrix of finite numbers | cell array of matrices with finite numbers
Default: '[]' for Bode Plot block, '[20 20]' for Check Bode Characteristics block

Logging

To control whether linearization results computed during the simulation are saved, use the
parameters on the Logging tab. The default settings on this tab are the same for the Bode Plot and
Check Bode Characteristics blocks.

19 Blocks

19-26

Save data to workspace — Save linear systems for further analysis

off (default) | on

Select this parameter to save the computed linear systems for further analysis or control design. The
data is saved in a structure with the following fields.

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is computed at

multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in values. To enable

this field, select the Save operating points for each linearization parameter.

To specify the name of the saved data structure, use the Variable name property.

The location of the saved data structure depends upon the configuration of the Simulink model.

• If the model is not configured to save simulation output as a single object, the data structure is a
variable in the MATLAB workspace.

• If the model is configured to save simulation output as a single object, the data structure is a field
in the Simulink.SimulationOutput object that contains the logged simulation data.

To configure your model to save simulation output in a single object, in the Configuration Parameters
dialog box, select the Single simulation output parameter.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Programmatic Use
Block Parameter: SaveToWorkspace
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Variable name — Name of data structure for saving linear systems

sys (default) | character vector

Specify the name of the data structure that stores linear systems computed during simulation.

The name must be unique among the variable names used in all data logging model blocks, such as
Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To Workspace blocks, and
simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Dependencies

To enable this parameter, select the Save data to workspace parameter.

Programmatic Use
Block Parameter: SaveName
Type: character vector

 Bode Plot, Check Bode Characteristics

19-27

Default: 'sys'

Save operating points for each linearization — Save operating points with linearization

off (default) | on

Select this parameter to save the operating point at which each linearization is computed. Selecting
this parameter adds the operatingPoints field to the saved data structure.

Dependencies

To enable this parameter, select the Save data to workspace parameter.

Programmatic Use
Block Parameter: SaveOperatingPoints
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Assertion

To control the assertion behavior of the block when bounds defined on the Bounds tab are violated,
use the parameters on the Assertion tab. The default settings on this tab are the same for the Bode
Plot and Check Bode Characteristics blocks.

Enable assertion — Enable bound checking

on (default) | off

To check whether the bounds defined on the Bounds tab are satisfied during the simulation, select
this parameter. When a bound is not satisfied, the assertion fails and a warning is generated.

Clearing this parameter disables assertion; that is, the block no longer checks that the specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

By default, on the Bounds tab:

• The Bode Plot block does not have defined bounds.
• The Check Bode Characteristics block has defined bounds.

You can configure your Simulink model to enable or disable all model verification blocks and override
the Enable assertion parameter. To do so, in the Simulink model, in the Configuration Parameters
dialog box, specify the Model Verification block enabling parameter.

Programmatic Use
Block Parameter: enabled
Type: character vector
Value: 'on' | 'off'

19 Blocks

19-28

Default: 'on'

Simulation callback when assertion fails — Expression to evaluate when bounds are violated

'' (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the bounds specified on the Bounds tab are violated.
All variables used in the expression must be in the MATLAB workspace.
Dependencies

To enable this parameter, select the Enable assertion parameter.
Programmatic Use
Block Parameter: callback
Type: character vector
Value: MATLAB expression
Default: ''

Stop simulation when assertion fails — Stop simulation when bounds are violated

off (default) | on

To stop the simulation when the bounds specified on the Bounds tab are violated, select this
parameter. If you do not select this option, the bound violation is reported as a warning in the
MATLAB Command Window and the simulation continues.

If you run the simulation from the Simulink model, when the assertion fails, the block where the
bound violation occurs is highlighted and an error message is displayed in the Simulation Diagnostics
window.

Note Since selecting this option stops the simulation as soon as the assertion fails, bound violations
that might occur later during the simulation are not reported. If you want all bound violations to be
reported, do not select this option.

Dependencies

To enable this parameter, select the Enable assertion parameter.
Programmatic Use
Block Parameter: stopWhenAssertionFail
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Output assertion signal — Add assertion output port

off (default) | on

Add the z–1 assertion signal output port to the block. This port outputs the value of the assertion as a
Boolean signal. When the bounds defined on the Bounds tab are violated, the assertion fails and the
assertion signal is 0. Otherwise, the assertion signal is 1.

You can use the assertion signal to design complex assertion logic. For an example, see “Verify Model
Using Simulink Control Design and Simulink Verification Blocks” on page 17-20.

 Bode Plot, Check Bode Characteristics

19-29

Programmatic Use
Block Parameter: export
Type: character vector
Value: 'off' | 'on'
Default: 'off'

More About
Using the Plot

In the plot window, you can:

•
View the block parameters by clicking or selecting Edit.

•
Highlight the block in the model by clicking or selecting Highlight Simulink Block in the
View menu.

•
Simulate the model by clicking .

•
Add a legend to the plot by clicking .

To display response characteristics, such as the peak response or stability margins, right-click the
plot. Then, under Characteristics, select the characteristics to show.

Any bounds you specify for the block appear on the plot.

19 Blocks

19-30

You can specify bounds on the Bounds tab.

Alternatively, to add a new bound from the plot, right-click the plot and select Bounds > New
Bound.

To modify a bound, you can drag the bound in the plot. You can also:

• Right-click the plot and select Bounds > Edit Bound.
• Right-click the bound and select Edit.

 Bode Plot, Check Bode Characteristics

19-31

In the Edit Bound dialog box, in the Bound drop-down, select the bound to edit. Then, specify in the
bound parameters and click Close.

After adding or editing bounds from the plot window, update the bound value in the block by clicking
Update Block.

Version History
Introduced in R2010b

See Also
Topics
“Visualize Bode Response of Simulink Model During Simulation” on page 2-60
“Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
“Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-91

19 Blocks

19-32

Check Nichols Characteristics
Check that gain and phase bounds on Nichols response are satisfied during simulation

Library
Simulink Control Design

Description
This block is the same as the Nichols Plot block except for different default parameter settings in the
Bounds tab.

Check that open- and closed-loop gain and phase bounds on Nichols response of a linear system,
computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time delays.
Because you can specify only one linearization input/output pair in this block, the linear system is
single-input single-output (SISO).

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs, computes the magnitude and phase, and checks that the gain and phase satisfy
the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

You can add multiple Check Nichols Characteristics blocks in your model to check gain and phase
bounds on various portions of the model.

You can also plot the linear system on a Nichols plot and graphically verify that the Nichols response
satisfies the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a nonlinear
Simulink model is within specified bounds during simulation.

 Check Nichols Characteristics

19-33

• When a model does not violate any bound, you can disable the block by clearing the assertion
option. If you modify the model, you can re-enable assertion to ensure that your changes do not
cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software to optimize
the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation mode.

Parameters
The following table summarizes the Nichols Plot block parameters, accessible via the block
parameter dialog box. For more information, see “Parameters” on page 19-143 in the Nichols Plot
block reference page.

Task Parameters
Configure linearization. Specify inputs and

outputs (I/Os).
In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on gains and phases of the
linear system for assertion.

In Bounds tab:

• Include gain and phase margins in
assertion

• Include closed-loop peak gain in assertion
• Include open-loop gain-phase bound in

assertion

19 Blocks

19-34

Task Parameters
Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion fails

(optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB workspace. Save data to workspace in Logging tab.
View bounds violations graphically in a plot
window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking the
block.

Show plot on block open

See Also
Nichols Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
• “Verify Frequency-Domain Characteristics of an Aircraft” on page 17-27

How To
“Monitor Linear System Characteristics in Simulink Models” on page 17-2

Version History
Introduced in R2010b

 Check Nichols Characteristics

19-35

Check Pole-Zero Characteristics
Check that bounds on pole locations are satisfied during simulation

Library
Simulink Control Design

Description
This block is the same as the Pole-Zero Plot block except for different default parameter settings in
the Bounds tab.

Check that approximate second-order bounds on the pole locations of a linear system, computed from
a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time delays.
Because you can specify only one linearization input/output pair in this block, the linear system is
single-input single-output (SISO).

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs, computes the poles and zeros, and checks that the poles satisfy the specified
bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

You can add multiple Check Pole-Zero Characteristics blocks in your model to check approximate
second-order bounds on various portions of the model.

You can also plot the poles and zeros on a pole-zero map and graphically verify that the poles satisfy
the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a nonlinear
Simulink model is within specified bounds during simulation.

19 Blocks

19-36

• When a model does not violate any bound, you can disable the block by clearing the assertion
option. If you modify the model, you can re-enable assertion to ensure that your changes do not
cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software to optimize
the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation mode.

Parameters
The following table summarizes the Pole-Zero Plot block parameters, accessible via the block
parameter dialog box. For more information, see “Parameters” on page 19-192 in the Pole-Zero Plot
block reference page.

Task Parameters
Configure linearization. Specify inputs and

outputs (I/Os).
In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include settling time bound in assertion
• Include percent overshoot bound in

assertion
• Include damping ratio bound in assertion
• Include natural frequency bound in

assertion

 Check Pole-Zero Characteristics

19-37

Task Parameters
Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion fails

(optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB workspace. Save data to workspace in Logging tab.
View bounds violations graphically in a plot
window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking the
block.

Show plot on block open

See Also
Pole-Zero Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
• “Verify Frequency-Domain Characteristics of an Aircraft” on page 17-27

How To
“Monitor Linear System Characteristics in Simulink Models” on page 17-2

Version History
Introduced in R2010b

19 Blocks

19-38

Check Singular Value Characteristics
Check that singular value bounds are satisfied during simulation

Library
Simulink Control Design

Description
This block is the same as the Singular Value Plot block except for default parameter settings in the
Bounds tab:

Check that upper and lower bounds on singular values of a linear system, computed from a nonlinear
Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have time delays. The
computed linear system can be single-input single-output (SISO) or multi-input multi-output (MIMO).

During simulation, the software linearizes the portion of the model between specified linearization
input and output, computes the singular values, and checks that the values satisfy the specified
bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the singular values computed for all input/output
combinations.

You can add multiple Check Singular Value Characteristics blocks in your model to check upper and
lower singular value bounds on various portions of the model.

You can also plot the singular values on a singular value plot and graphically verify that the values
satisfy the bounds.

 Check Singular Value Characteristics

19-39

This block and the other Model Verification blocks test that the linearized behavior of a nonlinear
Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the assertion
option. If you modify the model, you can re-enable assertion to ensure that your changes do not
cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization software to optimize
the linear system to meet the specified requirements in this block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation mode.

Parameters
The following table summarizes the Singular Value Plot block parameters, accessible via the block
parameter dialog box. For more information, see “Parameters” on page 19-223 in the Singular Value
Plot block reference page.

Task Parameters
Configure linearization. Specify inputs and

outputs (I/Os).
In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O
Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include upper singular value bound in
assertion

• Include lower singular value bound in
assertion

19 Blocks

19-40

Task Parameters
Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion fails

(optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB workspace. Save data to workspace in Logging tab.
View bounds violations graphically in a plot
window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking the
block.

Show plot on block open

See Also
Singular Value Plot

Tutorials
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13
• “Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
• “Verify Frequency-Domain Characteristics of an Aircraft” on page 17-27

How To
“Monitor Linear System Characteristics in Simulink Models” on page 17-2

Version History
Introduced in R2010b

 Check Singular Value Characteristics

19-41

Closed-Loop PID Autotuner
Automatically tune PID gains based on plant frequency responses estimated from closed-loop
experiment in real time

Libraries:
Simulink Control Design

Description
The Closed-Loop PID Autotuner block lets you tune a PID controller in real time against a physical
plant for which you have an initial PID controller that yields a stable loop. The plant remains under
closed-loop control of the initial PID controller during the entire autotuning process. The block can
tune the PID controller to achieve a specified bandwidth and phase margin without a parametric
plant model. If you have a code-generation product such as Simulink Coder, you can generate code
that implements the tuning algorithm on hardware, letting you tune in real time with or without using
Simulink to manage the autotuning process.

If you have a plant modeled in Simulink and an initial PID controller, you can perform closed-loop PID
autotuning against the modeled plant. Doing so lets you preview plant response and adjust the
settings for PID autotuning before tuning the controller in real time.

To achieve model-free tuning, the Closed-Loop PID Autotuner block:

1 Injects a test signal into the plant to collect plant input-output data and estimate frequency
response in real time. The test signal is combination of sinusoidal perturbation signals added on
top of the plant input.

2 At the end of the experiment, tunes PID controller parameters based on estimated plant
frequency responses near the target bandwidth.

3 Updates a PID Controller block or a custom PID controller with the tuned parameters, allowing
you to validate closed-loop performance in real time.

Unlike with the Open-Loop PID Autotuner block, the loop remains closed throughout the experiment.
Keeping the loop closed helps to maintain safe operation of the plant during the estimation
experiment.

You can use the Closed-Loop PID Autotuner block to tune PID controllers for:

• Any stable plant
• Any continuous-time plant with one or more integrators (poles at s = 0) or one or more pairs of

complex poles on the imaginary axis
• Any discrete-time plant with one or more integrators (poles at z = –1) or pairs of complex poles on

the unit circle |z| = 1

If you do not have an initial PID controller, you can use the Open-Loop PID Autotuner block to obtain
one. You can then switch to closed-loop PID autotuning for refinement or retuning.

19 Blocks

19-42

The block supports code generation with Simulink Coder, Embedded Coder®, and Simulink PLC
Coder™. It does not support code generation with HDL Coder™.

For more information about using the Closed-Loop PID Autotuner block, see:

• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “PID Autotuning in Real Time” on page 8-13

For more general information about PID autotuning and a comparison of the closed-loop and open-
loop approaches, see “When to Use PID Autotuning” on page 8-2.

Ports
Input

u — Signal from controller
scalar

Insert the block into your system such that this port accepts a control signal from a source. Typically,
this port accepts the signal from the PID controller in your system.
Data Types: single | double

y — Plant output
scalar

Connect this port to the plant output.
Data Types: single | double

start/stop — Start and stop the autotuning experiment
scalar

To start and stop the autotuning process, provide a signal at the start/stop port. When the value of
the signal changes from:

• Negative or zero to positive, the experiment starts
• Positive to negative or zero, the experiment stops

When the experiment is not running, the block passes signals unchanged from u to u+Δu. In this
state, the block has no impact on plant or controller behavior.

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from 1 to 0 to
stop it. Some points to consider when configuring the start/stop signal include:

• Start the experiment when the plant is at the desired equilibrium operating point. Use the initial
controller to drive the plant to the operating point. If you have no initial controller (open-loop
tuning only) you can use a source block connected to u to drive the plant to the operating point.

• Avoid any load disturbance to the plant during the experiment. Load disturbance can distort the
plant output and reduce the accuracy of the frequency-response estimation.

• Let the experiment run long enough for the algorithm to collect sufficient data for a good estimate
at all frequencies it probes. There are two ways to determine when to stop the experiment:

 Closed-Loop PID Autotuner

19-43

• Determine the experiment duration in advance. A conservative estimate for the experiment
duration is 200/ωc in superposition experiment mode or 550/ωc in sinestream experiment
mode, where ωc is your target bandwidth.

• Observe the signal at the % conv output, and stop the experiment when the signal stabilizes
near 100%.

• When you stop the experiment, the block computes tuned PID gains and updates the signal at the
pid gains port.

You can configure any logic appropriate for your application to control the start and stop times of the
experiment.
Data Types: single | double

bandwidth — Target bandwidth for tuning
scalar

Supply a value for the Target bandwidth (rad/sec) parameter. See that parameter for details.

Dependencies

To enable this port, in the Tuning tab, next to Target bandwidth (rad/sec), select Use external
source.
Data Types: single | double

target PM — Target phase margin for tuning
scalar

Supply a value for the Target phase margin (degrees) parameter. See that parameter for
details.

Dependencies

To enable this port, in the Tuning tab, next to Target phase margin (degrees), select Use
external source.
Data Types: single | double

sine Amp — Amplitudes of injected sinusoidal signals
scalar | vector

Supply a value for the Sine Amplitudes parameter. See that parameter for details.

Dependencies

To enable this port, in the Experiment tab, next to Sine Amplitudes, select Use external source.
Data Types: single | double

Output

u+Δu — Signal for plant input
scalar

Insert the block into your system such that this port feeds the input signal to your plant.

19 Blocks

19-44

• When the experiment is running (start/stop positive), the block injects test signals into the
plant at this port. If you have any saturation or rate limit protecting the plant, feed the signal from
u+Δu into it.

• When the experiment is not running (start/stop zero or negative), the block passes signals
unchanged from u to u+Δu.

Dependencies

To enable this port, in Output Signal Configuration, select control + perturbation.
Data Types: single | double

Δu — Plant input perturbation
scalar

The block generates a perturbation signal at this port. Typically, you inject the perturbation from this
port via a sum block, as shown in the following diagram.

• When the experiment is running (start/stop positive), the block generates perturbation signals at
this port.

• When the experiment is not running (start/stop zero or negative), the signal at this port is zero.
In this state, the block has no effect on the plant.

Dependencies

To enable this port, in Output Signal Configuration, select perturbation only.
Data Types: single | double

% conv — Convergence of FRD estimation during experiment
scalar

When the experiment is running (start/stop positive), the block injects test signals into the plant
and measures the plant response at y. It uses these signals to estimate the frequency response of the
plant at several frequencies around the target bandwidth for tuning. % conv indicates how close to
completion the estimation of the plant frequency response is. Typically, this value quickly rises to

 Closed-Loop PID Autotuner

19-45

about 90% after the experiment begins, and then gradually converges to a higher value. Stop the
experiment when it levels off near 100%.
Data Types: single | double

pid gains — Tuned PID coefficients
bus

This 4-element bus signal contains the tuned PID gains P, I, D, and the filter coefficient N. These
values correspond to the P, I, D, and N parameters in the expressions given in the Form parameter.
Initially, the values are 0, 0, 0, and 100, respectively. The block updates the values when the
experiment ends. This bus signal always has four elements, even if you are not tuning a PIDF
controller.

If you have a PID controller associated with the block, you can update that controller with these
values after the experiment ends. To do so, in the Block tab, click Update PID Block.
Data Types: single | double

estimated PM — Estimated phase margin with tuned controller
scalar

This port outputs the estimated phase margin achieved by the tuned controller, in degrees. The block
updates this value when the tuning experiment ends. The estimated phase margin is calculated from
the angle of G(jωc)C(jωc), where G is the estimated plant, C is the tuned controller, and ωc is the
crossover frequency (bandwidth). The estimated phase margin might differ from the target phase
margin specified by the Target phase margin (degrees) parameter. It is an indicator of the
robustness and stability achieved by the tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the larger the
value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.

Dependencies

To enable this port, in the Tuning tab, select Output estimated phase margin achieved by tuned
controller.

frd — Estimated frequency response
vector

This port outputs the frequency-response data estimated by the experiment. Initially, the value at frd
is [0, 0, 0, 0, 0]. During the experiment, the block injects signals at frequencies [1/10, 1/3, 1, 3, 10]ωc,
where ωc is the target bandwidth. At each sample time during the experiment, the block updates frd
with a vector containing the complex frequency response at each of these frequencies, respectively.
You can use the progress of the response as an alternative to % conv to examine the convergence of
the estimation. When the experiment stops, the block updates frd with the final estimated frequency
response used for computing the PID gains.

Dependencies

To enable this port, in the Experiment tab, select Plant frequency responses near bandwidth.

nominal — Plant input and output at nominal operating point
vector

19 Blocks

19-46

This port outputs a vector containing the plant input (u+Δu) and plant output (y) when the
experiment begins. These values are the plant input and output at the nominal operating point at
which the block performs the experiment.

Dependencies

To enable this port, in the Experiment tab, select Plant nominal input and output.

Parameters
Tuning Tab

Type — PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of the PID controller in your system. The controller type indicates what actions are
present in the controller. The following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the controller type matches.

Tunable: Yes

Programmatic Use
Block Parameter: PIDType
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — PID controller form
Parallel (default) | Ideal

Specify the controller form. The controller form determines the interpretation of the PID coefficients
P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is:

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method). The transfer function of a continuous-time parallel-form PIDF controller is:

C = P + I 1
s + D Ns

s + N .

 Closed-Loop PID Autotuner

19-47

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is:

C = P 1 + IFi z + D N
1 + NFd z .

The transfer function of a continuous-time ideal-form PIDF controller is:

C = P 1 + I 1
s + D Ns

s + N .

Other controller actions amount to setting D to zero or setting, I to Inf. (In ideal form, the
controller must have proportional action.)

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the controller form matches.

Tunable: Yes

Programmatic Use
Block Parameter: PIDForm
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Time Domain — PID controller time domain
discrete-time (default) | continuous-time

Specify whether your PID controller is a discrete-time or continuous-time controller.

• For discrete time, you must specify the sample time of your PID controller using the Controller
sample time (sec) parameter.

• For continuous time, you must also specify a sample time for the PID autotuning experiment using
the Experiment sample time (sec) parameter.

Programmatic Use
Block Parameter: TimeDomain
Type: character vector
Values: 'discrete-time' | 'continuous-time'
Default: 'discrete-time'

Controller sample time (sec) — Sample time of PID controller
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller in seconds. This value also sets the sample time for the
experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the controller sample time matches.

19 Blocks

19-48

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Dependencies

To enable this parameter, set Time Domain to discrete-time.

Programmatic Use
Block Parameter: DiscreteTs
Type: scalar
Value positive scalar | –1
Default: 0.1

Tune at different sample time — Enable tuning at different sample time from PID controller and
experiment
off (default) | on

Enable this parameter to run tuning at a sample rate that is different from the sample rate of the PID
controller you are tuning and the frequency response estimation experiment performed by the block.
The PID gain tuning algorithm is computationally intensive, and when you want to deploy the block to
hardware and tune a controller with a fast sample time, some hardware might not complete the PID
gain calculation in a single time step. To reduce the hardware throughput requirements, specify a
tuning sample time slower than the controller sample time using the Tuning sample time (sec)
parameter.

Dependencies

To enable this parameter, set Time Domain to discrete-time.

Programmatic Use
Block Parameter: UseTuningTs
Type: character vector
Value 'off' | 'on'
Default: 'off'

Tuning sample time (sec) — Sample time of tuning algorithm
0.2 (default) | positive scalar

Specify the sample time of the tuning algorithm in seconds.

If you intend to deploy the block on hardware with limited processing power and want to tune a
controller with a fast sample time, specify a sample time such that the tuning algorithm runs at a
slower rate than the PID controller you are tuning.

Dependencies

To enable this parameter, set Time Domain to discrete-time and select Tune at different
sample time.

Programmatic Use
Block Parameter: TuningTs
Type: scalar

 Closed-Loop PID Autotuner

19-49

Value positive scalar
Default: 0.2

Experiment sample time (sec) — Sample time for experiment
0.02 (default) | positive scalar

Even when you tune a continuous-time controller, you must specify a sample time for the experiment
performed by the block. In general, continuous-time controller tuning is not recommended for PID
autotuning against a physical plant. If you want to tune in continuous time against a Simulink model
of the plant, use a fast experiment sample time, such as 0.02/ωc.

Dependencies

This parameter is enabled when the Time Domain is continuous-time.

Programmatic Use
Block Parameter: ContinuousTs
Type: positive scalar
Default: 0.02

Integrator method — Discrete integration formula for integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is:

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows:

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the integrator method matches.

Tunable: Yes

19 Blocks

19-50

Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller includes
integral action.

Programmatic Use
Block Parameter: IntegratorFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Discrete integration formula for derivative filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is:

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows:

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the filter method matches.

Tunable: Yes

Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller includes a
derivative filter term.

Programmatic Use
Block Parameter: FilterFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'

 Closed-Loop PID Autotuner

19-51

Default: 'Forward Euler'

Target bandwidth (rad/sec) — Target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth, specified in rad/sec, is the target value for the 0-dB gain crossover frequency
of the tuned open-loop response CP, where P is the plant response, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise-time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results with closed-loop tuning, use a target bandwidth that is within about a factor of 10 of
the bandwidth with the initial PID controller. To tune a controller for a larger change in bandwidth,
tune incrementally using smaller changes.

To provide the target bandwidth via an input port, select Use external source.

Programmatic Use
Block Parameter: Bandwidth
Type: positive scalar
Default: 1

Target phase margin (degrees) — Target minimum phase margin of open-loop response
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response at the crossover frequency.
The target phase margin reflects desired robustness of the tuned system. Typically, choose a value in
the range of about 45°–60°. In general, higher phase margin improves overshoot, but can limit
response speed. The default value, 60°, tends to balance performance and robustness, yielding about
5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin via an input port, select Use external source.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPM
Type: scalar
Values: 0–90
Default: 60

Experiment Tab

Experiment Mode — Sinusoidal perturbation signal type
Superposition (default) | Sinestream

Specify whether the perturbation at each frequency is applied sequentially (Sinestream) or
simultaneously (Superposition).

19 Blocks

19-52

• Sinestream — In this mode, the block applies perturbation at each frequency separately. For
more information about sinestream signals for estimation, see “Sinestream Input Signals” on page
5-30.

• Superposition — In this mode, the perturbation signal includes all specified frequencies at once.
For frequency response estimation at a vector of frequencies ω = [ω1, … , ωN] at amplitudes A =
[A1, … , AN], the perturbation signal is:

Δu = ∑
i

Aisin ωit .

Sinestream mode can be more accurate and can also be less intrusive, because the total size of the
perturbation is never bigger than the values specified by the Sine Amplitudes parameter. However,
due to the sequential nature of the sinestream perturbation, each frequency point you add increases
the recommended experiment time (see the start/stop input port for details). Thus, the estimation
experiment is typically much faster in Superposition mode with satisfactory results.

Sinestream signals reduce the execution time compared to superposition input signals, but also take
longer to estimate the frequency response. Frequency response estimation using sinestream signals
is useful when you have limited processing power and you want to reduce the execution time.

Programmatic Use
Block Parameter: ExperimentMode
Type: character vector
Values: 'Superposition' | 'Sinestream'
Default: 'Superposition'

Plant Type — Stability of plant
Stable (default) | Integrating

Specify whether the plant is stable or integrating. If the plant has one or more integrators, select
Integrating.

Programmatic Use
Block Parameter: PlantType
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of plant
Positive (default) | Negative

Specify whether the plant is positive or negative. If a positive change in the plant input at the nominal
operating point results in a positive change in the plant output, specify Positive. Otherwise, specify
negative. For stable plants, the sign of the plant is the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSign
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations
1 (default) | scalar | vector of length 5

 Closed-Loop PID Autotuner

19-53

During the experiment, the block injects a sinusoidal signal into the plant at the frequencies [1/10,
1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine Amplitudes to specify the
amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower-frequency inputs
and increasing the amplitude of the higher-frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes via an input port, select Use external source.

Tunable: Yes
Programmatic Use
Block Parameter: AmpSine
Type: scalar, vector of length 5
Default: 1

Block Tab

Reduce memory and avoid task overrun (external mode only) — Deploy tuning algorithm only
off (default) | on

The block contains two modules, one that performs the real-time frequency-response estimation, and
one that uses the resulting estimated response to tune the PID gains. When you run a Simulink model
containing the block in the external simulation mode, by default both modules are deployed. You can
save memory on the target hardware by deploying the estimation module only (see “Control Real-
Time PID Autotuning in Simulink” on page 8-20). In this case, the tuning algorithm runs on the
Simulink host computer instead of the target hardware. When this option is selected, the deployed
algorithm uses about a third as much memory as when the option is cleared.

The PID gain calculation demands more computational load than the frequency-response estimation.
For fast controller sample times, some hardware might not finish the gain calculation within one
execution cycle. Therefore, when using hardware with limited computing power, selecting this option
lets you tune a PID controller with a fast sample time.

Additionally, when you enable this option, there can be a delay of several sampling periods between
when the tuning experiment ends and when the new PID gains arrive at the pid gains output port.

19 Blocks

19-54

Before pushing gains to the controller, first confirm the change at the pid gains output port instead
of using start/stop signal as the trigger for the update.

If you intend to deploy the block and perform PID tuning without using external simulation mode, do
not select this option.

Caution When you use this option, the model must be configured such that numeric block
parameters are tunable in generated code, not inlined. To specify tunable parameters:

• In the model editor: In Configuration Parameters, in Code Generation > Optimization, set
Default parameter behavior to Tunable.

• At the command line: Use set_param(mdl,'DefaultParameterBehavior','Tunable').

Programmatic Use
Block Parameter: DeployTuningModule
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Configure block for PLC Coder — Configure block for code generation with Simulink PLC Coder
off (default) | on

Select this parameter if you are using Simulink PLC Coder to generate code for the autotuner block.
Clear the parameter for code generation with any other MathWorks code-generation product.

Selecting this parameter affects internal block configuration only, for compatibility with Simulink PLC
Coder. The parameter has no operative effect on generated code.

Output Signal Configuration — Provide control signal plus perturbation or perturbation only
control action + perturbation (default) | perturbation only

By default, the block takes a control signal as input and provides the control signal plus the
experiment perturbation at the port u+Δu. You then feed this signal into the plant input, as shown in
the following diagram.

This default configuration requires inserting the block between the controller and the plant. If you
want to add the perturbation signal to the control signal yourself, select perturbation only. In this
configuration, the block output contains the perturbation signal only, at the port Δu. You inject this
perturbation signal into the plant using, for example, a sum block, as in the following diagram.

 Closed-Loop PID Autotuner

19-55

In this configuration, you can optionally comment out the Closed-Loop PID Autotuner block without
disrupting the model.

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on simulation environment or hardware requirements.

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Clicking "Update PID Block" writes tuned gains to the PID block connected to "u" port —
Automatically detect target for writing tuned PID coefficients
on (default) | off

Under some conditions, the autotuner block can write tuned gains to a standard or custom PID
controller block. To indicate that the target PID controller is the block connected to the u port of the
autotuner block, select this option. To specify a PID controller that is not connected to u, clear this
option.

To write tuned gains from the autotuner block to a PID controller anywhere in the model, the target
block must be either:

• A PID Controller or Discrete PID Controller block.
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D, and N, or

whatever subset of these parameters exist in the your controller. For example, if you use a custom
PI controller, then you only need mask parameters P and I.

Specify PID block path — Target PID controller block for writing tuned coefficients
[] (default) | block path

Under some conditions, the autotuner block can write tuned gains to a standard or custom PID
controller block. Use this parameter to specify the path of the target PID controller.

To write tuned gains from the autotuner block to a PID controller anywhere in the model, the target
block must be either:

• A PID Controller or Discrete PID Controller block.
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D, and N, or

whatever subset of these parameters exist in your controller

19 Blocks

19-56

Dependencies

This parameter is enabled when Clicking "Update PID Block" writes tuned gains to the PID
block connected to "u" port is selected.

Update PID Block — Write tuned PID gains to target controller block
button

The block does not automatically push the tuned gains to the target PID block. If your PID controller
block meets the criteria described in the Specify PID block path parameter description, after
tuning, click this button to transfer the tuned gains to the block.

You can update the PID block while the simulation is running, including when running in external
mode. Doing so is useful for immediately validating tuned PID gains. At any time during simulation,
you can change parameters, start the experiment again, and push the new tuned gains to the PID
block. You can then continue to run the model and observe the behavior of your plant.

Export to MATLAB — Send experiment and tuning results to MATLAB workspace
button

When you click this button, the block creates a structure in the MATLAB workspace containing the
experiment and tuning results. This structure, OnlinePIDTuningResult, contains the following
fields:

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are necessary for
the controller type you are tuning. For instance, if you are tuning a PI controller, the structure
contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec) parameter of
the block.

• TargetPhaseMargin — The value you specified in the Target phase margin (degrees)
parameter of the block.

• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or pidstd (for

ideal form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the response

data obtained at the experiment frequencies [1/10, 1/3, 1, 3, 10]ωc.
• PlantNominal — The plant input and output at the nominal operating point when the experiment

begins, specified as a structure having fields u (input) and y (output).

You can export to the MATLAB workspace while the simulation is running, including when running in
external mode.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Closed-Loop PID Autotuner

19-57

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Open-Loop PID Autotuner

Topics
“PID Autotuning for a Plant Modeled in Simulink” on page 8-7
“PID Autotuning in Real Time” on page 8-13
“When to Use PID Autotuning” on page 8-2
“How PID Autotuning Works” on page 8-5

19 Blocks

19-58

Constraint Enforcement
Modify control actions to satisfy constraints and action bounds

Libraries:
Simulink Control Design

Description
The Constraint Enforcement block computes the modified control actions that are closest to specified
control actions subject to constraints and action bounds.

The block uses a quadratic programming (QP) solver to find the control action u that minimizes the
function u− u0

2. Here, u0 is the unmodified control action.

The solver applies the following constraints to the optimization problem.

fx + gxu ≤ c
umin ≤ u ≤ umax

Here:

• fx and gx are coefficients of the constraint function.
• c is a bound for the constraint function.
• umin is a lower bound for the control action.
• umax is an upper bound for the control action.

The Constraint Enforcement block requires Optimization Toolbox software.

For more information on constraint enforcement, see “Constraint Enforcement for Control Design” on
page 16-2.

Ports
Input

u0 — Control actions
scalar | vector

Unmodified control actions, specified as a scalar or a vector.

If the Number of actions parameter is 1, connect u0 to a scalar signal. Otherwise, connect u0 to a
vector signal with length equal to Number of actions.

fx — Constraint function offset coefficient
scalar | vector

 Constraint Enforcement

19-59

Offset coefficient fx in the following constraint equation.

fx + gxu ≤ c

If the Number of constraints parameter is 1, connect fx to a scalar signal. Otherwise, connect fx to
a vector signal with length equal to Number of constraints.

gx — Constraint function linear coefficient
scalar | vector | matrix

Linear coefficient gx in the following constraint equation.

fx + gxu ≤ c

Connect gx to an Nc-by-Nu signal, where Nc is equal to the Number of constraints parameter and
Nu is equal to the Number of actions parameter.

c — Constraint bounds
scalar | vector

Run-time constraint bound c in the following constraint function.

fx + gxu ≤ c

If the Number of constraints parameter is 1, connect c to a scalar signal. Otherwise, connect c to a
vector signal with length equal to Number of constraints.

If this port is disabled, the block uses the constant constraint bounds specified using the Constraint
bound parameter.

Dependencies

To enable this input port, select the Use external source parameter.

umax — Action signal upper bounds
scalar | vector

To specify run-time upper bounds to the action signals, enable this input port. If this port is disabled,
the block does not apply any upper bounds to the control actions.

If the Number of actions parameter is 1, connect umax to a scalar signal. Otherwise, connect umax
to a vector signal with length equal to Number of actions.

Dependencies

To enable this input port, select the Use external source for upper bound parameter.

umin — Action signal lower bounds
scalar | vector

To specify run-time lower bounds to the action signals, enable this input port. If this port is disabled,
the block does not apply any lower bounds to the control actions.

If the Number of actions parameter is 1, connect umin to a scalar signal. Otherwise, connect umin
to a vector signal with length equal to Number of actions.

19 Blocks

19-60

Dependencies

To enable this input port, select the Use external source for lower bound parameter.

Output

u* — Modified control action
scalar | vector

Modified control action returned by the QP solver.

If the solver finds a solution before reaching the maximum number of iterations, u* outputs this
optimal solution.

If the solver reaches the maximum number of iterations, optimization stops and u* outputs a
suboptimal solution.

If the initial optimization problem is infeasible, the returned control action depends on the whether
the block is configured to ignore constraint or action bounds. For more information, see the exitflag
parameter.

If the Number of actions parameter is 1, u* outputs a scalar signal. Otherwise, u* outputs a vector
signal with length equal to Number of actions.

exitflag — Optimization status
1 | 2 | 3 | 4 | 0 | negative integer

Optimization status of the QP solver. The following table shows the possible status values.

Exit Flag Description
1 The solver converged to an optimal solution with all constraints and

bounds active. In this case, u* outputs the optimal control actions.
2 The initial optimization problem was infeasible and the block is

configured to ignore all constraints and bounds. In this case, u*
outputs the unmodified control action u0.

3 The initial optimization problem was infeasible. The block reran the
optimization ignoring the action bounds and found a feasible solution,
which the block outputs in u*.

4 The initial optimization problem was infeasible. The block reran the
optimization ignoring the constraint bounds and found a feasible
solution, which the block outputs in u*.

0 The solver reached the maximum number of iterations. The control
actions output in u* might be suboptimal.

 Constraint Enforcement

19-61

Exit Flag Description
negative integer The initial optimization problem was infeasible and one of the following

scenarios applies.

• Rerunning the optimization without action bounds did not produce
a feasible solution.

• Rerunning the optimization without constraint bounds did not
produce a feasible solution.

• The block is configured to not ignore constraint and action bounds.

In this case, the control actions output in u* are zero.

Dependencies

To enable this output port, select the Optimization status parameter.

Parameters
Parameters Tab

Number of constraints — Number of constraints
1 (default) | positive integer

Specify the number of constraints to enforce.

Programmatic Use
Block Parameter: nc
Type: character vector
Default: '1'

Number of actions — Number of actions
1 (default) | positive integer

Specify the number of actions to apply bounds to and optimize.

Programmatic Use
Block Parameter: nu
Type: character vector
Default: '1'

Constraint bound — Constraint bounds
0 (default) | finite scalar | vector

Specify constant bounds for constraints. If the Number of constraints parameter is 1, specify
Constraint bound as a finite scalar. Otherwise, specify Constraint bound as a vector of finite value
with length equal to Number of constraints.

If your constraints vary at run time, select the Use external source parameter and connect the run-
time constraint signal to the c input port.

Dependencies

To enable this parameter, clear the Use external source parameter.

19 Blocks

19-62

Programmatic Use
Block Parameter: c
Type: character vector
Default: '0'

Use external source — Add external constraint bound input port
off (default) | on

Select this parameter to add the c input port for external constraint bounds.

Programmatic Use
Block Parameter: external_c
Type: character vector
Values: 'off'|'on'
Default: 'off'

Use external source for upper bound — Add upper action bound input port
off (default) | on

Select this parameter to add the umax input port for external upper action bounds.

Programmatic Use
Block Parameter: external_umax
Type: character vector
Values: 'off'|'on'
Default: 'off'

Use external source for lower bound — Add lower action bound input port
off (default) | on

Select this parameter to add the umin input port for external lower action bounds.

Programmatic Use
Block Parameter: external_umin
Type: character vector
Values: 'off'|'on'
Default: 'off'

Block Tab

Sample time — Optimization sample time
0.1 (default) | positive scalar

Specify the sample time for running the optimization.

Programmatic Use
Block Parameter: Ts
Type: character vector
Default: '0.1'

Maximum iterations — Maximum optimization iterations
200 (default) | positive integer

Specify the maximum number of optimization iterations.

 Constraint Enforcement

19-63

Programmatic Use
Block Parameter: maxiter
Type: character vector
Default: '200'

Constraint tolerance — Tolerance for constraint violations
1e-6 (default) | nonnegative scalar

Specify a tolerance value for constraint violations.

Programmatic Use
Block Parameter: tol
Type: character vector
Default: '1e-6'

Optimization status — Add exit flag output port
off (default) | on

Select this parameter to add the exitflag output port for the optimization status of the QP solver.

Programmatic Use
Block Parameter: exitflag
Type: character vector
Values: 'off'|'on'
Default: 'off'

Ignore constraints when QP is infeasible — Disable constraints when optimization is infeasible
off (default) | on

When you select this parameter, if the initial QP problem is infeasible, the block reruns the
optimization with the constraints disabled.

When you select both this parameter and Ignore action bounds when QP is infeasible, if the
initial QP problem is infeasible, the block outputs the unmodified action signal.

Programmatic Use
Block Parameter: relax_c
Type: character vector
Values: 'off'|'on'
Default: 'off'

Ignore action bounds when QP is infeasible — Disable action bounds when optimization is
infeasible
off (default) | on

When you select this parameter, if the initial QP problem is infeasible, the block reruns the
optimization with the action bounds disabled. The block ignores this parameter if both the umax and
umin input ports are disabled.

When you select both this parameter and Ignore constraints when QP is infeasible, if the initial
QP problem is infeasible, the block outputs the unmodified action signal.

Programmatic Use
Block Parameter: relax_u
Type: character vector

19 Blocks

19-64

Values: 'off'|'on'
Default: 'off'

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Constraint Enforcement block supports code generation for double-precision signals only.

See Also
Topics
“Constraint Enforcement for Control Design” on page 16-2

 Constraint Enforcement

19-65

Extremum Seeking Control
Compute controller parameters in real time by maximizing objective function

Libraries:
Simulink Control Design

Description
The Extremum Seeking Control block tunes controller parameters to maximize an objective function.
Extremum seeking controllers are model-free adaptive controllers that are useful for adapting to
unknown system dynamics and unknown mappings from control parameters to an objective function.
When seeking multiple parameters, the Extremum Seeking Control block uses a separate tuning loop
for each parameter.

The Extremum Seeking Control block searches for optimal control parameters by modulating
(perturbing) the parameters with sinusoidal signals and demodulating the resulting perturbed
objective function.

To configure the extremum seeking algorithm, set appropriate forcing frequencies, demodulation and
modulation signals, learning rates, and parameter initial conditions. When configuring the block,
ensure that the system dynamics are on the fastest time scale, the perturbation forcing frequencies
are on the medium time scale, and the filter cutoff frequencies are on the slowest time scale.

You can implement both continuous-time and discrete-time extremum seeking controllers. Changing
the time-domain of the controller affects the time domain of the high-pass filters, low-pass filters, and
integrators used in the tuning loops. To generate hardware-deployable code for the Extremum
Seeking Control block, use a discrete-time controller.

For more information, see “Extremum Seeking Control” on page 15-2.

19 Blocks

19-66

Ports
Input

J — Objective function
scalar

The objective function from the control system is perturbed as a result of the system response to the
perturbed parameters theta. To compute parameter updates, the block filters and demodulates J.

Output

theta — Perturbed parameters
scalar | vector

Apply these perturbed parameters (θ) to your control system. The block uses the resulting
perturbation of the objective function J to compute parameter updates.

If Number of parameters is 1, theta outputs a scalar signal. Otherwise, theta outputs a vector
signal with length equal to Number of parameters.

theta_hat — Estimated parameters
scalar | vector

Use this output port to obtain the estimated parameter values (θ) before they are perturbed by the
modulation signal.

If Number of parameters is 1, theta_hat outputs a scalar signal. Otherwise, theta_hat outputs a
vector signal with length equal to Number of parameters.

Dependencies

To enable this output port, select Output estimated parameters.

Parameters
Time Domain — Filter and integrator time domain
Continuous time (default) | Discrete time

Specify the time domain for the high-pass filters, low-pass filters, and integrators.

• Continuous time — Use continuous-time filters and integrators.
• Discrete time — Use discrete-time filters and integrators. Specify the sample time using the

Sample time parameter, and specify the integration method using the Integration method
parameter.

Programmatic Use
Block Parameter: 'timeDomainStatus'
Type: character vector
Values: 'Continuous Time' | 'Discrete Time'
Default: 'Continuous Time'

Sample time — Discrete-time filter and integrator sample time
0.1 (default) | finite positive scalar

 Extremum Seeking Control

19-67

Specify the sample time for the discrete-time high-pass filters, low-pass filters, and integrators.

When tuning multiple parameters, all tuning loops use the same sample time.

Dependencies

To enable this parameter, set the Time Domain property to Discrete time.

Programmatic Use
Block Parameter: 'SampleTime'
Type: character vector
Values: finite positive scalar
Default: '0.1'

Integrator method — Discrete-time integration method
Forward Euler (default) | Backward Euler | Trapezoidal

You can select one of the following integration methods for the discrete-time integrators.

• Forward Euler:

y n = y n− 1 + Ts ⋅ u n− 1
• Backward Euler:

y n = y n− 1 + Ts ⋅ u n
• Trapezoidal:

y n = y n− 1 + Ts ⋅ u n + u n− 1 /2

Here:

• y is the integrator output
• u is the input
• n is the current sample time
• Ts is the sample time

When tuning multiple parameters, the integrators in all tuning loops use the same integration
method.

Dependencies

To enable this parameter, set the Time Domain property to Discrete time.

Programmatic Use
Block Parameter: 'IntegratorMethods'
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Number of parameters — Number of parameters
1 (default) | positive integer less than or equal to 5

You can simultaneously tune up to five parameters. The block uses a separate tuning loop for each
parameter.

19 Blocks

19-68

Programmatic Use
Block Parameter: 'paramCount'
Type: character vector
Values: positive integer less than 5
Default: '1'

Initial condition x0 — Initial parameter values
0 (default) | finite scalar | vector

Initial parameter values, which correspond to the initial conditions of the parameter update
integrators.

If Number of parameters is 1, specify Initial condition as a finite scalar.

To specify different initial conditions for multiple parameters, specify Initial condition as a vector of
finite values with length equal to Number of parameters. Otherwise, to specify the same initial
condition for all parameters, specify Initial condition as a finite scalar.

Programmatic Use
Block Parameter: 'initialVal'
Type: character vector
Values: finite scalar | vector
Default: '0'

Forcing frequency omega (rad/s) — Forcing frequency
1 (default) | positive finite scalar | vector

Specify the frequency of the modulation and demodulation signals in radians per second. For a given
parameter tuning loop, specify a forcing frequency that is lower than the frequencies of important
system dynamics and higher than the high-pass and low-pass filter cutoff frequencies.

When tuning a single parameter, specify Forcing frequency as a positive finite scalar.

When tuning a multiple parameters, specify Forcing frequency as a vector of positive finite values
with length equal to Number of parameters. Each forcing frequency must be unique, which allows
convergence of the extremum-seeking algorithm.

Programmatic Use
Block Parameter: 'omega'
Type: character vector
Values: positive finite scalar | vector
Default: '1'

Learning rate k — Parameter update rate
1 (default) | positive finite scalar | vector

The learning rate is a gain factor that controls the rate at which the block updates a parameter.

When tuning a single parameter, specify Learning rate as a positive finite scalar.

When tuning a multiple parameters, you can specify a different learning rate for each parameter
tuning loop. To do so, specify Learning rate as a vector of positive finite values with length equal to
Number of parameters. Otherwise, to specify the same learning rate for all tuning loops, specify
Learning rate as a positive finite scalar.

 Extremum Seeking Control

19-69

Programmatic Use
Block Parameter: 'gain'
Type: character vector
Values: positive finite scalar | vector
Default: '1'

Demodulation amplitude a — Demodulation signal amplitude
1 (default) | positive finite scalar | vector

Specify the amplitude of the signal used to demodulate the objective function. For most applications,
specify Demodulation amplitude ≫ Modulation amplitude. The product of these amplitudes,
along with the learning rate, controls the convergence speed of the algorithm.

When tuning a single parameter, specify Demodulation amplitude as a positive finite scalar.

When tuning multiple parameters, you can specify a different demodulation amplitude for each
parameter tuning loop. To do so, specify Demodulation amplitude as a vector of positive finite
values with length equal to Number of parameters. Otherwise, to specify the same amplitude for all
tuning loops, specify Demodulation amplitude as a positive finite scalar.
Programmatic Use
Block Parameter: 'demodAmp'
Type: character vector
Default: '1'

Demodulation phase phi_1 (rad) — Demodulation signal phase
0 (default) | positive finite scalar | vector

Specify the phase ϕ1 of the signal used to demodulate the objective function in radians.

When tuning a single parameter, specify Demodulation phase as a positive finite scalar.

When tuning multiple parameters, you can specify a different demodulation phase for each parameter
tuning loop. To do so, specify Demodulation phase as a vector of positive finite values with length
equal to Number of parameters. Otherwise, to specify the same phase for all tuning loops, specify
Demodulation phase as a positive finite scalar.

The demodulation and modulation phases must satisfy the condition cos(ϕ1–ϕ2) > 0.
Programmatic Use
Block Parameter: 'demodPhase'
Type: character vector
Values: positive finite scalar | vector
Default: '0'

Modulation amplitude b — Modulation signal amplitude
0.1 (default) | positive finite scalar | vector

Amplitude of the perturbation signal added to the estimated parameters. For most applications,
specify Modulation amplitude ≪ Demodulation amplitude. The product of these amplitudes,
along with the learning rate, controls the convergence speed of the algorithm.

When tuning a single parameter, specify Modulation amplitude as a positive finite scalar.

When tuning multiple parameters, you can specify a different modulation amplitude for each
parameter tuning loop. To do so, specify Modulation amplitude as a vector of positive finite values

19 Blocks

19-70

with length equal to Number of parameters. Otherwise, to specify the same amplitude for all tuning
loops, specify Modulation amplitude as a positive finite scalar.

Programmatic Use
Block Parameter: 'modAmp'
Type: character vector
Values: positive finite scalar | vector
Default: '0.1'

Modulation phase phi_2 (rad) — Modulation signal phase
0 (default) | positive finite scalar | vector

Phase ϕ2 of the perturbation signal added to the estimated parameters, specified in radians. You must
select the demodulation phase ϕ1 and modulation phase ϕ2 such that cos(ϕ1–ϕ2) > 0.

When tuning a single parameter, specify Modulation phase as a positive finite scalar.

When tuning multiple parameters, you can specify a different modulation phase for each parameter
tuning loop. To do so, specify Modulation phase as a vector of positive finite values with length
equal to Number of parameters. Otherwise, to specify the same phase for all tuning loops, specify
Modulation phase as a positive finite scalar.

Programmatic Use
Block Parameter: 'modPhase'
Type: character vector
Values: positive finite scalar | vector
Default: '0'

Enable HPF — Enable high-pass filtering of objective function signal
off (default) | on

Select this parameter to enable a high-pass filter that removes any signal bias from the objective
function signal before the demodulation stage. To specify the filter cutoff frequency, use the HPF
frequency parameter.

Programmatic Use
Block Parameter: 'highPassEnable'
Type: character vector
Values: 'off' | 'on'
Default: 'off'

HPF frequency omega_h (rad/s) — High-pass filter cutoff frequency
1 (default) | positive finite scalar | vector

Cutoff frequency ωh for high-pass filtering the objective function signal, specified in radians per
second. For a given parameter tuning loop, specify a cutoff frequency such that ωh < ω/(2π), where ω
is the corresponding forcing frequency.

When tuning a single parameter, specify HPF frequency as a positive finite scalar.

When tuning multiple parameters, you can specify a different frequency for each parameter tuning
loop. To do so, specify HPF frequency as a vector of positive finite values with length equal to
Number of parameters. Otherwise, to specify the same frequency for all tuning loops, specify HPF
frequency as a positive finite scalar.

 Extremum Seeking Control

19-71

Dependencies

To enable this parameter, select the Enable HPF parameter.

Programmatic Use
Block Parameter: 'highPassCutoff'
Type: character vector
Values: positive finite scalar | vector
Default: '1'

Enable LPF — Enable low-pass filtering of demodulated signal
off (default) | on

Select this parameter to enable a low-pass filter that removes high-frequency components from the
demodulated signal before the parameter update stage. To specify the filter cutoff frequency, use the
LPF frequency parameter.

Dependencies

To enable this parameter, select the Enable LPF parameter.

Programmatic Use
Block Parameter: 'lowPassEnable'
Type: character vector
Values: 'off' | 'on'
Default: 'off'

LPF frequency omega_l (rad/s) — Low-pass filter cutoff frequency ωl
1 (default) | positive finite scalar | vector

Cutoff frequency ωl for low-pass filtering the demodulated signal, specified in radians per second. For
a given parameter tuning loop, specify a cutoff frequency such that ωl > ω/(2π), where ω is the
corresponding forcing frequency.

When tuning a single parameter, specify LPF frequency as a positive finite scalar.

When tuning multiple parameters, you can specify a different frequency for each parameter tuning
loop. To do so, specify LPF frequency as a vector of positive finite values with length equal to
Number of parameters. Otherwise, to specify the same frequency for all tuning loops, specify LPF
frequency as a positive finite scalar.

Dependencies

To enable this parameter, select the Enable LPF parameter.

Programmatic Use
Block Parameter: 'lowPassCutoff'
Type: character vector
Values: positive finite scalar | vector
Default: '1'

Output estimated parameters — Add estimated parameters output port
off (default) | on

Select this parameter to add the theta_hat output port.

19 Blocks

19-72

Programmatic Use
Block Parameter: estimatedVarOn
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

• The Extremum Seeking Control block supports code generation for double-precision signals only.
• When running in Rapid Accelerator mode, the Extremum Seeking Control block does not support

data logging.
• To generate hardware-deployable code for the Extremum Seeking Control block, use a discrete-

time controller. To do so, set the Time Domain parameter to Discrete time.

See Also
Topics
“Extremum Seeking Control” on page 15-2

 Extremum Seeking Control

19-73

Frequency Response Estimator
Estimate plant frequency responses during simulation or in real time

Libraries:
Simulink Control Design

Description
Use the Frequency Response Estimator block to perform experiment-based estimation in real time
with a physical plant or in a Simulink model during simulation. To obtain an estimated frequency
response, the block simultaneously:

• Injects perturbation signals into the plant at the nominal operating point
• Collects response data from the plant output
• Computes the estimated frequency response

You specify the frequencies at which to perturb the plant and measure system response. You trigger
the estimation process via a start/stop signal. This signal lets you start estimation at any time,
typically when the plant is at the nominal operating point. You stop the estimation after the frequency
responses converge.

You can use online frequency response estimation with any stable SISO plant. For an unstable plant,
online estimation works in a closed-loop configuration, provided that the closed loop is internally
stable. A closed-loop system is internally stable if and only if the roots of the nominal closed-loop
characteristic equation all lie in the open left half-plane. For a plant with transfer function G = NG/DG
and controller C = NC/DC, the characteristic equation is:

DGDC + NGNC = 0.

In practice, this condition means that no unstable poles in G are stabilized by pole-zero cancellation
in GC. Do not use online estimation with an unstable plant that does not meet this condition.

You can generate code and deploy the Frequency Response Estimator block on hardware to perform
the estimation in real time. The block supports code generation with Simulink Coder, Embedded
Coder, and Simulink PLC Coder. It does not support code generation with HDL Coder.

For more information about using the Frequency Response Estimator block, see:

• “Online Estimation Using Plant Modeled in Simulink” on page 6-5
• “Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9

For more general information about online frequency response estimation, see “Online Frequency
Response Estimation Basics” on page 6-2.

19 Blocks

19-74

Ports
Input

u — Plant input before perturbation
scalar

Insert the block into your system such that this port accepts a control signal or other plant input
signal. For instance, in a closed-loop configuration, you can connect this port as shown in the
following diagram.

In an open-loop configuration, you can connect this input port to a source that drives your plant to
the desired operating point for estimation. For instance, you can use a Constant block set to an
appropriate value.
Data Types: single | double

y — Plant output
scalar

Connect this port to the plant output.
Data Types: single | double

start/stop — Start and stop the estimation experiment
scalar

To start and stop the estimation process, provide a signal at the start/stop port. When the value of
the signal changes from:

• Negative or zero to positive, the experiment starts
• Positive to negative or zero, the experiment stops

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from 1 to 0 to
stop it. When the experiment is not running, the block adds no perturbation at the u + Δu or Δu port.
In this state, the block has no impact on plant behavior.

 Frequency Response Estimator

19-75

Start the experiment when the plant is at the desired equilibrium operating point. In a closed-loop
configuration, use the controller to drive the plant to the operating point. In an open-loop
configuration, you can use a source block connected to u to drive the plant to the operating point.

Let the experiment run long enough for the algorithm to collect sufficient data for a good estimate at
all frequencies it probes. The block displays a recommended experiment length in the Experiment
Length section of the block parameters. This value is based on the experiment mode and the
frequencies you specify for the experiment.

• When Experiment mode is Sinestream, the recommended experiment length is:

∑
i

2π
ωi

Nset, i + Nestim, i + 2TsNf req,

where:

• ωi is the ith frequency specified in the Frequencies parameter (in rad/s).
• Nfreq is the number of frequencies in Frequencies.
• Nset,i is the corresponding value of the Number of settling periods parameter.
• Nestim,i is the corresponding value of the Number of estimation periods parameter.
• Ts is the experiment sampling time, specified by the Sample time (Ts) parameter.

• When Experiment mode is Superposition, the recommended experiment length is six times the
longest period. If your system does not require much time for the decay of transients or for the
averaging away of noise, then you can use a shorter experiment length. For more information
about how to determine experiment length in superposition mode, see “Experiment Length and
Data-Collection Window in Superposition Mode” on page 19-88.

• When Experiment mode is PRBS, the recommended experiment length is:

Ts(2n− 1)Np,

where:

• Ts is the experiment sampling time, specified by the Sample time (Ts) parameter.
• n is the PRBS signal order, specified by the Signal order parameter.
• Np is the number of periods in the PRBS signal, specified by the Number of periods

parameter.

Avoid any load disturbance to the plant during the experiment. Load disturbance can distort the plant
output and reduce the accuracy of the frequency-response estimation.
Data Types: single | double

w — Frequencies for estimation experiment
vector

Supply a value for the Frequencies parameter. See that parameter for information about how to
choose frequencies.

When you supply frequencies via this port, specify the number of frequencies with the Number of
frequencies in the excitation signal parameter.

19 Blocks

19-76

Dependencies

To enable this port, in Excitation Signal Source, select External ports.
Data Types: single | double

amp — Perturbation amplitudes
scalar | vector

Supply a value for the Amplitudes parameter. See that parameter for details.

Dependencies

To enable this port, in Excitation Signal Source, select External Ports.
Data Types: single | double

Output

u + Δu — Perturbed plant input
scalar

Insert the block into your system such that this port feeds the input signal to your plant, such as in
the following diagram.

• When the experiment is running (start/stop positive), the block injects test signals into the plant
at this port. If you have any saturation or rate limit protecting the plant, feed the signal from u +
Δu into it.

• When the experiment is not running (start/stop zero or negative), the block passes signals
unchanged from u to u + Δu. In this state, the block has no effect on the plant.

Dependencies

To enable this port, in Output Signal Configuration, select control action + perturbation.
Data Types: single | double

Δu — Plant input perturbation
scalar

 Frequency Response Estimator

19-77

The block generates a perturbation signal at this port. Typically, you inject the perturbation from this
port via a sum block, as shown in the following diagram.

• When the experiment is running (start/stop positive), the block generates perturbation signals at
this port.

• When the experiment is not running (start/stop zero or negative), the signal at this port is zero.
In this state, the block has no effect on the plant.

Dependencies

To enable this port, in Output Signal Configuration, select perturbation only.
Data Types: single | double

data — Experiment data
bus

The signal at this port contains the data that the block collects during the frequency-response
estimation experiment, including the perturbation signal applied to the plant and the measured plant
response. Use this port when you want to log experiment data for later use. For instance, you can
conserve resources in a deployed environment by logging the data and performing the estimation
offline (see Estimation Mode). There are two ways to access the frequency response experiment
data.

• Use a To Workspace block to write the data to the MATLAB workspace as a structure containing
timeseries data. The Save format parameter of the To Workspace block must be Timeseries.
The structure has the following fields:

• Ready — Logical signal indicating which time steps are included in the estimation computation
(1) and which are excluded (0). For instance, for sinestream mode, this signal is 1 only for data
that falls within the periods determined by the Number of settling periods and Number of
estimation periods parameters. In superposition mode, the signal is 1 only for data that falls
within the window described in “Experiment Length and Data-Collection Window in

19 Blocks

19-78

Superposition Mode” on page 19-88. For PRBS signals, this is 1 only for data that falls within
the actual experiment length.

• Perturbation — Sinusoidal perturbations Δu applied to the plant
• PlantInput — Plant input signal u + Δu, where u is the signal collected at the block input

port y
• PlantOutput — Plant output signal collected at block input port y

• Use Simulink data logging to write the data to the workspace as a
Simulink.SimulationData.Dataset object. In this case, the structure containing the four
timeseries signals is stored in the Values field of the resulting dataset. For instance, suppose that
the model is configured to save the logged data to a variable logsout, and data is the only
logged port. In that case, the structure is contained in logsout{1}.Values.

You can use the data from this port to perform the frequency-response estimation offline. For
instance, you can compute the estimated frequency response in MATLAB by passing the structure to
the frestimate command. For more information about accessing and using the experiment data,
see “Collect Frequency Response Experiment Data for Offline Estimation” on page 6-18.
Data Types: single | double

frd — Estimated frequency responses
vector

The signal at this port contains the estimated frequency responses of the plant, in a vector with one
entry for each frequency specified in the Frequencies parameter. You can write this signal to the
MATLAB workspace using a To Workspace block, or use Simulink data logging to write the data to the
workspace as a Simulink.SimulationData.Dataset object.

Typically, the best estimation is achieved at the end of the experiment. For that reason, you might not
need to log all historical data at this port. Instead, you can discard the values for every time step
except the last. For instance, in a To Workspace block, you can set the Limit data points to last
parameter to 1. Then, when the experiment ends, the resulting workspace variable contains a vector
of complex values, one for each frequency specified in the Frequencies parameter.

Dependencies

To enable this port, set Estimation Mode to Online.
Data Types: single | double

Parameters
Sample time (Ts) — Experiment sample time
0.1 (default) | positive scalar | –1

The block is a discrete-time block that runs at a fixed sample time, specified with this parameter. The
largest frequency that you can estimate is the Nyquist frequency, π/Ts rad/s. Best practice is to use a
sample time at least five times faster than the Nyquist frequency.

Ts = π/(5ωmax) ≅ 0.6/ωmax or 0.1/fmax,

Here, ωmax is the highest frequency in Frequencies in rad/s, and fmax is the highest frequency in Hz.
The sample time must be small enough to estimate the fastest desired frequency, but not so small as
to introduce unnecessary computational burden.

 Frequency Response Estimator

19-79

If you set the sample time to –1, then the software determines the sample time on compilation, based
on the sources outside the block. Setting sample time to –1 disables the internal checks in the block
that ensure your estimation frequencies are below the Nyquist frequency.

Tip

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: DiscreteTs
Type: scalar
Value positive scalar | –1
Default: 0.1

Output Signal Configuration — Provide control signal plus perturbation or perturbation only
control action + perturbation (default) | perturbation only

By default, the block takes a control signal as input and provides the control signal plus the
experiment perturbation at the port u+Δu. You then feed this signal into the plant input, as shown in
the following diagram.

This default configuration requires inserting the block between the controller and the plant. If you
want to add the perturbation signal to the control signal yourself, select perturbation only. In this
configuration, the block output contains the perturbation signal only, at the port Δu. You inject this
perturbation signal into the plant using, for example, a sum block, as in the following diagram.

19 Blocks

19-80

In this configuration, because the Frequency Response Estimator is not part of the closed loop, you
can optionally comment it out without disrupting the loop configuration.

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on simulation environment or hardware requirements.

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Excitation signal source — Excitation signal source
Block parameters (default) | External ports

Specify whether to supply the frequencies and amplitudes of the experiment perturbation signal via
block parameters or via external ports.

• Block parameters — Select to enable the Frequencies and Amplitudes parameters.
• External ports — Select to enable the w and amp input ports. Use this option if you want to

change the frequencies and amplitudes of the perturbation signal after deployment.

Programmatic Use
Block Parameter: SineSource
Type: character vector, string
Values: 'Block parameters' | 'External ports'
Default: 'Block parameters'

Frequencies — Frequencies for estimation
[0.5 1 2] (default) | vector

 Frequency Response Estimator

19-81

Frequencies at which to estimate the frequency response of the plant. The block injects a
perturbation at each of these frequencies. The highest frequency you can estimate is limited by the
Nyquist frequency, π/Ts rad/s, where Ts is the value you set for the Sample time (Ts) parameter.

When Experiment mode is Superposition:

• To maintain reasonable convergence speed and estimation accuracy, it is typical to use about 20–
30 frequencies for estimation. The best practice is to specify no more than about 50 frequencies.

• The best practice is to limit the range between the lowest and highest frequency to no more than
about two decades. This limit reduces the chance that the responses of some frequencies are so
dominant that they hurt the estimation of responses at other frequencies.

• Attempting to linearize a model containing a Frequency Response Estimator block using
superposition mode and more than 50 frequencies can generate an error. The error states "The
model contains too many elements for linearization. Please reduce the model size." To complete
linearization, you must either comment out the frequency-response estimator block or reduce the
number of frequencies.

When Experiment mode is Sinestream, there is no recommended limit on the number or range of
frequencies. However, due to the sequential nature of the sinestream perturbation, each frequency
point you add increases the required experiment time (see the start/stop input port for details).
Further, a too-wide range of frequencies requires you to use a fast sample time for high frequencies
that is inefficient for the lower frequencies.

When Experiment mode is PRBS, the range of frequencies affect the experiment length. The lowest
frequency value determines the minimum signal order that can covers the specified frequency.
Decreasing the lowest frequency range increases the minimum signal order required, therefore
increasing the experiment length. However, due to wideband properties of the PRBS input signals,
adding more frequency points does not increase the experiment length.

When you use the block in a closed-loop configuration, frequencies much higher than the open-loop
bandwidth might result in less accurate estimation.

Tips

This parameter is not tunable. To provide frequencies after deployment, set Excitation Signal
Source to External ports and use the w input port. For more information, see “Deploy Frequency
Response Estimation Algorithm for Real-Time Use” on page 6-9.

Dependencies

To enable this parameter, set Excitation Signal Source to Block parameters.

Programmatic Use
Block Parameter: Frequencies
Type: vector
Values: positive real values
Default: '[0.5 1 2]'

Frequency units — Frequency units
rad/s (default) | Hz

Indicate whether the values of the Frequencies parameter are in radians per second or Hertz.

To enable this parameter, set Excitation Signal Source to Block parameters.

19 Blocks

19-82

Programmatic Use
Block Parameter: FreqUnits
Type: string, character vector
Values: 'rad/s','Hz'
Default: 'rad/s'

Amplitudes — Amplitudes of injected perturbations
1 (default) | scalar | vector

Specify the amplitudes of the perturbation signals injected into the plant. To use the same amplitude
for all frequencies, specify a scalar value. If you know that the response changes significantly over
range of frequencies to estimate, then you can use a vector to specify a different amplitude for each
frequency. For instance, you can use a smaller value around known resonant frequencies and a larger
value above the rolloff frequency. The vector must be the same length as the vector you provide for
Frequencies.

The amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed with no phase
shift. Thus, the maximum perturbation can exceed the amplitude of any individual component, up to
the sum of all amplitudes. Make sure that the largest possible perturbation is within the range of your
plant actuator. Saturating the actuator can introduce errors into the estimated frequency response.

Tip

This parameter is not tunable. To provide amplitudes after deployment, set Excitation Signal
Source to External ports and use the amp input port. For more information, see “Deploy Frequency
Response Estimation Algorithm for Real-Time Use” on page 6-9.

Dependencies

To enable this parameter, set Excitation Signal Source to Block parameters.

Programmatic Use
Block Parameter: Amplitudes
Type: scalar, vector
Default: '1'

Number of frequencies in the excitation signal — Number of externally supplied frequencies
3 (default) | positive integer

When you provide the experiment frequencies via the external port w, specify the number of
frequencies (the length of the vector signal at w) with this parameter.

Dependencies

To enable this parameter, set Excitation Signal Source to External ports.

Programmatic Use
Block Parameter: NumOfFreq
Type: scalar

 Frequency Response Estimator

19-83

Default: '3'

Experiment mode — Experiment mode
Sinestream (default) | Superposition | PRBS

Specify whether the perturbation at each frequency is applied as sequential sinusoidal (Sinestream),
simultaneous sinusoidal (Superposition), or pseudorandom binary sequence (PRBS).

• Sinestream — In this mode, a perturbation is applied at each frequency separately. You specify
how many periods at each frequency to allow the system to settle using the Number of settling
periods parameter. Specify how many periods to measure the response using the Number of
estimation periods parameter. For more information about sinestream signals for estimation, see
“Sinestream Input Signals” on page 5-30.

• Superposition — In this mode, the perturbation signal includes all specified frequencies at once.
For frequency response estimation at a vector of frequencies ω = [ω1, … , ωN] at amplitudes A =
[A1, … , AN], the perturbation signal is:

Δu = ∑
i

Aisin ωit .

Best practice is to use no more than about 50 frequencies in a superposition signal.
• PRBS — A deterministic pseudorandom binary sequence that shifts between two values and has

white-noise-like properties. PRBS signals reduce total estimation time compared to using
sinestream input signals, while producing comparable estimation results. PRBS signals are useful
for estimating frequency responses for communications and power electronics systems. For more
information, see “PRBS Input Signals” on page 5-37.

Sinestream mode can be more accurate and can accommodate a wider range of frequencies than
Superposition mode (see the Frequencies parameter). Sinestream mode can also be less intrusive,
because the total size of the perturbation is never bigger than the values specified by the
Amplitudes parameter. However, due to the sequential nature of the sinestream perturbation, each
frequency point you add increases the recommended experiment time (see the start/stop input port
for details). Thus, the estimation experiment is typically much faster in Superposition mode as
compared to Sinestream mode, with satisfactory results.

PRBS mode can include many more frequency points than the other two modes because the PRBS
input signal is a wideband signal. To cover a similar frequency range, the experiment length is
typically much shorter than the other two modes. However, there is a tradeoff between the speed and
quality of results. To achieve a better quality result, you may want to use a signal with multiple
periods, but that also leads to a longer experiment length.

Tip

Attempting to linearize a model containing a Frequency Response Estimator block using
superposition mode and more than 50 frequencies can generate an error. The error states "The model
contains too many elements for linearization. Please reduce the model size." To complete
linearization, you must either comment out the frequency-response estimator block or reduce the
number of frequencies.

Programmatic Use
Block Parameter: ExperimentMode
Type: character vector, string
Values: 'Sinestream' | 'Superposition' | 'PRBS'
Default: 'Sinestream'

19 Blocks

19-84

Number of settling periods — Number of periods to wait for settling of transients
2 (default) | positive integer | vector of positive integers

In the sinestream experiment mode, the block injects separate perturbations at each frequency you
specify in Frequencies. Use Number of settling periods to specify how long to wait at each
frequency before beginning estimation at that frequency. Waiting allows any transients in the plant
response to decay away, improving the accuracy of the estimated frequency response. Waiting for
more periods can improve the accuracy of the estimation, but also increases the experiment time.

To use the same number of settling periods for all frequencies, specify a positive scalar value. If you
know that the transients settle at different rates over range of frequencies to estimate, then you can
use a vector to specify a different number of settling periods for each frequency.

For more information about sinestream signals for estimation, see “Sinestream Input Signals” on
page 5-30.

Tunable: Yes
Dependencies

To enable this parameter, in Experiment Mode, select Sinestream.
Programmatic Use
Block Parameter: NumOfSetPeriod
Type: integer, vector of integers
Default: '2'

Number of estimation periods — Number of periods after settling to use for estimation
4 (default) | integer ≥ 2 | vector of integers

In the sinestream experiment mode, the block injects separate perturbations at each frequency you
specify in Frequencies. Use Number of estimation periods to specify how many periods of
injected signal to use for the estimation at each frequency. Using more periods can improve the
accuracy of the estimation, but also increases the experiment time.

To use the same number of estimation periods for all frequencies, specify a scalar value greater than
or equal to 2. You can use a vector to specify a different number of settling periods for each
frequency. This approach is useful when you know that your system is less noisy at some frequencies,
or you are less concerned about accuracy at some frequencies.

For more information about sinestream signals for estimation, see “Sinestream Input Signals” on
page 5-30.

Tunable: Yes
Dependencies

To enable this parameter, in Experiment Mode, select Sinestream.
Programmatic Use
Block Parameter: NumOfEstPeriod
Type: integer, vector of integers
Default: '4'

Number of periods of the lowest frequency used for estimation — Duration of data-collection
window
3 (default) | integer between 1 and 5

 Frequency Response Estimator

19-85

In the superposition experiment mode, the block applies perturbations at all frequencies
simultaneously while the experiment is running. The block uses this parameter to determine how long
a data-collection window to use for estimation. For more information about the data-collection
window, see “Experiment Length and Data-Collection Window in Superposition Mode” on page 19-
88.

Dependencies

To enable this parameter, in Experiment Mode, select Superposition.

Programmatic Use
Block Parameter: NumOfSlowestPeriod
Type: integer
Default: '3'

Number of periods — Number of periods in PRBS signal
1 (default) | positive integer

Number of periods in the PRBS signal, specified as a positive integer.

Based on specified frequencies and sample time, the block displays a recommended value for this
parameter in the Experiment Length section of the block dialog.

Dependencies

To enable this parameter, in Experiment Mode, select PRBS.

Programmatic Use
Block Parameter: NumOfPRBSPeriod
Type: positive integer
Default: '1'

Signal order — PRBS signal order
12 (default) | positive integer ≤ 24

Signal order, specified as a positive integer. The maximum length of the PRBS signal is 2n–1, where n
is the signal order. To obtain an accurate frequency response estimation, the length of the PRBS must
be sufficiently large.

For a given sample time, to obtain a higher frequency resolution, specify a larger signal order. Specify
a value less than or equal to 24 to prevent the experiment from running for too long.

Based on specified frequencies and sample time, the block displays a recommended value for this
parameter in the Experiment Length section of the block dialog.

Dependencies

To enable this parameter, in Experiment Mode, select PRBS.

Programmatic Use
Block Parameter: PRBSSignalOrder
Type: positive integer ≤ 24
Default: '12'

Estimation mode — Whether block performs estimation or only collects response data
Online (default) | Offline

19 Blocks

19-86

Specify whether to perform the frequency response estimation computation online or to collect
frequency-response data only, for later offline estimation.

• Online — The block collects experiment data and computes the estimated frequency response
while the experiment is running. You can get the resulting estimated frequency response at the
frd port (see that port description for more information).

• Offline — The block collects experiment data only and does not compute the estimated frequency
response. You can get the experiment data at the data port (see that port description for more
information). You can then perform the frequency-response estimation offline. For instance, you
can use the data in MATLAB to compute the estimated frequency response with the frestimate
command. For more information, see “Collect Frequency Response Experiment Data for Offline
Estimation” on page 6-18.

Programmatic Use
Block Parameter: EstimationMode
Type: character vector, string
Values: 'Online' | 'Offline'
Default: 'Online'

Display Bode plot — Plot estimated frequency response
off (default) | on

Select to generate a Bode plot showing the estimated frequency response. The plot updates
periodically during the estimation experiment. If you have an LTI model representing the expected
plant response or other relevant baseline, include it on the plot for reference using the Baseline
plant model parameter.
Tips

• To speed up trimming or linearization of a model containing a Frequency Response Estimator
block, clear this parameter.

Programmatic Use
Block Parameter: UseBodePlot
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Baseline plant model — Baseline model for Bode plot
[] (default) | LTI model

Specify the baseline model to plot with the estimated frequency response. Use an LTI model such as a
tf, ss, or frd model.
Example: tf(10,[1 10 1000])
Dependencies

To enable this parameter, select Display Bode plot.
Programmatic Use
Block Parameter: BaselinePlant
Type: LTI model
Default: '[]'

Refresh plot every N*Ts seconds where N is — How often to update Bode plot
100 (default) | scalar

 Frequency Response Estimator

19-87

During the frequency response estimation experiment, the block updates the Bode plot with the
estimated frequency responses as often as you specify with this parameter. Increase the value if
refreshing the Bode plot takes too much time.

For PRBS mode, the estimation happens at the end of the experiment, therefore, the bode plot is only
updated once.

Dependencies

To enable this parameter, select Display Bode plot.

Programmatic Use
Block Parameter: PlotRefreshFactor
Type: integer
Default: '100'

More About
Experiment Length and Data-Collection Window in Superposition Mode

The block supplies the perturbation Δu for the duration of the experiment (while the start/stop signal
is positive). The block determines how long to wait for system transients to die away and how many
cycles to use for estimation as shown in the following illustration.

Texp is the experiment duration that you specify with your configuration of the start/stop signal (See
the start/stop port description on the block reference page for more information). For the estimation
computation, the block uses only the data collected in a window of NlongestP. Here, P is the period of
the slowest frequency in the frequency vector ω, and Nlongest is the value of the Number of periods
of the lowest frequency used for estimation block parameter. Any cycles before this window are
discarded. Thus, the settling time Tsettle = Texp – NlongestP. If you know that your system settles quickly,
you can shorten Texp without changing Nlongest to effectively shorten Tsettle. If your system is noisy, you
can increase Nlongest to get more averaging in the data-collection window. Either way, always choose
Texp long enough for sufficient settling and sufficient data-collection. The recommended Texp =
2NlongestP.

19 Blocks

19-88

Algorithms
Sinestream Mode

When Experiment mode is Sinestream, the block uses a correlation analysis method. In this
method, the measured plant output y(t) is mixed with a sine signal and a cosine signal at the test
frequency ω. The resulting signal is then integrated and averaged for a time T = N(2π/ω), where N is
the integer value of the Number of estimation periods parameter. These operations are shown in
the following diagram.

As the averaging time T increases, the contribution of components in y(t) at frequencies other than ω
go to zero. R(T) and I(T) become constant and can be used to calculate the frequency response of the
plant at ω. For further details, see [1].

Superposition Mode

When Experiment mode is Superposition, the block uses a recursive least squares (RLS) algorithm
to compute the estimated frequency response. Assume that the plant frequency response is G(jω) =
γ∠jθ. When a signal u(t) = Asin(ωt) excites the plant, the steady-state plant output is y(t) = Aγsin(ωt
+ θ), which is equivalent to:

y t = γcosθ Asin ωt + γsinθ Acos ωt .

At any given time, Asin(ωt) and Acos(ωt) are known. Therefore, they can be used as regressors in an
RLS algorithm to estimate γcos(θ) and γsin(θ) from the measured plant output y(t) at run time.

When the excitation signal contains a superposition of multiple signals, then:

u t = A1sin ω1t + A2sin ω2t + … .

In this case, the plant output becomes:

y t = γ1cosθ1 A1sin ω1t + γ1sinθ1 A1cos ω1t +
γ2cosθ2 A2sin ω2t + γ2sinθ2 A2cos ω2t + … .

The estimation algorithm uses Aisin(ωit) and Aicos(ωit) as regressors to estimate γicos(θi) and γisin(θi).
For N frequencies, the algorithm uses 2N regressors.

 Frequency Response Estimator

19-89

The computation assumes that the perturbation signal u(t) is applied to a plant with zero nominal
input and output. To achieve this condition, the block subtracts from the measured plant input and
output signals their values measured at the start of the experiment.

PRBS Mode

When Experiment mode is PRBS, the block uses the same algorithm as frestimate to compute
the estimated frequency response. The blocks injects the PRBS signal (uest(t)) at the plant input and
collects the response signal from the plant output (yest(t)). To estimate the frequency response, the
block computes the ratio of the fast Fourier transforms output signal and the input signal:

Resp =
FFT yest(t)
FFT uest(t)

.

In this mode, the estimation happens at the end of the experiment, therefore, the bode plot is only
updated once.

For more information about PRBS input signals, see “PRBS Input Signals” on page 5-37.

Version History
Introduced in R2019a

References
[1] Wellstead, P. E. Technical Report 10: Frequency Response Analysis. Farnborough, Hampshire, UK:

Solartron Instruments, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Closed-Loop PID Autotuner

Topics
“Online Frequency Response Estimation Basics” on page 6-2
“Deploy Frequency Response Estimation Algorithm for Real-Time Use” on page 6-9
“Online Estimation Using Plant Modeled in Simulink” on page 6-5

19 Blocks

19-90

Gain and Phase Margin Plot, Check Gain and Phase
Margins
Gain and phase margins of linear system approximated from nonlinear Simulink model

Libraries:
Simulink Control Design / Linear Analysis Plots
Simulink Control Design / Model Verification

Description
The Gain and Phase Margin Plot and Check Gain and Phase Margins blocks compute a linear system
from a nonlinear Simulink model and display the gain and phase margins during simulation. These
blocks are identical except for the default settings on the Bounds tab.

• The Gain and Phase Margin Plot does not define default bounds.
• The Check Gain and Phase Margins block defines default bounds and enables these bounds for

assertion.

You can view the margins in a table or on a Bode, Nichols, or Nyquist plot.

For more information on frequency domain analysis of linear systems, see “Frequency-Domain
Responses”.

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs and then plots the response of the linear system. You also can save the linear
system as a variable in the MATLAB workspace.

The Simulink model can be continuous- or discrete-time or multirate and can have time delays.
Because you can specify only one linearization input/output pair in this block, the linear system is
Single-Input Single-Output (SISO).

You can specify one minimum bound each for the gain and phase margin and view them on the
selected plot or table. You can also check that the bounds are satisfied during simulation.

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-91

To compute and plot the gain and phase margins of various portions of your model, you can add
multiple Gain and Phase Margin Plot and Check Gain and Phase Margins blocks.

These blocks do not support code generation and can be used only in Normal simulation mode.

Ports
Input

Trigger — External trigger signal
scalar

Use this input port (indicated by) to connect an external trigger signal for computing the model
linearization. To specify the type of trigger signal to detect, use the Trigger type parameter.

Dependencies

To enable this port, set the Linearize on parameter to External trigger.

Output

z–1 — Assertion signal
1 | 0

Output the value of the assertion signal as a logical value. If any bound specified on the Bounds tab
is violated, the assertion signal is false (0). Otherwise, this signal is true (1).

By default, the data type of the output signal is double. To set the output data type as Boolean, in the
Simulink model, in the Configuration Parameters dialog box, select the Implement logic signals as
Boolean data parameter. This setting applies to all blocks in the model that generate logic signals.

You can use the assertion signal to design complex assertion logic. For an example, see “Verify Model
Using Simulink Control Design and Simulink Verification Blocks” on page 17-20.

Dependencies

To enable this port, select the Output assertion signal parameter.

Parameters
Plot type — Select plot type

Bode (default) | Nichols | Nyquist | Tabular

Select one of the following methods for displaying the computed gain and phase margins.

• Bode — Bode plot
• Nichols — Nichols plot
• Nyquist — Nyquist plot
• Tabular — Table

For more information on using the plot, see “Using the Plot” on page 19-106.

19 Blocks

19-92

Programmatic Use
Block Parameter: PlotType
Type: character vector
Value: 'bode' | 'nichols' | 'nyquist' | 'table'
Default: 'bode'

Show Plot — Open plot

button

To view gain and phase margins computed during a simulation, click this button before starting the
simulation. If you specify bounds on the Bounds tab, they are also shown on the plot.

To show the plot when opening the block, select the Show plot on block open parameter.

For more information on using the plot, see “Using the Plot” on page 19-106.

Show plot on block open — Open plot when opening block

off (default) | on

Select this parameter to open the plot when opening the block. You can then perform tasks, such as
adding or modifying bounds, in the plot window instead of using the block parameters. To access the

block parameters from the plot window, select Edit or click .

For more information on using the plot, see “Using the Plot” on page 19-106.

Programmatic Use
Block Parameter: LaunchViewOnOpen
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Response Optimization — Open Response Optimizer

button

Open the Response Optimizer app to optimize the model response to meet the design requirements
specified on the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

For more information on response optimization, see “Design Optimization to Meet Step Response
Requirements (GUI)” (Simulink Design Optimization) and “Design Optimization to Meet Time-Domain
and Frequency-Domain Requirements (GUI)” (Simulink Design Optimization).

Linearizations

To specify the portion of the model to linearize and other linearization settings, use the parameters on
the Linearizations tab. The default settings on this tab are the same for the Gaind and Phase Margin
Plot and Check Gain and Phase Margins blocks.

Linearization inputs/outputs — Specify portion of model to linearize

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-93

linear analysis points

To specify the portion of the model to linearize, select signals from the Simulink model and add them
as linearization inputs or outputs.

In the table, the Block:Port:Bus Element column shows the following information for each signal.

• Source block
• Output port of the source block to which the signal is connected
• Bus element name (if the signal is in a bus)

In the Configuration column, select the type of linear analysis point from the following types. For
more information on linear analysis points, see “Specify Portion of Model to Linearize” on page 2-10.

• Open-loop Input — Specifies a linearization input point after a loop opening
• Open-loop Output — Specifies a linearization output point before a loop opening
• Loop Transfer — Specifies an output point before a loop opening followed by an input
• Input Perturbation — Specifies an additive input to a signal
• Output Measurement — Takes a measurement at a signal
• Loop Break — Specifies a loop opening
• Sensitivity — Specifies an additive input followed by an output measurement
• Complementary Sensitivity — Specifies an output followed by an additive input

Note If you simulate the model without specifying a linearization input or output, the software
generates a warning in the MATLAB Command Window and does not compute a linear system.

Edit Linearization Inputs and Outputs

To add linearization inputs and outputs:

1
To expand the signal selection area, click .

19 Blocks

19-94

The dialog box expands to display a Click a signal in the model to select it area.
2 In the Simulink model, select one or more signals.

The selected signals appear in the Model signal table.

3 (Optional) For bus signals, expand the bus to select individual elements.

Tip For large buses or other large lists of signals, you can filter the signal names. In the Filter
by name box, enter search text. The name match is case-sensitive.

To modify the filtering options, click . For more information on filtering options, see the
Enable regular expression and Show filtered results as a flat list parameters.

4
To add the selected signal to the Linearization inputs/outputs table, click .

5 In the Configuration column, specify the signal type.

Alternatively, if you have linearization inputs and outputs defined in your model, you can add them to

the Linearization inputs/outputs table by clicking .

To remove a signal from the Linearization inputs/outputs table, select the signal and click .

To highlight the source block of a signal in the Simulink model, select the signal in the Linearization

inputs/outputs table and click .

Enable regular expression — Enable signal searching using regular expressions

on (default) | off

Select this option to enable the use of MATLAB regular expressions for filtering signal names. For
example, entering t$ in the Filter by name text box displays all signals whose names end with a
lowercase t (and their immediate parents). For more information, see “Regular Expressions”.

Dependencies

To enable this parameter, click next to the Filter by name text box.

Show filtered results as a flat list — Display filtered bus signal hierarchy using flat list

off (default) | on

Select this option to display the list of filtered signals in a flat list format. The flat list format uses dot
notation to reflect the hierarchy of bus signals. The signals are filtered based on the text in the Filter
by name text box.

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-95

The following figure shows an example of the flat list format for a filtered set of nested bus signals.

Dependencies

To enable this parameter, click next to the Filter by name text box.

Linearize on — When to compute linear model

Simulation snapshots (default) | External trigger

Use this parameter to specify when you want to compute a linear model.

To compute linear models at specified simulation snapshot times, set this parameter to Simulation
snapshots. Specify snapshot times using the Snapshot times parameter.

Use simulation snapshots when you:

• Know one or more times when the model is at a steady-state operating point
• Want to compute linear systems at specific times

To compute linear models at trigger-based simulation events, set this parameter to External
trigger. Selecting this option adds a trigger input port to the block, to which you connect your
external trigger signal. To specify the type of trigger to detect, use the Trigger type parameter.

Use an external trigger when a signal generated during simulation indicates that the model is at a
steady-state condition of interest. For example, for an aircraft model, you might want to compute the
linear system whenever the fuel mass is a given fraction of the maximum fuel mass.

Programmatic Use
Block Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

Snapshot times — Simulation times at which to compute linear model

19 Blocks

19-96

0 (default) | positive real value | vector of positive real values

To compute a linear system at specific simulation times, such as a time that you know the model
reaches a steady state operating point, specify one or more snapshot times. To specify multiple
snapshot times, specify this parameter as a vector of positive values.

Snapshot times must be less than or equal to the simulation time specified in the Simulink model.

For examples of linearizing a model at simulation snapshot times, see:

• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13

Dependencies

To enable this parameter, set the Linearize on parameter to Simulation snapshots

Programmatic Use
Block Parameter: SnapshotTimes
Type: character vector
Value: '0' | positive real value | vector of positive real values
Default: '0'

Trigger type — Type of external trigger to detect

Rising edge (default) | Falling edge

Specify the trigger to detect in the external trigger signal as one of the following types.

• Rising edge — Use the rising edge of the trigger signal; that is, when the signal changes from 0
to 1.

• Falling edge — Use the falling edge of the trigger signal; that is, when the signal changes from
1 to 0.

Dependencies

To enable this parameter, set the Linearize on parameter to External trigger.

Programmatic Use
Block Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select this option to enable zero-crossing detection.

When you set the Linearize on parameter to Simulation snapshots, enabling zero-crossing
detection ensures that the software computes the linear model at the exact snapshot times you
specify in the Snapshot times parameter.

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-97

When you set the Linearize on parameter to External trigger, enabling zero-crossing detection
ensures that the software computes the linear model at the exact time that the external trigger is
detected. To specify the type of trigger, use the Trigger type parameter.

If you clear this option, the software computes the linear system at simulation times selected by the
variable-step Simulink solver, which might not correspond to an exact snapshot time or the exact time
when a trigger signal is detected.

For example, consider the case where the variable-step solver selects simulation times Tn–1 and Tn. As
shown in the following figure, the specified snapshot time Tsnap can be between the selected
simulation times. If you enable zero-crossing detection, the solver also simulates the model at time
Tsnap and computes the linear model at this point.

Similarly, the external trigger can be detected at a time Ttrig that is between the selected simulation
times. If you enable zero-crossing detection, the solver also simulates the model at time Ttrig and
computes the linear model at this point.

In both cases, if you do not enable zero-crossing detection, the software computes the linear model at
either Tn–1 or Tn.

For more information on zero-crossing detection, see “Zero-Crossing Detection”.

Dependencies

This parameter is ignored when you use a fixed-step Simulink solver.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Use exact delays — Use exact delays in linear model

off (default) | on

Select this option to compute a linear model with exact delays. If you clear this option, the linear
model uses Padé approximations of any delays.

19 Blocks

19-98

For more information on linearizing models with delays, see “Linearize Models with Delays” on page
2-77.

Programmatic Use
Block Parameter: UseExactDelayModel
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Linear system sample time — Sample time of linear system

'auto' (default) | positive finite value | 0

To compute a linear system with the specified sample time, the software coverts sample times in the
model using the method you specify in the Sample time rate conversion method parameter.

You can set the sample time to one of the following values.

• auto — If all blocks in the model are continuous-time, use a sample time of 0. Otherwise, set the
sample time to the least common multiple of the nonzero sample times in the model.

• Positive finite value — Create a discrete-time model with the specified sample time
• 0 — Create a continuous-time model

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: 'auto' | positive finite value | '0'
Default: 'auto'

Sample time rate conversion method — Rate conversion method

Zero-Order Hold (default) | Tustin (bilinear) | Tustin with Prewarping | ...

Method for converting sample times during linearization, specified as one of the following values.

• Zero-Order Hold — Zero-order hold, where the control inputs are assumed piecewise constant
over the sample time Ts. This method usually performs better in the time domain.

• Tustin (bilinear) — Bilinear (Tustin) approximation without frequency prewarping. The
software rounds off fractional time delays to the nearest multiple of the sampling time. This
method usually performs better in the frequency domain.

• Tustin with Prewarping — Bilinear (Tustin) approximation with frequency prewarping.
Specify the prewarp frequency using the Prewarp frequency parameter. This method usually
performs better in the frequency domain. Use this method to ensure matching in a frequency
region of interest.

• Upsampling when possible, Zero-Order Hold otherwise — Upsample a discrete-time
system when possible; otherwise, use a zero-order hold.

• Upsampling when possible, Tustin otherwise — Upsample a discrete-time system when
possible; otherwise, use a Tustin approximation.

• Upsampling when possible, Tustin with Prewarping otherwise — Upsample a
discrete-time system when possible; otherwise, use a Tustin approximation with frequency
prewarping.

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-99

You can upsample only when you convert a discrete-time system to a new faster sample time that is
an integer multiple of the sample time of the original system.

For more information on rate conversion and linearization of multirate models, see:

• “Multirate Linearization Algorithm” on page 2-142
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147
• “Continuous-Discrete Conversion Methods”

Note If you use a rate conversion method other than Zero-Order Hold, the converted states no
longer have the same physical meaning as the original states. As a result, the state names in the
resulting LTI system change to '?'.

Dependencies

To enable this parameter, set the Linear system sample time parameter to a value other than auto.

Programmatic Use
Block Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Prewarp frequency — Prewarp frequency for Tustin rate conversion

'10' (default) | positive scalar

Prewarp frequency for Tustin rate conversion in radians per second, specified as a scalar value less
than the Nyquist frequency before and after resampling.

Dependencies

To enable this parameter, set the Sample time rate conversion method parameter to one of the
following values.

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

Programmatic Use
Block Parameter: PreWarpFreq
Type: character vector
Value: positive scalar
Default: '10'

Use full block names — Use full block path in state, input, and output names

off (default) | on

To show the state, input, and output names of the computed linear system using their full block path,
select this parameter. For example, in the scdcstr model used in the “Plot Linear System
Characteristics of a Chemical Reactor” on page 2-95 example, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

19 Blocks

19-100

If you clear this parameter, only the names of the states, inputs, and outputs are used, which is useful
when the signal names are unique and you know their locations in your Simulink model. In the
preceding example, the state name of the integrator block appears as Integrator1.

The computed linear system is a state-space object (ss). The state, input, and output names for the
system appear in the following state-space object properties.

Input, Output, or State Name State-Space Object Property
Linearization input names InputName
Linearization output names OutputName
State names StateName

Programmatic Use
Block Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Use bus signal names — Use bus signal names in linear system

off (default) | on

When you select an entire bus as a linearization input or output, select this parameter to use the
signal names of the individual bus elements in the computed linear system. If you do not enable this
option, the bus channel numbers are used instead.

Note Selecting an entire bus signal is not recommended. Instead, select individual bus elements.

Bus signal names appear when the linearization input or output is from one of the following blocks.

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing through only virtual or

nonvirtual subsystem boundaries

Dependencies

Using this parameter is not supported when your model contains mux/bus mixtures.

Programmatic Use
Block Parameter: UseBusSignalLabels
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Bounds

To define gain and phase margin bounds whether to check for violations of these bounds, use the
parameters on the Bounds tab. The default settings on this tab are different for the Gain and Phase
Margin Plot and Check Gain and Phase Margins blocks.

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-101

Include gain and phase margins in assertion — Check whether gain and phase margins violate
bounds

on | off

Select this parameter to check whether the gain and phase margins violate the specified bounds.

By default, this parameter is cleared for the Gain and Phase Margin Plot block and selected for the
Check Gain and Phase Margins block.

Dependencies

This parameter is used for assertion only if you select the Enable assertion parameter.

Programmatic Use
Block Parameter: EnableMargins
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Gain and Phase Margin Plot block, 'on' for Check Gain and Phase Margins block

Gain margin — Minimum gain margin bound

positive finite value

You can specify a single lower bound for the gain margin in decibels. To specify no gain margin
bound, set this parameter to [].

By default, the gain margin bound is [] for the Gain and Phase Margin Plot block and 20 for the
Check Gain and Phase Margins block.

You can also edit the gain margin bound in the plot window. For more information, see “Using the
Plot” on page 19-106.

Dependencies

To check whether the gain margin bound is violated during simulation, select both the Include gain
and phase margins in assertion and Enable assertion parameters.

Programmatic Use
Block Parameter: GainMargin
Type: character vector
Value: positive finite number
Default: '[]' for Gain and Phase Margin Plot block, '20' for Check Bode Characteristics block

Phase margin — Minimum phase minimum bound

positive finite value

You can specify a single lower bound for the phase margin in degrees. To specify no phase margin
bound, set this parameter to [].

By default, the phase margin bound is [] for the Gain and Phase Margin Plot block and 30 for the
Check Gain and Phase Margins block.

You can also edit the phase margin bound in the plot window. For more information, see “Using the
Plot” on page 19-106.

19 Blocks

19-102

Dependencies

To check whether the phase margin bound is violated during simulation, select both the Include
gain and phase margins in assertion and Enable assertion parameters.
Programmatic Use
Block Parameter: PhaseMargin
Type: character vector
Value: positive finite number
Default: '[]' for Gain and Phase Margin Plot block, '30' for Check Bode Characteristics block

Feedback sign — Feedback sign for computing margins

negative feedback (default) | positive feedback

Specify the feedback sign for determining the gain and phase margins using one of the following
options.

• negative feedback — Use negative feedback
• positive feedback — Use positive feedback

To determine the feedback sign, check if the path defined by the linearization inputs and outputs
includes the feedback Sum block.

• If the path includes the Sum block, specify positive feedback.
• If the path does not include the Sum block, specify the same feedback sign as the Sum block.

For example, in “Verify Frequency-Domain Characteristics of an Aircraft” on page 17-27, the Check
Gain and Phase Margins block includes the negative sign in the summation block. Therefore, the
feedback sign is positive.
Programmatic Use
Block Parameter: FeedbackSign
Type: character vector
Value: '-1' | '+1'
Default: '-1'

Logging

To control whether linearization results computed during the simulation are saved, use the
parameters on the Logging tab. The default settings on this tab are the same for the Gain and Phase
Margin Plot and Check Gain and Phase Margins blocks.

Save data to workspace — Save linear systems for further analysis

off (default) | on

Select this parameter to save the computed linear systems for further analysis or control design. The
data is saved in a structure with the following fields.

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is computed at

multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in values. To enable

this field, select the Save operating points for each linearization parameter.

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-103

To specify the name of the saved data structure, use the Variable name property.

The location of the saved data structure depends upon the configuration of the Simulink model.

• If the model is not configured to save simulation output as a single object, the data structure is a
variable in the MATLAB workspace.

• If the model is configured to save simulation output as a single object, the data structure is a field
in the Simulink.SimulationOutput object that contains the logged simulation data.

To configure your model to save simulation output in a single object, in the Configuration Parameters
dialog box, select the Single simulation output parameter.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Programmatic Use
Block Parameter: SaveToWorkspace
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Variable name — Name of data structure for saving linear systems

sys (default) | character vector

Specify the name of the data structure that stores linear systems computed during simulation.

The name must be unique among the variable names used in all data logging model blocks, such as
Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To Workspace blocks, and
simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Dependencies

To enable this parameter, select the Save data to workspace parameter.

Programmatic Use
Block Parameter: SaveName
Type: character vector
Default: 'sys'

Save operating points for each linearization — Save operating points with linearization

off (default) | on

Select this parameter to save the operating point at which each linearization is computed. Selecting
this parameter adds the operatingPoints field to the saved data structure.

Dependencies

To enable this parameter, select the Save data to workspace parameter.

Programmatic Use
Block Parameter: SaveOperatingPoints

19 Blocks

19-104

Type: character vector
Value: 'off' | 'on'
Default: 'off'

Assertion

To control the assertion behavior of the block when bounds defined on the Bounds tab are violated,
use the parameters on the Assertion tab. The default settings on this tab are the same for the Gain
and Phase Margin Plot and Check Gain and Phase Margins blocks.

Enable assertion — Enable bound checking

on (default) | off

To check whether the bounds defined on the Bounds tab are satisfied during the simulation, select
this parameter. When a bound is not satisfied, the assertion fails and a warning is generated.

Clearing this parameter disables assertion; that is, the block no longer checks that the specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

By default, on the Bounds tab:

• The Gain and Phase Margin Plot block does not have defined bounds.
• The Check Gain and Phase Margins block has defined bounds.

You can configure your Simulink model to enable or disable all model verification blocks and override
the Enable assertion parameter. To do so, in the Simulink model, in the Configuration Parameters
dialog box, specify the Model Verification block enabling parameter.

Programmatic Use
Block Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Simulation callback when assertion fails — Expression to evaluate when bounds are violated

'' (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the bounds specified on the Bounds tab are violated.
All variables used in the expression must be in the MATLAB workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Block Parameter: callback

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-105

Type: character vector
Value: MATLAB expression
Default: ''

Stop simulation when assertion fails — Stop simulation when bounds are violated

off (default) | on

To stop the simulation when the bounds specified on the Bounds tab are violated, select this
parameter. If you do not select this option, the bound violation is reported as a warning in the
MATLAB Command Window and the simulation continues.

If you run the simulation from the Simulink model, when the assertion fails, the block where the
bound violation occurs is highlighted and an error message is displayed in the Simulation Diagnostics
window.

Note Since selecting this option stops the simulation as soon as the assertion fails, bound violations
that might occur later during the simulation are not reported. If you want all bound violations to be
reported, do not select this option.

Dependencies

To enable this parameter, select the Enable assertion parameter.
Programmatic Use
Block Parameter: stopWhenAssertionFail
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Output assertion signal — Add assertion output port

off (default) | on

Add the z–1 assertion signal output port to the block. This port outputs the value of the assertion as a
Boolean signal. When the bounds defined on the Bounds tab are violated, the assertion fails and the
assertion signal is 0. Otherwise, the assertion signal is 1.

You can use the assertion signal to design complex assertion logic. For an example, see “Verify Model
Using Simulink Control Design and Simulink Verification Blocks” on page 17-20.
Programmatic Use
Block Parameter: export
Type: character vector
Value: 'off' | 'on'
Default: 'off'

More About
Using the Plot

You can view the gain and phase margins in one of the following plots. To specify the plot type, use
the Plot type parameter.

19 Blocks

19-106

• Bode plot
• Nichols plot
• Nyquist plot
• Table

By default:

• The Bode and Nyquist plots display the specified minimum margins.
• The Nichols plot shows the specified margins as bounds in the plot area.
• The table shows the minimum margins and highlights any computed margins that violate the

bounds.

To view the computed gain and phase margins on the Bode, Nichols, or Nyquist plot, right-click the
plot and select Characteristics > Minimum Stability Margins. The table displays the computed
margins automatically.

In the plot window, you can:

•
View the block parameters by clicking or selecting Edit.

•
Highlight the block in the model by clicking or selecting Highlight Simulink Block in the
View menu.

•
Simulate the model by clicking .

•
Add a legend to the plot by clicking .

The margin bounds you specify for the block appear on the plot. You can specify bounds on the
Bounds tab.

To modify the margin bounds from the Bode, Nyquist, or Nichols plot window, right-click the plot, and
select Bounds > Edit Bound.

In the Edit Bound dialog box, in the Bound drop-down list, select the margin bound. Then, specify
the gain and phase margins and click Close.

After editing the margins from the plot window, update the bound values in the block by clicking
Update Block.

 Gain and Phase Margin Plot, Check Gain and Phase Margins

19-107

Version History
Introduced in R2010b

See Also
Topics
“Visualize Bode Response of Simulink Model During Simulation” on page 2-60
“Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
“Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-91

19 Blocks

19-108

Linear Step Response Plot, Check Linear Step
Response Characteristics
Step response of linear system computed from nonlinear Simulink model

Libraries:
Simulink Control Design / Linear Analysis Plots
Simulink Control Design / Model Verification

Description
The Linear Step Response Plot and Check Linear Step Response Characteristics blocks compute a
linear system from a nonlinear Simulink model and plot the step response of the linear system during
simulation. These blocks are identical except for the default settings on the Bounds tab.

• The Linear Step Response Plot does not define default bounds.
• The Check Linear Step Response Characteristics block defines default bounds and enables these

bounds for assertion.

For more information on time domain analysis of linear systems, see “Time-Domain Responses”.

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs and then plots the step response of the linear system. You also can save the linear
system as a variable in the MATLAB workspace.

The Simulink model can be continuous- or discrete-time or multirate and can have time delays.
Because you can specify only one linearization input/output pair in this block, the linear system is
Single-Input Single-Output (SISO).

You can specify step response bounds and view them on the plot. You can also check that the bounds
are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

To compute and plot the step response of various portions of your model, you can add multiple Linear
Step Response Plot and Check Linear Step Response Characteristics blocks.

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-109

These blocks do not support code generation and can be used only in Normal simulation mode.

Ports
Input

Trigger — External trigger signal
scalar

Use this input port (indicated by) to connect an external trigger signal for computing the model
linearization. To specify the type of trigger signal to detect, use the Trigger type parameter.
Dependencies

To enable this port, set the Linearize on parameter to External trigger.

Output

z–1 — Assertion signal
1 | 0

Output the value of the assertion signal as a logical value. If any bound specified on the Bounds tab
is violated, the assertion signal is false (0). Otherwise, this signal is true (1).

By default, the data type of the output signal is double. To set the output data type as Boolean, in the
Simulink model, in the Configuration Parameters dialog box, select the Implement logic signals as
Boolean data parameter. This setting applies to all blocks in the model that generate logic signals.

You can use the assertion signal to design complex assertion logic. For an example, see “Verify Model
Using Simulink Control Design and Simulink Verification Blocks” on page 17-20.
Dependencies

To enable this port, select the Output assertion signal parameter.

Parameters
Show Plot — Open plot

button

To view gain and phase margins computed during a simulation, click this button before starting the
simulation. If you specify bounds on the Bounds tab, they are also shown on the plot.

To show the plot when opening the block, select the Show plot on block open parameter.

For more information on using the plot, see “Using the Plot” on page 19-125.

Show plot on block open — Open plot when opening block

off (default) | on

Select this parameter to open the plot when opening the block. You can then perform tasks, such as
adding or modifying bounds, in the plot window instead of using the block parameters. To access the

block parameters from the plot window, select Edit or click .

19 Blocks

19-110

For more information on using the plot, see “Using the Plot” on page 19-125.

Programmatic Use
Block Parameter: LaunchViewOnOpen
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Response Optimization — Open Response Optimizer

button

Open the Response Optimizer app to optimize the model response to meet the design requirements
specified on the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

For more information on response optimization, see “Design Optimization to Meet Step Response
Requirements (GUI)” (Simulink Design Optimization) and “Design Optimization to Meet Time-Domain
and Frequency-Domain Requirements (GUI)” (Simulink Design Optimization).

Linearizations

To specify the portion of the model to linearize and other linearization settings, use the parameters on
the Linearizations tab. The default settings on this tab are the same for the Linear Step Response
Plot and Check Linear Step Response Characteristics blocks.

Linearization inputs/outputs — Specify portion of model to linearize

linear analysis points

To specify the portion of the model to linearize, select signals from the Simulink model and add them
as linearization inputs or outputs.

In the table, the Block:Port:Bus Element column shows the following information for each signal.

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-111

• Source block
• Output port of the source block to which the signal is connected
• Bus element name (if the signal is in a bus)

In the Configuration column, select the type of linear analysis point from the following types. For
more information on linear analysis points, see “Specify Portion of Model to Linearize” on page 2-10.

• Open-loop Input — Specifies a linearization input point after a loop opening
• Open-loop Output — Specifies a linearization output point before a loop opening
• Loop Transfer — Specifies an output point before a loop opening followed by an input
• Input Perturbation — Specifies an additive input to a signal
• Output Measurement — Takes a measurement at a signal
• Loop Break — Specifies a loop opening
• Sensitivity — Specifies an additive input followed by an output measurement
• Complementary Sensitivity — Specifies an output followed by an additive input

Note If you simulate the model without specifying a linearization input or output, the software
generates a warning in the MATLAB Command Window and does not compute a linear system.

Edit Linearization Inputs and Outputs

To add linearization inputs and outputs:

1
To expand the signal selection area, click .

The dialog box expands to display a Click a signal in the model to select it area.
2 In the Simulink model, select one or more signals.

The selected signals appear in the Model signal table.

3 (Optional) For bus signals, expand the bus to select individual elements.

Tip For large buses or other large lists of signals, you can filter the signal names. In the Filter
by name box, enter search text. The name match is case-sensitive.

To modify the filtering options, click . For more information on filtering options, see the
Enable regular expression and Show filtered results as a flat list parameters.

4
To add the selected signal to the Linearization inputs/outputs table, click .

5 In the Configuration column, specify the signal type.

19 Blocks

19-112

Alternatively, if you have linearization inputs and outputs defined in your model, you can add them to

the Linearization inputs/outputs table by clicking .

To remove a signal from the Linearization inputs/outputs table, select the signal and click .

To highlight the source block of a signal in the Simulink model, select the signal in the Linearization

inputs/outputs table and click .

Enable regular expression — Enable signal searching using regular expressions

on (default) | off

Select this option to enable the use of MATLAB regular expressions for filtering signal names. For
example, entering t$ in the Filter by name text box displays all signals whose names end with a
lowercase t (and their immediate parents). For more information, see “Regular Expressions”.
Dependencies

To enable this parameter, click next to the Filter by name text box.

Show filtered results as a flat list — Display filtered bus signal hierarchy using flat list

off (default) | on

Select this option to display the list of filtered signals in a flat list format. The flat list format uses dot
notation to reflect the hierarchy of bus signals. The signals are filtered based on the text in the Filter
by name text box.

The following figure shows an example of the flat list format for a filtered set of nested bus signals.

Dependencies

To enable this parameter, click next to the Filter by name text box.

Linearize on — When to compute linear model

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-113

Simulation snapshots (default) | External trigger

Use this parameter to specify when you want to compute a linear model.

To compute linear models at specified simulation snapshot times, set this parameter to Simulation
snapshots. Specify snapshot times using the Snapshot times parameter.

Use simulation snapshots when you:

• Know one or more times when the model is at a steady-state operating point
• Want to compute linear systems at specific times

To compute linear models at trigger-based simulation events, set this parameter to External
trigger. Selecting this option adds a trigger input port to the block, to which you connect your
external trigger signal. To specify the type of trigger to detect, use the Trigger type parameter.

Use an external trigger when a signal generated during simulation indicates that the model is at a
steady-state condition of interest. For example, for an aircraft model, you might want to compute the
linear system whenever the fuel mass is a given fraction of the maximum fuel mass.

Programmatic Use
Block Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

Snapshot times — Simulation times at which to compute linear model

0 (default) | positive real value | vector of positive real values

To compute a linear system at specific simulation times, such as a time that you know the model
reaches a steady state operating point, specify one or more snapshot times. To specify multiple
snapshot times, specify this parameter as a vector of positive values.

Snapshot times must be less than or equal to the simulation time specified in the Simulink model.

For examples of linearizing a model at simulation snapshot times, see:

• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Verify Model at Default Simulation Snapshot Time” on page 17-5
• “Verify Model at Multiple Simulation Snapshots” on page 17-13

Dependencies

To enable this parameter, set the Linearize on parameter to Simulation snapshots

Programmatic Use
Block Parameter: SnapshotTimes
Type: character vector
Value: '0' | positive real value | vector of positive real values
Default: '0'

Trigger type — Type of external trigger to detect

19 Blocks

19-114

Rising edge (default) | Falling edge

Specify the trigger to detect in the external trigger signal as one of the following types.

• Rising edge — Use the rising edge of the trigger signal; that is, when the signal changes from 0
to 1.

• Falling edge — Use the falling edge of the trigger signal; that is, when the signal changes from
1 to 0.

Dependencies

To enable this parameter, set the Linearize on parameter to External trigger.

Programmatic Use
Block Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'

Enable zero-crossing detection — Enable zero-crossing detection

on (default) | off

Select this option to enable zero-crossing detection.

When you set the Linearize on parameter to Simulation snapshots, enabling zero-crossing
detection ensures that the software computes the linear model at the exact snapshot times you
specify in the Snapshot times parameter.

When you set the Linearize on parameter to External trigger, enabling zero-crossing detection
ensures that the software computes the linear model at the exact time that the external trigger is
detected. To specify the type of trigger, use the Trigger type parameter.

If you clear this option, the software computes the linear system at simulation times selected by the
variable-step Simulink solver, which might not correspond to an exact snapshot time or the exact time
when a trigger signal is detected.

For example, consider the case where the variable-step solver selects simulation times Tn–1 and Tn. As
shown in the following figure, the specified snapshot time Tsnap can be between the selected
simulation times. If you enable zero-crossing detection, the solver also simulates the model at time
Tsnap and computes the linear model at this point.

Similarly, the external trigger can be detected at a time Ttrig that is between the selected simulation
times. If you enable zero-crossing detection, the solver also simulates the model at time Ttrig and
computes the linear model at this point.

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-115

In both cases, if you do not enable zero-crossing detection, the software computes the linear model at
either Tn–1 or Tn.

For more information on zero-crossing detection, see “Zero-Crossing Detection”.

Dependencies

This parameter is ignored when you use a fixed-step Simulink solver.

Programmatic Use
Block Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Use exact delays — Use exact delays in linear model

off (default) | on

Select this option to compute a linear model with exact delays. If you clear this option, the linear
model uses Padé approximations of any delays.

For more information on linearizing models with delays, see “Linearize Models with Delays” on page
2-77.

Programmatic Use
Block Parameter: UseExactDelayModel
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Linear system sample time — Sample time of linear system

'auto' (default) | positive finite value | 0

To compute a linear system with the specified sample time, the software coverts sample times in the
model using the method you specify in the Sample time rate conversion method parameter.

You can set the sample time to one of the following values.

• auto — If all blocks in the model are continuous-time, use a sample time of 0. Otherwise, set the
sample time to the least common multiple of the nonzero sample times in the model.

• Positive finite value — Create a discrete-time model with the specified sample time
• 0 — Create a continuous-time model

19 Blocks

19-116

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Value: 'auto' | positive finite value | '0'
Default: 'auto'

Sample time rate conversion method — Rate conversion method

Zero-Order Hold (default) | Tustin (bilinear) | Tustin with Prewarping | ...

Method for converting sample times during linearization, specified as one of the following values.

• Zero-Order Hold — Zero-order hold, where the control inputs are assumed piecewise constant
over the sample time Ts. This method usually performs better in the time domain.

• Tustin (bilinear) — Bilinear (Tustin) approximation without frequency prewarping. The
software rounds off fractional time delays to the nearest multiple of the sampling time. This
method usually performs better in the frequency domain.

• Tustin with Prewarping — Bilinear (Tustin) approximation with frequency prewarping.
Specify the prewarp frequency using the Prewarp frequency parameter. This method usually
performs better in the frequency domain. Use this method to ensure matching in a frequency
region of interest.

• Upsampling when possible, Zero-Order Hold otherwise — Upsample a discrete-time
system when possible; otherwise, use a zero-order hold.

• Upsampling when possible, Tustin otherwise — Upsample a discrete-time system when
possible; otherwise, use a Tustin approximation.

• Upsampling when possible, Tustin with Prewarping otherwise — Upsample a
discrete-time system when possible; otherwise, use a Tustin approximation with frequency
prewarping.

You can upsample only when you convert a discrete-time system to a new faster sample time that is
an integer multiple of the sample time of the original system.

For more information on rate conversion and linearization of multirate models, see:

• “Multirate Linearization Algorithm” on page 2-142
• “Linearize Models Using Different Rate Conversion Methods” on page 2-147
• “Continuous-Discrete Conversion Methods”

Note If you use a rate conversion method other than Zero-Order Hold, the converted states no
longer have the same physical meaning as the original states. As a result, the state names in the
resulting LTI system change to '?'.

Dependencies

To enable this parameter, set the Linear system sample time parameter to a value other than auto.

Programmatic Use
Block Parameter: RateConversionMethod
Type: character vector

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-117

Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'

Prewarp frequency — Prewarp frequency for Tustin rate conversion

'10' (default) | positive scalar

Prewarp frequency for Tustin rate conversion in radians per second, specified as a scalar value less
than the Nyquist frequency before and after resampling.
Dependencies

To enable this parameter, set the Sample time rate conversion method parameter to one of the
following values.

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

Programmatic Use
Block Parameter: PreWarpFreq
Type: character vector
Value: positive scalar
Default: '10'

Use full block names — Use full block path in state, input, and output names

off (default) | on

To show the state, input, and output names of the computed linear system using their full block path,
select this parameter. For example, in the scdcstr model used in the “Plot Linear System
Characteristics of a Chemical Reactor” on page 2-95 example, a state in the Integrator1 block of
the CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

If you clear this parameter, only the names of the states, inputs, and outputs are used, which is useful
when the signal names are unique and you know their locations in your Simulink model. In the
preceding example, the state name of the integrator block appears as Integrator1.

The computed linear system is a state-space object (ss). The state, input, and output names for the
system appear in the following state-space object properties.

Input, Output, or State Name State-Space Object Property
Linearization input names InputName
Linearization output names OutputName
State names StateName

Programmatic Use
Block Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Use bus signal names — Use bus signal names in linear system

19 Blocks

19-118

off (default) | on

When you select an entire bus as a linearization input or output, select this parameter to use the
signal names of the individual bus elements in the computed linear system. If you do not enable this
option, the bus channel numbers are used instead.

Note Selecting an entire bus signal is not recommended. Instead, select individual bus elements.

Bus signal names appear when the linearization input or output is from one of the following blocks.

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing through only virtual or

nonvirtual subsystem boundaries

Dependencies

Using this parameter is not supported when your model contains mux/bus mixtures.

Programmatic Use
Block Parameter: UseBusSignalLabels
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Bounds

To define bounds on step response characteristics and specify whether to check for violations of these
bounds, use the parameters on the Bounds tab. The default settings on this tab are different for the
Linear Step Response Plot and Check Linear Step Response Characteristics blocks.

Include step response bound in assertion — Check whether step response violates bounds on
characteristics

on | off

Select this parameter to check whether the step response characteristics violate the bounds specified
on the Bounds tab.

By default, this parameter is cleared for the Linear Step Response Plot block and selected for the
Check Linear Step Response Characteristics block.

Dependencies

This parameter is used for assertion only if you select the Enable assertion parameter.

Programmatic Use
Block Parameter: EnableStepResponseBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Linear Step Response Plot block, 'on' for Check Linear Step Response
Characteristics block

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-119

Final value — Final value of output signal in response to step input

finite real scalar

To compute the other step response characteristics on the Bounds tab, the block uses the expected
final value of the output signal in response to a step input.

By default, this parameter is [] for the Linear Step Response Plot block and 1 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: FinalValue
Type: character vector
Value: finite real scalar
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block

Rise time — Upper bound on rise time

finite positive scalar

Upper bound on the time in seconds for the step response to reach a percentage of the final value.

• To specify the final value, use the Final value parameter.
• To specify the percentage of the final value, use the % Rise parameter.

By default, this parameter is [] for the Linear Step Response Plot block and 5 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: RiseTime
Type: character vector
Value: finite positive scalar
Default: '[]' for Linear Step Response Plot block, '5' for Check Linear Step Response
Characteristics block

% Rise — Percentage of final value used for computing rise time

positive scalar less than (100 - % Settling)

Percentage of the final value used to define the rise time bound.

• To specify the final value, use the Final value parameter.
• To specify the rise time bound, use the Rise time parameter.

By default, this parameter is [] for the Linear Step Response Plot block and 80 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: PercentRise
Type: character vector
Value: positive scalar less than (100 - % Settling)
Default: '[]' for Linear Step Response Plot block, '80' for Check Linear Step Response
Characteristics block

19 Blocks

19-120

Settling time — Upper bound on settling time

finite scalar greater than rise time

Upper bound on the time in seconds for the step response to settle within a specified range around
the final value. This settling range is defined as the final value plus or minus the specified settling
percentage of the final value.

• To specify the final value, use the Final value parameter.
• To specify the settling percentage, use the % Settling parameter.

By default, this parameter is [] for the Linear Step Response Plot block and 7 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: SettlingTime
Type: character vector
Value: finite scalar greater than rise time
Default: '[]' for Linear Step Response Plot block, '7' for Check Linear Step Response
Characteristics block

% Settling — Percentage of final value used for computing settling range

positive scalar less than (100 - % Rise)

Percentage of the final value used to define the settling range bounds. The settling range is defined as
the final value plus or minus the specified settling percentage of the final value.

• To specify the final value, use the Final value parameter.
• To specify the settling time bound, use the Settling time parameter.

By default, this parameter is [] for the Linear Step Response Plot block and 1 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: PercentSettling
Type: character vector
Value: positive scalar less than (100 - % Settling)
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block

% Overshoot — Upper bound on overshoot

scalar between 0 and 100

The amount by which the step response can exceed the final value, defined as a percentage of the
final value. To specify the final value, use the Final value parameter.

By default, this parameter is [] for the Linear Step Response Plot block and 10 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: PercentOvershoot
Type: character vector

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-121

Value: scalar between 0 and 100
Default: '[]' for Linear Step Response Plot block, '10' for Check Linear Step Response
Characteristics block

% Undershoot — Upper bound on undershoot

scalar between 0 and 100

The amount by which the step response can undershoot the initial value, defined as a percentage of
the final value. To specify the final value, use the Final value parameter.

By default, this parameter is [] for the Linear Step Response Plot block and 1 for the Check Linear
Step Response Characteristics block.

Programmatic Use
Block Parameter: PercentUndershoot
Type: character vector
Value: scalar between 0 and 100
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block

Logging

To control whether linearization results computed during the simulation are saved, use the
parameters on the Logging tab. The default settings on this tab are the same for the Linear Step
Response Plot and Check Linear Step Response Characteristics blocks.

Save data to workspace — Save linear systems for further analysis

off (default) | on

Select this parameter to save the computed linear systems for further analysis or control design. The
data is saved in a structure with the following fields.

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is computed at

multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in values. To enable

this field, select the Save operating points for each linearization parameter.

To specify the name of the saved data structure, use the Variable name property.

The location of the saved data structure depends upon the configuration of the Simulink model.

• If the model is not configured to save simulation output as a single object, the data structure is a
variable in the MATLAB workspace.

• If the model is configured to save simulation output as a single object, the data structure is a field
in the Simulink.SimulationOutput object that contains the logged simulation data.

To configure your model to save simulation output in a single object, in the Configuration Parameters
dialog box, select the Single simulation output parameter.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

19 Blocks

19-122

Programmatic Use
Block Parameter: SaveToWorkspace
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Variable name — Name of data structure for saving linear systems

sys (default) | character vector

Specify the name of the data structure that stores linear systems computed during simulation.

The name must be unique among the variable names used in all data logging model blocks, such as
Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To Workspace blocks, and
simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.
Dependencies

To enable this parameter, select the Save data to workspace parameter.
Programmatic Use
Block Parameter: SaveName
Type: character vector
Default: 'sys'

Save operating points for each linearization — Save operating points with linearization

off (default) | on

Select this parameter to save the operating point at which each linearization is computed. Selecting
this parameter adds the operatingPoints field to the saved data structure.
Dependencies

To enable this parameter, select the Save data to workspace parameter.
Programmatic Use
Block Parameter: SaveOperatingPoints
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Assertion

To control the assertion behavior of the block when bounds defined on the Bounds tab are violated,
use the parameters on the Assertion tab. The default settings on this tab are the same for the Linear
Step Response Plot and Check Linear Step Response Characteristics blocks.

Enable assertion — Enable bound checking

on (default) | off

To check whether the bounds defined on the Bounds tab are satisfied during the simulation, select
this parameter. When a bound is not satisfied, the assertion fails and a warning is generated.

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-123

Clearing this parameter disables assertion; that is, the block no longer checks that the specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

By default, on the Bounds tab:

• The Linear Step Response Plot block does not have defined bounds.
• The Check Linear Step Response Characteristics block has defined bounds.

You can configure your Simulink model to enable or disable all model verification blocks and override
the Enable assertion parameter. To do so, in the Simulink model, in the Configuration Parameters
dialog box, specify the Model Verification block enabling parameter.

Programmatic Use
Block Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Simulation callback when assertion fails — Expression to evaluate when bounds are violated

'' (default) | MATLAB expression

Specify a MATLAB expression to evaluate when the bounds specified on the Bounds tab are violated.
All variables used in the expression must be in the MATLAB workspace.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Block Parameter: callback
Type: character vector
Value: MATLAB expression
Default: ''

Stop simulation when assertion fails — Stop simulation when bounds are violated

off (default) | on

To stop the simulation when the bounds specified on the Bounds tab are violated, select this
parameter. If you do not select this option, the bound violation is reported as a warning in the
MATLAB Command Window and the simulation continues.

If you run the simulation from the Simulink model, when the assertion fails, the block where the
bound violation occurs is highlighted and an error message is displayed in the Simulation Diagnostics
window.

19 Blocks

19-124

Note Since selecting this option stops the simulation as soon as the assertion fails, bound violations
that might occur later during the simulation are not reported. If you want all bound violations to be
reported, do not select this option.

Dependencies

To enable this parameter, select the Enable assertion parameter.

Programmatic Use
Block Parameter: stopWhenAssertionFail
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Output assertion signal — Add assertion output port

off (default) | on

Add the z–1 assertion signal output port to the block. This port outputs the value of the assertion as a
Boolean signal. When the bounds defined on the Bounds tab are violated, the assertion fails and the
assertion signal is 0. Otherwise, the assertion signal is 1.

You can use the assertion signal to design complex assertion logic. For an example, see “Verify Model
Using Simulink Control Design and Simulink Verification Blocks” on page 17-20.

Programmatic Use
Block Parameter: export
Type: character vector
Value: 'off' | 'on'
Default: 'off'

More About
Using the Plot

In the plot window, you can:

•
View the block parameters by clicking or selecting Edit.

•
Highlight the block in the model by clicking or selecting Highlight Simulink Block in the
View menu.

•
Simulate the model by clicking .

•
Add a legend to the plot by clicking .

To display response characteristics, such as the peak response or settling time, right-click the plot.
Then, under Characteristics, select the characteristics to show.

The bounds you specify for the block appear on the plot.

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-125

You can specify bounds on the Bounds tab.

To modify a bound, you can drag the bound in the plot. You can also:

• Right-click the plot and select Bounds > Edit Bound.
• Right-click the bound and select Edit.

19 Blocks

19-126

Then, in the Edit Bound dialog box, specify the parameter values and click Close.

After editing bounds from the plot window, update the bound value in the block by clicking Update
Block.

Version History
Introduced in R2010b

See Also
Topics
“Visualize Bode Response of Simulink Model During Simulation” on page 2-60
“Verify Model Using Simulink Control Design and Simulink Verification Blocks” on page 17-20
“Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-91

 Linear Step Response Plot, Check Linear Step Response Characteristics

19-127

Model Reference Adaptive Control
Compute control actions to make controlled system track reference model

Libraries:
Simulink Control Design

Description
The Model Reference Adaptive Control block computes control actions to make an uncertain
controlled system track the behavior of a given reference plant model. Using this block, you can
implement the following model reference adaptive control (MRAC) algorithms.

• Direct MRAC — Estimate the following controller gains and compute control actions using the
estimated controller.

• Feedback gains that relate the state of the controlled system to the control signal.
• Feedforward gains that relate the reference signal to the control signal.

• Indirect MRAC — Estimate the following matrices of the uncertain controlled system and derive
control actions based on the estimated model.

• State matrix A
• Control effective matrix B

Both direct and indirect MRAC also estimate a model of the external disturbances and uncertainty in
the system being controlled and use this model when computing control actions.

In both cases, based on the real-time tracking error, the controller can update the estimated
parameters and disturbance model.

For more information, see “Model Reference Adaptive Control” on page 15-28.

Ports
Input

r — Reference signal
scalar signal | vector signal

Provide the reference signal for the controlled system to follow.

state — Controlled system state
vector signal

Provide the current state vector from the controlled system.

19 Blocks

19-128

phi — Disturbance model features
vector signal | matrix signal

Provide custom disturbance model features.
Dependencies

To enable this input port, set the Feature type parameter to Use External Source for
Feature.

Output

u — Control input
scalar signal | matrix signal

Connect the control input signal to the input of the controlled system. The control input is a vector
signal with length equal to the number of control inputs in the controlled system.

u_ad — Disturbance and uncertainty estimate
scalar signal | matrix signal

The disturbance and uncertainty estimate is the product of the disturbance model features and the
disturbance model weight vector. You can use this signal to compare the estimated disturbance model
with the actual disturbances in your system.
Dependencies

To enable this output port, select the Output disturbance/uncertainty estimate parameter.

Ahat — Estimator state matrix
matrix signal

Use this port to output the estimated state matrix for the estimator plant model.
Dependencies

This output port is used for indirect MRAC. To enable this port, first select the Indirect algorithm
option. Then, select the Output estimated parameters parameter.

Bhat — Estimator control effective matrix
vector signal | matrix signal

Use this port to output the estimated control effective matrix for the estimator plant model.
Dependencies

This output port is used for indirect MRAC. To enable this port, first select the Indirect algorithm
option. Then, select the Output estimated parameters parameter.

Parameters
System

Select an MRAC algorithm and specify nominal, reference, and estimator model dynamics.

A — Nominal model state matrix
0 (default) | square matrix

 Model Reference Adaptive Control

19-129

Specify the state matrix for the nominal model as an N-by-N matrix, where N is the number of states
in the controlled system.
Dependencies

This parameter is used for direct MRAC. To enable this parameter, select the Direct algorithm option.
Programmatic Use
Block Parameter: 'A'
Type: character vector
Values: square matrix
Default: '0'

B — Nominal model control effective matrix
1 (default) | vector | matrix

Specify the control effective matrix of the nominal model as a nonzero N-by-M matrix, where N is the
number of states in the controlled system and M is the number of control inputs in the controlled
system.
Dependencies

This parameter is used for direct MRAC. To enable this parameter, select the Direct algorithm option.
Programmatic Use
Block Parameter: 'B'
Type: character vector
Values: vector | matrix
Default: '1'

Am — Reference model state matrix
-1 (default) | matrix

Specify the state matrix for the reference model as a matrix with the same dimensions as parameter
A. For a stable reference model, Am must be a Hurwitz matrix for which every eigenvalue must have
a strictly negative real part.
Programmatic Use
Block Parameter: 'Am'
Type: character vector
Values: square matrix
Default: '-1'

Bm — Reference model control effective matrix
1 (default) | vector | matrix

Specify the control effective matrix of the reference model as a nonzero matrix with the same
dimensions as parameter B.
Programmatic Use
Block Parameter: 'Bm'
Type: character vector
Values: vector | matrix
Default: '[0;4]'

Ahat — Estimator plant model state matrix
0 (default) | square matrix

19 Blocks

19-130

Specify the state matrix for the estimator plant model as an N-by-N matrix, where N is the number of
states in the controlled system.
Dependencies

This parameter is used for indirect MRAC. To enable this parameter, select the Indirect algorithm
option.
Programmatic Use
Block Parameter: 'Ahat'
Type: character vector
Values: square matrix
Default: '0'

Adapt Ahat — Option to adapt estimator plant model state matrix
on (default) | off

When you select this parameter, the controller adapts the estimator plant model state matrix.
Dependencies

This parameter is used for indirect MRAC. To enable this parameter, select the Indirect algorithm
option.
Programmatic Use
Block Parameter: 'ALrEnable'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Learning rate (gamma_a) — Learning rate for adapting estimator plant model state matrix
1 (default) | finite positive scalar

Use this parameter to control the rate at which the controller adapts the estimator plant model state
matrix. A larger value increases the size of the updates.
Dependencies

This parameter is used for indirect MRAC. To enable this parameter, first select the Indirect
algorithm option. Then, select the Adapt Ahat parameter.
Programmatic Use
Block Parameter: 'gamma_a'
Type: character vector
Values: finite positive scalar
Default: '1'

Use learning modification — Option to enable learning modification for updating the estimator
model state matrix
on (default) | off

To add robustness at higher gains, select this option to add a momentum term to the estimator model
state matrix updates. Configure the learning modification on the Learning Modification tab.
Dependencies

This parameter is used for indirect MRAC. To enable this parameter, first select the Indirect
algorithm option. Then, select the Adapt Ahat parameter.

 Model Reference Adaptive Control

19-131

Programmatic Use
Block Parameter: 'ALrEnableMod'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Bhat — Estimator plant model control effective matrix
1 (default) | vector | matrix

Specify the control effective matrix of the estimator plant model as a nonzero N-by-M matrix, where
N is the number of states in the controlled system and M is the number of control inputs in the
controlled system.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, select the Indirect algorithm
option.

Programmatic Use
Block Parameter: 'Bhat'
Type: character vector
Values: vector | matrix
Default: '1'

Adapt Bhat — Option to adapt estimator plant model control effective matrix
on (default) | off

When you select this parameter, the controller adapts the estimator plant model control effective
matrix.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, select the Indirect algorithm
option.

Programmatic Use
Block Parameter: 'BLrEnable'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Learning rate (gamma_b) — Learning rate for adapting estimator plant model control effective
matrix
1 (default) | finite positive scalar

Use this parameter to control the rate at which the controller adapts the estimator plant model
control effective matrix. A larger value increases the size of the updates.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, first select the Indirect
algorithm option. Then, select the Adapt Bhat parameter.

Programmatic Use
Block Parameter: 'gamma_a'
Type: character vector

19 Blocks

19-132

Values: finite positive scalar
Default: '1'

Use learning modification — Option to enable learning modification for updating the estimator
model control effective matrix
on (default) | off

To add robustness at higher gains, select this option to add a momentum term to the estimator model
control effective matrix updates. Configure the learning modification on the Learning Modification
tab.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, first select the Indirect
algorithm option. Then, select the Adapt Bhat parameter.

Programmatic Use
Block Parameter: 'BLrEnableMod'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Specify estimator feedback gain — Option to enable specification of estimator feedback gain
off (default) | on

To specify the estimator feedback gain, first select this parameter. Then, specify the Estimator
feedback gain parameter.

If you do not select this parameter, the estimator uses a default feedback gain equal to the Am
parameter.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, select the Indirect algorithm
option.

Programmatic Use
Block Parameter: 'externalKTauEnable'
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Estimator feedback gain — Estimator feedback gain
-1 (default) | matrix

To use the Am matrix as the default estimator feedback gain, specify this parameter as -1.
Otherwise, specify the feedback gain as a Hurwitz matrix with the same dimensions as Am.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, first select the Indirect
algorithm option. Then, select the Specify estimator feedback gain parameter.

Programmatic Use
Block Parameter: 'k_tau'
Type: character vector

 Model Reference Adaptive Control

19-133

Values: -1 | matrix
Default: '-1'

Output estimated parameters — Option to output estimator state and control effective matrices
off (default) | on

Select this parameter to add the Ahat and Bhat output ports for the estimator state and control
effective matrix values, respectively.

Dependencies

This parameter is used for indirect MRAC. To enable this parameter, select the Indirect algorithm
option.

Programmatic Use
Block Parameter: 'estParamOutput'
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Control Gains

Define initial feedback and feedforward gains for model matching when using direct MRAC. You can
configure the block to update these control gains and adjust the corresponding learning rates. To
enable the parameters on this tab, select the Direct algorithm option.

Feedback gains — Feedback gains for model matching
0 (default) | finite scalar | matrix of finite values

Initial feedback gain values. If you do not select the Adapt feedback gains parameter, then the
controller holds the specified feedback gains at these initial values.

Programmatic Use
Block Parameter: 'kx'
Type: character vector
Values: finite scalar | matrix of finite values
Default: '0'

Adapt feedback gains — Option to adapt feedback gains
on (default) | off

When you select this parameter, the controller adapts the feedback gains based on the difference
between the states of the controlled system and the reference model.

Programmatic Use
Block Parameter: 'FBLrEnable'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Learning rate (gamma_x) — Learning rate for adapting feedback gains
1 (default) | finite positive scalar

Use this parameter to control the rate at which the controller adapts the feedback gains. A larger
value increases the size of the gain updates.

19 Blocks

19-134

Programmatic Use
Block Parameter: 'gamma_kx'
Type: character vector
Values: finite positive scalar
Default: '1'

Use learning modification — Option to enable learning modification for updating the feedback gains
on (default) | off

To add robustness at higher gains, select this option to add a momentum term to the feedback gain
updates. Configure the learning modification on the Learning Modification tab.

Programmatic Use
Block Parameter: 'FBLrEnableMod'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Feedforward gains — Feedforward gains for model matching
0 (default) | finite scalar | matrix of finite values

Initial feedforward gain values. If you do not select the Adapt feedforward gains parameter, then
the controller holds the specified feedforward gains at these initial values.

Programmatic Use
Block Parameter: 'kr'
Type: character vector
Values: finite scalar | matrix of finite values
Default: '0'

Adapt feedforward gains — Option to adapt feedforward gains
on (default) | off

When you select this parameter, the controller adapts the feedforward gains based on the difference
between the states of the controlled system and the reference model.

Programmatic Use
Block Parameter: 'FFLrEnable'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Learning rate (gamma_r) — Learning rate for adapting feedforward gains
1 (default) | finite positive scalar

Use this parameter to control the rate at which the controller adapts the feedforward gains. A larger
value increases the size of the gain updates.

Programmatic Use
Block Parameter: 'gamma_kr'
Type: character vector
Values: finite positive scalar
Default: '1'

 Model Reference Adaptive Control

19-135

Use learning modification — Option to enable learning modification for updating the feedforward
gains
on (default) | off

To add robustness at higher gains, select this option to add a momentum term to the feedforward
gain updates. Configure the learning modification on the Learning Modification tab.

Programmatic Use
Block Parameter: 'FFLrEnableMod'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Disturbance Model

Configure the disturbance and uncertainty model used by the block. During operation, the block
adapts the disturbance model parameters.

Enable disturbance adaptation — Option to enable adaptation to system disturbances and
uncertainties
on (default) | off

When you select this parameter, the controller uses a disturbance model to estimate the uncertainty
and external disturbances in the controlled system. The controller adapts the parameters of the
disturbance model based on the error between the states of the controlled system and reference
model.

The disturbance model has the form wTϕ(x).

• ϕ(x) is the disturbance model feature vector. To configure the feature vector, use the Feature type
parameter.

• wT is a weighting matrix that contains disturbance model parameters. The controller adjusts its
disturbance and uncertainty model by adapting these parameters.

Programmatic Use
Block Parameter: 'AdaptEnable'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Learning rate (gamma_w) — Learning rate for adapting disturbance model parameters
1 (default) | finite positive scalar

Use this parameter to control the rate at which the controller adapts the disturbance model
parameters. A larger value increases the size of the parameter updates.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter.

Programmatic Use
Block Parameter: 'gamma'
Type: character vector
Values: finite positive scalar
Default: '100'

19 Blocks

19-136

Use learning modification — Option to enable learning modification for updating disturbance model
parameters
on (default) | off

To add robustness at higher gains, select this option to add a momentum term to the disturbance
parameter updates. Configure the learning modification on the Learning Modification tab.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter.

Programmatic Use
Block Parameter: 'WLrEnableMod'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Channel learning rate (Q) — Channel learning rate used for the Lyapunov solution
1 (default) | finite positive scalar | vector of length N containing positive finite values | symmetric
positive definite matrix of size N-by-N

The channel learning rate Q is a weighting matrix for state tracking errors in the Lyapunov function
for the error dynamics. The larger the value of Q, the faster the tracking error goes to zero. However,
a larger value of Q also creates larger transients and a less robust system.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter.

Programmatic Use
Block Parameter: 'Q'
Type: character vector
Values: finite positive scalar | vector of positive values | symmetric positive definite matrix
Default: '1'

Feature type — Disturbance model feature type
State (default) | Radial Basis Function | Use External Source for Feature

Select one of the following types for the disturbance model feature vector.

• State — Use the states from the controlled plant as the disturbance model. This option can
underrepresent the uncertainty and therefore perform poorly.

• Radial Basis Function — Use Gaussian radial basis functions to create the feature vector.
• Single Hidden Layer Network — Use a neural network with a single-hidden layer.
• Use External Source for Feature — Add the phi input port to the block. Use this port to

provide your own custom feature vector.

For more information on when to use each type of feature vector, see “Disturbance and Uncertainty
Model” on page 15-28.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter.

 Model Reference Adaptive Control

19-137

Programmatic Use
Block Parameter: 'FeatureTypeOptions'
Type: character vector
Values: 'Radial Basis Function' | 'State' | 'Use External Source for Feature'
Default: 'Radial Basis Function'

Number of RBF centers — Number of radial basis function centers for disturbance model
20 (default) | positive integer

Number of radial basis function (RBF) centers to use in the disturbance model. The RBF centers are
evenly spaced across the span defined by the Centers min and Centers max parameters.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter and set the Feature
type parameter to Radial Basis Function.

Programmatic Use
Block Parameter: 'nCen'
Type: character vector
Values: positive integer
Default: '20'

Centers min — Lower limit for radial basis function centers
-1 (default) | finite scalar | vector

Specify the lower limits for the radial basis function centers. If you specify a scalar value, the same
minimum is used for all basis functions. Otherwise, you must specify a vector with length equal to the
Number of RBF centers parameter.

The Centers min parameter must be less than the Centers max parameter.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter and set the Feature
type parameter to Radial Basis Function.

Programmatic Use
Block Parameter: 'cSpanMin'
Type: character vector
Values: finite scalar | vector
Default: '-1'

Centers max — Upper limit for radial basis function centers
1 (default) | finite scalar | vector

Specify the upper limits for the radial basis function centers. If you specify a scalar value, the same
maximum is used for all basis functions. Otherwise, you must specify a vector with length equal to the
Number of RBF centers parameter.

The Centers max parameter must be greater than the Centers min parameter.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter and set the Feature
type parameter to Radial Basis Function.

19 Blocks

19-138

Programmatic Use
Block Parameter: 'cSpanMax'
Type: character vector
Values: finite scalar | vector
Default: '1'

Bandwidth — Radial basis function standard deviation
5 (default) | positive scalar | vector

Specify the standard deviation for the Gaussian basis function kernel. If you specify a scalar value,
the same standard deviation is used for all basis functions. Otherwise, you must specify a vector with
length equal to the Number of RBF centers parameter.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter and set the Feature
type parameter to Radial Basis Function.

Programmatic Use
Block Parameter: 'cSig'
Type: character vector
Values: positive scalar | vector
Default: '5'

Number of neurons in hidden layer — Number of neurons
10 (default) | positive integer

Specify the number of neurons in the hidden layer of the neural network. In general, a network with
more neurons can approximate more complex nonlinear disturbances. Though, too many neurons can
produce a noisy disturbance estimate.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter and set the Feature
type parameter to Single Hidden Layer Network.

Programmatic Use
Block Parameter: 'shlHiddenLayerSize'
Type: character vector
Values: positive scalar | vector
Default: '10'

Hidden layer learning rate (gamma_v) — Learning rate for updating neural network weights
0.1 (default) | positive scalar

Use this parameter to control the rate at which the controller adapts the weights of the neural
network. A larger value increases the size of the weight updates.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter and set the Feature
type parameter to Single Hidden Layer Network.

Programmatic Use
Block Parameter: 'gamma_V'
Type: character vector

 Model Reference Adaptive Control

19-139

Values: positive scalar | vector
Default: '0.1'

Output disturbance/uncertancy estimate — Option to output disturbance and uncertainty
estimate
on (default) | off

Select this parameter to add the u_ad output port.

Dependencies

To enable this parameter, select the Enable disturbance adaptation parameter.

Programmatic Use
Block Parameter: 'adaptiveCntrlOutport'
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Learning Modification

To add robustness at higher gains, you can modify the parameter updates to include a momentum
term. The equations in the Parameter Update Equations section show the update formulas for the
current block configuration.

Modification Methods — Modification method for updating parameters
None (default) | e-Modification | Sigma Modification

Select one of the following options for computing the momentum term that is added to the parameter
updates.

• Sigma Modification — The momentum term is the product of the momentum weight
parameter σ and the current parameter values.

• e-Modification — Scale the sigma-modification momentum term by the magnitude of the error
value

• None — Do not use learning modification.

To specify σ, use the Sigma parameter.

Programmatic Use
Block Parameter: 'modChoice'
Type: character vector
Values: 'Sigma Modification' | 'e-Modification' | 'None'
Default: 'Sigma Modification'

Sigma — Momentum weight for parameter updates
0.1 (default) | scalar

Specify the value for the momentum weight term. A larger value increases the size of the parameter
updates gain and parameter updates.

Dependencies

To enable this parameter, set the Modification Methods parameter to either Sigma Modification
or e-Modification.

19 Blocks

19-140

Programmatic Use
Block Parameter: 'sigma_val'
Type: character vector
Values: finite positive scalar
Default: '0.1'

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Model Reference Adaptive Control” on page 15-28

 Model Reference Adaptive Control

19-141

Nichols Plot
Nichols plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is the same as the Check Nichols Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on a Nichols
plot.

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs, and plots the open-loop gain and phase of the linear system.

The Simulink model can be continuous- or discrete-time or multirate and can have time delays.
Because you can specify only one linearization input/output pair in this block, the linear system is
Single-Input Single-Output (SISO).

You can specify multiple open- and closed-loop gain and phase bounds and view them on the Nichols
plot. You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

You can add multiple Nichols Plot blocks to compute and plot the gains and phases of various portions
of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation mode.

19 Blocks

19-142

Parameters
The following table summarizes the Nichols Plot block parameters, accessible via the block
parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs (I/

Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 19-144.

• “Click a signal in the model
to select it” on page 19-146.

Specify settings. In Linearizations tab:

• “Linearize on” on page 19-
148.

• “Snapshot times” on page
19-149.

• “Trigger type” on page 19-
150.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 19-150.

• “Use exact delays” on page
19-151.

• “Linear system sample time”
on page 19-152.

• “Sample time rate
conversion method” on page
19-153.

• “Prewarp frequency (rad/s)”
on page 19-154.

Specify labels for linear system
I/Os and state names.

In Labels of Linearizations
tab:

• “Use full block names” on
page 19-154.

• “Use bus signal names” on
page 19-155.

Plot the linear system. Show Plot on page 19-170
Specify the feedback sign for closed-loop gain and phase margins. “Feedback sign” on page 19-163

in Bounds tab.

 Nichols Plot

19-143

Task Parameters
(Optional) Specify bounds on gains and phases of the linear
system for assertion.

In Bounds tab:

• Include gain and phase
margins in assertion on page
19-156.

• Include closed-loop peak
gain in assertion on page 19-
158.

• Include open-loop gain-phase
bound in assertion on page
19-160.

Specify assertion options (only when you specify bounds on the
linear system).

In Assertion tab:

• “Enable assertion” on page
19-166.

• “Simulation callback when
assertion fails (optional)” on
page 19-167.

• “Stop simulation when
assertion fails” on page 19-
168.

• “Output assertion signal” on
page 19-168.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 19-164 in Logging tab.

Display plot window instead of block parameters dialog box on
double-clicking the block.

“Show plot on block open” on
page 19-169.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model to linearize.

If you have defined the linearization input and output in the Simulink model, the block automatically

detects these points and displays them in the Linearization inputs/outputs area. Click at any
time to update the Linearization inputs/outputs table with I/Os from the model. To add other
analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on page 19-146

area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model to select
it area.

19 Blocks

19-144

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for filtering element
names in the Filter by name edit box. The name match is case-sensitive. Additionally, you can
enter a MATLAB regular expression.

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 19-147
• “Show filtered results as a flat list” on page 19-147

4
Click to add the selected signals to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal and click

.

Tip To find the location in the Simulink model corresponding to a signal in the Linearization

inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number adjacent to
the block name is the port number where the selected bus signal is located.
The last entry is the selected bus element name.

 Nichols Plot

19-145

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after a loop
opening.

• Open-loop Output — Specifies a linearization output point before a
loop opening.

• Loop Transfer — Specifies an output point before a loop opening
followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an output

measurement.
• Complementary Sensitivity — Specifies an output followed by an

additive input.

Note If you simulate the model without specifying an input or output, the software does not compute
a linear system. Instead, you see a warning message at the MATLAB prompt.

Settings

No default

Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization inputs/
outputs table. For more information, see Linearization inputs/outputs on page 19-144.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

19 Blocks

19-146

Settings

No default
Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and outputs.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example, entering t$ in
the Filter by name edit box displays all signals whose names end with a lowercase t (and their
immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats the text
you enter in the Filter by name edit box as a literal character vector.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box () enables this
parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the Filter by
name edit box. The flat list format uses dot notation to reflect the hierarchy of bus signals. The
following is an example of a flat list format for a filtered set of nested bus signals.

 Nichols Plot

19-147

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies with dot
notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box () enables this
parameter.

Linearize on

When to compute the linear system during simulation.
Settings

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 19-149.

Use when you:

• Know one or more times when the model is at a steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 19-150.

Use when a signal generated during simulation indicates steady-state operating point.

19 Blocks

19-148

Selecting this option adds a trigger port to the block. Use this port to connect the block to the
trigger signal.

For example, for an aircraft model, you might want to compute the linear system whenever the
fuel mass is a fraction of the maximum fuel mass. In this case, model this condition as an external
trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Snapshot times

One or more simulation times. The linear system is computed at these times.

Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot linear
systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on on page 19-148 enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

 Nichols Plot

19-149

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on on page 19-148 enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system characteristics
at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 19-149.

As shown in the following figure, when zero-crossing detection is enabled, the variable-step
Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may lie between the
simulation time steps Tn-1 and Tn which are automatically chosen by the solver.

• The exact times when an external trigger is detected, specified in Trigger type on page 19-150.

As shown in the following figure, when zero-crossing detection is enabled, the variable-step
Simulink solver simulates the model at the time, Ttrig, when the trigger signal is detected. Ttrig
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen by the
solver.

19 Blocks

19-150

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the Simulink User
Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when a trigger
signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-step solver
chooses. The software may not compute the linear system at the exact snapshot time or exact
time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Nichols Plot

19-151

 Off
Return a linear model with Padé approximations of delays, as specified in your Transport Delay
and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time system
• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the software
uses the conversion method specified in Sample time rate conversion method on page 19-153.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multirate models), least common

multiple of the sample times. For example, if you have a mix of continuous-time and discrete-
time blocks with sample times of 0, 0.2 and 0.3, the sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: character vector
Value: 'auto' | Positive finite value | '0'
Default: 'auto'

19 Blocks

19-152

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Sample time rate conversion method

Method for converting the sample time of single-rate or multirate models.

This parameter is used only when the value of Linear system sample time on page 19-152 is not
auto.

Settings

Default: Zero-Order Hold

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the sampling time
Ts. For more information, see “Zero-Order Hold”.

This method usually performs better in the time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds off fractional
time delays to the nearest multiple of the sampling time. For more information, see “Tustin
Approximation”.

This method usually performs better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp frequency in
Prewarp frequency (rad/s). For more information, see “Tustin Approximation”.

This method usually performs better in the frequency domain. Use this method to ensure
matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold otherwise.

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear) otherwise.

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping otherwise.
Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

 Nichols Plot

19-153

Dependencies

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 19-154.

Command-Line Information
Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A value of 0
corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 19-153 enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use full block names

19 Blocks

19-154

How the state, input and output names appear in the linear system computed during simulation.

The linear system is a state-space object, and system states and input/output names appear in
following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For example, in
the scdcstr model used in the “Plot Linear System Characteristics of a Chemical Reactor” on
page 2-95 example, a state in the Integrator1 block of the CSTR subsystem appears with full
path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is unique and you
know where the signal is location in your Simulink model. For example, a state in the
Integrator1 block of the CSTR subsystem appears as Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the linear system
computed during simulation (applies only when you select an entire bus as an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

 Nichols Plot

19-155

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include gain and phase margins in assertion

Check that the gain and phase margins are greater than the values specified in Gain margin (dB) >
on page 19-157 and Phase margin (deg) > on page 19-158, during simulation. The software
displays a warning if the gain or phase margin is less than or equal to the specified value.

By default, negative feedback, specified in Feedback sign, is used to compute the margins.

This parameter is used for assertion only if Enable assertion on page 19-166 in the Assertion tab is
selected.

You can specify multiple gain and phase margin bounds on the linear system. The bounds also appear
on the Nichols plot. If you clear Enable assertion, the bounds are not used for assertion but
continue to appear on the plot.

Settings

Default:

• Off for Nichols Plot block.
• On for Check Nichols Characteristics block.

 On
Check that the gain and phase margins satisfy the specified values, during simulation.

19 Blocks

19-156

 Off
Do not check that the gain and phase margins satisfy the specified values, during simulation.

Tips

• Clearing this parameter disables the gain and phase margin bounds and the software stops
checking that the gain and phase margins satisfy the bounds during simulation. The bounds are
also greyed out on the plot.

• To only view the gain and phase margin on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableMargins
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Nichols Plot block, 'on' for Check Nichols Characteristics block

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Gain margin (dB) >

Gain margin, in decibels.

By default, negative feedback, specified in Feedback sign, is used to compute the gain margin.

Settings

Default:
[] for Nichols Plot block.
20 for Check Nichols Characteristics block.

• Positive finite number for one bound.
• Cell array of positive finite numbers for multiple bounds.

Tips

• To assert that the gain margin is satisfied, select both Include gain and phase margins in
assertion on page 19-156 and Enable assertion on page 19-166.

• You can add or modify gain margins from the plot window:

• To add new gain margin, right-click the plot, and select Bounds > New Bound. Select Gain
margin in Design requirement type, and specify the margin in Gain margin.

• To modify the gain margin, drag the segment. Alternatively, right-click the plot, and select
Bounds > Edit Bound. Specify the new gain margin in Gain margin >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: GainMargin
Type: character vector

 Nichols Plot

19-157

Value: [] | 20 | positive finite value. Must be specified inside single quotes ('').
Default: '[]' for Nichols Plot block, '20' for Check Nichols Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Phase margin (deg) >

Phase margin, in degrees.

By default, negative feedback, specified in Feedback sign, is used to compute the phase margin.

Settings
[] for Nichols Plot block.
30 for Check Nichols Characteristics block.

• Positive finite number for one bound.
• Cell array of positive finite numbers for multiple bounds.

Tips

• To assert that the phase margin is satisfied, select both Include gain and phase margins in
assertion on page 19-156 and Enable assertion on page 19-166.

• You can add or modify phase margins from the plot window:

• To add new phase margin, right-click the plot, and select Bounds > New Bound. Select
Phase margin in Design requirement type, and specify the margin in Phase margin.

• To modify the phase margin, drag the segment. Alternatively, right-click the bound, and select
Bounds > Edit Bound. Specify the new phase margin in Phase margin >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: PhaseMargin
Type: character vector
Value: [] | 30 | positive finite value. Must be specified inside single quotes ('').
Default: '[]' for Nichols Plot block, '30' for Check Nichols Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include closed-loop peak gain in assertion

Check that the closed-loop peak gain is less than the value specified in Closed-loop peak gain (dB)
< on page 19-160, during simulation. The software displays a warning if the closed-loop peak gain is
greater than or equal to the specified value.

19 Blocks

19-158

By default, negative feedback, specified in Feedback sign, is used to compute the closed-loop peak
gain.

This parameter is used for assertion only if Enable assertion on page 19-166 in the Assertion tab is
selected.

You can specify multiple closed-loop peak gain bounds on the linear system. The bound also appear
on the Nichols plot as an m-circle. If you clear Enable assertion, the bounds are not used for
assertion but continue to appear on the plot.

Settings

Default: Off

 On
Check that the closed-loop peak gain satisfies the specified value, during simulation.

 Off
Do not check that the closed-loop peak gain satisfies the specified value, during simulation.

Tips

• Clearing this parameter disables the closed-loop peak gain bound and the software stops checking
that the peak gain satisfies the bounds during simulation. The bounds are greyed out on the plot.

• To only view the closed-loop peak gain on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableCLPeakGain
Type: character vector
Value: 'on' | 'off'
Default: 'off'

 Nichols Plot

19-159

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Closed-loop peak gain (dB) <

Closed-loop peak gain, in decibels.

By default, negative feedback, specified in Feedback sign, is used to compute the margins.

Settings

Default []

• Positive or negative finite number for one bound.
• Cell array of positive or negative finite numbers for multiple bounds.

Tips

• To assert that the gain margin is satisfied, select both Include closed-loop peak gain in
assertion on page 19-158 and Enable assertion on page 19-166.

• You can add or modify closed-loop peak gains from the plot window:

• To add the closed-loop peak gain, right-click the plot, and select Bounds > New Bound.
Select Closed-Loop peak gain in Design requirement type, and specify the gain in
Closed-Loop peak gain <.

• To modify the closed-loop peak gain, drag the segment. Alternatively, right-click the bound, and
select Bounds > Edit Bound. Specify the new closed-loop peak gain in Closed-Loop peak
gain <.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: CLPeakGain
Type: character vector
Value: [] | positive or negative number | cell array of positive or negative numbers. Must be
specified inside single quotes ('').
Default: '[]'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include open-loop gain-phase bound in assertion

Check that the Nichols response satisfies open-loop gain and phase bounds, specified in Open-loop
phases (deg) on page 19-161 and Open-loop gains (dB) on page 19-162, during simulation. The
software displays a warning if the Nichols response violates the bounds.

19 Blocks

19-160

This parameter is used for assertion only if Enable assertion on page 19-166 in the Assertion tab is
selected.

You can specify multiple gain and phase bounds on the linear systems computed during simulation.
The bounds also appear on the Nichols plot. If you clear Enable assertion, the bounds are not used
for assertion but continue to appear on the plot.

Settings

Default: Off

 On
Check if the Nichols response satisfies the specified open-loop gain and phase bounds, during
simulation.

 Off
Do not check if the Nichols response satisfies the specified open-loop gain and phase bounds,
during simulation.

Tips

• Clearing this parameter disables the gain-phase bound and the software stops checking that the
gain and phase satisfy the bound during simulation. The bound segments are also greyed out on
the plot.

• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableGainPhaseBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Open-loop phases (deg)

Open-loop phases, in degrees.

 Nichols Plot

19-161

Specify the corresponding open-loop gains in Open-loop gains (dB) on page 19-162.

Settings

Default: []

Must be specified as start and end phases:

• Positive or negative finite numbers for a single bound with one edge
• Matrix of positive or negative finite numbers , for a single bound with multiple edges
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that the open-loop gains and phases are satisfied, select both Include open-loop gain-
phase bound in assertion on page 19-160 and Enable assertion on page 19-166.

• You can add or modify open-loop phases from the plot window:

• To add a new phases, right-click the plot, and select Bounds > New Bound. Select Gain-
Phase requirement in Design requirement type, and specify the phases in the Open-
Loop phase column. Specify the corresponding gains in the Open-Loop gain column.

• To modify the phases, drag the bound segment. Alternatively, right-click the segment, and
select Bounds > Edit Bounds. Specify the new phases in the Open-Loop phase column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: OLPhases
Type: character vector
Value: [] | positive or negative finite numbers | matrix of positive or negative finite numbers | cell
array of matrices with finite numbers. Must be specified inside single quotes ('').
Default: '[]'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Open-loop gains (dB)

Open-loop gains, in decibels.

Specify the corresponding open-loop phases in Open-loop phases (deg) on page 19-161.

Settings

Default: []

Must be specified as start and end gains:

• Positive or negative number for a single bound with one edge
• Matrix of positive or negative finite numbers for a single bound with multiple edges
• Cell array of matrices with finite numbers for multiple bounds

19 Blocks

19-162

Tips

• To assert that the open-loop gains are satisfied, select both Include open-loop gain-phase
bound in assertion on page 19-160 and Enable assertion on page 19-166.

• You can add or modify open-loop gains from the plot window:

• To add a new gains, right-click the plot, and select Bounds > New Bound. Select Gain-
Phase requirement in Design requirement type, and specify the gains in the Open-Loop
phase column. Specify the phases in the Open-Loop phase column.

• To modify the gains, drag the bound segment. Alternatively, right-click the segment, and select
Bounds > Edit Bounds. Specify the new gains in the Open-Loop gain column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: OLGains
Type: character vector
Value: [] | positive or negative number | matrix of positive or negative finite numbers | cell array of
matrices with finite numbers. Must be specified inside single quotes ('').
Default: '[]'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Feedback sign

Feedback sign to determine the closed-loop gain and phase characteristics of the linear system,
computed during simulation.

To determine the feedback sign, check if the path defined by the linearization inputs and outputs
include the feedback Sum block:

• If the path includes the Sum block, specify positive feedback.
• If the path does not include the Sum block, specify the same feedback sign as the Sum block.

Settings

Default: negative feedback

negative feedback
Use when the path defined by the linearization inputs/outputs does not include the Sum block and
the Sum block feedback sign is -.

positive feedback
Use when:

• The path defined by the linearization inputs/outputs includes the Sum block.
• The path defined by the linearization inputs/outputs does not include the Sum block and the

Sum block feedback sign is +.

 Nichols Plot

19-163

Command-Line Information
Parameter: FeedbackSign
Type: character vector
Value: '-1' | '+1'
Default: '-1'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is computed at

multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in values. This field

exists only if Save operating points for each linearization is checked.

The location of the saved data structure depends upon the configuration of the Simulink model:

• If the Simulink model is not configured to save simulation output as a single object, the data
structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the data structure
is a field in the Simulink.SimulationOutput object that contains the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink editor, on the
Modeling tab, click Model Settings. Then, in the Configuration Parameters dialog box, select
the Single simulation output parameter.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name on page 19-165.

19 Blocks

19-164

Command-Line Information
Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Variable name

Name of the data structure that stores one or more linear systems computed during simulation.

The location of the saved data structure depends upon the configuration of the Simulink model:

• If the Simulink model is not configured to save simulation output as a single object, the data
structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the data structure
is a field in the Simulink.SimulationOutput object that contains the logged simulation data.

The name must be unique among the variable names used in all data logging model blocks, such as
Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To Workspace blocks, and
simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Settings

Default: sys

Character vector.

Dependencies

Save data to workspace on page 19-164 enables this parameter.

Command-Line Information
Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Save operating points for each linearization

 Nichols Plot

19-165

When saving linear systems to the workspace for further analysis or control design, also save the
operating point corresponding to each linearization. Using this option adds a field named
operatingPoints to the data structure that stores the saved linear systems.
Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace on page 19-164 enables this parameter.
Command-Line Information
Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds tab are
satisfied during simulation. Assertion fails if a bound is not satisfied. A warning, reporting the
assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion fails
(optional) on page 19-167.

• Stop the simulation and bring that block into focus, by selecting Stop simulation when
assertion fails on page 19-168.

For the Linear Analysis Plots blocks, this parameter has no effect because no bounds are included by
default. If you want to use the Linear Analysis Plots blocks for assertion, specify and include bounds
in the Bounds tab.

Clearing this parameter disables assertion; that is, the block no longer checks that specified bounds
are satisfied. The block icon also updates to indicate that assertion is disabled.

19 Blocks

19-166

In the Simulink model, in the Configuration Parameters dialog box, the Model Verification block
enabling parameter lets you enable or disable all model verification blocks in a model, regardless of
the setting of this option in the block.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during simulation. A
warning, reporting assertion failure, is displayed at the MATLAB prompt if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion on page 19-166 enables this parameter.

Command-Line Information
Parameter: callback
Type: character vector
Value: '' | MATLAB expression

 Nichols Plot

19-167

Default: ''
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during simulation, i.e.,
assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window opens to
display an error message. Also, the block where the bound violation occurs is highlighted in the
model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails, assertion failures
that might occur later during the simulation are not reported. If you want all assertion failures to
be reported, do not select this option.

Dependencies

Enable assertion on page 19-166 enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds; that is, all bounds are satisfied

19 Blocks

19-168

• False (1) if assertion fails; that is, a bound is violated.

The output signal data type is Boolean only if, in the Simulink model, in the Configuration Parameters
dialog box, the Implement logic signals as Boolean data parameter is selected. Otherwise, the
data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any block in the
model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Verify Model Using
Simulink Control Design and Simulink Verification Blocks” on page 17-20.

Command-Line Information
Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click the block in
the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying bounds, in
the plot window instead of the Block Parameters dialog box. If you want to access the block

parameters from the plot window, select Edit or click .

For more information on the plot, see “Show Plot” on page 19-0 .

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Nichols Plot

19-169

 Off
Open the Block Parameters dialog box when you double-click the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Show Plot

Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system characteristics or
signal.

You can display additional characteristics, such as the peak response time, by right-clicking the
plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-click the
plot and select Bounds > New Bound. For more information on the types of bounds you can
specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot and selecting
Bounds > Edit Bound. Before you simulate the model, click Update Block to update the bound
value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting View >
Highlight Simulink Block. This action makes the model window active and highlights the block.

•
Simulating the model by clicking . This action also linearizes the portion of the model between
the specified linearization input and output.

•
Adding a legend on the linear system characteristic plot by clicking .

19 Blocks

19-170

Note To optimize the model response to meet design requirements specified in the Bounds tab,
open the Response Optimizer by selecting Tools > Response Optimization in the plot window.
This option is only available if you have Simulink Design Optimization software installed.

Response Optimization

Open the Response Optimizer to optimize the model response to meet design requirements
specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design Optimization)
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”

(Simulink Design Optimization)

See Also
Check Nichols Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95

Version History
Introduced in R2010b

 Nichols Plot

19-171

Open-Loop PID Autotuner
Automatically tune PID gains based on plant frequency responses estimated from open-loop
experiment in real time

Libraries:
Simulink Control Design

Description
The Open-Loop PID Autotuner block lets you tune a PID controller in real time against a physical
plant. The block can tune a PID controller to achieve a specified bandwidth and phase margin without
a parametric plant model or an initial controller design. If you have a code-generation product such
as Simulink Coder, you can generate code that implements the tuning algorithm on hardware, letting
you tune in real time with or without using Simulink to manage the autotuning process.

If you have a plant model in Simulink, you can also use the block to obtain an initial PID design.
Doing so lets you preview plant response and adjust the settings for PID autotuning before tuning the
controller in real time.

To achieve model-free tuning, the Open-Loop PID Autotuner block:

1 Injects a test signal into the plant at the nominal operating point to collect plant input-output
data and estimate frequency response in real time. The test signal is a combination of sine and
step perturbation signals added on top of the nominal plant input measured when the experiment
starts. If the plant is part of a feedback loop, the block opens the loop during the experiment.

2 At the end of the experiment, tunes PID controller parameters based on estimated plant
frequency responses near the open-loop bandwidth.

3 Updates a PID Controller block or a custom PID controller with the tuned parameters, allowing
you to validate closed-loop performance in real time.

Because the block performs an open-loop estimation experiment, do not use this block with an
unstable plant or a plant with multiple integrators.

To use the algorithm, you do not need an initial PID controller design. However, you must have some
way to get the plant to a nominal operating point for the frequency-response estimation experiment.
If you have an initial controller design, you can use the Closed-Loop PID Autotuner. For a comparison
of closed-loop and open-loop PID autotuning, see “When to Use PID Autotuning” on page 8-2.

The block supports code generation with Simulink Coder, Embedded Coder, and Simulink PLC Coder.
It does not support code generation with HDL Coder.

For more information about using the Open-Loop PID Autotuner block, see:

• “PID Autotuning for a Plant Modeled in Simulink” on page 8-7
• “PID Autotuning in Real Time” on page 8-13

For more general information about PID autotuning and a comparison of the closed-loop and open-
loop approaches, see “When to Use PID Autotuning” on page 8-2.

19 Blocks

19-172

Ports
Input

u — Signal from controller
scalar

Insert the block into your system such that this port accepts a control signal from a source. Typically,
this port accepts the signal from the PID controller in your system.
Data Types: single | double

y — Plant output
scalar

Connect this port to the plant output.
Data Types: single | double

start/stop — Start and stop the autotuning experiment
scalar

To start and stop the autotuning process, provide a signal at the start/stop port. When the value of
the signal changes from:

• Negative or zero to positive, the experiment starts
• Positive to negative or zero, the experiment stops

When the experiment is not running, the block passes signals unchanged from u to u+Δu. In this
state, the block has no impact on plant or controller behavior.

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from 1 to 0 to
stop it. Some points to consider when configuring the start/stop signal include:

• Start the experiment when the plant is at the desired equilibrium operating point. Use the initial
controller to drive the plant to the operating point. If you have no initial controller (open-loop
tuning only) you can use a source block connected to u to drive the plant to the operating point.

• Avoid any load disturbance to the plant during the experiment. Load disturbance can distort the
plant output and reduce the accuracy of the frequency-response estimation.

• Let the experiment run long enough for the algorithm to collect sufficient data for a good estimate
at all frequencies it probes. There are two ways to determine when to stop the experiment:

• Determine the experiment duration in advance. A conservative estimate for the experiment
duration is 200/ωc for closed-loop tuning, or 100/ωc for open-loop tuning, where ωc is your
target bandwidth.

• Observe the signal at the % conv output, and stop the experiment when the signal stabilizes
near 100%.

• When you stop the experiment, the block computes tuned PID gains and updates the signal at the
pid gains port.

You can configure any logic appropriate for your application to control the start and stop times of the
experiment.
Data Types: single | double

 Open-Loop PID Autotuner

19-173

bandwidth — Target bandwidth for tuning
scalar

Supply a value for the Target bandwidth (rad/sec) parameter. See that parameter for details.

Dependencies

To enable this port, in the Tuning tab, next to Target bandwidth (rad/sec), select Use external
source.
Data Types: single | double

target PM — Target phase margin for tuning
scalar

Supply a value for the Target phase margin (degrees) parameter. See that parameter for
details.

Dependencies

To enable this port, in the Tuning tab, next to Target phase margin (degrees), select Use
external source.
Data Types: single | double

sine Amp — Amplitudes of injected sinusoidal signals
scalar | vector

Supply a value for the Sine Amplitudes parameter. See that parameter for details.

Dependencies

To enable this port, in the Experiment tab, next to Sine Amplitudes, select Use external source.
Data Types: single | double

step Amp — Amplitude of injected step signal
scalar

Supply a value for the Step Amplitude parameter. See that parameter for details.

Dependencies

To enable this port, in the Experiment tab, next to Step Amplitudes, select Use external source.
Data Types: single | double

Output

u+Δu — Signal for plant input
scalar

Insert the block into your system such that this port feeds the input signal to your plant.

• When the experiment is running (start/stop positive), the block injects test signals into the
plant at this port. The test signal is the value at u when the experiment begins plus the experiment
perturbation. If you have any saturation or rate limit protecting the plant, feed the signal from u
+Δu into it.

19 Blocks

19-174

• When the experiment is not running (start/stop zero or negative), the block passes signals
unchanged from u to u+Δu.

Data Types: single | double

% conv — Convergence of FRD estimation during experiment
scalar

When the experiment is running (start/stop positive), the block injects test signals into the plant
and measures the plant response at y. It uses these signals to estimate the frequency response of the
plant at several frequencies around the target bandwidth for tuning. % conv indicates how close to
completion the estimation of the plant frequency response is. Typically, this value quickly rises to
about 90% after the experiment begins, and then gradually converges to a higher value. Stop the
experiment when it levels off near 100%.
Data Types: single | double

pid gains — Tuned PID coefficients
bus

This 4-element bus signal contains the tuned PID gains P, I, D, and the filter coefficient N. These
values correspond to the P, I, D, and N parameters in the expressions given in the Form parameter.
Initially, the values are 0, 0, 0, and 100, respectively. The block updates the values when the
experiment ends. This bus signal always has four elements, even if you are not tuning a PIDF
controller.

If you have a PID controller associated with the block, you can update that controller with these
values after the experiment ends. To do so, in the Block tab, click Update PID Block.
Data Types: single | double

estimated PM — Estimated phase margin with tuned controller
scalar

This port outputs the estimated phase margin achieved by the tuned controller, in degrees. The block
updates this value when the tuning experiment ends. The estimated phase margin is calculated from
the angle of G(jωc)C(jωc), where G is the estimated plant, C is the tuned controller, and ωc is the
crossover frequency (bandwidth). The estimated phase margin might differ from the target phase
margin specified by the Target phase margin (degrees) parameter. It is an indicator of the
robustness and stability achieved by the tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the larger the
value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.

Dependencies

To enable this port, in the Tuning tab, select Output estimated phase margin achieved by tuned
controller.

frd — Estimated frequency response
vector

This port outputs the frequency-response data estimated by the experiment. Initially, the value at frd
is [0, 0, 0, 0]. During the experiment, the block injects signals at frequencies [1/3, 1, 3, 10]ωc, where

 Open-Loop PID Autotuner

19-175

ωc is the target bandwidth. At each sample time during the experiment, the block updates frd with a
vector containing the complex frequency response at each of these frequencies, respectively. You can
use the progress of the response as an alternative to % conv to examine the convergence of the
estimation. When the experiment stops, the block updates frd with the final estimated frequency
response used for computing the PID gains.
Dependencies

To enable this port, in the Experiment tab, select Plant frequency responses near bandwidth.

dcgain — Estimated DC gain of plant
scalar

If you select Estimate DC gain with step signal in the Experiment tab, the block estimates the DC
gain of the plant by including a step signal in the injected perturbation. When the experiment stops,
the block updates this port with the estimated DC gain value.
Dependencies

To enable this port, in the Experiment tab, select Plant DC Gain.

nominal — Plant input and output at nominal operating point
vector

This port outputs a vector containing the plant input (u+Δu) and plant output (y) when the
experiment begins. These values are the plant input and output at the nominal operating point at
which the block performs the experiment.
Dependencies

To enable this port, in the Experiment tab, select Plant nominal input and output.

Parameters
Tuning Tab

Type — PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of the PID controller in your system. The controller type indicates what actions are
present in the controller. The following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the controller type matches.

Tunable: Yes

19 Blocks

19-176

Programmatic Use
Block Parameter: PIDType
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — PID controller form
Parallel (default) | Ideal

Specify the controller form. The controller form determines the interpretation of the PID coefficients
P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is:

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method). The transfer function of a continuous-time parallel-form PIDF controller is:

C = P + I 1
s + D Ns

s + N .

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is:

C = P 1 + IFi z + D N
1 + NFd z .

The transfer function of a continuous-time ideal-form PIDF controller is:

C = P 1 + I 1
s + D Ns

s + N .

Other controller actions amount to setting D to zero or setting, I to Inf. (In ideal form, the
controller must have proportional action.)

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the controller form matches.

Tunable: Yes

Programmatic Use
Block Parameter: PIDForm
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Time Domain — PID controller time domain
discrete-time (default) | continuous-time

Specify whether your PID controller is a discrete-time or continuous-time controller.

• For discrete time, you must specify the sample time of your PID controller using the Controller
sample time (sec) parameter.

 Open-Loop PID Autotuner

19-177

• For continuous time, you must also specify a sample time for the PID autotuning experiment using
the Experiment sample time (sec) parameter.

Programmatic Use
Block Parameter: TimeDomain
Type: character vector
Values: 'discrete-time' | 'continuous-time'
Default: 'discrete-time'

Controller sample time (sec) — Sample time of PID controller
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller in seconds. This value also sets the sample time for the
experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the controller sample time matches.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Dependencies

To enable this parameter, set Time Domain to discrete-time.

Programmatic Use
Block Parameter: DiscreteTs
Type: scalar
Value positive scalar | –1
Default: 0.1

Experiment sample time (sec) — Sample time for experiment
0.02 (default) | positive scalar

Even when you tune a continuous-time controller, you must specify a sample time for the experiment
performed by the block. In general, continuous-time controller tuning is not recommended for PID
autotuning against a physical plant. If you want to tune in continuous time against a Simulink model
of the plant, use a fast experiment sample time, such as 0.02/ωc.

Dependencies

This parameter is enabled when the Time Domain is continuous-time.

Programmatic Use
Block Parameter: ContinuousTs
Type: positive scalar
Default: 0.02

19 Blocks

19-178

Integrator method — Discrete integration formula for integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is:

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows:

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the integrator method matches.

Tunable: Yes
Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller includes
integral action.
Programmatic Use
Block Parameter: IntegratorFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Discrete integration formula for derivative filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is:

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

 Open-Loop PID Autotuner

19-179

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows:

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

When you update a PID Controller block or custom PID controller with tuned parameter values, make
sure the filter method matches.

Tunable: Yes

Dependencies

This parameter is enabled when the Time Domain is discrete-time and the controller includes a
derivative filter term.

Programmatic Use
Block Parameter: FilterFormula
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth, specified in rad/sec, is the target value for the 0-dB gain crossover frequency
of the tuned open-loop response CP, where P is the plant response, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise-time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth, ωc, must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

To provide the target bandwidth via an input port, select Use external source.

Programmatic Use
Block Parameter: Bandwidth
Type: positive scalar

19 Blocks

19-180

Default: 1

Target phase margin (degrees) — Target minimum phase margin of open-loop response
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response at the crossover frequency.
The target phase margin reflects desired robustness of the tuned system. Typically, choose a value in
the range of about 45°–60°. In general, higher phase margin improves overshoot, but can limit
response speed. The default value, 60°, tends to balance performance and robustness, yielding about
5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin via an input port, select Use external source.

Tunable: Yes
Programmatic Use
Block Parameter: TargetPM
Type: scalar
Values: 0–90
Default: 60

Experiment Tab

Sine Amplitudes — Amplitude of sinusoidal perturbations
1 (default) | scalar | vector of length 4

During the tuning experiment, the block injects a sinusoidal signal into the plant at the frequencies
[1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine Amplitudes to specify the
amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 4 to specify a different amplitude at each of [1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower-frequency inputs
and increasing the amplitude of the higher-frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

In the experiment, the sinusoidal signals are superimposed (with the step perturbation, if any, in the
case of open-loop tuning). Thus, the perturbation can be at least as large as the sum of all amplitudes.
Therefore, to obtain appropriate values for the amplitudes, consider:

• Actuator limits. Make sure that the largest possible perturbation is within the range of your plant
actuator. Saturating the actuator can introduce errors into the estimated frequency response.

• How much the plant response changes in response to a given actuator input at the nominal
operating point for tuning. For instance, suppose that you are tuning a PID controller used in

 Open-Loop PID Autotuner

19-181

engine-speed control. You have determined that at frequencies around the target bandwidth, a 1°
change in throttle angle causes a change of about 200 rpm in the engine speed. Suppose further
that to preserve linear performance the speed must not deviate by more than 100 rpm from the
nominal operating point. In this case, choose amplitudes to ensure that the perturbation signal is
no greater than 0.5 (assuming that value is within actuator limits).

To provide the sine amplitudes via an input port, select Use external source.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSine
Type: scalar, vector of length 4
Default: 1

Estimate DC gain with step signal — Inject step signal into plant
on (default) | off

When this option is selected, the experiment includes an estimation of the plant DC gain. The block
performs this estimation by injecting a step signal into the plant.

Caution If your plant has a single integrator, clear this option. For plants with multiple integrators or
unstable poles, do not use the Open-Loop PID Autotuner block.

Tunable: Yes

Programmatic Use
Block Parameter: EstimateDCGain
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Step Amplitude — Amplitude of step perturbation
1 (default) | scalar

If Estimate DC gain with step signal is selected, the block estimates the DC gain by injecting a
step signal into the plant. Use this parameter to set the amplitude of the signal. The considerations
for choosing a step amplitude are the same as the considerations for specifying Sine Amplitudes.

To provide the step amplitude via an input port, select Use external source.

Tunable: Yes

Dependencies

This parameter is enabled when Estimate DC gain with step signal is selected.

Programmatic Use
Block Parameter: AmpStep
Type: scalar
Default: 1

19 Blocks

19-182

Block Tab

Reduce memory and avoid task overrun (external mode only) — Deploy tuning algorithm only
off (default) | on

The block contains two modules, one that performs the real-time frequency-response estimation, and
one that uses the resulting estimated response to tune the PID gains. When you run a Simulink model
containing the block in the external simulation mode, by default both modules are deployed. You can
save memory on the target hardware by deploying the estimation module only (see “Control Real-
Time PID Autotuning in Simulink” on page 8-20). In this case, the tuning algorithm runs on the
Simulink host computer instead of the target hardware. When this option is selected, the deployed
algorithm uses about a third as much memory as when the option is cleared.

The PID gain calculation demands more computational load than the frequency-response estimation.
For fast controller sample times, some hardware might not finish the gain calculation within one
execution cycle. Therefore, when using hardware with limited computing power, selecting this option
lets you tune a PID controller with a fast sample time.

Additionally, when you enable this option, there can be a delay of several sampling periods between
when the tuning experiment ends and when the new PID gains arrive at the pid gains output port.
Before pushing gains to the controller, first confirm the change at the pid gains output port instead
of using start/stop signal as the trigger for the update.

If you intend to deploy the block and perform PID tuning without using external simulation mode, do
not select this option.

Caution When you use this option, the model must be configured such that numeric block
parameters are tunable in generated code, not inlined. To specify tunable parameters:

• In the model editor: In Configuration Parameters, in Code Generation > Optimization, set
Default parameter behavior to Tunable.

• At the command line: Use set_param(mdl,'DefaultParameterBehavior','Tunable').

Programmatic Use
Block Parameter: DeployTuningModule
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Configure block for PLC Coder — Configure block for code generation with Simulink PLC Coder
off (default) | on

Select this parameter if you are using Simulink PLC Coder to generate code for the autotuner block.
Clear the parameter for code generation with any other MathWorks code-generation product.

Selecting this parameter affects internal block configuration only, for compatibility with Simulink PLC
Coder. The parameter has no operative effect on generated code.

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on simulation environment or hardware requirements.

 Open-Loop PID Autotuner

19-183

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Clicking "Update PID Block" writes tuned gains to the PID block connected to "u" port —
Automatically detect target for writing tuned PID coefficients
on (default) | off

Under some conditions, the autotuner block can write tuned gains to a standard or custom PID
controller block. To indicate that the target PID controller is the block connected to the u port of the
autotuner block, select this option. To specify a PID controller that is not connected to u, clear this
option.

To write tuned gains from the autotuner block to a PID controller anywhere in the model, the target
block must be either:

• A PID Controller or Discrete PID Controller block.
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D, and N, or

whatever subset of these parameters exist in the your controller. For example, if you use a custom
PI controller, then you only need mask parameters P and I.

Specify PID block path — Target PID controller block for writing tuned coefficients
[] (default) | block path

Under some conditions, the autotuner block can write tuned gains to a standard or custom PID
controller block. Use this parameter to specify the path of the target PID controller.

To write tuned gains from the autotuner block to a PID controller anywhere in the model, the target
block must be either:

• A PID Controller or Discrete PID Controller block.
• A masked subsystem in which the PID coefficients are mask parameters named P, I, D, and N, or

whatever subset of these parameters exist in your controller

Dependencies

This parameter is enabled when Clicking "Update PID Block" writes tuned gains to the PID
block connected to "u" port is selected.

Update PID Block — Write tuned PID gains to target controller block
button

The block does not automatically push the tuned gains to the target PID block. If your PID controller
block meets the criteria described in the Specify PID block path parameter description, after
tuning, click this button to transfer the tuned gains to the block.

You can update the PID block while the simulation is running, including when running in external
mode. Doing so is useful for immediately validating tuned PID gains. At any time during simulation,
you can change parameters, start the experiment again, and push the new tuned gains to the PID
block. You can then continue to run the model and observe the behavior of your plant.

Export to MATLAB — Send experiment and tuning results to MATLAB workspace
button

19 Blocks

19-184

When you click this button, the block creates a structure in the MATLAB workspace containing the
experiment and tuning results. This structure, OnlinePIDTuningResult, contains the following
fields:

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are necessary for
the controller type you are tuning. For instance, if you are tuning a PI controller, the structure
contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec) parameter of
the block.

• TargetPhaseMargin — The value you specified in the Target phase margin (degrees)
parameter of the block.

• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or pidstd (for

ideal form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the response

data obtained at the experiment frequencies [1/3, 1, 3, 10]ωc.
• PlantNominal — The plant input and output at the nominal operating point when the experiment

begins, specified as a structure having fields u (input) and y (output).
• PlantDCGain — The estimated DC gain of the system in absolute units, if Estimate DC gain

with step signal is selected during tuning.

You can export to the MATLAB workspace while the simulation is running, including when running in
external mode.

Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Closed-Loop PID Autotuner

Topics
“PID Autotuning for a Plant Modeled in Simulink” on page 8-7
“PID Autotuning in Real Time” on page 8-13
“When to Use PID Autotuning” on page 8-2
“How PID Autotuning Works” on page 8-5

 Open-Loop PID Autotuner

19-185

Passivity Enforcement
Modify control actions to satisfy passivity constraints and action bounds

Libraries:
Simulink Control Design

Description
The Passivity Enforcement block computes the modified control actions that are closest to specified
control actions subject to passivity constraints and action bounds.

The block uses a quadratic programming (QP) solver to find the control action u that minimizes the
function u− u0

2 in real time. Here, u0 is the unmodified control action from the controller.

The solver applies the following constraints to the optimization problem.

ρypTyp + ypT fp + ypTgpu ≤ 0
umin ≤ u ≤ umax

Here:

• ρ is the passivity index.
• yp is the passivity output function, defined as yp = hp(x).
• fp and gp are the functions defined by the passivity input function up = fp(x) + gp(x)u.
• umin is a lower bound for the control action.
• umax is an upper bound for the control action.

For more information on passivity enforcement, see “Passivity Enforcement for Control Design” on
page 16-6.

Ports
Input

u0 — Control actions
scalar | vector

Unmodified control actions, specified as a scalar or a vector.

If the Number of actions parameter is 1, connect u0 to a scalar signal. Otherwise, connect u0 to a
vector signal with length equal to Number of actions.

19 Blocks

19-186

fp — Passivity input function offset coefficient
scalar | vector

Offset coefficient fp in the following constraint equation.

up = fp(x) + gp(x)u

Connect fp to an Nu-by-1 signal, where Nu is equal to the Number of actions parameter.

gp — Passivity input function linear coefficient
scalar | matrix

Linear coefficient gp in the following constraint equation.

up = fp(x) + gp(x)u

Connect gp to an Nu-by-Nu signal, where Nu is equal to the Number of actions parameter.

yp — Passivity output function
scalar | vector

Passivity output function, defined as the following function of plant states.

yp = hp(x)

Connect yp to an Nu-by-1 signal, where Nu is equal to the Number of actions parameter.

umax — Action signal upper bounds
scalar | vector

To specify run-time upper bounds to the action signals, enable this input port. If this port is disabled,
the block does not apply any upper bounds to the control actions.

If the Number of actions parameter is 1, connect umax to a scalar signal. Otherwise, connect umax
to a vector signal with length equal to Number of actions.
Dependencies

To enable this input port, select the Use external source for upper bound parameter.

umin — Action signal lower bounds
scalar | vector

To specify run-time lower bounds to the action signals, enable this input port. If this port is disabled,
the block does not apply any lower bounds to the control actions.

If the Number of actions parameter is 1, connect umin to a scalar signal. Otherwise, connect umin
to a vector signal with length equal to Number of actions.
Dependencies

To enable this input port, select the Use external source for lower bound parameter.

Output

u* — Modified control action
scalar | vector

 Passivity Enforcement

19-187

Modified control action returned by the QP solver.

If the solver finds a solution before reaching the maximum number of iterations, u* outputs this
optimal solution.

If the solver reaches the maximum number of iterations, optimization stops and u* outputs a
suboptimal solution.

If the initial optimization problem is infeasible, the returned control action depends on the whether
the block is configured to ignore constraint or action bounds. For more information, see the exitflag
parameter.

If the Number of actions parameter is 1, u* outputs a scalar signal. Otherwise, u* outputs a vector
signal with length equal to Number of actions.

exitflag — Optimization status
1 | 0 | negative integer

Optimization status of the QP solver. The following table shows the possible status values.

Exit Flag Description
1 The solver converged to an optimal solution with

all constraints and bounds active. In this case, u*
outputs the optimal control actions.

0 The solver reached the maximum number of
iterations. The control actions output in u* might
be suboptimal.

negative integer The initial optimization problem was infeasible.

Dependencies

To enable this output port, select the Optimization status parameter.

Parameters
Parameters Tab

Number of actions — Number of control actions
1 (default) | positive integer

Specify the number of actions to apply bounds to and optimize.

Programmatic Use
Block Parameter: nu
Type: character vector
Default: '1'

Passivity index — Passivity index
0.1 (default) | nonnegative scalar | nonnegative vector

Specify passivity index to enforce. Specify Passivity index as a nonnegative scalar or as a vector of
nonnegative values with dimensions equal to Nu-by-1, where Nu is equal to the Number of actions
parameter.

19 Blocks

19-188

Programmatic Use
Block Parameter: rho
Type: character vector
Default: '0.1'

Use external source for upper bound — Add upper action bound input port
off (default) | on

Select this parameter to add the umax input port for external upper action bounds.

Programmatic Use
Block Parameter: external_umax
Type: character vector
Values: 'off'|'on'
Default: 'off'

Use external source for lower bound — Add lower action bound input port
off (default) | on

Select this parameter to add the umin input port for external lower action bounds.

Programmatic Use
Block Parameter: external_umin
Type: character vector
Values: 'off'|'on'
Default: 'off'

Block Tab

Sample time — Optimization sample time
0.1 (default) | positive scalar

Specify the sample time for running the optimization.

Programmatic Use
Block Parameter: Ts
Type: character vector
Default: '0.1'

Maximum iterations — Maximum optimization iterations
200 (default) | positive integer

Specify the maximum number of optimization iterations.

Programmatic Use
Block Parameter: maxiter
Type: character vector
Default: '200'

Constraint tolerance — Tolerance for constraint violations
1e-6 (default) | nonnegative scalar

Specify a tolerance value for constraint violations.

Programmatic Use
Block Parameter: tol

 Passivity Enforcement

19-189

Type: character vector
Default: '1e-6'

Optimization status — Add exit flag output port
off (default) | on

Select this parameter to add the exitflag output port for the optimization status of the QP solver.

Programmatic Use
Block Parameter: exitflag
Type: character vector
Values: 'off'|'on'
Default: 'off'

Version History
Introduced in R2023a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The Constraint Enforcement block supports code generation for double-precision signals only.

See Also
Constraint Enforcement | Barrier Certificate Enforcement

Topics
“Passivity Enforcement for Control Design” on page 16-6

19 Blocks

19-190

Pole-Zero Plot
Pole-zero plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is the same as the Check Pole-Zero Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a Simulink model and plot the poles and zeros on a pole-zero map.

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs, and plots the poles and zeros of the linear system.

The Simulink model can be continuous- or discrete-time or multirate and can have time delays.
Because you can specify only one linearization input/output pair in this block, the linear system is
Single-Input Single-Output (SISO).

You can specify multiple bounds that approximate second-order characteristics on the pole locations
and view them on the plot. You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

You can add multiple Pole-Zero Plot blocks to compute and plot the poles and zeros of various
portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation mode.

 Pole-Zero Plot

19-191

Parameters
The following table summarizes the Pole-Zero Plot block parameters, accessible via the block
parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs (I/

Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 19-193.

• “Click a signal in the model
to select it” on page 19-195.

Specify settings. In Linearizations tab:

• “Linearize on” on page 19-
197.

• “Snapshot times” on page
19-198.

• “Trigger type” on page 19-
199.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 19-199.

• “Use exact delays” on page
19-200.

• “Linear system sample time”
on page 19-201.

• “Sample time rate
conversion method” on page
19-202.

• “Prewarp frequency (rad/s)”
on page 19-203.

Specify labels for linear system
I/Os and state names.

In Labels of Linearizations
tab:

• “Use full block names” on
page 19-203.

• “Use bus signal names” on
page 19-204.

Plot the linear system. Show Plot on page 19-219

19 Blocks

19-192

Task Parameters
(Optional) Specify bounds on pole-zero for assertion. In Bounds tab:

• Include settling time bound
in assertion on page 19-205.

• Include percent overshoot
bound in assertion on page
19-207.

• Include damping ratio bound
in assertion on page 19-209.

• Include natural frequency
bound in assertion on page
19-211.

Specify assertion options (only when you specify bounds on the
linear system).

In Assertion tab:

• “Enable assertion” on page
19-215.

• “Simulation callback when
assertion fails (optional)” on
page 19-217.

• “Stop simulation when
assertion fails” on page 19-
217.

• “Output assertion signal” on
page 19-218.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 19-213 in Logging tab.

Display plot window instead of block parameters dialog box on
double-clicking the block.

“Show plot on block open” on
page 19-219.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model to linearize.

If you have defined the linearization input and output in the Simulink model, the block automatically

detects these points and displays them in the Linearization inputs/outputs area. Click at any
time to update the Linearization inputs/outputs table with I/Os from the model. To add other
analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on page 19-195

area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model to select
it area.

 Pole-Zero Plot

19-193

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for filtering element
names in the Filter by name edit box. The name match is case-sensitive. Additionally, you can
enter a MATLAB regular expression.

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 19-196
• “Show filtered results as a flat list” on page 19-196

4
Click to add the selected signals to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal and click

.

Tip To find the location in the Simulink model corresponding to a signal in the Linearization

inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number adjacent to
the block name is the port number where the selected bus signal is located.
The last entry is the selected bus element name.

19 Blocks

19-194

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after a loop
opening.

• Open-loop Output — Specifies a linearization output point before a
loop opening.

• Loop Transfer — Specifies an output point before a loop opening
followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an output

measurement.
• Complementary Sensitivity — Specifies an output followed by an

additive input.

Note If you simulate the model without specifying an input or output, the software does not compute
a linear system. Instead, you see a warning message at the MATLAB prompt.

Settings

No default

Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization inputs/
outputs table. For more information, see Linearization inputs/outputs on page 19-193.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

 Pole-Zero Plot

19-195

Settings

No default
Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and outputs.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example, entering t$ in
the Filter by name edit box displays all signals whose names end with a lowercase t (and their
immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats the text
you enter in the Filter by name edit box as a literal character vector.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box () enables this
parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the Filter by
name edit box. The flat list format uses dot notation to reflect the hierarchy of bus signals. The
following is an example of a flat list format for a filtered set of nested bus signals.

19 Blocks

19-196

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies with dot
notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box () enables this
parameter.

Linearize on

When to compute the linear system during simulation.
Settings

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 19-198.

Use when you:

• Know one or more times when the model is at a steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 19-199.

Use when a signal generated during simulation indicates steady-state operating point.

 Pole-Zero Plot

19-197

Selecting this option adds a trigger port to the block. Use this port to connect the block to the
trigger signal.

For example, for an aircraft model, you might want to compute the linear system whenever the
fuel mass is a fraction of the maximum fuel mass. In this case, model this condition as an external
trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Snapshot times

One or more simulation times. The linear system is computed at these times.

Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot linear
systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on on page 19-197 enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

19 Blocks

19-198

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on on page 19-197 enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system characteristics
at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 19-198.

As shown in the following figure, when zero-crossing detection is enabled, the variable-step
Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may lie between the
simulation time steps Tn-1 and Tn which are automatically chosen by the solver.

• The exact times when an external trigger is detected, specified in Trigger type on page 19-199.

As shown in the following figure, when zero-crossing detection is enabled, the variable-step
Simulink solver simulates the model at the time, Ttrig, when the trigger signal is detected. Ttrig
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen by the
solver.

 Pole-Zero Plot

19-199

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the Simulink User
Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when a trigger
signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-step solver
chooses. The software may not compute the linear system at the exact snapshot time or exact
time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

19 Blocks

19-200

 Off
Return a linear model with Padé approximations of delays, as specified in your Transport Delay
and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time system
• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the software
uses the conversion method specified in Sample time rate conversion method on page 19-202.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multirate models), least common

multiple of the sample times. For example, if you have a mix of continuous-time and discrete-
time blocks with sample times of 0, 0.2 and 0.3, the sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: character vector
Value: 'auto' | Positive finite value | '0'
Default: 'auto'

 Pole-Zero Plot

19-201

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Sample time rate conversion method

Method for converting the sample time of single-rate or multirate models.

This parameter is used only when the value of Linear system sample time on page 19-201 is not
auto.

Settings

Default: Zero-Order Hold

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the sampling time
Ts. For more information, see “Zero-Order Hold”.

This method usually performs better in the time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds off fractional
time delays to the nearest multiple of the sampling time. For more information, see “Tustin
Approximation”.

This method usually performs better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp frequency in
Prewarp frequency (rad/s). For more information, see “Tustin Approximation”.

This method usually performs better in the frequency domain. Use this method to ensure
matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold otherwise.

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear) otherwise.

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping otherwise.
Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

19 Blocks

19-202

Dependencies

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 19-203.

Command-Line Information
Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A value of 0
corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 19-202 enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use full block names

 Pole-Zero Plot

19-203

How the state, input and output names appear in the linear system computed during simulation.

The linear system is a state-space object, and system states and input/output names appear in
following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For example, in
the scdcstr model used in the “Plot Linear System Characteristics of a Chemical Reactor” on
page 2-95 example, a state in the Integrator1 block of the CSTR subsystem appears with full
path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is unique and you
know where the signal is location in your Simulink model. For example, a state in the
Integrator1 block of the CSTR subsystem appears as Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the linear system
computed during simulation (applies only when you select an entire bus as an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

19 Blocks

19-204

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include settling time bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the settling time, specified
in Settling time (sec) <= on page 19-206. The software displays a warning if the poles lie outside
the region defined by the settling time bound.

This parameter is used for assertion only if Enable assertion on page 19-215 in the Assertion tab is
selected.

You can specify multiple settling time bounds on the linear system. The bounds also appear on the
pole-zero plot. If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

Settings

Default:

• Off for Pole-Zero Plot block.
• On for Check Pole-Zero Characteristics block.

 On
Check that each pole lies in the region defined by the settling time bound, during simulation.

 Pole-Zero Plot

19-205

 Off
Do not check that each pole lies in the region defined by the settling time bound, during
simulation.

Tips

• Clearing this parameter disables the settling time bounds and the software stops checking that
the bounds are satisfied during simulation. The bounds are also greyed out on the plot.

• If you also specify other bounds, such as percent overshoot on page 19-207, damping ratio on
page 19-209 or natural frequency on page 19-211, but want to exclude the settling time bound
from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableSettlingTime
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Pole-Zero Plot block, 'on' for Check Pole-Zero Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Settling time (sec) <=

Settling time, in seconds, of the second-order system.

Settings

Default:
[] for Pole-Zero Plot block
1 for Check Pole-Zero Characteristics block

• Finite positive real scalar for one bound.
• Cell array of finite positive real scalars for multiple bounds.

19 Blocks

19-206

Tips

• To assert that the settling time bounds are satisfied, select both Include settling time bound in
assertion on page 19-205 and Enable assertion on page 19-215.

• You can add or modify settling time bounds from the plot window:

• To add a new settling time bound, right-click the plot, and select Bounds > New Bound.
Specify the new value in Settling time.

• To modify a settling time bound, drag the corresponding bound segment. Alternatively, right-
click the bound and select Bounds > Edit. Specify the new value in Settling time (sec) <.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: SettlingTime
Type: character vector
Value: [] | 1 | finite positive real scalar| cell array of finite positive real
scalars. Must be specified inside single quotes ('').
Default: '[]' for Pole-Zero Plot block, '1' for Check Pole-Zero Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include percent overshoot bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the percent overshoot,
specified in Percent overshoot <= on page 19-206. The software displays a warning if the poles lie
outside the region defined by the percent overshoot bound.

This parameter is used for assertion only if Enable assertion on page 19-215 in the Assertion tab is
selected.

You can specify multiple percent overshoot bounds on the linear system. The bounds also appear on
the pole-zero plot. If you clear Enable assertion, the bounds are not used for assertion but continues
to appear on the plot.

Settings

Default:
Off for Pole-Zero Plot block.
On for Check Pole-Zero Characteristics block.

 On
Check that each pole lies in the region defined by the percent overshoot bound, during
simulation.

 Off
Do not check that each pole lies in the region defined by the percent overshoot bound, during
simulation.

 Pole-Zero Plot

19-207

Tips

• Clearing this parameter disables the percent overshoot bounds and the software stops checking
that the bounds are satisfied during simulation. The bounds are also greyed out on the plot.

• If you specify other bounds, such as settling time on page 19-205, damping ratio on page 19-209
or natural frequency on page 19-211, but want to exclude the percent overshoot bound from
assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnablePercentOvershoot
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Pole-Zero Plot block, 'on' for Check Pole-Zero Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Percent overshoot <=

Percent overshoot of the second-order system.

Settings

Default:
[] for Pole-Zero Plot block
10 for Check Pole-Zero Characteristics block

Minimum: 0

19 Blocks

19-208

Maximum: 100

• Real scalar for single percent overshoot bound.
• Cell array of real scalars for multiple percent overshoot bounds.

Tips

• The percent overshoot p.o can be expressed in terms of the damping ratio on page 19-210 ζ, as:

p . o . = 100e−πζ / 1 − ζ2
.

• To assert that the percent overshoot bounds are satisfied, select both Include percent overshoot
bound in assertion on page 19-205 and Enable assertion on page 19-215.

• You can add or modify percent overshoot bounds from the plot window:

• To add a new percent overshoot bound, right-click the plot, and select Bounds > New Bound.
Select Percent overshoot in Design requirement type and specify the value in Percent
overshoot <.

• To modify a percent overshoot bound, drag the corresponding bound segment. Alternatively,
right-click the bound, and select Bounds > Edit. Specify the new damping ratio for the
corresponding percent overshoot value in Damping ratio >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: PercentOvershoot
Type: character vector
Value: [] | 10 | real scalar between 0 and 100 | cell array of real scalars between
0 and 100. Must be specified inside single quotes ('').
Default: '[]' for Pole-Zero Plot block, '10' for Check Pole-Zero Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include damping ratio bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the damping ratio,
specified in Damping ratio >= on page 19-209. The software displays a warning if the poles lie
outside the region defined by the damping ratio bound.

This parameter is used for assertion only if Enable assertion on page 19-215 in the Assertion tab is
selected.

You can specify multiple damping ratio bounds on the linear system. The bounds also appear on the
pole-zero plot. If you clear Enable assertion, the bounds are not used for assertion but continues to
appear on the plot.

Settings

Default: Off

 Pole-Zero Plot

19-209

 On
Check that each pole lies in the region defined by the damping ratio bound, during simulation.

 Off
Do not check that each pole lies in the region defined by the damping ratio bound, during
simulation.

Tips

• Clearing this parameter disables the damping ratio bounds and the software stops checking that
the bounds are satisfied during simulation. The bounds are also greyed out on the plot.

• If you specify other bounds, such as settling time on page 19-205, percent overshoot on page 19-
207 or natural frequency on page 19-211, but want to exclude the damping ratio bound from
assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableDampingRatio
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Damping ratio >=

Damping ratio of the second-order system.

19 Blocks

19-210

Settings

Default: []

Minimum: 0

Maximum: 1

• Finite positive real scalar for single damping ratio bound.
• Cell array of finite positive real scalars for multiple damping ratio bounds.

Tips

• The damping ratio ζ, and percent overshoot p.o are related as:

p . o . = 100e−πζ / 1 − ζ2
.

• To assert that the damping ratio bounds are satisfied, select both Include damping ratio bound
in assertion on page 19-209 and Enable assertion on page 19-215.

• You can add or modify damping ratio bounds from the plot window:

• To add a new damping ratio bound, right-click the plot and select Bounds > New Bound.
Select Damping ratio in Design requirement type and specify the value in Damping ratio
>.

• To modify a damping ratio bound, drag the corresponding bound segment or right-click it and
select Bounds > Edit. Specify the new value in Damping ratio >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: DampingRatio
Type: character vector
Value: [] | finite positive real scalar between 0 and 1 | cell array of finite
positive real scalars between 0 and 1 . Must be specified inside single quotes ('').
Default: '[]'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include natural frequency bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the natural frequency,
specified in Natural frequency (rad/sec) on page 19-212. The natural frequency bound can be
greater than, less than or equal one or more specific values. The software displays a warning if the
pole locations do not satisfy the region defined by the natural frequency bound.

This parameter is used for assertion only if Enable assertion on page 19-215 in the Assertion tab is
selected.

You can specify multiple natural frequency bounds on the linear system. The bounds also appear on
the pole-zero plot. If Enable assertion is cleared, the bounds are not used for assertion but continue
to appear on the plot.

 Pole-Zero Plot

19-211

Settings

Default: Off

 On
Check that each pole lies in the region defined by the natural frequency bound, during simulation.

 Off
Do not check that each pole lies in the region defined by the natural frequency bound, during
simulation.

Tips

• Clearing this parameter disables the natural frequency bounds and the software stops checking
that the bounds are satisfied during simulation. The bounds are also greyed out on the plot.

• If you also specify settling time on page 19-205, percent overshoot on page 19-207 or damping
ratio on page 19-209 bounds and want to exclude the natural frequency bound from assertion,
clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: NaturalFrequencyBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Natural frequency (rad/sec)

Natural frequency of the second-order system.

19 Blocks

19-212

Settings

Default: []

• Finite positive real scalar for single natural frequency bound.
• Cell array of finite positive real scalars for multiple natural frequency bounds.

Tips

• To assert that the natural frequency bounds are satisfied, select both Include natural frequency
bound in assertion on page 19-209 and Enable assertion on page 19-215.

• You can add or modify natural frequency bounds from the plot window:

• To add a new natural frequency bound, right-click the plot and select Bounds > New Bound.
Select Natural frequency in Design requirement type and specify the natural frequency
in Natural frequency.

• To modify a natural frequency bound, drag the corresponding bound segment or right-click it
and select Bounds > Edit. Specify the new value in Natural frequency.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: NaturalFrequency
Type: character vector
Value: [] | positive finite real scalar | cell array of positive finite real
scalars. Must be specified inside single quotes ('').
Default: '[]'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is computed at

multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in values. This field

exists only if Save operating points for each linearization is checked.

The location of the saved data structure depends upon the configuration of the Simulink model:

• If the Simulink model is not configured to save simulation output as a single object, the data
structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the data structure
is a field in the Simulink.SimulationOutput object that contains the logged simulation data.

 Pole-Zero Plot

19-213

To configure your model to save simulation output in a single object, in the Simulink editor, on the
Modeling tab, click Model Settings. Then, in the Configuration Parameters dialog box, select
the Single simulation output parameter.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name on page 19-214.

Command-Line Information
Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Variable name

Name of the data structure that stores one or more linear systems computed during simulation.

The location of the saved data structure depends upon the configuration of the Simulink model:

• If the Simulink model is not configured to save simulation output as a single object, the data
structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the data structure
is a field in the Simulink.SimulationOutput object that contains the logged simulation data.

The name must be unique among the variable names used in all data logging model blocks, such as
Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To Workspace blocks, and
simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Settings

Default: sys

19 Blocks

19-214

Character vector.
Dependencies

Save data to workspace on page 19-213 enables this parameter.
Command-Line Information
Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also save the
operating point corresponding to each linearization. Using this option adds a field named
operatingPoints to the data structure that stores the saved linear systems.
Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace on page 19-213 enables this parameter.
Command-Line Information
Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds tab are
satisfied during simulation. Assertion fails if a bound is not satisfied. A warning, reporting the
assertion failure, appears at the MATLAB prompt.

 Pole-Zero Plot

19-215

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion fails
(optional) on page 19-217.

• Stop the simulation and bring that block into focus, by selecting Stop simulation when
assertion fails on page 19-217.

For the Linear Analysis Plots blocks, this parameter has no effect because no bounds are included by
default. If you want to use the Linear Analysis Plots blocks for assertion, specify and include bounds
in the Bounds tab.

Clearing this parameter disables assertion; that is, the block no longer checks that specified bounds
are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters dialog box, the Model Verification block
enabling parameter lets you enable or disable all model verification blocks in a model, regardless of
the setting of this option in the block.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during simulation. A
warning, reporting assertion failure, is displayed at the MATLAB prompt if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

19 Blocks

19-216

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion on page 19-215 enables this parameter.

Command-Line Information
Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during simulation, i.e.,
assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window opens to
display an error message. Also, the block where the bound violation occurs is highlighted in the
model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails, assertion failures
that might occur later during the simulation are not reported. If you want all assertion failures to
be reported, do not select this option.

 Pole-Zero Plot

19-217

Dependencies

Enable assertion on page 19-215 enables this parameter.
Command-Line Information
Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds; that is, all bounds are satisfied
• False (1) if assertion fails; that is, a bound is violated.

The output signal data type is Boolean only if, in the Simulink model, in the Configuration Parameters
dialog box, the Implement logic signals as Boolean data parameter is selected. Otherwise, the
data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any block in the
model.
Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Verify Model Using
Simulink Control Design and Simulink Verification Blocks” on page 17-20.

Command-Line Information
Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

19 Blocks

19-218

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click the block in
the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying bounds, in
the plot window instead of the Block Parameters dialog box. If you want to access the block

parameters from the plot window, select Edit or click .

For more information on the plot, see “Show Plot” on page 19-0 .

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when you double-click the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Show Plot

Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system characteristics or
signal.

You can display additional characteristics, such as the peak response time, by right-clicking the
plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-click the
plot and select Bounds > New Bound. For more information on the types of bounds you can
specify, see the individual reference pages.

 Pole-Zero Plot

19-219

You can modify bounds by dragging the bound segment or by right-clicking the plot and selecting
Bounds > Edit Bound. Before you simulate the model, click Update Block to update the bound
value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting View >
Highlight Simulink Block. This action makes the model window active and highlights the block.

•
Simulating the model by clicking . This action also linearizes the portion of the model between
the specified linearization input and output.

•
Adding a legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the Bounds tab,
open the Response Optimizer by selecting Tools > Response Optimization in the plot window.
This option is only available if you have Simulink Design Optimization software installed.

Response Optimization

Open the Response Optimizer to optimize the model response to meet design requirements
specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design Optimization)
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”

(Simulink Design Optimization)

See Also
Check Pole-Zero Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95

19 Blocks

19-220

Version History
Introduced in R2010b

 Pole-Zero Plot

19-221

Singular Value Plot
Singular value plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is the same as the Check Singular Value Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on a singular
value plot.

During simulation, the software linearizes the portion of the model between specified linearization
inputs and outputs, and plots the singular values of the linear system.

The Simulink model can be continuous-time, discrete-time, or multirate, and can have time delays.
The linear system can be single-input single-output (SISO) or multi-input multi-output (MIMO). For
MIMO systems, the block displays plots for all input/output combinations.

You can specify piecewise-linear frequency-dependent upper and lower singular value bounds and
view them on the plot. You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts and a warning message appears in the MATLAB

Command Window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal.

• If all bounds are satisfied, the signal is true (1).
• If any bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the singular values of linear systems computed for all input/
output combinations.

You can add multiple Singular Value Plot blocks to compute and plot the singular values of various
portions of the model.

19 Blocks

19-222

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation mode.

Parameters
The following table summarizes the Singular Value Plot block parameters, accessible via the block
parameter dialog box.

Task Parameters
Configure linearization. Specify inputs and outputs (I/

Os).
In Linearizations tab:

• “Linearization inputs/
outputs” on page 19-224.

• “Click a signal in the model
to select it” on page 19-226.

Specify settings. In Linearizations tab:

• “Linearize on” on page 19-
228.

• “Snapshot times” on page
19-229.

• “Trigger type” on page 19-
230.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 19-230.

• “Use exact delays” on page
19-231.

• “Linear system sample time”
on page 19-232.

• “Sample time rate
conversion method” on page
19-233.

• “Prewarp frequency (rad/s)”
on page 19-234.

Specify labels for linear system
I/Os and state names.

In Labels of Linearizations
tab:

• “Use full block names” on
page 19-234.

• “Use bus signal names” on
page 19-235.

Plot the linear system. Show Plot on page 19-248

 Singular Value Plot

19-223

Task Parameters
(Optional) Specify bounds on singular values for assertion. In Bounds tab:

• Include upper singular value
bound in assertion on page
19-236.

• Include lower singular value
bound in assertion on page
19-239.

Specify assertion options (only when you specify bounds on the
linear system).

In Assertion tab:

• “Enable assertion” on page
19-244.

• “Simulation callback when
assertion fails (optional)” on
page 19-245.

• “Stop simulation when
assertion fails” on page 19-
246.

• “Output assertion signal” on
page 19-247.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 19-242 in Logging tab.

Display plot window instead of block parameters dialog box on
double-clicking the block.

“Show plot on block open” on
page 19-247.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model to linearize.

If you have defined the linearization input and output in the Simulink model, the block automatically

detects these points and displays them in the Linearization inputs/outputs area. Click at any
time to update the Linearization inputs/outputs table with I/Os from the model. To add other
analysis points:

1
Click .

The dialog box expands to display a Click a signal in the model to select it on page 19-226

area and a new button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the model to select
it area.

19 Blocks

19-224

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for filtering element
names in the Filter by name edit box. The name match is case-sensitive. Additionally, you can
enter a MATLAB regular expression.

To modify the filtering options, click . To hide the filtering options, click .

Filtering Options

• “Enable regular expression” on page 19-227
• “Show filtered results as a flat list” on page 19-227

4
Click to add the selected signals to the Linearization inputs/outputs table.

To remove a signal from the Linearization inputs/outputs table, select the signal and click

.

Tip To find the location in the Simulink model corresponding to a signal in the Linearization

inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number adjacent to
the block name is the port number where the selected bus signal is located.
The last entry is the selected bus element name.

 Singular Value Plot

19-225

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after a loop
opening.

• Open-loop Output — Specifies a linearization output point before a
loop opening.

• Loop Transfer — Specifies an output point before a loop opening
followed by an input.

• Input Perturbation — Specifies an additive input to a signal.
• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an output

measurement.
• Complementary Sensitivity — Specifies an output followed by an

additive input.

Note If you simulate the model without specifying an input or output, the software does not compute
a linear system. Instead, you see a warning message at the MATLAB prompt.

Settings

No default

Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new button.

Use to add a selected signal as a linearization input or output in the Linearization inputs/
outputs table. For more information, see Linearization inputs/outputs on page 19-224.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

19 Blocks

19-226

Settings

No default
Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and outputs.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example, entering t$ in
the Filter by name edit box displays all signals whose names end with a lowercase t (and their
immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering treats the text
you enter in the Filter by name edit box as a literal character vector.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box () enables this
parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the Filter by
name edit box. The flat list format uses dot notation to reflect the hierarchy of bus signals. The
following is an example of a flat list format for a filtered set of nested bus signals.

 Singular Value Plot

19-227

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies with dot
notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box () enables this
parameter.

Linearize on

When to compute the linear system during simulation.
Settings

Default: Simulation snapshots

Simulation snapshots
Specific simulation time, specified in Snapshot times on page 19-229.

Use when you:

• Know one or more times when the model is at a steady-state operating point
• Want to compute the linear systems at specific times

External trigger
Trigger-based simulation event. Specify the trigger type in Trigger type on page 19-230.

Use when a signal generated during simulation indicates steady-state operating point.

19 Blocks

19-228

Selecting this option adds a trigger port to the block. Use this port to connect the block to the
trigger signal.

For example, for an aircraft model, you might want to compute the linear system whenever the
fuel mass is a fraction of the maximum fuel mass. In this case, model this condition as an external
trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: character vector
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Snapshot times

One or more simulation times. The linear system is computed at these times.

Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot linear
systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on on page 19-228 enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: character vector
Value: 0 | positive real number | vector of positive real numbers
Default: 0
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

 Singular Value Plot

19-229

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge
Rising edge of the external trigger signal.

Falling edge
Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on on page 19-228 enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: character vector
Value: 'rising' | 'falling'
Default: 'rising'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system characteristics
at the following simulation times:

• The exact snapshot times, specified in Snapshot times on page 19-229.

As shown in the following figure, when zero-crossing detection is enabled, the variable-step
Simulink solver simulates the model at the snapshot time Tsnap. Tsnap may lie between the
simulation time steps Tn-1 and Tn which are automatically chosen by the solver.

• The exact times when an external trigger is detected, specified in Trigger type on page 19-230.

As shown in the following figure, when zero-crossing detection is enabled, the variable-step
Simulink solver simulates the model at the time, Ttrig, when the trigger signal is detected. Ttrig
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen by the
solver.

19 Blocks

19-230

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the Simulink User
Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when a trigger
signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-step solver
chooses. The software may not compute the linear system at the exact snapshot time or exact
time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Singular Value Plot

19-231

 Off
Return a linear model with Padé approximations of delays, as specified in your Transport Delay
and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time system
• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa, the software
uses the conversion method specified in Sample time rate conversion method on page 19-233.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multirate models), least common

multiple of the sample times. For example, if you have a mix of continuous-time and discrete-
time blocks with sample times of 0, 0.2 and 0.3, the sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different sample time

0
Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: character vector
Value: 'auto' | Positive finite value | '0'
Default: 'auto'

19 Blocks

19-232

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Sample time rate conversion method

Method for converting the sample time of single-rate or multirate models.

This parameter is used only when the value of Linear system sample time on page 19-232 is not
auto.

Settings

Default: Zero-Order Hold

Zero-Order Hold
Zero-order hold, where the control inputs are assumed piecewise constant over the sampling time
Ts. For more information, see “Zero-Order Hold”.

This method usually performs better in the time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds off fractional
time delays to the nearest multiple of the sampling time. For more information, see “Tustin
Approximation”.

This method usually performs better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp frequency in
Prewarp frequency (rad/s). For more information, see “Tustin Approximation”.

This method usually performs better in the frequency domain. Use this method to ensure
matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise
Upsample a discrete-time system when possible and use Zero-Order Hold otherwise.

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

Upsampling when possible, Tustin otherwise
Upsample a discrete-time system when possible and use Tustin (bilinear) otherwise.

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise
Upsample a discrete-time system when possible and use Tustin with Prewarping otherwise.
Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert a discrete-time system to a new faster sample time that
is an integer multiple of the sample time of the original system.

 Singular Value Plot

19-233

Dependencies

Selecting either:

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s) on page 19-234.

Command-Line Information
Parameter: RateConversionMethod
Type: character vector
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'| 'upsampling_tustin'|
'upsampling_prewarp'
Default: 'zoh'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A value of 0
corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping
• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method on page 19-233 enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: character vector
Value: 10 | positive scalar value
Default: 10
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use full block names

19 Blocks

19-234

How the state, input and output names appear in the linear system computed during simulation.

The linear system is a state-space object, and system states and input/output names appear in
following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object
Property

Linearization input name InputName
Linearization output name OutputName
State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy. For example, in
the scdcstr model used in the “Plot Linear System Characteristics of a Chemical Reactor” on
page 2-95 example, a state in the Integrator1 block of the CSTR subsystem appears with full
path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name is unique and you
know where the signal is location in your Simulink model. For example, a state in the
Integrator1 block of the CSTR subsystem appears as Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the linear system
computed during simulation (applies only when you select an entire bus as an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

 Singular Value Plot

19-235

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include upper singular value bound in assertion

Check that the singular values satisfy upper bounds, specified in Frequencies (rad/sec) on page 19-
237 and Magnitude (dB) on page 19-238, during simulation. The software displays a warning during
simulation if the singular values violate the upper bound.

This parameter is used for assertion only if Enable assertion on page 19-244 in the Assertion tab is
selected.

You can specify multiple upper singular value bounds on the linear system. The bounds also appear
on the singular value plot. If you clear Enable assertion, the bounds are not used for assertion but
continue to appear on the plot.
Settings

Default:

• Off for Singular Value Plot block.
• On for Check Singular Value Characteristics block.

 On
Check that the singular value satisfies the specified upper bounds, during simulation.

 Off
Do not check that the singular value satisfies the specified upper bounds, during simulation.

19 Blocks

19-236

Tips

• Clearing this parameter disables the upper singular value bounds and the software stops checking
that the bounds are satisfied during simulation. The bound segments are also greyed out on the
plot.

• If you specify both upper and lower singular value bounds on page 19-239 but want to include
only the lower bounds for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableUpperBound
Type: character vector
Value: 'on' | 'off'
Default: 'off' for Singular Value Plot block, 'on' for Check Singular Value Characteristics block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Frequencies (rad/sec)

Frequencies for one or more upper singular value bound segments, specified in radians/sec.

Specify the corresponding magnitudes in Magnitude (dB) on page 19-238.

Settings

Default:
[] for Singular Value Plot block
[0.1 100] for Check Singular Value Characteristics block

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds.

 Singular Value Plot

19-237

Tips

• To assert that magnitudes that correspond to the frequencies are satisfied, select both Include
upper singular value bound in assertion on page 19-236 and Enable assertion on page 19-
244.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound. Select Upper
gain limit in Design requirement type, and specify the frequencies in the Frequency
column. Specify the corresponding magnitudes in the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the segment, and
select Bounds > Edit Bound. Specify the new frequencies in the Frequency column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundFrequencies
Type: character vector
Value: [] | [0.1 100] | positive finite numbers | matrix of positive finite numbers | cell array of
matrices with positive finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Singular Value Plot block, '[0.1 100]' for Check Singular Value Characteristics
block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Magnitudes (dB)

Magnitude values for one or more upper singular value bound segments, specified in decibels.

Specify the corresponding frequencies in Frequencies (rad/sec) on page 19-237.

Settings

Default:
[] for Singular Value Plot block
[0 0] for Check Singular Value Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [0 0; 10 10] for two edges at magnitudes [0 0] and [10 10].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that magnitudes are satisfied, select both Include upper singular value bound in
assertion on page 19-236 and Enable assertion on page 19-244.

19 Blocks

19-238

• You can add or modify magnitudes from the plot window:

• To add a new magnitude, right-click the plot, and select Bounds > New Bound. Select Upper
gain limit in Design requirement type, and specify the magnitude in the Magnitude
column. Specify the corresponding frequencies in the Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the segment, and
select Bounds > Edit Bound. Specify the new magnitudes in the Magnitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundMagnitudes
Type: character vector
Value: [] | [0 0] | finite number | matrix of finite numbers | cell array of matrices with finite
numbers. Must be specified inside single quotes ('').
Default: '[]' for Singular Value Plot block, '[0 0]' for Check Singular Value Characteristics
block.

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Include lower singular value bound in assertion

Check that the singular values satisfy lower bounds, specified in Frequencies (rad/sec) on page 19-
240 and Magnitude (dB) on page 19-241, during simulation. The software displays a warning if the
singular values violate the lower bound.

This parameter is used for assertion only if Enable assertion on page 19-244 in the Assertion tab is
selected.

You can specify multiple lower singular value bounds on the linear system. The bounds also appear on
the singular value plot. If you clear Enable assertion, the bounds are not used for assertion but
continue to appear on the plot.

Settings

Default: Off

 On
Check that the singular value satisfies the specified lower bounds, during simulation.

 Off
Do not check that the singular value satisfies the specified lower bounds, during simulation.

Tips

• Clearing this parameter disables the upper bounds and the software stops checking that the
bounds are satisfied during simulation. The bound segments are also greyed out in the plot
window.

 Singular Value Plot

19-239

• If you specify both lower and upper singular value bounds on page 19-236 but want to include
only the upper bounds for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableLowerBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Frequencies (rad/sec)

Frequencies for one or more lower singular value bound segments, specified in radians/sec.

Specify the corresponding magnitudes in Magnitude (dB) on page 19-241.

Settings

Default []

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.01 0.1;0.1 1] to specify two edges with frequencies [0.01 0.1] and [0.1 1].
• Cell array of matrices with positive finite numbers for multiple bounds.

19 Blocks

19-240

Tips

• To assert that magnitude bounds that correspond to the frequencies are satisfied, select both
Include lower singular value bound in assertion on page 19-239 and Enable assertion on
page 19-244.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound. Select Lower
gain limit in Design requirement type and specify the frequencies in the Frequency
column. Specify the corresponding magnitudes in the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the segment, and
select Bounds > Edit Bound. Specify the new frequencies in the Frequency column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundFrequencies
Type: character vector
Value: [] | positive finite number | matrix of positive finite numbers | cell array of matrices with
positive finite numbers. Must be specified inside single quotes ('').
Default: '[]'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Magnitudes (dB)

Magnitude values for one or more lower singular value bound segments, specified in decibels.

Specify the corresponding frequencies in Frequencies (rad/sec) on page 19-240.
Settings

Default []

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [0 0; 10 10] for two edges with magnitudes [0 0] and [10 10].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that magnitudes are satisfied, select both Include lower singular value bound in
assertion on page 19-239 and Enable assertion on page 19-244.

• You can add or modify magnitudes from the plot window:

• To add new magnitudes, right-click the plot, and select Bounds > New Bound. Select Lower
gain limit in Design requirement type, and specify the magnitudes in the Magnitude
column. Specify the corresponding frequencies in the Frequency column.

 Singular Value Plot

19-241

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the segment, and
select Bounds > Edit Bound. Specify the new magnitudes in the Magnitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundFrequencies
Type: character vector
Value: [] | finite number | matrix of finite numbers | cell array of matrices with finite numbers. Must
be specified inside single quotes ('').
Default: '[]'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is computed at

multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in values. This field

exists only if Save operating points for each linearization is checked.

The location of the saved data structure depends upon the configuration of the Simulink model:

• If the Simulink model is not configured to save simulation output as a single object, the data
structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the data structure
is a field in the Simulink.SimulationOutput object that contains the logged simulation data.

To configure your model to save simulation output in a single object, in the Simulink editor, on the
Modeling tab, click Model Settings. Then, in the Configuration Parameters dialog box, select
the Single simulation output parameter.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

19 Blocks

19-242

Dependencies

This parameter enables Variable name on page 19-243.

Command-Line Information
Parameter: SaveToWorkspace
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Variable name

Name of the data structure that stores one or more linear systems computed during simulation.

The location of the saved data structure depends upon the configuration of the Simulink model:

• If the Simulink model is not configured to save simulation output as a single object, the data
structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the data structure
is a field in the Simulink.SimulationOutput object that contains the logged simulation data.

The name must be unique among the variable names used in all data logging model blocks, such as
Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To Workspace blocks, and
simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Save Simulation Data” and the
Simulink.SimulationOutput reference page.

Settings

Default: sys

Character vector.

Dependencies

Save data to workspace on page 19-242 enables this parameter.

Command-Line Information
Parameter: SaveName
Type: character vector
Value: sys | any character vector. Must be specified inside single quotes ('').
Default: 'sys'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

 Singular Value Plot

19-243

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also save the
operating point corresponding to each linearization. Using this option adds a field named
operatingPoints to the data structure that stores the saved linear systems.

Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace on page 19-242 enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds tab are
satisfied during simulation. Assertion fails if a bound is not satisfied. A warning, reporting the
assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion fails
(optional) on page 19-245.

• Stop the simulation and bring that block into focus, by selecting Stop simulation when
assertion fails on page 19-246.

For the Linear Analysis Plots blocks, this parameter has no effect because no bounds are included by
default. If you want to use the Linear Analysis Plots blocks for assertion, specify and include bounds
in the Bounds tab.

Clearing this parameter disables assertion; that is, the block no longer checks that specified bounds
are satisfied. The block icon also updates to indicate that assertion is disabled.

19 Blocks

19-244

In the Simulink model, in the Configuration Parameters dialog box, the Model Verification block
enabling parameter lets you enable or disable all model verification blocks in a model, regardless of
the setting of this option in the block.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during simulation. A
warning, reporting assertion failure, is displayed at the MATLAB prompt if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used in the
expression in that workspace.

Settings

No Default

A MATLAB expression.

 Singular Value Plot

19-245

Dependencies

Enable assertion on page 19-244 enables this parameter.
Command-Line Information
Parameter: callback
Type: character vector
Value: '' | MATLAB expression
Default: ''
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during simulation, i.e.,
assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window opens to
display an error message. Also, the block where the bound violation occurs is highlighted in the
model.
Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails, assertion failures
that might occur later during the simulation are not reported. If you want all assertion failures to
be reported, do not select this option.

Dependencies

Enable assertion on page 19-244 enables this parameter.
Command-Line Information
Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'
See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

19 Blocks

19-246

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds; that is, all bounds are satisfied
• False (1) if assertion fails; that is, a bound is violated.

The output signal data type is Boolean only if, in the Simulink model, in the Configuration Parameters
dialog box, the Implement logic signals as Boolean data parameter is selected. Otherwise, the
data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any block in the
model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Verify Model Using
Simulink Control Design and Simulink Verification Blocks” on page 17-20.

Command-Line Information
Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click the block in
the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying bounds, in
the plot window instead of the Block Parameters dialog box. If you want to access the block

parameters from the plot window, select Edit or click .

For more information on the plot, see “Show Plot” on page 19-0 .

 Singular Value Plot

19-247

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when you double-click the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

See Also

Plot Linear Characteristics of Simulink Models During Simulation on page 2-60

“Verify Model at Default Simulation Snapshot Time” on page 17-5

Show Plot

Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system characteristics or
signal.

You can display additional characteristics, such as the peak response time, by right-clicking the
plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or right-click the
plot and select Bounds > New Bound. For more information on the types of bounds you can
specify, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot and selecting
Bounds > Edit Bound. Before you simulate the model, click Update Block to update the bound
value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting View >
Highlight Simulink Block. This action makes the model window active and highlights the block.

19 Blocks

19-248

•
Simulating the model by clicking . This action also linearizes the portion of the model between
the specified linearization input and output.

•
Adding a legend on the linear system characteristic plot by clicking .

Note To optimize the model response to meet design requirements specified in the Bounds tab,
open the Response Optimizer by selecting Tools > Response Optimization in the plot window.
This option is only available if you have Simulink Design Optimization software installed.

Response Optimization

Open the Response Optimizer to optimize the model response to meet design requirements
specified in the Bounds tab.

This button is available only if you have Simulink Design Optimization software installed.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)” (Simulink Design Optimization)
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”

(Simulink Design Optimization)

See Also
Check Singular Value Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-60
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation” on page 2-

91
• “Plot Linear System Characteristics of a Chemical Reactor” on page 2-95

Version History
Introduced in R2010b

 Singular Value Plot

19-249

Trigger-Based Operating Point Snapshot
Generate operating points at triggered events

Libraries:
Simulink Control Design

Description
The Trigger-Based Operating Point Snapshot block takes snapshot operating points of a Simulink
model at triggered events indicated by the input trigger signal. For example, you can configure the
block to take a snapshot whenever the trigger signal crosses zero while increasing.

You can then linearize your model at the operating points using the linearize function or the
Model Linearizer app.

Ports
Input

Trigger — Trigger control signal
scalar

Trigger control signal, specified as a scalar signal.

Parameters
Trigger type — Type of control signal
rising (default) | falling | either | function-call

Type of control signal that triggers the operating point snapshot.

• rising — Trigger when the control signal crosses zero while increasing.
• falling — Trigger when the control signal crosses zero while decreasing.
• either — Trigger when the control signal crosses zero while either increasing or decreasing.
• function-call: Trigger when the control signal receives a function-call event from a Stateflow

chart, a Function-Call Generator block, an S-Function block, or a Hit Crossing block.

Programmatic Use
Block Parameter: 'TriggerType'
Type: character vector
Values: 'rising''falling''either''function-call'
Default: 'rising'

Version History
Introduced before R2006a

19 Blocks

19-250

See Also
findop | linearize

Topics
“About Operating Points” on page 1-2
“Linearize at Triggered Simulation Events” on page 2-74

 Trigger-Based Operating Point Snapshot

19-251

Objects

20

BlockDiagnostic
Diagnostic information for individual block linearization

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
BlockDiagnostic objects. Each BlockDiagnostic object contains diagnostic information
regarding the linearization of the corresponding Simulink block. You can troubleshoot the block
linearization by examining the BlockDiagnostic object properties.

Creation
To access block diagnostic information in a LinearizationAdvisor object, use the getBlockInfo
function. Using this function, you can obtain either a single BlockDiagnostic object or multiple
BlockDiagnostic objects. For example, see:

• “Obtain Diagnostics for Potentially Problematic Blocks” on page 20-4
• “Obtain Diagnostics Using Block Names” on page 20-4

Properties
IsOnPath — Flag indicating whether the block is on the linearization path
'Yes' | 'No'

Flag indicating whether the block is on the linearization path, specified as one of the following:

• 'Yes' — Block is on linearization path
• 'No' — Block is not on linearization path

The linearization path connects the linearization inputs to the linearization outputs. To view the
linearization path in the Simulink model, use the highlight function.

ContributesToLinearization — Flag indicating whether the block numerically influences
the model linearization
'Yes' | 'No'

Flag indicating whether the block numerically influences the model linearization, specified as one of
the following:

• 'Yes' — Block contributes to the linearization result
• 'No' — Block does not contribute to the linearization result

If a block is not on the linearization path; that is, if IsOnPath is 'No', then
ContributesToLinearization is 'No'.

DiagnosticMessages — Diagnostic messages
cell array of character vectors

20 Objects

20-2

Diagnostic message regarding the block linearization, specified as a cell array of character vectors.
These messages indicate possible issues that can affect the block linearization.

If HasDiagnostics is 'No', then DiagnosticMessages is an empty cell array.

BlockPath — Block path
character vector

Block path in Simulink model, specified as a character vector.

HasDiagnostics — Flag indicating whether the block has diagnostic messages
'Yes' | 'No'

Flag indicating whether the block has diagnostic messages regarding its linearization, specified as
one of the following:

• 'Yes' — Block has diagnostic messages
• 'No' — Block does not have diagnostic messages

If HasDiagnostics is 'Yes', then DiagnosticMessages is a cell array of character vectors that
contains the messages.

Linearization — Block linearization
state-space model

Block linearization, specified as a state-space model.

LinearizationMethod — Linearization method
'Exact' | 'Perturbation' | 'Block Substituted' | 'Simscape Network' | 'Not
Supported'

Linearization method, specified as one of the following:

• 'Exact' — Block linearized using its defined exact linearization
• 'Perturbation' — Block linearized using numerical perturbation
• 'Block Substituted' — Block linearized using a specified custom linearization
• 'Simscape Network' — Simscape network linearized using the exact linearization defined in

the Simscape engine. A LinearizationAdvisor object does not provide diagnostic information
on a component-level basis for Simscape networks. Instead, it groups diagnostic information
together for multiple Simscape components connected to a single Solver Configuration block.

• 'Not Supported' — Block in its current configuration does not support linearization. For
example, a Discrete Transfer Fcn block with an external reset does not support linearization.

In this case, the block Linearization is zero. For more troubleshooting information, check the
DiagnosticMessages property.

OperatingPoint — Operating point
BlockOperatingPoint object

Operating point at which the block is linearized, specified as a BlockOperatingPoint object.

 BlockDiagnostic

20-3

Usage
You can troubleshoot the linearization of a Simulink model by examining the diagnostics for individual
block linearizations. To do so, examine the properties of BlockDiagnostic objects returned from
getBlockInfo. For more information, see “Troubleshoot Linearization Results at Command Line” on
page 4-28.

Examples

Obtain Diagnostics for Potentially Problematic Blocks

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find blocks that are potentially problematic for linearization.

blocks = advise(advisor);

Obtain diagnostics for these blocks.

diags = getBlockInfo(blocks)

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Obtain Diagnostics Using Block Names

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

20 Objects

20-4

Obtain diagnostic information for the saturation block.

satDiag = getBlockInfo(advisor,'scdpendulum/pendulum/Saturation')

satDiag =
Linearization Diagnostics for scdpendulum/pendulum/Saturation with properties:

 IsOnPath: 'Yes'
 ContributesToLinearization: 'No'
 LinearizationMethod: 'Exact'
 Linearization: [1x1 ss]
 OperatingPoint: [1x1 linearize.advisor.BlockOperatingPoint]

You can also obtain diagnostic information for multiple blocks at once. Obtain diagnostics for the sin
blocks in the model.

sinBlocks = {'scdpendulum/pendulum/Trigonometric Function';
 'scdpendulum/angle_wrap/Trigonometric Function1'};

sinDiag = getBlockInfo(advisor,sinBlocks)

sinDiag =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
2. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Version History
Introduced in R2017b

R2018a: Simscape states and inputs now combined into single block diagnostic per Solver
Configuration block
Behavior changed in R2018a

When troubleshooting linearization issues using the Linearization Advisor, diagnostic information for
Simscape states and inputs is now combined into a single block diagnostic object. Previously, states
and inputs were returned in separate diagnostic objects.

Update Code

To view diagnostic information for Simscape networks at the command line, you first query the
Linearization Advisor object, advisor, for blocks of type 'simscape'.

qSS = linqueryIsBlockType('simscape');
advSS = find(advisor,qSS);

In R2017b, to view state or input information for the Simscape network, you searched the block paths
of the diagnostics in advSS for the text EVAL_KEY/STATE or EVAL_KEY/INPUT, respectively. For
example, to find diagnostics with state information, you used:

 BlockDiagnostic

20-5

paths = getBlockPaths(advisor);
index = contains(paths,'EVAL_KEY/STATE');
diag = getBlockInfo(advSS,index);

You then viewed the state or input information in the associated operating point object.

diag(i).OperatingPoint

Starting in R2018a, you access both the state and input information directly from the operating point
of the Simscape block diagnostic object without searching the block paths.

advSS.BlockDiagnostics(i).OperatingPoint

See Also
Objects
LinearizationAdvisor | BlockOperatingPoint

Functions
highlight | getBlockInfo | getBlockPaths

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-6

BlockOperatingPoint
Operating point at which block is linearized

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
BlockDiagnostic objects. Each BlockDiagnostic object contains diagnostic information
regarding the linearization of the corresponding Simulink block. Each BlockDiagnostic object
contains a BlockOperatingPoint with the input and state values for the operating point at which
the block was linearized.

Creation
To obtain the operating point at which a block was linearized, use the OperatingPoint property of a
BlockDiagnostic object. For example, see “Obtain Block Operating Point” on page 20-8.

Properties
States — Block state values
structure | structure array

State values at operating point, specified as a structure if the block has a single state, or a structure
array if the block has multiple states. Each state structure has the following fields:

• Name — State name
• x — State value

Inputs — Block input values
structure | structure array

Input values at operating point, specified as a structure if the block has a single input, or a structure
array if the block has multiple inputs. Each input structure has the following fields:

• Port — Input port number
• u — Input value

BlockPath — Block path
character vector

Block path in Simulink model, specified as a character vector.

Usage
When troubleshooting a block linearization, you can check the input and state values for the
operating point at which the block was linearized using the OperatingPoint property of a
BlockDiagnostic object.

 BlockOperatingPoint

20-7

Examples

Obtain Block Operating Point

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain a LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Obtain block diagnostics for the second block in the list. This block is a second-order integrator.

diags = getBlockInfo(advisor,2);

Obtain the operating point at which this block was linearized.

blockOP = diags.OperatingPoint

blockOP =
Block Operating Point for scdpendulum/pendulum/Integrator, Second-Order

States:

Name x
theta 1.5708
theta_dot 0

Inputs:

Port u
1 0.0090909

The block has two states and one input.

Version History
Introduced in R2017b

See Also
Objects
BlockDiagnostic

Topics
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-8

CompoundQuery
Complex query object for finding specific blocks in linearization results

Description
CompoundQuery query object for finding all the blocks in a LinearizationAdvisor object that
have a specified number of inputs.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation
To create a CompoundQuery object, combine other query objects using AND (&), OR (|), and NOT (~)
logical operations. For example, see:

• “Find All SISO Blocks” on page 20-10
• “Create Complex Query Object” on page 20-10

Properties
QueryType — Query type
character vector

Query type, specified as a character vector. By default, QueryType is constructed using logical
operators and the QueryType properties of the queries used to create the compound query. For
example, suppose that you create a compound query for finding all SISO blocks:

qIn = linqueryHasInputs(1);
qOut = linqueryHasOutputs(1);
qSISO = qIn & qOut;

Then, QueryType is '(Has 1 Inputs & Has 1 Outputs)'.

You can modify QueryType for your application. For example:

qSISO.QueryType = 'SISO Blocks';

Description — Query description
'' (default) | character vector

Query description, specified as '' by default. You can add your own description to the query object
using this property.

 CompoundQuery

20-9

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Create Complex Query Object

Create a CompundQuery object for finding any blocks that linearize to zero or any non-SISO blocks
that are on the linearization path.

Create a query object for finding all non-SISO blocks.

qNotSISO = ~(linqueryHasOutputs(1) & linqueryHasInputs(1));

Create a query object for finding all blocks on the linearization path.

qOnPath = linqueryIsOnPath;

Create a query object for finding all blocks that linearize to zero.

qZero = linqueryIsZero;

To create a query for finding any blocks that linearize to zero or any non-SISO blocks that are on the
linearization path, combine the other query objects.

query = (qNotSISO & qOnPath) | qZero

query =
 CompoundQuery with properties:

 QueryType: '((~((Has 1 Outputs & Has 1 Inputs)) & On Linearization Path) | Linearized to Zero)'
 Description: ''

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

20 Objects

20-10

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 CompoundQuery

20-11

frest.Chirp
Swept-frequency cosine input signal

Description
Use a frest.Chirp object to represent a swept-frequency cosine input signal for frequency
response estimation. A swept-frequency cosine input signal, or chirp signal, excites your system at a
range of frequencies, such that the input frequency changes instantaneously.

Chirp signals are useful when your system is nearly linear in the simulation range. They are also
useful when you want to obtain a response quickly for a lot of frequency points. The frequency-
response model that results when you use a chirp input contains only frequencies that fall within the
range of the chirp.

You can use a chirp input signal for estimation at the command line, in the Model Linearizer, or with
the Frequency Response Estimator block. The estimation algorithm injects the signal at the input
point you specify for estimation, and measures the response at the output point. For more
information, see “Chirp Input Signals” on page 5-34.

To view a plot of your input signal, type plot(input). To create a timeseries object for your input
signal, use the generateTimeseries command.

Creation

Syntax
input = frest.Chirp(sys)
input = frest.Chirp(Name,Value)

Description

input = frest.Chirp(sys) creates a swept-frequency cosine input signal with properties based
on the dynamics of the linear system sys. For instance, if you have an exact linearization of your
system, you can use it to initialize the parameters.

input = frest.Chirp(Name,Value) creates a swept-frequency cosine input signal with
properties on page 20-13 specified using one or more name-value pairs. Enclose each property name
in quotes.

Input Arguments

sys — Linear dynamics system
ss object | tf object | zpk object

Linear dynamic system, specified as a SISO ss, tf, or zpk object. You can specify known dynamics or
obtain the linear model by linearizing a nonlinear system.

The resulting chirp signal automatically sets these options based on the linear system:

20 Objects

20-12

• FreqRange are the frequencies at which the linear system has interesting dynamics.
• Ts is set to avoid aliasing such that the Nyquist frequency of the signal is five times the upper end

of the frequency range.
• NumSamples is set such that the frequency response estimation includes the lower end of the

frequency range.

The remaining properties use default values.

Properties
Amplitude — Signal amplitude
1e-5 (default) | positive scalar

Signal amplitude at each frequency, specified as a positive scalar.

FreqRange — Signal frequency range
[1,1000] (default) | two-element vector | two-element cell array

Signal frequency range, specified as one of the following:

• Two-element vector, for example [w1 w2]
• Two-element cell array, for example {w1 w2}

Here, w1 is the lower bound of the frequency range, and w2 is the upper bound.

FreqUnits — Frequency units
'rad/s' (default) | 'Hz'

Frequency units, specified as one of the following:

• 'rad/s' — Radians per second
• 'Hz' — Hertz

Changing frequency units does not impact frequency response estimation.

SampleTime — Sample time
positive scalar

Sample time of the chirp signal in seconds, specified as a positive scalar. The default sample time,
which avoids aliasing, is:

2π
5 * max(FreqRange)

Here, FreqRange is specified in rad/s.

NumSamples — Number of samples
positive integer

Number of samples in the chirp signal, specified as a positive integer. The default number of samples,
which ensures that the estimation includes the lower end of the frequency range, is:

4π
Ts * min(FreqRange)

 frest.Chirp

20-13

Here, FreqRange is specified in rad/s.

This property does not determine number of frequency points in the final estimation result. The
frestimate function only includes frequency points with positive values. The function also discards
any frequencies that fall outside the frequency range specified for the chirp.

SweepMethod — Method for evolution of instantaneous frequency
'linear' (default) | 'logarithmic' | 'quadratic'

Method for evolution of instantaneous frequency, specified as one of the following.

Method Description
'linear' Specifies the instantaneous frequency sweep fi(t):

f i(t) = f0 + βt where β = (f1− f0)/tf

β ensures that the signal maintains the desired frequency breakpoint f1
at final time tf.

'logarithmic' Specifies the instantaneous frequency sweep fi(t):

f i(t) = f0 × βt where β =
f1
f0

1
tf

'quadratic' Specifies the instantaneous frequency sweep fi(t):

f i(t) = f0 + βt2 where β = (f1− f0)/ti2

Specify the shape of the quadratic using the Shape option.

Shape — Quadratic sweep parabola shape
'concave' (default) | convex

Quadratic sweep parabola shape, specified as one of the following:

• 'concave' — Concave quadratic sweeping shape.

20 Objects

20-14

• 'convex' — Convex quadratic sweeping shape.

This property is available on when SweepMethod is 'quadratic'.

InitialPhase — Initial phase of the chirp signal
270 (default) | scalar

Initial phase of the Chirp signal in degrees, specified as a scalar.

Object Functions
frestimate Frequency response estimation of Simulink models
generateTimeseries Generate time-domain data for input signal
frest.simCompare Plot time-domain simulation of nonlinear and linear models
frest.simView Plot frequency response model in time- and frequency-domain
getSimulationTime Final time of simulation for frequency response estimation

Examples

Create a Chirp Input Signal with Specified Frequency Range

Create a chirp input signal with frequencies ranging from 10 to 500 rad/s. Specify the amplitude and
the number of samples as well.

input = frest.Chirp('Amplitude',1e-3,...
 'FreqRange',[10 500],...
 'NumSamples',750)

The chirp input signal:

 FreqRange : [10 500] (rad/s)
 Amplitude : 0.001
 Ts : 0.00251327412287183 (sec)
 NumSamples : 750
 InitialPhase : 270 (deg)
 FreqUnits (rad/s or Hz): rad/s
 SweepMethod(linear/ : linear

 frest.Chirp

20-15

 quadratic/
 logarithmic)

Plot the chirp signal.

plot(input)

Chirp Signal Based on Linearized Dynamics

Create a chirp input signal based on the dynamics of a linear system. This approach is useful when
you are using frequency response estimation to validate the linearization of your model.

Open a Simulink model.

model = 'watertank';
open_system(model)

20 Objects

20-16

For this example, linearize the model at a steady-state operating point to obtain a state-space model
you can use to initialize the chirp signal.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

sys = linearize(model,op,io);

Create the chirp signal.

input = frest.Chirp(sys);

frest.Chirp chooses a frequency range based on the system dynamics. It also automatically
initializes other parameters of the chirp signal.

input

The chirp input signal:

 FreqRange : [0.001581138830107 0.1581138830107] (rad/s)
 Amplitude : 1e-05
 Ts : 7.94767061252222 (sec)
 NumSamples : 1000
 InitialPhase : 270 (deg)
 FreqUnits (rad/s or Hz): rad/s
 SweepMethod(linear/ : linear
 quadratic/
 logarithmic)

You can change properties of the signal using dot notation. For instance, increase the signal
amplitude.

input.Amplitude = 3e-5

The chirp input signal:

 frest.Chirp

20-17

 FreqRange : [0.001581138830107 0.1581138830107] (rad/s)
 Amplitude : 3e-05
 Ts : 7.94767061252222 (sec)
 NumSamples : 1000
 InitialPhase : 270 (deg)
 FreqUnits (rad/s or Hz): rad/s
 SweepMethod(linear/ : linear
 quadratic/
 logarithmic)

Alternative Functionality
Model Linearizer

In the Model Linearizer, to use a chirp input signal for estimation, on the Estimation tab, select
Input Signal > Chirp.

Version History
Introduced in R2009b

See Also
frest.Sinestream | frest.Random | frestimate

Topics
“Estimation Input Signals” on page 5-25
“Sinestream Input Signals” on page 5-30
“Estimate Frequency Response at the Command Line” on page 5-14
“Speeding Up Estimation Using Parallel Computing” on page 5-72

20 Objects

20-18

frest.Random
Random input signal

Description
Use a frest.Random object to represent a random input signal for frequency response estimation.
The random signal contains uniformly distributed random numbers in the interval [0 Amplitude]
or [Amplitude 0] for positive and negative amplitudes, respectively.

Random signals are useful because they can excite the system uniformly at all frequencies up to the
Nyquist frequency.

You can use a random input signal for estimation at the command line, in the Model Linearizer, or
with the Frequency Response Estimator block. The estimation algorithm injects the signal at the
input point you specify for estimation, and measures the response at the output point.

When you use a random input signal for estimation, the frequencies returned in the estimated frd
model depend on the length and sampling time of the signal. They are the frequencies obtained in the
fast Fourier transform of the input signal. For more information, see the Algorithm section of
frestimate.

To view a plot of your input signal, type plot(input). To create a timeseries object for your input
signal, use the generateTimeseries command.

Creation

Syntax
input = frest.Random(sys)
input = frest.Random(Name,Value)

Description

input = frest.Random(sys) creates a random signal with properties based on the dynamics of
the linear system sys. For instance, if you have an exact linearization of your system, you can use it
to initialize the parameters.

input = frest.Random(Name,Value) creates random signal with properties on page 20-20
specified using one or more name-value pairs. Enclose each property name in quotes.

Input Arguments

sys — Linear dynamics system
ss object | tf object | zpk object

Linear dynamic system, specified as a SISO ss, tf, or zpk object. You can specify known dynamics or
obtain the linear model by linearizing a nonlinear system.

 frest.Random

20-19

The resulting frest.Random object automatically sets the following properties based on the linear
system:

• Ts is set such that the Nyquist frequency of the signal is five times the upper end of the frequency
range to avoid aliasing issues.

• NumSamples is set such that the frequency response estimation includes the lower end of the
frequency range.

The remaining properties use default values.

Properties
Amplitude — Signal amplitude
1e-5 (default) | nonzero scalar

Signal amplitude, specified as a scalar. If Amplitude is:

• Positive, the random signal values are uniformly distributed in the range [0 Amplitude]
• Negative, the random signal values are uniformly distributed in the range [Amplitude 0]

Ts — Sample time
1e-3 (default) | positive scalar

Sample time of the random signal in seconds, specified as a positive scalar.

NumSamples — Number of samples
1e4 (default) | positive integer

Number of samples in the random signal, specified as a positive integer.

This property does not determine number of frequency points in the final estimation result. The
frestimate function discards any frequency points with negative values for this signal.

Stream — Random number stream
RandStream object

Random number stream, specified as a RandStream object. The state of the stream you specify is
stored with the input signal. This stored state allows the software to return the same result every
time you use generateTimeseries and frestimate with the input signal.

By default, Stream is the default stream of the current MATLAB session.

Object Functions
frestimate Frequency response estimation of Simulink models
generateTimeseries Generate time-domain data for input signal
frest.simCompare Plot time-domain simulation of nonlinear and linear models
frest.simView Plot frequency response model in time- and frequency-domain
getSimulationTime Final time of simulation for frequency response estimation

Examples

20 Objects

20-20

Create Random Input Signal

Create a Random input signal with 1000 samples taken at 100 Hz and an amplitude of 0.02.

input = frest.Random('Amplitude',0.02,...
 'Ts',1/100,...
 'NumSamples',1000);

Plot the random signal.

plot(input)

Create Random Signal Using Specified Random Stream

Create a multiplicative lagged Fibonacci generator random stream.

stream = RandStream('mlfg6331_64','Seed',0);

Create a random input signal using this stream.

input = frest.Random('Stream',stream);

 frest.Random

20-21

Alternative Functionality
Model Linearizer

In the Model Linearizer, to use a random input signal for estimation, on the Estimation tab, select
Input Signal > Random.

Version History
Introduced in R2009b

See Also
frest.Sinestream | frest.Chirp | frestimate

Topics
“Estimation Input Signals” on page 5-25
“Sinestream Input Signals” on page 5-30
“Estimate Frequency Response at the Command Line” on page 5-14
“Estimate Frequency Response Using Model Linearizer” on page 5-6
“Speeding Up Estimation Using Parallel Computing” on page 5-72

20 Objects

20-22

frest.Sinestream
Input signal containing series of sine waves

Description
Use a frest.Sinestream object to represent a sinestream input signal for frequency response
estimation. Such a signal consists of sine waves of varying frequencies applied one after another.
Each frequency excites the system for a period of time.

Sinestream signals are recommended for most situations. They are especially useful when your
system contains strong nonlinearities or you require highly accurate frequency response models. The
frequency-response model that results when you use a sinestream input contains all the frequencies
in the sinestream signal

You can use a sinestream input signal for estimation at the command line, in the Model Linearizer,
or with the Frequency Response Estimator block. The estimation algorithm injects the sinestream
signal at the input point you specify for estimation, and measures the response at the output point.
For more information, see “Sinestream Input Signals” on page 5-30.

To view a plot of your input signal, type plot(input). To create a timeseries object for your input
signal, use the generateTimeseries command.

Creation
You can create a sinestream signal in one of the following ways:

• Using the frest.Sinestream function for continuous-time signals
• Using the frest.createFixedTsSinestream function for discrete-time signals

For more information, see “Sinestream Input Signals” on page 5-30.

Syntax
input = frest.Sinestream(sys)
input = frest.Sinestream(Name,Value)

Description

input = frest.Sinestream(sys) creates a signal with a series of sinusoids with properties
based on the dynamics of the linear system sys. For instance, if you have an exact linearization of
your system, you can use it to initialize the parameters.

input = frest.Sinestream(Name,Value) creates a signal with a series of sinusoids with
properties on page 20-24 specified using one or more name-value pairs. Enclose each property name
in quotes.

 frest.Sinestream

20-23

Input Arguments

sys — Linear dynamics system
ss object | tf object | zpk object

Linear dynamic system, specified as a SISO ss, tf, or zpk object. You can specify known dynamics or
obtain the linear model by linearizing a nonlinear system.

The resulting frest.Sinestream object automatically sets the following properties based on the
linear system:

• Frequency contains the frequencies at which the linear system has interesting dynamics.
• SettlingPeriods is the number of periods it takes the system to reach steady state at each

frequency in Frequency.
• NumPeriods is (3 + SettlingPeriods) to ensure that each frequency excites the system at the

maximum amplitude for at least three periods.
• For discrete systems only, SamplesPerPeriod is set such that all frequencies have the same

sample time as the linear system.

The remaining properties use default values.

Properties
Frequency — Signal frequencies
logspace(1,3,50) (default) | vector | scalar

Signal frequencies, specified as a vector of frequency values in units specified by FreqUnits.

Amplitude — Signal amplitude
1e-5 (default) | scalar | vector

Signal amplitude at each frequency, specified as one of the following:

• Scalar — Set all frequencies to same amplitude.
• Vector with length equal to the length of Frequency — Set amplitude for each frequency to a
different value.

SamplesPerPeriod — Number of samples per period
40 (default) | scalar | vector

Number of samples per period for each frequency, specified as one of the following:

• Scalar — Use the same number of samples per period for all frequencies.
• Vector with length equal to the length of Frequency — Use a different number of samples for

each frequency.

FreqUnits — Frequency units
'rad/s' (default) | 'Hz'

Frequency units, specified as one of the following:

• 'rad/s' — Radians per second

20 Objects

20-24

• 'Hz' — Hertz

RampPeriods — Number of periods for ramping up the amplitude of each sine wave to its
maximum value
0 (default) | scalar | vector

Number of periods for ramping up the amplitude of each sine wave to its maximum value, specified as
one of the following:

• Scalar — Use the same number of ramping up periods for all frequencies.
• Vector with length equal to the length of Frequency — Use a different number of ramping up

periods for each frequency.

Use RampUpPeriods to specify the number of periods over which to linearly increase the amplitude
of each sine wave to its maximum value. Specifying this option ensures a smooth response when your
input amplitude changes.

frestimate discards response data collected during the ramping up periods.

NumPeriods — Number of periods each sine wave is at maximum amplitude
max(3 - RampPeriods + SettlingPeriods,2) (default) | scalar | vector

Number of periods each sine wave is at maximum amplitude, specified as one of the following:

• Scalar — Use the same number of periods for all frequencies.
• Vector with length equal to the length of Frequency — Use a different number of periods for each

frequency.

The specified number of periods includes the settling periods (SettlingPeriods) and the periods
used for estimation.

SettlingPeriods — Number of periods before the system reaches steady state
1 (default) | scalar | vector

 frest.Sinestream

20-25

Number of periods before the system reaches steady state, specified as one of the following:

• Scalar — Use the same number of settling periods for all frequencies.
• Vector with length equal to the length of Frequency — Use a different number of settling periods

for each frequency.

frestimate discards response data collected during the settling periods.

ApplyFilteringInFRESTIMATE — Flag to apply frequency-selective FIR filtering of the input
signal
'on' (default) | 'off'

Flag to apply frequency-selective FIR filtering of the input signal before estimating it using
frestimate, specified as one of the following:

• 'on' — Filter the input signal. When you use filtering, frestimate discards response data for
one additional period after the settling periods before estimation.

• 'off' — Do not filter the input signal.

SimulationOrder — Order in which individual input signal frequencies are injected
'Sequential' (default) | 'OneAtATime'

Order in which individual input signal frequencies are injected into your Simulink model during
simulation, specified as one of the following:

• 'Sequential' — frestimate injects one frequency after the next into your model in a single
Simulink simulation using variable sample time. To use this option, your model must use a
variable-step solver.

• 'OneAtATime' — frestimate injects each frequency during a separate Simulink simulation of
your model. Before each simulation, frestimate initializes your model to the operating point
specified for estimation. If you have Parallel Computing Toolbox software, you can run these
simulations in parallel to speed up estimation. For more information, see “Speeding Up Estimation
Using Parallel Computing” on page 5-72.

Object Functions
frestimate Frequency response estimation of Simulink models
generateTimeseries Generate time-domain data for input signal
frest.simCompare Plot time-domain simulation of nonlinear and linear models
frest.simView Plot frequency response model in time- and frequency-domain
getSimulationTime Final time of simulation for frequency response estimation

20 Objects

20-26

Examples

Create Sinestream Signal by Specifying Frequencies

Create a sinestream input signal for estimation by specifying the frequencies for the signal. Also,
specify the amplitude, the number of ramp-up periods, the number of settling periods, and the total
number of periods after the ramp-up.

To specify the frequencies, use a vector of frequencies.

freqs = linspace(1,4,4);

To specify the other parameters, use a scalar to use the same parameter value for every frequency. To
use different values for each frequency, use a vector of the same length as freqs. For this example,
use increasing amplitudes at each frequency, but keep the number of ramp-up periods, number of
settling periods, and the number of periods after ramp-up constant.

amps = [1 1.5 1.75 2];
ramp = 2;
settle = 3;
pds = 5;

input = frest.Sinestream('Frequency',freqs,...
 'Amplitude',amps,...
 'RampPeriods',ramp,...
 'SettlingPeriods',settle,...
 'NumPeriods',pds);

Examine the resulting sinestream signal.

plot(input)

 frest.Sinestream

20-27

Sinestream Input with Specified Number of Samples

When your sinestream signal covers a wide range of frequencies, it can be inefficient to use the same
sample time across all frequencies. For that reason, frest.Sinestream by default uses a fixed
number of samples at each frequency. You can specify that number with a scalar value, or use a
vector to provide a different number of samples at each frequency. (To create a sinestream signal with
a fixed sample time across the entire signal, use frest.createFixedTsSinestream. This option is
useful when the input linearization point for estimation is on a discrete-time signal.)

Create a sinusoidal input signal with the following characteristics:

• 50 frequencies spaced logarithmically between 10 Hz and 1000 Hz
• Amplitude of 1e-3 at all frequencies
• Sampled with a frequency 10 times the frequency of the signal (meaning ten samples per period)

input = frest.Sinestream('Amplitude',1e-3,...
 'Frequency',logspace(1,3,50),...
 'SamplesPerPeriod',10,...
 'FreqUnits','Hz');

20 Objects

20-28

Sinestream Signal Based on Linearized Dynamics

Create a sinestream input signal based on the dynamics of a linear system. This approach is useful
when you are using frequency response estimation to validate the linearization of your model.

Open a Simulink model.

model = 'watertank';
open_system(model)

For this example, linearize the model at a steady-state operating point to obtain a state-space model
you can use to initialize the sinestream signal.

io(1)=linio('watertank/PID Controller',1,'input');
io(2)=linio('watertank/Water-Tank System',1,'openoutput');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

sys = linearize(model,op,io);

Create the sinestream signal.

input = frest.Sinestream(sys);

frest.Sinestream chooses frequencies based on the system dynamics. It also automatically
initializes other parameters of the sinestream signal.

input

The sinestream input signal:

 Frequency : [0.0015811;0.0026375;0.0043996;0.007339 ...] (rad/s)
 Amplitude : 1e-05
 SamplesPerPeriod : 40
 NumPeriods : [4;4;4;4 ...]
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : [1;1;1;1 ...]
 ApplyFilteringInFRESTIMATE (on/off) : on

 frest.Sinestream

20-29

 SimulationOrder (Sequential/OneAtATime): Sequential

You can change properties of the signal using dot notation. For instance, increase the signal
amplitude.

input.Amplitude = 3e-5

The sinestream input signal:

 Frequency : [0.0015811;0.0026375;0.0043996;0.007339 ...] (rad/s)
 Amplitude : 3e-05
 SamplesPerPeriod : 40
 NumPeriods : [4;4;4;4 ...]
 RampPeriods : 0
 FreqUnits (rad/s,Hz): rad/s
 SettlingPeriods : [1;1;1;1 ...]
 ApplyFilteringInFRESTIMATE (on/off) : on
 SimulationOrder (Sequential/OneAtATime): Sequential

Alternative Functionality
Model Linearizer

In the Model Linearizer, to use a sinestream input signal for estimation, on the Estimation tab,
select:

• Input Signal > Sinestream when the sample time of the I/Os is continuous.
• Input Signal > Fixed Sample Time Sinestream when the sample time of the I/Os is discrete.

Version History
Introduced in R2009b

See Also
frest.Chirp | frest.Random | frestimate

Topics
“Estimation Input Signals” on page 5-25
“Sinestream Input Signals” on page 5-30
“Estimate Frequency Response at the Command Line” on page 5-14
“Speeding Up Estimation Using Parallel Computing” on page 5-72

20 Objects

20-30

frest.PRBS
Pseudorandom binary sequence input signal

Description
Use a frest.PRBS object to represent a pseudorandom binary sequence (PRBS) input signal for
frequency response estimation. A PRBS signal is a deterministic signal that shifts between two values
and has white-noise-like properties. A PRBS signal is inherently periodic with a maximum period
length of 2n–1, where n is the PRBS order.

PRBS signals reduce total estimation time compared to using sinestream input signals, while
producing comparable estimation results. PRBS signals are useful for estimating frequency responses
for communications and power electronics systems with high-frequency switching components, such
as pulse-width modulation (PWM) generators.

You can use a PRBS input signal for estimation at the command line or in the Model Linearizer app.
The estimation algorithm injects the PRBS signal at the input point you specify for estimation and
measures the response at the output point. For more information, see “PRBS Input Signals” on page
5-37.

To view a plot of your input signal, type plot(input). To create a timeseries object for your input
signal, use the generateTimeseries command.

Creation

Syntax
input = frest.PRBS(sys)
input = frest.PRBS(Name,Value)

Description

input = frest.PRBS(sys) creates a PRBS signal with parameters based on the dynamics of the
linear system sys. For instance, if you have an exact linearization of your system, you can use it to
initialize the parameters.

input = frest.PRBS(Name,Value) creates a PRBS signal with properties on page 20-24
specified using one or more name-value pairs. Enclose each property name in quotes.

Input Arguments

sys — Linear dynamic system
ss object | tf object | zpk object

Linear dynamic system, specified as a SISO ss, tf, or zpk object. You can specify known dynamics or
obtain the linear model by linearizing a nonlinear system.

 frest.PRBS

20-31

The resulting frest.PRBS object automatically sets the Order and Ts properties based on the linear
system. The Amplitude and NumPeriods properties remain at their default values. For more
information, see “PRBS Input Signals” on page 5-37.

Properties
Amplitude — Signal amplitude
1e-5 (default) | positive scalar

Signal amplitude, specified as a positive scalar. You must set the amplitude such that the system is
properly excited for your application. If the input amplitude is too large, the signal can deviate too far
from the model operating point. If the input amplitude is too small, the PRBS signal is
indistinguishable from noise and ripples in your model.

Ts — Signal sample time
0.001 (default) | positive scalar

Signal sample time in seconds, specified as a positive scalar. As a starting point, specify the PRBS
sample time to match the sample time of your model.

For some systems, using a larger sample time than in the original model can produce a higher
resolution frequency response estimation result over the low-frequency range. In this case, you must
ensure that the frequency of your model at the input and output linear analysis points matches the
value you specify for Ts. For an example, see “Frequency Response Estimation for Power Electronics
Model Using Pseudorandom Binary Signal” on page 5-97.

Order — Signal order
10 (default) | positive integer

Signal order, specified as a positive integer. The maximum length of the PRBS signal is 2n–1, where n
is the signal order. To obtain an accurate frequency response estimation, the length of the PRBS must
be sufficiently large.

For a given sample time, to obtain a higher frequency resolution, specify a larger signal order.

NumPeriods — Number of periods
1 (default) | positive integer

Number of periods in the PRBS signal, specified as a positive integer. For most frequency response
estimation applications, use the default value of 1. Using a single period produces a flat frequency
profile across the input signal frequency range.

OneSamplePerClockPeriod — Option to keep signal constant for either one or multiple
samples per clock period
'on' (default) | 'off'

Option to keep the input signal constant for either one sample or multiple samples per clock period
when you have NumPeriods > 1, specified as one of the following:

• 'on' — Keep the signal constant for one sample.
• 'off' — Keep the signal constant for a number of samples equal to the value specified in

NumPeriods.

20 Objects

20-32

UseWindow — Option to apply window-based filtering of input signal
'on' (default) | 'off'

Option to apply Hann window-based filtering for single-period signals or conduct down-sampling for
multi-period signals, specified as 'on' or 'off'.

For a single-period signal, use this option to apply Hann window-based filtering of the logged input
and output signals, specified as one of the following:

• 'on' — Filter the input and output signals. When you use filtering, frestimate produces
smoother frequency response estimation results.

• 'off' — Do not filter the input signal.

For a multi-period signal, use this option to conduct down-sampling of the frequency response
estimation result, specified as one of the following:

• 'on' — Resample the frequency response estimation result. When you conduct down-sampling,
frestimate produces smoother frequency response estimation results.

• 'off' — Do not down-sample the frequency response estimation result.

Object Functions
frestimate Frequency response estimation of Simulink models
generateTimeseries Generate time-domain data for input signal
frest.simCompare Plot time-domain simulation of nonlinear and linear models
frest.simView Plot frequency response model in time- and frequency-domain
getSimulationTime Final time of simulation for frequency response estimation

Examples

Create PRBS Signal by Specifying Parameters

Create a PRBS with the following configuration.

• To use a nonperiodic PRBS set the number of periods to 1.
• Use a PRBS order of 12, producing a signal of length 4095.
• Set the sample time of the signal to 5e-6 seconds.
• Set the perturbation amplitude to 0.05.

input = frest.PRBS('Order',12,'NumPeriods',1,'Amplitude',0.05,'Ts',5e-6)

The PRBS input signal:

 Amplitude : 0.05
 Ts : 5e-06 (secs)
 Order : 12
 NumPeriods : 1
 OneSamplePerClockPeriod (on/off) : on
 UseWindow (on/off) : on

Examine a subset of the resulting PRBS signal.

 frest.PRBS

20-33

plot(input)
xlim([0 0.001])

The signal switches between 0.025 and -0.025 in a deterministic pseudorandom manner.

Create PRBS Signal Based on Linearized Dynamics

Create a PRBS input signal based on the dynamics of a linear system. This approach is useful when
you are using frequency response estimation to validate the linearization of your model.

Open a Simulink model.

model = 'watertank';
open_system(model)

20 Objects

20-34

For this example, linearize the model at a steady-state operating point to obtain a state-space model
you can use to initialize the PRBS signal.

io(1) = linio('watertank/PID Controller',1,'input');
io(2) = linio('watertank/Water-Tank System',1,'openoutput');

watertank_spec = operspec(model);
opOpts = findopOptions('DisplayReport','off');
op = findop(model,watertank_spec,opOpts);

sys = linearize(model,op,io);

Create the PRBS signal.

input = frest.PRBS(sys);

frest.PRBS configures the order and sample time of the input signal based on the system dynamics.
The amplitude and number of periods remain at their default values.

input

The PRBS input signal:

 Amplitude : 1e-05
 Ts : 7.94767061252222 (secs)
 Order : 8
 NumPeriods : 1
 OneSamplePerClockPeriod (on/off) : on
 UseWindow (on/off) : on

You can change properties of the signal using dot notation. For instance, increase the signal
amplitude.

input.Amplitude = 3e-5

The PRBS input signal:

 Amplitude : 3e-05
 Ts : 7.94767061252222 (secs)
 Order : 8

 frest.PRBS

20-35

 NumPeriods : 1
 OneSamplePerClockPeriod (on/off) : on
 UseWindow (on/off) : on

Alternative Functionality
Model Linearizer

In the Model Linearizer, to use a PRBS input signal for estimation, on the Estimation tab, select
Input Signal > PRBS Pseudorandom Binary Sequence

Version History
Introduced in R2020a

R2021a: Additional properties OneSamplePerClockPeriod and UseWindow
Behavior changed in R2021a

Starting in R2021a, the frest.PRBS object has two additional properties,
OneSamplePerClockPeriod and UseWindow.

The OneSamplePerClockPeriod property specifies whether the signal remains constant for one
sample per clock period or multiple samples per clock period when you have NumPeriods > 1. By
default, this property is set to 'on' and the signal remains constant for one sample.

UseWindow property provides an option to apply filtering to the input and output signals to produce a
smoother frequency response estimation result. By default, this property is set to 'on' and signals
are filtered.

If you have existing code, the frequency response estimation results might differ. To use same
settings as the previous releases, set these properties to 'off'.

See Also
frest.Chirp | frest.Random | frest.Sinestream | frestimate

Topics
“PRBS Input Signals” on page 5-37
“Estimation Input Signals” on page 5-25
“Estimate Frequency Response at the Command Line” on page 5-14
“Frequency Response Estimation Using Simulation-Based Techniques” on page 5-77

20 Objects

20-36

LinearizationAdvisor
Diagnostic information for troubleshooting linearization results

Description
When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. You can troubleshoot your linearization
results by reviewing this diagnostic information.

To access the diagnostic information, use the getBlockInfo function.

Creation
There are several ways to create a LinearizationAdvisor object when linearizing a Simulink
model. When you linearize a model using:

• The linearize function, first create a linearizeOptions option set, setting the
StoreAdvisor option to true. Then, linearize the model using linearize, returning the info
argument.

• An slLinearizer interface, first create a linearizeOptions option set, setting the
StoreAdvisor option to true. Then, create the slLinearizer interface. When you obtain a
linear model from the interface using a linearization function, such as getIOTransfer, return the
info argument.

• An slTuner interface, first create a slTunerOptions option set, setting the StoreAdvisor
option to true. Then, create the slTuner interface. When you obtain a linear model from the
interface using a linearization function, such as getIOTransfer, return the info argument.

You can then access the LinearizationAdvisor object using info.Advisor. If you linearize the
model at multiple operating points or using parameter variation, info.Advisor is an array of
LinearizationAdvisor objects.

Also, the advise and find functions return a LinearizationAdvisor object that contains
diagnostic information for blocks that satisfy the relevant search criteria.

Properties
Model — Simulink model
character vector

Simulink model associated with the linearization diagnostic information, returned as a character
vector.

Model is a read-only property.

AnalysisPoints — Linear analysis points
linearization I/O object | vector of linearization I/O objects

 LinearizationAdvisor

20-37

Linear analysis points, including inputs, outputs, and openings, returned as a linearization I/O object
or a vector of linearization I/O objects.

AnalysisPoints corresponds to the:

• io input argument of the linearize command.
• Analysis points and loop openings of an slLinearizer or slTuner interface.

For more information on analysis points, see “Specify Portion of Model to Linearize” on page 2-10.

AnalysisPoints is a read-only property.

OperatingPoint — Operating point
operating point object

Operating point at which the model was linearized, specified as an operating point object.

OperatingPoint is a read-only property.

Parameters — Parameter samples
[] (default) | structure | structure array

Parameter samples for linearization, specified as one of the following:

• [] — Linearization result has no associated parameter values.
• Structure — Value for a single parameter, specified as a structure with the following fields:

• Name — Parameter name
• Value — Parameter value

• Structure array — Values for multiple parameters.

For more information on parameter variation, see “Specify Parameter Samples for Batch
Linearization” on page 3-43.

Parameters is a read-only property.

LinearizationOptions — Linearization algorithm options
linearizeOptions option set

Linearization algorithm options, specified as a linearizeOptions object.

LinearizationOptions corresponds to the options input argument of linearize,
slLinearizer, or slTuner.

LinearizationOptions is a read-only property.

BlockDiagnostics — Diagnostic information
BlockDiagnostic object | vector of BlockDiagnostic objects

Diagnostic information for each block that matches the search criteria used to create the
LinearizationAdvisor object, specified as a BlockDiagnostic object or a vector of
BlockDiagnostic objects.

You can access these block diagnostics using the getBlockInfo command. To obtain a list of the
blocks, use the getBlockPaths command.

20 Objects

20-38

BlockDiagnostics is a read-only property.

QueryType — Query type
character vector

Query type used to obtain the linearization diagnostics, specified as one of the following:

• 'All Blocks' when you initially create a LinearizationAdvisor object using a linearization
function such as linearize or getIOTransfer.

• 'Linearization Advice' when you create a LinearizationAdvisor object using the
advise command.

• A character vector matching the QueryType property of the corresponding custom query object
when you create a LinearizationAdvisor object using the find command.

QueryType is a read-only property.

Description — Query description
character vector

Description of the query used to obtain the linearization diagnostics, specified as one of the following:

• 'All Linearized Blocks' when you initially create a LinearizationAdvisor object using a
linearization function such as linearize or getIOTransfer.

• 'Blocks that are Potentially Problematic for Linearization' when you create a
LinearizationAdvisor object using the advise command.

• A character vector matching the Description property of the corresponding custom query
object when you create a LinearizationAdvisor object using the find command.

Description is a read-only property.

Object Functions
advise Find blocks that are potentially problematic for linearization
highlight Highlight linearization path in Simulink model
find Find blocks in linearization results that match specific criteria
getBlockInfo Obtain diagnostic information for block linearizations
getBlockPaths Obtain list of blocks in LinearizationAdvisor object

Examples

Create LinearizationAdvisor Using linearize

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Create a linearization option set, enabling the StoreAdvisor option.

opt = linearizeOptions('StoreAdvisor',true);

Linearize the model using this option set, returning the info argument.

 LinearizationAdvisor

20-39

io = getlinio(mdl);
[linsys,~,info] = linearize(mdl,io,opt);

Extract the LinearizationAdvisor object from info.

advisor = info.Advisor

advisor =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x11 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Create LinearizationAdvisor Using slLinearizer Interface

Load Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Create a linearization option set, enabling the StoreAdvisor option.

opt = linearizeOptions('StoreAdvisor',true);

Define input and output analysis points, and create an slLinearizer interface using this option set.

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
SL = slLinearizer(mdl,io,opt);

Find the transfer function from the input to the output, returning the info argument.

[linsys,info] = getIOTransfer(SL,'scdspeed/throttle (degrees)','scdspeed/rad//s to rpm');

Extract the LinearizationAdvisor object from info.

advisor = info.Advisor

advisor =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x27 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Create LinearizationAdvisor Using slTuner Interface

Load Simulink model.

20 Objects

20-40

mdl = 'scdspeed';
load_system(mdl)

Create a slTunerOptions option set, enabling the StoreAdvisor option.

opt = slTunerOptions('StoreAdvisor',true);

Define input and output analysis points, and create an slTuner interface using this option set.

io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
ST = slTuner(mdl,io,opt);

Typically, you would tune your control system using the systune function. Then, you can find the
transfer function from the input to the output, returning the info argument.

[linsys,info] = getIOTransfer(ST,'scdspeed/throttle (degrees)','scdspeed/rad//s to rpm');

Extract the LinearizationAdvisor object from info.

advisor = info.Advisor

advisor =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x27 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Find Potentially Problematic Blocks for Linearization

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find potentially problematic blocks for linearization.

result = advise(advisor)

result =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearization Advice'

 LinearizationAdvisor

20-41

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Obtain Diagnostics for Potentially Problematic Blocks

Load Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain LinearizationAdvisor object.

io = getlinio(mdl);
opt = linearizeOptions('StoreAdvisor',true);
[linsys,~,info] = linearize(mdl,io,opt);
advisor = info.Advisor;

Find blocks that are potentially problematic for linearization.

blocks = advise(advisor);

Obtain diagnostics for these blocks.

diags = getBlockInfo(blocks)

20 Objects

20-42

diags =
Linearization Diagnostics for the Blocks:

Block Info:

Index BlockPath Is On Path Contributes To Linearization Linearization Method
1. scdpendulum/pendulum/Saturation Yes No Exact
2. scdpendulum/angle_wrap/Trigonometric Function1 Yes No Perturbation
3. scdpendulum/pendulum/Trigonometric Function Yes No Perturbation

Alternative Functionality
App

You can interactively troubleshoot linearization results using the Linearization Advisor in the Model
Linearizer. For an example, see “Troubleshoot Linearization Results in Model Linearizer” on page 4-
16.

Version History
Introduced in R2017b

See Also
Objects
BlockDiagnostic

Functions
linearize | getIOTransfer | getLoopTransfer | getCompSensitivity | getSensitivity |
advise | find

Topics
“Identify and Fix Common Linearization Issues” on page 4-6
“Troubleshoot Linearization Results at Command Line” on page 4-28
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37

 LinearizationAdvisor

20-43

linqueryAdvise
Query object for finding blocks that are potentially problematic for linearization

Description
linqueryAdvise creates a custom query object for finding the blocks in a linearization result that
are potentially problematic for linearization.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Using the find function with a linqueryAdvise object is equivalent to using the advise function.

Creation

Syntax
query = linqueryAdvise

Description

query = linqueryAdvise creates a query object for finding all the blocks in a
LinearizationAdvisor object that are potentially problematic for linearization.

Properties
QueryType — Query type
'Linearization Advice' (default) | character vector

Query type, specified as 'Linearization Advice'.

Description — Query description
'Blocks that are Potentially Problematic for Linearization' (default) | character
vector

Query description, specified as 'Blocks that are Potentially Problematic for
Linearization'. You can add your own description to the query object using this property.

Usage
After creating a linqueryAdvise query object, you can:

20 Objects

20-44

• Find all the blocks in a LinearizationAdvisor object that are potentially problematic for
linearization by using the linqueryAdvise query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryAdvise query with other
query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Potentially Problematic Linearizations

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks that have potentially problematic linearizations.

qAdvise = linqueryAdvise;
advAdvise = find(advisor,qAdvise)

advAdvise =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearization Advice'

Algorithms
Creating a linqueryAdvise object is equivalent to creating the following custom query:

qPath = linqueryIsOnPath;
qZero = linqueryIsZero;
qBlkRep = linqueryIsBlockSubstituted;
qDiags = linqueryHasDiagnostics;

q = qPath & (qZero | qDiags | qBlkRep);

advisor_new = find(advisor,q);

 linqueryAdvise

20-45

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-46

linqueryAllBlocks
Query object for finding all linearized blocks

Description
linqueryAllBlocks creates a custom query object for finding all the linearized blocks listed in a
LinearizationAdvisor object.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

When you use this query object with the find command, the LinearizationAdvisor object
returned by find contains the same blocks as the input LinearizationAdvisor object. Therefore,
it is not necessary to use linqueryAllBlocks. This command is a utility function used by the
Linearization Advisor in the Model Linearizer.

Creation

Syntax
query = linqueryAllBlocks

Description

query = linqueryAllBlocks creates a query object for finding all the linearized blocks listed in a
LinearizationAdvisor object.

Properties
QueryType — Query type
'All Blocks' (default) | character vector

Query type, specified as 'All Blocks'.

Description — Query description
'All Linearized Blocks' (default) | character vector

Query description, specified as 'All Linearized Blocks'.

Object Functions
find Find blocks in linearization results that match specific criteria

 linqueryAllBlocks

20-47

Examples

Find All Linearized Blocks

Load the Simulink model.

mdl = 'scdpwm';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
[sys,op,info] = linearize(mdl,getlinio(mdl),opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks.

qAll = linqueryAllBlocks;
advAll = find(advisor,qAll)

advAll =
 LinearizationAdvisor with properties:

 Model: 'scdpwm'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: 'All Blocks'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-48

linqueryContributesToLinearization
Query object for finding blocks that contribute to the model linearization result

Description
linqueryContributesToLinearization creates a custom query object for finding all the blocks
that numerically contribute to the model linearization result.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryContributesToLinearization

Description

query = linqueryContributesToLinearization creates a query object for finding all the
blocks in a LinearizationAdvisor object that numerically contribute to the model linearization
result.

Properties
QueryType — Query type
'Contributes to Linearization' (default) | character vector

Query type, specified as 'Contributes to Linearization'.

Description — Query description
'Blocks that Contribute to the Model Linearization' (default) | character vector

Query description, specified as 'Blocks that Contribute to the Model Linearization'.
You can add your own description to the query object using this property.

Usage
After creating a linqueryContributesToLinearization query object, you can:

• Find all the blocks in a LinearizationAdvisor object that numerically contribute to the model
linearization result by using the linqueryContributesToLinearization query directly with
the find command.

 linqueryContributesToLinearization

20-49

• Create a CompoundQuery object by logically combining the
linqueryContributesToLinearization query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks That Contribute to Linearization Result

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model, and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks that numerically contribute to the model linearization result.

qContribute = linqueryContributesToLinearization;
advContribute = find(advisor,qContribute)

advContribute =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x22 linearize.advisor.BlockDiagnostic]
 QueryType: 'Contributes to Linearization'

To find blocks that do not contribute to the linearization result, use the same query object with a NOT
(~) logical operator.

advNoContribute = find(advisor,~qContribute)

advNoContribute =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x5 linearize.advisor.BlockDiagnostic]
 QueryType: '~(Contributes to Linearization)'

20 Objects

20-50

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find | highlight

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryContributesToLinearization

20-51

linqueryHasDiagnostics
Query object for finding blocks that have diagnostic messages regarding their linearization

Description
linqueryHasDiagnostics creates a custom query object for finding all the blocks in a linearization
result that have diagnostic messages regarding their linearization.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryHasDiagnostics

Description

query = linqueryHasDiagnostics creates a query object for finding all the blocks in a
LinearizationAdvisor object that have diagnostic messages regarding their linearization.

Properties
QueryType — Query type
'Has Diagnostics' (default) | character vector

Query type, specified as 'Has Diagnostics'.

Description — Query description
'Blocks that have Linearization Diagnostic Messages' (default) | character vector

Query description, specified as 'Blocks that have Linearization Diagnostic Messages'.
You can add your own description to the query object using this property.

Usage
After creating a linqueryHasDiagnostics query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have diagnostic messages regarding
their linearization by using the linqueryHasDiagnostics query directly with the find
command.

20 Objects

20-52

• Create a CompoundQuery object by logically combining the linqueryHasDiagnostics query
with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks with Linearization Diagnostic Messages

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks with diagnostic messages regarding their linearization.

qDiag = linqueryHasDiagnostics;
advDiag = find(advisor,qDiag)

advDiag =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has Diagnostics'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

 linqueryHasDiagnostics

20-53

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-54

linqueryHasInputs
Query object for finding blocks with specified number of inputs

Description
linqueryHasInputs creates a custom query object for finding all the blocks in a linearization result
that have a specified number of inputs.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryHasInputs(numInputs)

Description

query = linqueryHasInputs(numInputs) creates a query object for finding all the blocks in a
LinearizationAdvisor object that have the specified number of inputs. This syntax sets the
NumInputs property of the query object.

Properties
NumInputs — Number of block inputs
nonnegative integer

Number of block inputs, specified as a nonnegative integer.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <N> Inputs', where <N> is equal to
NumInputs.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <N> Inputs', where
<N> is equal to NumInputs. You can add your own description to the query object using this property.

 linqueryHasInputs

20-55

Usage
After creating a linqueryHasInputs query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have the specified number of inputs
by using the linqueryHasInputs query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryHasInputs query with
other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks with Two Inputs

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks with two inputs.

qIn = linqueryHasInputs(2);
advIn = find(advisor,qIn)

advIn =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x13 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 2 Inputs'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

20 Objects

20-56

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryHasInputs

20-57

linqueryHasOrder
Query object for finding blocks with specified number of states

Description
linqueryHasOrder creates a custom query object for finding all the blocks in a linearization result
that have a specified number of states.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryHasOrder(numStates)

Description

query = linqueryHasOrder(numStates) creates a query object for finding all the blocks in a
LinearizationAdvisor object that have the specified number of states. This syntax sets the
NumStates property of the query object.

Properties
NumStates — Number of block states
nonnegative integer

Number of block states, specified as a nonnegative integer.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <N> States', where <N> is equal to
NumStates.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <N> States, where
<N> is equal to NumStates. You can add your own description to the query object using this property.

20 Objects

20-58

Usage
After creating a linqueryHasOrder query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have the specified number of states
by using the linqueryHasOrder query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryHasOrder query with other
query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks with Two States

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks with two states.

qOrder = linqueryHasOrder(2);
advOrder = find(advisor,qOrder)

advOrder =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 2 States'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

 linqueryHasOrder

20-59

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-60

linqueryHasOutputs
Query object for finding blocks with specified number of outputs

Description
linqueryHasOutputs creates a custom query object for finding all the blocks in a linearization
result that have a specified number of outputs.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryHasOutputs(numOutputs)

Description

query = linqueryHasOutputs(numOutputs) creates a query object for finding all the blocks in a
LinearizationAdvisor object that have the specified number of outputs. This syntax sets the
NumOutputs property of the query object.

Properties
NumOutputs — Number of block outputs
nonnegative integer

Number of block outputs, specified as a nonnegative integer.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <N> Outputs', where <N> is equal to
NumOutputs.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <N> Outputs',
where <N> is equal to NumOutputs. You can add your own description to the query object using this
property.

 linqueryHasOutputs

20-61

Usage
After creating a linqueryHasOutputs query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have the specified number of outputs
by using the linqueryHasOutputs query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryHasOutputs query with
other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks with Two Outputs

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks with two outputs.

qOut = linqueryHasOutputs(2);
advOut = find(advisor,qOut)

advOut =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 2 Outputs'

Find All SISO Blocks

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');

20 Objects

20-62

io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create compound query object for finding all blocks with one input and one output.

qSISO = linqueryHasInputs(1) & linqueryHasOutputs(1);

Find all SISO blocks using compound query object.

advSISO = find(advisor,qSISO)

advSISO =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x10 linearize.advisor.BlockDiagnostic]
 QueryType: '(Has 1 Inputs & Has 1 Outputs)'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryHasOutputs

20-63

linqueryHasSampleTime
Query object for finding blocks with specified sample time

Description
linqueryHasSampleTime creates a custom query object for finding all the blocks in a linearization
result that have a specified sample time.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation
Syntax
query = linqueryHasSampleTime(ts)

Description

query = linqueryHasSampleTime(ts) creates a query object for finding all the blocks in a
LinearizationAdvisor object that have sample time ts. This syntax sets the Ts property of the
query object.

Properties
Ts — Sample
nonnegative scalar

Block sample time, specified as a nonnegative scalar. Specify Ts in the time units of the linearized
model.

To find continuous-time blocks, specify Ts as 0.

QueryType — Query type
character vector

Query type, specified as a character vector of the form 'Has <T> Sample Time', where <T> is
equal to Ts.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <T> Sample Time',
where <T> is equal to Ts. You can add your own description to the query object using this property.

20 Objects

20-64

Usage
After creating a linqueryHasSampleTime query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have a specified sample time by
using the linqueryHasSampleTime query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryHasSampleTime query
with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Specified Sample Time

Load the Simulink model.

mdl = 'scdmrate';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdmrate/Constant',1,'input');
io(2) = linio('scdmrate/sysTs2',1,'openoutput');
[linsys,linop,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object and find all the linearized blocks with a sample time of 0.1 seconds.

qTs = linqueryHasSampleTime(0.01);
advTs = find(advisor,qTs)

advTs =
 LinearizationAdvisor with properties:

 Model: 'scdmrate'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 0.01 Sample Time'

Find All Continuous-Time Blocks

Load the Simulink model.

mdl = 'scdmrate';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

 linqueryHasSampleTime

20-65

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all linearized blocks with continuous-time linearizations.

qCont = linqueryHasSampleTime(0);
advCont = find(advisor,qCont)

advCont =
 LinearizationAdvisor with properties:

 Model: 'scdmrate'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x5 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has 0 Sample Time'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-66

linqueryHasZeroIOPair
Query object for finding blocks with at least one input/output pair that linearizes to zero

Description
linqueryHasZeroIOPair creates a custom query object for finding all the blocks in a linearization
result that have at least one input/output pair that linearizes to zero. For a zero input/output pair, a
change in the input value has no effect on the output value.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryHasZeroIOPair

Description

query = linqueryHasZeroIOPair creates a query object for finding all the blocks in a
LinearizationAdvisor object that have at least one input/output path that linearizes to zero.

Properties
QueryType — Query type
'Has Zero I/O Pair' (default) | character vector

Query type, specified as 'Has Zero I/O Pair'.

Description — Query description
'Blocks with a Zero IO Pair' (default) | character vector

Query description, specified as 'Blocks with a Zero IO Pair'. You can add your own
description to the query object using this property.

Usage
After creating a linqueryHasZeroIOPair query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have at least one input/output path
that linearizes to zero by using the linqueryHasZeroIOPair query directly with the find
command.

 linqueryHasZeroIOPair

20-67

• Create a CompoundQuery object by logically combining the linqueryHasZeroIOPair query
with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Zero Input/Output Paths

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks with at least one input/output path that linearizes to zero.

qZeroPair = linqueryHasZeroIOPair;
advZeroPair = find(advisor,qZeroPair)

advZeroPair =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x6 linearize.advisor.BlockDiagnostic]
 QueryType: 'Has Zero I/O Pair'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

20 Objects

20-68

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryHasZeroIOPair

20-69

linqueryIsBlockSubstituted
Query object for finding blocks that have custom block linearizations specified

Description
linqueryIsBlockSubstituted creates a custom query object for finding all the blocks in a
linearization result that have custom block linearizations specified.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation
Syntax
query = linqueryIsBlockSubstituted

Description

query = linqueryIsBlockSubstituted creates a query object for finding all the blocks in a
LinearizationAdvisor object that have custom block linearization specified.

Properties
QueryType — Query type
'Block Substituted' (default) | character vector

Query type, specified as 'Block Substituted'.

Description — Query description
'Blocks Linearized with Block Substitution' (default) | character vector

Query description, specified as 'Blocks Linearized with Block Substitution'. You can add
your own description to the query object using this property.

Usage
After creating a linqueryIsBlockSubstituted query object, you can:

• Find all the blocks in a LinearizationAdvisor object that have a custom linearization specified
by using the linqueryIsBlockSubstituted query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsBlockSubstituted
query with other query objects.

20 Objects

20-70

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find Blocks with Substitute Linearizations

Load the Simulink model.

mdl = 'scdpwmCustom';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
[sys,op,info] = linearize(mdl,getlinio(mdl),opts);
advisor = info.Advisor;

Create query object, and find all blocks with substitute linearizations.

qSub = linqueryIsBlockSubstituted;
advSub = find(advisor,qSub)

advSub =
 LinearizationAdvisor with properties:

 Model: 'scdpwmCustom'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x1 linearize.advisor.BlockDiagnostic]
 QueryType: 'Block Substituted'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

 linqueryIsBlockSubstituted

20-71

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-72

linqueryIsBlockType
Query object for finding blocks of the specified type

Description
linqueryIsBlockType creates a custom query object for finding all the blocks of a specified type in
a linearization result.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryIsBlockType(Type)

Description

query = linqueryIsBlockType(Type) creates a query object for finding all the blocks in a
LinearizationAdvisor object that are of type Type.

Input Arguments

Type — Block type
character vector | string

Block type, specified as a character vector or string. To specify a block type, use the corresponding
blocktype parameter of the block. To get the blocktype parameter for the currently selected block
in the Simulink model, at the MATLAB command line, type:

get_param(gcb,'blocktype')

Also, to find:

• MATLAB Function blocks, specify Type as 'matlab function'.
• Stateflow charts, specify Type as 'chart'.
• Simscape networks, specify Type as 'simscape'. A LinearizationAdvisor object does not

provide diagnostic information on a component-level basis for Simscape networks. Instead, it
groups diagnostic information together for multiple Simscape components connected to a single
Solver Configuration block.

 linqueryIsBlockType

20-73

Properties
QueryType — Query type
character vector

Query type, specified as a character vector of the form '<type> Blocks', where <type> is equal
the block type specified in Type.

Description — Query description
character vector

Query description, specified as a character vector of the form 'Blocks with <type> Block
types', where <type> is equal to Type. You can add your own description to the query object using
this property.

Usage
After creating a linqueryIsBlockType query object, you can:

• Find all the blocks of a specified type in a LinearizationAdvisor object by using the
linqueryIsBlockType query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsBlockType query with
other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Integrator Blocks in Linearization Result

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the integrator blocks.

qInteg = linqueryIsBlockType('Integrator');
advInteg = find(advisor,qInteg)

advInteg =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'

20 Objects

20-74

 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x2 linearize.advisor.BlockDiagnostic]
 QueryType: 'Integrator Blocks'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryIsBlockType

20-75

linqueryIsExact
Query object for finding blocks linearized using their defined exact linearization

Description
linqueryIsExact creates a custom query object for finding all the blocks in a linearization result
that are linearized using their defined exact linearization.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation
Syntax
query = linqueryIsExact

Description

query = linqueryIsExact creates a query object for finding all the blocks in a
LinearizationAdvisor object that are linearized using their defined exact linearization.

Properties
QueryType — Query type
'Exact' (default) | character vector

Query type, specified as 'Exact'.

Description — Query description
'Blocks that are Analytically Linearized' (default) | character vector

Query description, specified as 'Blocks that are Analytically Linearized'. You can add
your own description to the query object using this property.

Usage
After creating a linqueryIsExact query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are linearized using their defined
exact linearization by using the linqueryIsExact query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsExact query with other
query objects.

20 Objects

20-76

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks Linearized Using Exact Linearization

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks linearized using their defined exact linearization.

qExact = linqueryIsExact;
advExact = find(advisor,qExact)

advExact =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x21 linearize.advisor.BlockDiagnostic]
 QueryType: 'Exact'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

 linqueryIsExact

20-77

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-78

linqueryIsNumericallyPerturbed
Query object for finding blocks linearized using numerical perturbation

Description
linqueryIsNumericallyPerturbed creates a custom query object for finding all the blocks in a
linearization result that are linearized using numerical perturbation.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation

Syntax
query = linqueryIsNumericallyPerturbed

Description

query = linqueryIsNumericallyPerturbed creates a query object for finding all the blocks in a
LinearizationAdvisor object that are linearized using numerical perturbation.

Properties
QueryType — Query type
'Perturbation' (default) | character vector

Query type, specified as 'Perturbation'.

Description — Query description
'Blocks that are Numerically Perturbed' (default) | character vector

Query description, specified as 'Blocks that are Numerically Perturbed'. You can add your
own description to the query object using this property.

Usage
After creating a linqueryIsNumericallyPerturbed query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are linearized using numerical
perturbation by using the linqueryIsNumericallyPerturbed query directly with the find
command.

 linqueryIsNumericallyPerturbed

20-79

• Create a CompoundQuery object by logically combining the
linqueryIsNumericallyPerturbed query with other query objects.

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Numerically Perturbed Blocks

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all numerically perturbed blocks.

qPert = linqueryIsNumericallyPerturbed;
advPert = find(advisor,qPert)

advPert =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x4 linearize.advisor.BlockDiagnostic]
 QueryType: 'Perturbation'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

20 Objects

20-80

Functions
find

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryIsNumericallyPerturbed

20-81

linqueryIsOnPath
Query object for finding blocks that are on the linearization path

Description
linqueryIsOnPath creates a custom query object for finding all the blocks in a linearization result
that are on the linearization path.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation
Syntax
query = linqueryIsOnPath

Description

query = linqueryIsOnPath creates a query object for finding all the blocks in a
LinearizationAdvisor object that are on the linearization path.

Properties
QueryType — Query type
'On Linearization Path' (default) | character vector

Query type, specified as 'On Linearization Path'.

Description — Query description
'Blocks on the Linearization Path' (default) | character vector

Query description, specified as 'Blocks on the Linearization Path'. You can add your own
description to the query object using this property.

Usage
After creating a linqueryIsOnPath query object, you can:

• Find all the blocks in a LinearizationAdvisor object that are on the linearization path by
using the linqueryIsOnPath query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsOnPath query with other
query objects.

20 Objects

20-82

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks On Linearization Path

Load the Simulink model.

mdl = 'scdspeed';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io(1) = linio('scdspeed/throttle (degrees)',1,'input');
io(2) = linio('scdspeed/rad//s to rpm',1,'output');
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all the linearized blocks on the linearization path.

qPath = linqueryIsOnPath;
advPath = find(advisor,qPath)

advPath =
 LinearizationAdvisor with properties:

 Model: 'scdspeed'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x26 linearize.advisor.BlockDiagnostic]
 QueryType: 'On Linearization Path'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

 linqueryIsOnPath

20-83

Functions
find | highlight

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

20 Objects

20-84

linqueryIsZero
Query object for finding blocks that linearize to zero

Description
linqueryIsZero creates a custom query object for finding all the blocks in a linearization result
that linearize to zero.

When you linearize a Simulink model, you can create a LinearizationAdvisor object that contains
diagnostic information about individual block linearizations. To find block linearizations that satisfy
specific criteria, you can use the find function with custom query objects. Alternatively, you can
analyze linearization diagnostics using the Linearization Advisor in the Model Linearizer. For more
information on finding specific blocks in linearization results, see “Find Blocks in Linearization
Results Matching Specific Criteria” on page 4-37.

Creation
Syntax
query = linqueryIsZero

Description

query = linqueryIsZero creates a query object for finding all the blocks in a
LinearizationAdvisor object that linearize to zero.

Properties
QueryType — Query type
'Linearized to Zero' (default) | character vector

Query type, specified as 'Linearized to Zero'.

Description — Query description
'Blocks Linearized to Zero' (default) | character vector

Query description, specified as 'Blocks Linearized to Zero'. You can add your own description
to the query object using this property.

Usage
After creating a linqueryIsZero query object, you can:

• Find all the blocks in a LinearizationAdvisor object that linearize to zero by using the
linqueryIsZero query directly with the find command.

• Create a CompoundQuery object by logically combining the linqueryIsZero query with other
query objects.

 linqueryIsZero

20-85

Object Functions
find Find blocks in linearization results that match specific criteria

Examples

Find All Blocks That Linearize to Zero

Load the Simulink model.

mdl = 'scdpendulum';
load_system(mdl)

Linearize the model and obtain the LinearizationAdvisor object.

opts = linearizeOptions('StoreAdvisor',true);
io = getlinio(mdl);
[sys,op,info] = linearize(mdl,io,opts);
advisor = info.Advisor;

Create query object, and find all blocks that linearize to zero.

qZero = linqueryIsZero;
advZero = find(advisor,qZero)

advZero =
 LinearizationAdvisor with properties:

 Model: 'scdpendulum'
 OperatingPoint: [1x1 opcond.OperatingPoint]
 BlockDiagnostics: [1x3 linearize.advisor.BlockDiagnostic]
 QueryType: 'Linearized to Zero'

Alternative Functionality
App

You can also create custom queries for finding specific blocks in linearization results using the
Linearization Advisor in the Model Linearizer. For more information, see “Find Blocks in
Linearization Results Matching Specific Criteria” on page 4-37.

Version History
Introduced in R2017b

See Also
Objects
LinearizationAdvisor | CompoundQuery

Functions
find

20 Objects

20-86

Topics
“Find Blocks in Linearization Results Matching Specific Criteria” on page 4-37
“Troubleshoot Linearization Results at Command Line” on page 4-28

 linqueryIsZero

20-87

slLinearizer
Interface for batch linearization of Simulink models

Description
slLinearizer provides an interface between a Simulink model and the linearization commands
getIOTransfer, getLoopTransfer, getSensitivity, and getCompSensitivity. Use
slLinearizer to efficiently batch linearize a model.

You can configure the slLinearizer interface to linearize a model at a range of operating points
and specify variations for model parameter values. You can use analysis points on page 20-96 and
permanent openings on page 20-97 to obtain linearizations for any open-loop or closed-loop transfer
function from a model. You can then analyze the stability, or time-domain or frequency-domain
characteristics of the linearized models.

If you add or remove any analysis points or openings or change any other interface properties,
commands that extract linearizations from the slLinearizer interface recompile the Simulink
model.

The model linearization is automatically updated when you change any properties of the
slLinearizer interface. The update occurs when you call commands that query the linearization
stored in the interface, such as getIOTransfer, getLoopTransfer, getSensitivity, and
getCompsensitivity.

An slLinearizer interface linearizes your Simulink model using the algorithms described in “Exact
Linearization Algorithm” on page 2-177.

Creation
Syntax
sllin = slLinearizer(model)
sllin = slLinearizer(model,pt)
sllin = slLinearizer(model,param)
sllin = slLinearizer(model,op)
sllin = slLinearizer(model,blocksub)
sllin = slLinearizer(model,opt)
sllin = slLinearizer(model,pt,op,param,blocksub,options)

Description

sllin = slLinearizer(model) returns an slLinearizer interface for linearizing the Simulink
model model and sets the Model property. The interface adds the linear analysis points marked in
the model as analysis points on page 20-96 and also adds the linear analysis points that imply an
opening as permanent openings on page 20-97.

sllin = slLinearizer(model,pt) adds the analysis points in pt to the list of analysis points,
ignoring linear analysis points marked in the model.

20 Objects

20-88

sllin = slLinearizer(model,param) specifies the parameters whose values you want to vary
when linearizing the model and sets the Parameters property to param.

sllin = slLinearizer(model,op) specifies the operating points for linearizing the model and
sets the OperatingPoints property to op.

sllin = slLinearizer(model,blocksub) specifies substitute linearizations of blocks and
subsystems and sets the BlockSubstitutions property to blocksub. Use this syntax, for example,
to specify a custom linearization for a block. You can also use this syntax for blocks that do not
linearize successfully, such as blocks with discontinuities or triggered subsystems.

sllin = slLinearizer(model,opt) configures the linearization algorithm options and sets the
Options property to opt.

sllin = slLinearizer(model,pt,op,param,blocksub,options) creates an slLinearizer
interface using any combination of pt, op, param, blocksub, and options in any order.

If you do not specify pt, the interface adds the linear analysis points marked in the model as analysis
points. The interface also adds linear analysis points that imply an opening as permanent openings.

Input Arguments

pt — Analysis points
character vector | string | cell array of character vectors | string array | vector of linearization I/O
objects

Analysis points to add to the slLinearizer interface, specified as one of the following:

• Character vector or string — Analysis point identifier that can be any of the following:

• Signal name, for example pt = 'torque'
• Block path for a block with a single output port, for example pt = 'Motor/PID'
• Block path and port originating the signal, for example pt = 'Engine Model/1'

• Cell array of character vectors or string array — Specifies multiple analysis point identifiers. For
example:

pt = {'torque','Motor/PID','Engine Model/1'}
• Vector of linearization I/O objects — Create pt using linio. For example:

pt(1) = linio('scdcascade/setpoint',1,'input');
pt(2) = linio('scdcascade/Sum',1,'output');

Here, pt(1) specifies an input, and pt(2) specifies an output.

The interface adds all the points specified by pt and ignores their I/O types. The interface also
adds all signals that imply a loop opening as permanent openings.

For more information, see “Analysis Points” on page 20-96 and “Permanent Openings” on page 20-
97.

Properties
Model — Model name
string | character vector

 slLinearizer

20-89

Model name, specified as a character vector or string.

Options — Linearization algorithm options
linearizeOptions option set

Linearization algorithm options, specified as a linearizeOptions object.

OperatingPoints — Operating point for linearizing model
OperatingPoint object | array of OperatingPoint objects | vector of positive scalars |
OperatingReport object | array of OperatingReport objects

Operating point for linearizing model, specified as:

• OperatingPoint or OperatingReport object, created using findop with either a single
operating point specification, or a single snapshot time.

• Array of OperatingPoint or OperatingReport objects, specifying multiple operating points.

To create an array of OperatingPoint or OperatingReport objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more information, see

“Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70.
• Batch trim your model using parameter variations. For more information, see “Batch Compute

Steady-State Operating Points for Parameter Variation” on page 1-74.
• Vector of positive scalars, specifying simulation snapshot times.

If you configure the Parameters property, then specify OperatingPoints as one of the following:

• Single OperatingPoint or OperatingReport object.
• Array of OperatingPoint or OperatingReport objects whose size matches that of the

parameter grid specified by the Parameters property. When you batch linearize mdl, the
software uses only one model compilation. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before linearization. For an
example that uses the linearize command, see “Batch Linearize Model at Multiple Operating
Points Derived from Parameter Variations” on page 3-16.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the model for each
snapshot time and parameter grid point combination. This operation can be computationally
expensive.

If you do not specify OperatingPoints, the slLinearizer interface uses the model initial
condition.

Parameters — Parameter samples
structure | structure array

Parameter samples for linearizing model, specified as one of the following:

• Structure — Vary the value of a single parameter by specifying parameters as a structure with the
following fields.

• Name — Parameter name, specified as a character vector or string. You can specify any model
parameter that is a variable in the model workspace, the MATLAB workspace, or a data
dictionary. If the variable used by the model is not a scalar variable, specify the parameter

20 Objects

20-90

name as an expression that resolves to a numeric scalar value. For example, use the first
element of vector V as a parameter.

parameters.Name = 'V(1)';

• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range.

parameters.Name = 'A';
parameters.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values of
parameters A and b in the 10% range.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
parameters(1).Name = 'A';
parameters(1).Value = A_grid;
parameters(2).Name = 'b';
parameters(2).Value = b_grid;

For more information, see “Specify Parameter Samples for Batch Linearization” on page 3-43.

If Parameters specifies tunable parameters only, then the software batch linearizes the model using
a single compilation. If you also configure the OperatingPoints property with operating point
objects only, the software uses single model compilation.

For an example showing how batch linearization with parameter sampling works, see “Vary
Parameter Values and Obtain Multiple Transfer Functions” on page 3-21.

To compute the offsets required by the LPV System block, specify Parameters, and set
Options.StoreOffsets to true. You can then return additional linearization information when
calling linearization functions such as getIOTransfer, and extract the offsets using
getOffsetsForLPV.

BlockSubstitutions — Substitute linearizations for blocks and model subsystems
structure | structure array

Substitute linearizations for blocks and model subsystems, specified as a structure or an n-by-1
structure array, where n is the number of blocks for which you want to specify a linearization. Use
BlockSubstitutions to specify a custom linearization for a block or subsystem. For example, you
can specify linearizations for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

To study the effects of varying the linearization of a block on the model dynamics, you can batch
linearize your model by specifying multiple substitute linearizations for a block.

If you substitute a linearization with a sample time that differs from that of the original block or
subsystem, it is best practice to set the overall linearization sample time (Options.SampleTime) to
a nondefault value.

Each substitute linearization structure has the following fields.

Name — Block path
character vector | string

 slLinearizer

20-91

Block path of the block for which you want to specify the linearization, specified as a character vector
or string.

Value — Substitute linearization
double | double array | LTI model | model array | structure

Substitute linearization for the block, specified as one of the following:

• Double — Specify the linearization of a SISO block as a gain.
• Array of doubles — Specify the linearization of a MIMO block as an nu-by-ny array of gain values,

where nu is the number of inputs and ny is the number of outputs.
• LTI model, uncertain state-space model, or uncertain real object — The I/O configuration of the
specified model must match the configuration of the block specified by Name. Using an uncertain
model requires Robust Control Toolbox software.

• Array of LTI models, uncertain state-space models, or uncertain real objects — Batch linearize the
model using multiple block substitutions. The I/O configuration of each model in the array must
match the configuration of the block for which you are specifying a custom linearization. If you:

• Vary model parameters using theParameters property and specify Value as a model array,
the dimensions of Value must match the parameter grid size.

• Define block substitutions for multiple blocks, and specify Value as an array of LTI models for
more than one block, the dimensions of the arrays must match.

• Structure with the following fields.

Field Description
Specification Block linearization, specified as a character vector that contains

one of the following:

• MATLAB expression
• Name of a “Custom Linearization Function” on page 20-97 in

your current working directory or on the MATLAB path.

The specified expression or function must return one of the
following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires

Robust Control Toolbox software)

The I/O configuration of the returned model must match the
configuration of the block specified by Name.

Type Specification type, specified as one of the following:

• 'Expression'
• 'Function'

20 Objects

20-92

Field Description
ParameterNames Linearization function parameter names, specified as a cell array of

character vectors. Specify ParameterNames only when Type =
'Function' and your block linearization function requires input
parameters. These parameters only impact the linearization of the
specified block.

You must also specify the corresponding ParameterValues field.
ParameterValues Linearization function parameter values, specified as an vector of

doubles. The order of parameter values must correspond to the
order of parameter names in the ParameterNames field. Specify
ParameterValues only when Type = 'Function' and your
block linearization function requires input parameters.

TimeUnit — Time units for linearized models
'seconds' (default) | 'minutes' | 'hours' | 'milliseconds' | 'microseconds' | ...

Time units for linearized models computed by getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity, specified as one of the following values.

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Object Functions
addPoint Add signal to list of analysis points for slLinearizer or slTuner interface
addOpening Add signal to list of openings for slLinearizer or slTuner interface
addPoint Add signal to list of analysis points for slLinearizer or slTuner interface
getPoints Get list of analysis points for slLinearizer or slTuner interface
getOpenings Get list of openings for slLinearizer or slTuner interface
getIOTransfer Transfer function for specified I/O set using slLinearizer or slTuner interface
getLoopTransfer Open-loop transfer function at specified point using slLinearizer or slTuner

interface
getSensitivity Sensitivity function at specified point using slLinearizer or slTuner interface
getCompSensitivity Complementary sensitivity function at specified point using slLinearizer or

slTuner interface
removePoint Remove point from list of analysis points in slLinearizer or slTuner interface
removeAllPoints Remove all points from list of analysis points in slLinearizer or slTuner

interface
removeAllOpenings Remove all openings from list of permanent openings in slLinearizer or slTuner

interface

 slLinearizer

20-93

refresh Resynchronize slLinearizer or slTuner interface with current model state

Examples

Create and Configure slLinearizer Interface for Batch Linear Analysis

Create an slLinearizer interface for the scdcascade model. Add analysis points to the interface
to extract open-loop or closed-loop transfer functions from the model. Configure the interface to vary
parameters and operating points.

Open the scdcascade model.

mdl = "scdcascade";
open_system(mdl);

Create an slLinearizer interface for the model. Add the signals r, u1,|u2|, y1,|y2|, y1m, and y2m to
the interface.

sllin = slLinearizer(mdl,["r","u1","u2","y1","y2","y1m","y2m"]);

scdcascade contains two PID Controller blocks, C1 and C2. Suppose that you want to vary the
proportional and integral gains of C2, Kp2 and Ki2, in the 10% range. Create a structure and specify
the parameter variations.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);
Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = "Kp2";
params(1).Value = Kp2_grid;

params(2).Name = "Ki2";
params(2).Value = Ki2_grid;

params specifies a 3-by-5 parameter grid. Each point in this grid corresponds to a combination of the
Kp2 and Ki2 parameter values.

20 Objects

20-94

Specify params as the Parameters property of sllin.

sllin.Parameters = params;

When you use commands such as getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity, the software returns a linearization for each parameter grid point specified
by sllin.Parameters.

Suppose that you want to linearize the model at multiple snapshot times, for example at t =
{0,1,2}. To do so, configure the OperatingPoints property of sllin.

sllin.OperatingPoints = [0 1 2];

You can also configure the linearization options and specify substitute linearizations for blocks and
subsystems in your model.

After fully configuring sllin, use the getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity commands to linearize the model as required. For example, extract the
transfer function between the reference signal r and the output y1m for each parameter variation and
plot their step responses.

T = getIOTransfer(sllin,"r","y1m");
stepplot(T)

 slLinearizer

20-95

More About
Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of

20 Objects

20-96

the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Custom Linearization Function

You can specify a substitute linearization for a block or subsystem in your Simulink model using a
custom function on the MATLAB path.

Your custom linearization function must have one BlockData input argument, which is a structure
that the software creates and passes to the function. BlockData has the following fields:

Field Description
BlockName Name of the block for which you are specifying a custom linearization.
Parameters Block parameter values, specified as a structure array with Name and Value fields.

Parameters contains the names and values of the parameters you specify in the
blocksub.Value.ParameterNames and blocksub.Value.ParameterValues
fields.

 slLinearizer

20-97

Field Description
Inputs Input signals to the block for which you are defining a linearization, specified as a

structure array with one structure for each block input. Each structure in Inputs
has the following fields:

Field Description
BlockName Full block path of the block whose output connects to the

corresponding block input.
PortIndex Output port of the block specified by BlockName that

connects to the corresponding block input.
Values Value of the signal specified by BlockName and

PortIndex. If this signal is a vector signal, then Values
is a vector with the same dimension.

ny Number of output channels of the block linearization.
nu Number of input channels of the block linearization.
BlockLineari
zation

Current default linearization of the block, specified as a state-space model. You can
specify a block linearization that depends on the default linearization using
BlockLinearization.

Your custom function must return a model with nu inputs and ny outputs. This model must be one of
the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires Robust Control Toolbox software)

For example, the following function multiplies the current default block linearization, by a delay of Td
= 0.5 seconds. The delay is represented by a Thiran filter with sample time Ts = 0.1. The delay
and sample time are parameters stored in BlockData.

function sys = myCustomFunction(BlockData)
 Td = BlockData.Parameters(1).Value;
 Ts = BlockData.Parameters(2).Value;
 sys = BlockData.BlockLinearization*Thiran(Td,Ts);
end

Save this function to a location on the MATLAB path.

To use this function as a custom linearization for a block or subsystem, specify the
blocksub.Value.Specification and blocksub.Value.Type fields.

blocksub.Value.Specification = 'myCustomFunction';
blocksub.Value.Type = 'Function';

To set the delay and sample time parameter values, specify the blocksub.Value.ParameterNames
and blocksub.Value.ParameterValues fields.

blocksub.Value.ParameterNames = {'Td','Ts'};
blocksub.Value.ParameterValues = [0.5 0.1];

20 Objects

20-98

Alternatives
As an alternative to an slLinearizer interface, you can linearize models using one of the following
methods. For examples, see “Linearize Simulink Model at Model Operating Point” on page 2-54.

• To interactively linearize models, use the Model Linearizer app.
• To obtain a linear model, you can use the linearize function.

Although both Simulink Control Design software and the Simulink linmod function perform block-by-
block linearization, Simulink Control Design linearization functionality has a more flexible user
interface and uses Control System Toolbox numerical algorithms. For more information, see
“Linearization Using Simulink Control Design Versus Simulink” on page 2-8.

Version History
Introduced in R2013b

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a linearizeOptions object and set the
StoreOffsets option to true. Then, create an slLinearizer interface for the model.

You can extract the offsets from the info output argument of linearization function like
getIOTransfer and convert them into the required format for the LPV System block using the
getOffsetsForLPV function.

R2016a: Time unit property

You can specify time units for an slLinearizer interface using the TimeUnit property. This
property specifies the time units for linearized models returned by getIOTransfer,
getLoopTransfer, getSesnitivity, and getCompSesnitivity.

R2014a: Block substitution property

 slLinearizer

20-99

You can specify a substitute linearization for a Simulink block or subsystem using the
BlockSubstitutions property of an slLinearizer interface.

See Also
addPoint | addOpening | getIOTransfer | getLoopTransfer | getSensitivity |
getCompSensitivity | linearize

Topics
“What Is Batch Linearization?” on page 3-2
“How the Software Treats Loop Openings” on page 2-31
“Batch Linearization Efficiency When You Vary Parameter Values” on page 3-7
“Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70
“Specify Parameter Samples for Batch Linearization” on page 3-43
“Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface” on page
3-28
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21

20 Objects

20-100

slTuner
Interface for control system tuning of Simulink models

Description
slTuner provides an interface between a Simulink model and the tuning commands systune and
looptune.

slTuner allows you to:

• Specify the control architecture.
• Designate and parameterize blocks to be tuned.
• Tune the control system.
• Validate design by computing linearized open-loop and closed-loop responses.
• Write tuned values back to the model.

Because tuning commands such as systune operate on linear models, the slTuner interface
automatically computes and stores a linearization of your Simulink model. This linearization is
automatically updated when you change any properties of the slTuner interface. The update occurs
when you call commands that query the linearization stored in the interface, such as systune,
looptune, getIOTransfer, and getLoopTransfer.

You can configure the slTuner interface to linearize a model at a range of operating points and
specify variations for model parameter values. You can use analysis points on page 20-109 and
permanent openings on page 20-110 to obtain linearizations for any open-loop or closed-loop transfer
function from a model. You can then analyze the stability, or time-domain or frequency-domain
characteristics of the linearized models.

An slTuner interface linearizes your Simulink model using the algorithms described in “Exact
Linearization Algorithm” on page 2-177.

Creation
Syntax
st = slTuner(model,tunedBlocks)
st = slTuner(model,tunedBlocks,pt)
st = slTuner(model,tunedBlocks,param)
st = slTuner(model,tunedBlocks,op)
st = slTuner(model,tunedBlocks,blocksub)
st = slTuner(model,tunedBlocks,opt)
st = slTuner(model,tunedBlocks,pt,op,param,blocksub,options)

Description

st = slTuner(model,tunedBlocks) returns an slTuner interface for tuning the control system
blocks specified by tunedBlocks in the Simulink model model and sets the Model and

 slTuner

20-101

TunedBlocks properties. The interface adds the linear analysis points marked in the model as
analysis points and also adds the linear analysis points that imply an opening as permanent openings.

st = slTuner(model,tunedBlocks,pt) adds the analysis points in pt to the list of analysis
points for st, ignoring linear analysis points marked in the model.

st = slTuner(model,tunedBlocks,param) specifies the parameters whose values you want to
vary when linearizing the model and sets the Parameters property to param.

st = slTuner(model,tunedBlocks,op) specifies the operating points for linearizing the model
and sets the OperatingPoints property to op.

st = slTuner(model,tunedBlocks,blocksub) specifies substitute linearizations of blocks and
subsystems and sets the BlockSubstitutions property to blocksub. Use this syntax, for example,
to specify a custom linearization for a block. You can also use this syntax for blocks that do not
linearize successfully, such as blocks with discontinuities or triggered subsystems.

st = slTuner(model,tunedBlocks,opt) configures the linearization algorithm options and sets
the Options property to opt.

st = slTuner(model,tunedBlocks,pt,op,param,blocksub,options) creates an slTuner
interface using any combination of pt, op, param, blocksub, and options in any order.

If you do not specify pt, the interface adds the linear analysis points marked in the model as analysis
points. The interface also adds linear analysis points that imply an opening as permanent openings.

Input Arguments

pt — Analysis points
character vector | string | cell array of character vectors | string array | vector of linearization I/O
objects

Analysis points to add to the slTuner interface, specified as one of the following:

• Character vector or string — Analysis point identifier that can be any of the following:

• Signal name, for example pt = 'torque'
• Block path for a block with a single output port, for example pt = 'Motor/PID'
• Block path and port originating the signal, for example pt = 'Engine Model/1'

• Cell array of character vectors or string array — Specifies multiple analysis point identifiers. For
example:

pt = {'torque','Motor/PID','Engine Model/1'}
• Vector of linearization I/O objects — Create pt using linio. For example:

pt(1) = linio('scdcascade/setpoint',1,'input');
pt(2) = linio('scdcascade/Sum',1,'output');

Here, pt(1) specifies an input, and pt(2) specifies an output.

The interface adds all the points specified by pt and ignores their I/O types. The interface also
adds all signals that imply a loop opening as permanent openings.

For more information, see “Analysis Points” on page 20-109 and “Permanent Openings” on page 20-
110.

20 Objects

20-102

Properties
Model — Model name
string | character vector

Model name, specified as a character vector or string.

TunedBlocks — Blocks to be tuned
character vector | string | cell array of character vectors | string array

Blocks to be added to the list of tuned blocks in the slTuner interface, specified as one of the
following:

• Character vector or string — Block path. You can specify the full block path or a partial path. The
partial path must match the end of the full block path and unambiguously identify the block to
add. For example, you can refer to a block by its name, provided the block name appears only
once in the Simulink model.

For example, blk = 'scdcascade/C1'.
• Cell array of character vectors or string array — Multiple block paths.

For example, blk = {'scdcascade/C1','scdcascade/C2'}.

Options — Tuning options
slTunerOptions object

Tuning options, specified as an slTunerOptions object.

Ts — Sample time
0 (default) | nonnegative scalar

Sample time for analyzing and tuning model, specified as nonnegative scalar.

OperatingPoints — Operating point for linearizing model
OperatingPoint object | array of OperatingPoint objects | vector of positive scalars |
OperatingReport object | array of OperatingReport objects

Operating point for linearizing model, specified as:

• OperatingPoint or OperatingReport object, created using findop with either a single
operating point specification, or a single snapshot time.

• Array of OperatingPoint or OperatingReport objects, specifying multiple operating points.

To create an array of OperatingPoint or OperatingReport objects, you can:

• Extract operating points at multiple snapshot times using findop.
• Batch trim your model using multiple operating point specifications. For more information, see

“Batch Compute Steady-State Operating Points for Multiple Specifications” on page 1-70.
• Batch trim your model using parameter variations. For more information, see “Batch Compute

Steady-State Operating Points for Parameter Variation” on page 1-74.
• Vector of positive scalars, specifying simulation snapshot times.

If you configure the Parameters property, then specify OperatingPoints as one of the following:

 slTuner

20-103

• Single OperatingPoint or OperatingReport object.
• Array of OperatingPoint or OperatingReport objects whose size matches that of the

parameter grid specified by the Parameters property. When you batch linearize mdl, the
software uses only one model compilation. To obtain the operating points that correspond to the
parameter value combinations, batch trim your model using param before linearization. For an
example that uses the linearize command, see “Batch Linearize Model at Multiple Operating
Points Derived from Parameter Variations” on page 3-16.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the model for each
snapshot time and parameter grid point combination. This operation can be computationally
expensive.

If you do not specify OperatingPoints, the slLinearizer interface uses the model initial
condition.

Parameters — Parameter samples
structure | structure array

Parameter samples for linearizing model, specified as:

• Structure — Vary the value of a single parameter by specifying parameters as a structure with the
following fields.

• Name — Parameter name, specified as a character vector or string. You can specify any model
parameter that is a variable in the model workspace, the MATLAB workspace, or a data
dictionary. If the variable used by the model is not a scalar variable, specify the parameter
name as an expression that resolves to a numeric scalar value. For example, use the first
element of vector V as a parameter.

parameters.Name = 'V(1)';
• Value — Parameter sample values, specified as a double array.

For example, vary the value of parameter A in the 10% range.

parameters.Name = 'A';
parameters.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, vary the values of
parameters A and b in the 10% range.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...
 linspace(0.9*b,1.1*b,3));
parameters(1).Name = 'A';
parameters(1).Value = A_grid;
parameters(2).Name = 'b';
parameters(2).Value = b_grid;

For more in information, see “Specify Parameter Samples for Batch Linearization” on page 3-43.

If Parameters specifies tunable parameters only, then the software batch linearizes the model using
a single compilation. If you also configure the OperatingPoints property with operating point
objects only, the software uses single model compilation.

For an example showing how batch linearization with parameter sampling works, see “Vary
Parameter Values and Obtain Multiple Transfer Functions” on page 3-21. That example uses
slLinearizer, but the process is the same for slTuner.

20 Objects

20-104

To compute the offsets required by the LPV System block, specify Parameters, and set
Options.StoreOffsets to true. You can then return additional linearization information when
calling linearization functions such as getIOTransfer, and extract the offsets using
getOffsetsForLPV.

BlockSubstitutions — Substitute linearizations for blocks and model subsystems
structure | structure array

Substitute linearizations for blocks and model subsystems, specified as a structure or an n-by-1
structure array, where n is the number of blocks for which you want to specify a linearization. Use
BlockSubstitutions to specify a custom linearization for a block or subsystem. For example, you
can specify linearizations for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

To study the effects of varying the linearization of a block on the model dynamics, you can batch
linearize your model by specifying multiple substitute linearizations for a block.

If you substitute a linearization with a sample time that differs from that of the original block or
subsystem, it is best practice to set the overall linearization sample time (Options.SampleTime) to
a nondefault value.

Each substitute linearization structure has the following fields.

Name — Block path
character vector | string

Block path of the block for which you want to specify the linearization, specified as a character vector
or string.

Value — Substitute linearization
double | double array | LTI model | model array | structure

Substitute linearization for the block, specified as one of the following:

• Double — Specify the linearization of a SISO block as a gain.
• Array of doubles — Specify the linearization of a MIMO block as an nu-by-ny array of gain values,

where nu is the number of inputs and ny is the number of outputs.
• LTI model, uncertain state-space model, or uncertain real object — The I/O configuration of the
specified model must match the configuration of the block specified by Name. Using an uncertain
model requires Robust Control Toolbox software.

• Array of LTI models, uncertain state-space models, or uncertain real objects — Batch linearize the
model using multiple block substitutions. The I/O configuration of each model in the array must
match the configuration of the block for which you are specifying a custom linearization. If you:

• Vary model parameters using the Parameters property and specify Value as a model array,
the dimensions of Value must match the parameter grid size.

• Define block substitutions for multiple blocks, and specify Value as an array of LTI models for
more than one block, the dimensions of the arrays must match.

• Structure with the following fields.

 slTuner

20-105

Field Description
Specification Block linearization, specified as a character vector that contains

one of the following:

• MATLAB expression
• Name of a “Custom Linearization Function” on page 20-110 in

your current working directory or on the MATLAB path.

The specified expression or function must return one of the
following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires

Robust Control Toolbox software)

The I/O configuration of the returned model must match the
configuration of the block specified by Name.

Type Specification type, specified as one of the following:

• 'Expression'
• 'Function'

ParameterNames Linearization function parameter names, specified as a cell array of
character vectors. Specify ParameterNames only when Type =
'Function' and your block linearization function requires input
parameters. These parameters only impact the linearization of the
specified block.

You must also specify the corresponding ParameterValues field.
ParameterValues Linearization function parameter values, specified as an vector of

doubles. The order of parameter values must correspond to the
order of parameter names in the ParameterNames field. Specify
ParameterValues only when Type = 'Function' and your
block linearization function requires input parameters.

TimeUnit — Time units for linearized models
'seconds' (default) | 'minutes' | 'hours' | 'milliseconds' | 'microseconds' | ...

Time units for linearized models computed by getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity, specified as one of the following values.

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'

20 Objects

20-106

• 'weeks'
• 'months'
• 'years'

Object Functions
addBlock Add block to list of tuned blocks for slTuner interface
addOpening Add signal to list of openings for slLinearizer or slTuner interface
addPoint Add signal to list of analysis points for slLinearizer or slTuner interface
getPoints Get list of analysis points for slLinearizer or slTuner interface
getOpenings Get list of openings for slLinearizer or slTuner interface
getBlockParam Get parameterization of tuned block in slTuner interface
getBlockValue Get current value of tuned block parameterization in slTuner interface
getTunedValue Get current value of tuned variable in slTuner interface
getBlockRateConversion Get rate conversion settings for tuned block in slTuner interface
setBlockParam Set parameterization of tuned block in slTuner interface
setBlockValue Set value of tuned block parameterization in slTuner interface
setBlockRateConversion Set rate conversion settings for tuned block in slTuner interface
systune Tune control system parameters in Simulink using slTuner interface
looptune Tune MIMO feedback loops in Simulink using slTuner interface
loopview Graphically analyze results of control system tuning using slTuner

interface
looptuneSetup Construct tuning setup for looptune to tuning setup for systune using

slTuner interface
showTunable Show value of parameterizations of tunable blocks of slTuner interface
getIOTransfer Transfer function for specified I/O set using slLinearizer or slTuner

interface
getLoopTransfer Open-loop transfer function at specified point using slLinearizer or

slTuner interface
getSensitivity Sensitivity function at specified point using slLinearizer or slTuner

interface
getCompSensitivity Complementary sensitivity function at specified point using slLinearizer or

slTuner interface
writeBlockValue Update block values in Simulink model
writeLookupTableData Update portion of tuned lookup table
removePoint Remove point from list of analysis points in slLinearizer or slTuner

interface
removeAllPoints Remove all points from list of analysis points in slLinearizer or slTuner

interface
removeAllOpenings Remove all openings from list of permanent openings in slLinearizer or

slTuner interface
refresh Resynchronize slLinearizer or slTuner interface with current model state

Examples

Create and Configure slTuner Interface for Control System Tuning

Create and configure an slTuner interface for a Simulink® model that specifies which blocks to tune
with systune or looptune.

Open the Simulink model.

 slTuner

20-107

mdl = "scdcascade";
open_system(mdl)

The control system consists of two feedback loops, an inner loop with PI controller C2, and an outer
loop with PI controller C1. Suppose that you want to tune this model to meet the following control
objectives:

• Track setpoint changes to r at the system output y1m with zero steady-state error and a specified
rise time.

• Reject the disturbance represented by d2.

The systune command can jointly tune the controller blocks to meet these design requirements,
which you specify using TuningGoal objects. The slTuner interface sets up this tuning task.

Create an slTuner interface for the model.

st = slTuner(mdl,["C1","C2"]);

This command initializes the slTuner interface and designates the two PI controller blocks as
tunable. Each tunable block is automatically parameterized according to its type and initialized with
its value in the Simulink model. A linearization of the remaining nontunable portion of the model is
computed and stored in the slTuner interface.

To configure the slTuner interface, designate as analysis points any signal locations of relevance to
your design requirements. Add the output y1m and reference input r|for the tracking
requirement. Also, add the disturbance-rejection location |d2.

addPoint(st,["r","y1m","d2"]);

These locations in your model are now available for referencing in TuningGoal objects that capture
your design goals.

The display lists the designated tunable blocks, analysis points, and other information about the
interface. In the command window, click on any highlighted signal to see its location in the Simulink
model. Note that specifying the block name "d2" in the addPoint command is equivalent to
designating that block’s single output signal as the analysis point.

20 Objects

20-108

You can now capture your design goals with TuningGoal objects and use systune or looptune to
tune the control system to meet those design goals.

In addition to specifying design goals, you can use analysis points for extracting system responses.
For example, extract and plot the step response between the reference signal r and the output y1m.

T = getIOTransfer(st,"r","y1m");
stepplot(T)

More About
Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations within a
model that are relevant for linear analysis and control system tuning. You use analysis points as
inputs to the linearization commands, such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity. As inputs to the linearization commands, analysis
points can specify any open-loop or closed-loop transfer function in a model. You can also use analysis
points to specify design requirements when tuning control systems using commands such as
systune.

Location refers to a specific block output port within a model or to a bus element in such an output
port. For convenience, you can use the name of the signal that originates from this port to refer to an
analysis point.

 slTuner

20-109

You can add analysis points to an slLinearizer or slTuner interface, s, when you create the
interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the interface contents.
For each analysis point of s, the display includes the block name and port number and the name of
the signal that originates at this point. You can also programmatically obtain a list of all the analysis
points using getPoints.

For more information about how you can use analysis points, see “Mark Signals of Interest for
Control System Analysis and Design” on page 2-38 and “Mark Signals of Interest for Batch
Linearization” on page 3-9.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify locations within a
model where the software breaks the signal flow. The software enforces these openings for
linearization and tuning. Use permanent openings to isolate a specific model component. Suppose
that you have a large-scale model capturing aircraft dynamics and you want to perform linear
analysis on the airframe only. You can use permanent openings to exclude all other components of the
model. Another example is when you have cascaded loops within your model and you want to analyze
a specific loop.

Location refers to a specific block output port within a model. For convenience, you can use the name
of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when you create the
interface or by using the addOpening command. To remove a location from the list of permanent
openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface contents. For
each permanent opening of s, the display includes the block name and port number and the name of
the signal that originates at this location. You can also programmatically obtain a list of all the
permanent loop openings using getOpenings.

Custom Linearization Function

You can specify a substitute linearization for a block or subsystem in your Simulink model using a
custom function on the MATLAB path.

Your custom linearization function must have one BlockData input argument, which is a structure
that the software creates and passes to the function. BlockData has the following fields:

Field Description
BlockName Name of the block for which you are specifying a custom linearization.
Parameters Block parameter values, specified as a structure array with Name and Value fields.

Parameters contains the names and values of the parameters you specify in the
blocksub.Value.ParameterNames and blocksub.Value.ParameterValues
fields.

20 Objects

20-110

Field Description
Inputs Input signals to the block for which you are defining a linearization, specified as a

structure array with one structure for each block input. Each structure in Inputs
has the following fields:

Field Description
BlockName Full block path of the block whose output connects to the

corresponding block input.
PortIndex Output port of the block specified by BlockName that

connects to the corresponding block input.
Values Value of the signal specified by BlockName and

PortIndex. If this signal is a vector signal, then Values
is a vector with the same dimension.

ny Number of output channels of the block linearization.
nu Number of input channels of the block linearization.
BlockLineari
zation

Current default linearization of the block, specified as a state-space model. You can
specify a block linearization that depends on the default linearization using
BlockLinearization.

Your custom function must return a model with nu inputs and ny outputs. This model must be one of
the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Uncertain state-space model or uncertain real object (requires Robust Control Toolbox software)

For example, the following function multiplies the current default block linearization, by a delay of Td
= 0.5 seconds. The delay is represented by a Thiran filter with sample time Ts = 0.1. The delay
and sample time are parameters stored in BlockData.

function sys = myCustomFunction(BlockData)
 Td = BlockData.Parameters(1).Value;
 Ts = BlockData.Parameters(2).Value;
 sys = BlockData.BlockLinearization*Thiran(Td,Ts);
end

Save this function to a location on the MATLAB path.

To use this function as a custom linearization for a block or subsystem, specify the
blocksub.Value.Specification and blocksub.Value.Type fields.

blocksub.Value.Specification = 'myCustomFunction';
blocksub.Value.Type = 'Function';

To set the delay and sample time parameter values, specify the blocksub.Value.ParameterNames
and blocksub.Value.ParameterValues fields.

blocksub.Value.ParameterNames = {'Td','Ts'};
blocksub.Value.ParameterValues = [0.5 0.1];

 slTuner

20-111

Alternatives
To interactively tune Simulink models, use the Control System Tuner app.

Version History
Introduced in R2014a

R2020b: Linearize Simulink model to a sparse state-space model

You can linearize and obtain a sparse model from a Simulink model that contains a Sparse Second
Order or Descriptor State-Space block.

• mechss model when you use a Sparse Second Order in your Simulink model.
• sparss model when you use a Descriptor State-Space block and select the Linearize to sparse

model block parameter.

For more information, see “Sparse Model Basics”. For an example, see “Linearize Simulink Model to a
Sparse Second-Order Model Object”.

R2016b: Compute operating point offsets for model inputs, outputs, states, and state
derivatives during linearization

You can compute operating point offsets for model inputs, outputs, states, and state derivatives when
linearizing Simulink models. Thee offsets streamline the creation of linear parameter-varying (LPV)
systems.

To obtain operating point offsets, first create a slTunerOptions object and set the StoreOffsets
option to true. Then, create an slTuner interface for the model.

You can extract the offsets from the info output argument of linearization function like
getIOTransfer and convert them into the required format for the LPV System block using the
getOffsetsForLPV function.

R2016a: Time unit property

You can specify time units for an slTuner interface using the TimeUnit property. This property
specifies the time units for linearized models returned by getIOTransfer, getLoopTransfer,
getSesnitivity, and getCompSesnitivity.

See Also
systune | looptune | addPoint | addOpening | getIOTransfer | getLoopTransfer |
getSensitivity | getCompSensitivity | linearize

Topics
“Mark Signals of Interest for Control System Analysis and Design” on page 2-38
“How the Software Treats Loop Openings” on page 2-31
“Create and Configure slTuner Interface to Simulink Model”
“Vary Parameter Values and Obtain Multiple Transfer Functions” on page 3-21
“Tune Control Systems in Simulink”

20 Objects

20-112

“Fault-Tolerant Control of a Passenger Jet”
“Multi-Loop PI Control of a Robotic Arm”

 slTuner

20-113

Model Advisor Checks

21

Simulink Control Design Checks

Identify time-varying source blocks interfering with frequency
response estimation

Identify all time-varying source blocks in the signal path of any output linearization point marked in
the Simulink model.

Description

Frequency response estimation uses the steady-state response of a Simulink model to a specified
input signal. Time-varying source blocks in the signal path prevent the response from reaching
steady-state. In addition, when such blocks appear in the signal path, the resulting response is not
purely a response to the specified input signal. Thus, time-varying source blocks can interfere with
accurate frequency response estimation.

This check finds and reports all the time-varying source blocks which appear in the signal path of any
output linearization output points currently marked on the Simulink model. The report:

• Includes blocks in subsystems and in referenced models that are in normal simulation mode
• Excludes any blocks specified as BlocksToHoldConstant in the frestimateOptions object

you enter as the input parameter

For more information about the algorithm that identifies time-varying source blocks, see the
frest.findSources reference page.

Available with Simulink Control Design.

Input Parameters

FRESTIMATE options object to compare results against
Provide the paths of any blocks to exclude from the check. Specify the block paths as an array of
Simulink.BlockPath objects. This array is stored in the BlocksToHoldConstant field of an
option set you create with frestimateOptions. See the frestimateOptions reference page
for more information.

21 Model Advisor Checks

21-2

Results and Recommended Actions

Condition Recommended Action
Source blocks exist whose output
reaches linearization output points
currently marked on the model.

Consider holding these source blocks constant during frequency response
estimation.

Use the frest.findSources command to identify time-varying source
blocks at the command line. Then use the BlocksToHoldConstant
option of frestimateOptions to pass these blocks to the frestimate
command. For example,

% Get linearization I/Os from the model.
mdl = 'scdengine';
io = getlinio(mdl);
% Find time-varying source blocks.
blks = frest.findSources(mdl,io);
% Create options set with blocks to hold constant.
opts = frestimateOptions;
opts.BlocksToHoldConstant = blks;
% Run estimation with the options.
in = frest.Sinestream;
sysest = frestimate(mdl,io,in,opts);

For more information and examples, see the frest.findSources and
frestimateOptions reference pages.

Tip

Sometimes, the model includes referenced models containing source blocks in the signal path of an
output linearization point. In such cases, set the referenced models to normal simulation mode to
ensure that this check locates them. Use the set_param command to set SimulationMode of any
referenced models to Normal before running the check.

See Also

• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page 5-54
• frest.findSources reference page
• frestimateOptions reference page
• frestimate reference page

 Simulink Control Design Checks

21-3

Apps

22

Control Design Onramp with Simulink
Free, self-paced, interactive Simulink Control Design course

Description
Control Design Onramp with Simulink is a free, self-paced, interactive course that helps you get
started with control design basics in Simulink.

Control Design Onramp with Simulink teaches you to:

• Use basic control design workflows in Simulink.
• Explore classical control theories using Simulink Control Design and Control System Toolbox.
• Linearize a control system plant with Model Linearizer.
• Tune a PID controller with PID Tuner.

Control Design Onramp with Simulink uses tasks to teach concepts incrementally, such as through a
real-life example with a walking robot. You receive automated assessments and feedback after
submitting tasks. Your progress is saved when you exit the course, so you can complete the course in
multiple sessions.

Open the Control Design Onramp with Simulink
• Simulink Start Page: On the Learn tab, click the Launch button that appears when you pause on

Control Design Onramp with Simulink.
• MATLAB Command Window: Enter learning.simulink.launchOnramp("controls").

Note If you do not have a Simulink Control Design license, you can take the course at Self-Paced
Online Courses.

22 Apps

22-2

https://matlabacademy.mathworks.com/details/control-design-onramp-with-simulink/controls
https://matlabacademy.mathworks.com/details/control-design-onramp-with-simulink/controls

Version History
Introduced in R2020b

See Also
Apps
Model Linearizer | PID Tuner

Functions
learning.simulink.launchOnramp

Topics
“Compute Operating Points from Specifications Using Model Linearizer” on page 1-30
“Specify Portion of Model to Linearize” on page 2-10
“Linearize Simulink Model at Model Operating Point” on page 2-54
“PID Controller Tuning in Simulink”

 Control Design Onramp with Simulink

22-3

Model Linearizer
Linearize Simulink models

Description
The Model Linearizer lets you perform linear analysis of nonlinear Simulink models.

Using this app you can:

• Interactively linearize models at different operating points
• Interactively obtain operating points by trimming or simulating models
• Perform exact linearization of nonlinear models
• Perform frequency response estimation of nonlinear models
• Batch linearize models for varying parameter values
• Generate MATLAB code for performing linearization tasks
• Generate MATLAB code for computing operating points

22 Apps

22-4

Open the Model Linearizer App
• Simulink Toolstrip: On the Apps tab, under Control Systems, click Model Linearizer.
• Simulink Toolstrip: On the Apps tab, under Control Systems, click Frequency Response

Estimator.
• Simulink Toolstrip: On the Linearization tab, click Model Linearizer.
• Simulink Toolstrip: On the Linearization tab, click Frequency Response Estimator.
• Simulink Toolstrip: On the Linearization tab, click Linearize Block.

Examples
• “Linearize Simulink Model at Model Operating Point” on page 2-54
• “Linearize at Trimmed Operating Point” on page 2-66
• “Linearize at Simulation Snapshot” on page 2-71
• “Estimate Frequency Response Using Model Linearizer” on page 5-6
• “Specify Portion of Model to Linearize in Model Linearizer” on page 2-22
• “Analyze Results Using Model Linearizer Response Plots” on page 2-115
• “Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53

Parameters
Linear Analysis Tab

Analysis I/Os — Linearization inputs, outputs, and loop openings
Model I/Os (default) | linearization I/O set

Linearization inputs, outputs, and loop openings. The currently active I/O set is displayed. To change
the I/O set, select one of the following:

• Model I/Os — Use the inputs, outputs, and loop openings specified in the Simulink model. For
more information on specifying analysis points in your model, see “Specify Portion of Model to
Linearize in Simulink Model” on page 2-17.

• Root Level Inports and Outports — Use the root level inputs and outputs of the Simulink
model.

• Linearize the Currently Selected Block — Use the input and output ports of the
currently selected block in the Simulink model.

• Create New Linearization I/Os — Specify inputs, outputs, and loop openings. For more
information, see “Specify Portion of Model to Linearize in Model Linearizer” on page 2-22.

• Existing I/Os — Select a previously created I/O set.
• View/Edit — View or edit the currently selected operating point. For more information, see “Edit

Analysis Points” on page 2-25.

Operating Point — Linearization operating point
Model Initial Condition (default) | operating point

 Model Linearizer

22-5

Linearization operating point. The current operating point is displayed. To change the operating
point, select one of the following:

• Model Initial Condition — Use the initial conditions defined in the Simulink.
• Linearize At — Simulate the model using the model initial conditions, and use the simulation

snapshot at the specified time as the operating point. For more information, see “Linearize at
Simulation Snapshot” on page 2-71.

• Linearize at Multiple Points — Select multiple previously created operating points.
• Existing Operating points — Select a previously created operating point.
• Trim Model — Compute a steady-state operating point. For more information, see “Compute

Steady-State Operating Points” on page 1-5.
• Take Simulation Snapshot — Simulate the model using the model initial conditions, and

compute an operating point at the specified simulation snapshot times. For more information, see
“Find Operating Points at Simulation Snapshots” on page 1-85.

• View/Edit — View or edit the currently selected operating point.

Parameter Variations — Parameters to vary for batch linearization
None (default) | parameters to vary

To vary parameters for batch linearization, in the drop-down list, click Select parameters to
vary. On the Parameter Variations tab, specify the parameters to vary.

For more information, see “Specify Parameter Samples for Batch Linearization” on page 3-43.

Result Viewer — Open linearization result viewer
off (default) | on

Select to display result details after linearization. For more information, see “View Linearized Model
Equations Using Model Linearizer” on page 2-113.

Linearization Advisor — Collect diagnostic information and open Linearization Advisor
off (default) | on

Select to collect diagnostic information during linearization and open an Advisor tab for interactive
troubleshooting of linearization problems. For more information, see “Troubleshoot Linearization
Results in Model Linearizer” on page 4-16.

Note The Model Linearizer only collects diagnostic information when Linearization Advisor is
checked before performing a linearization task.

Estimation Tab

Input Signal — Estimation input signal
Sinestream | Fixed Sample Time Sinestream | Chirp | Random | PRBS Pseudorandom
Binary Sequence

Estimation input signal. The current input signal is displayed. To change the input signal, select one
of the following:

• Sinestream — Create an input signal that consists of adjacent sine waves of varying frequencies.
For more information, see “Sinestream Input Signals” on page 5-30.

22 Apps

22-6

• Fixed Sample Time Sinestream — Create a discrete-time sinestream input with a specified
sample time.

• Chirp — Create a swept-frequency cosine input signal. For more information, see “Chirp Input
Signals” on page 5-34.

• Random — Create a random input signal.
• PRBS Pseudorandom Binary Sequence — Create a pseudorandom binary sequence (PRBS)

input signal. For more information, see “PRBS Input Signals” on page 5-37.

Analysis I/Os — Linearization inputs, outputs, and loop openings
Model I/Os (default) | linearization I/O set

Linearization inputs, outputs, and loop openings. The currently active I/O set is displayed. To change
the I/O set, select one of the following:

• Model I/Os — Use the inputs, outputs, and loop openings specified in the Simulink model. For
more information on specifying analysis points in your model, see “Specify Portion of Model to
Linearize in Simulink Model” on page 2-17.

• Root Level Inports and Outports — Use the root level inputs and outputs of the Simulink
model.

• Linearize the Currently Selected Block — Use the input and output ports of the
currently selected block in the Simulink model.

• Create New Linearization I/Os — Specify inputs, outputs, and loop openings. For more
information, see “Specify Portion of Model to Linearize in Model Linearizer” on page 2-22.

• Existing I/Os — Select a previously created I/O set.
• View/Edit — View or edit the currently selected operating point. For more information, see “Edit

Analysis Points” on page 2-25.

Operating Point — Linearization operating point
Model Initial Condition (default) | operating point

Linearization operating point. The current operating point is displayed. To change the operating
point, select one of the following:

• Model Initial Condition — Use the initial conditions defined in the Simulink.
• Linearize At — Simulate the model using the model initial conditions, and use the simulation

snapshot at the specified time as the operating point. For more information, see “Linearize at
Simulation Snapshot” on page 2-71.

• Linearize at Multiple Points — Select multiple previously created operating points.
• Existing Operating points — Select a previously created operating point.
• Trim Model — Compute a steady-state operating point. For more information, see “Compute

Steady-State Operating Points” on page 1-5.
• Take Simulation Snapshot — Simulate the model using the model initial conditions, and

compute an operating point at the specified simulation snapshot times. For more information, see
“Find Operating Points at Simulation Snapshots” on page 1-85.

• View/Edit — View or edit the currently selected operating point.

Result Viewer — Open estimation result viewer
off (default) | on

 Model Linearizer

22-7

Select to display result details about the estimation configuration and input signal used for
estimation.

Diagnostic Viewer — Collect diagnostic information and open diagnostic viewer
off (default) | on

Select to collect diagnostic information that displays after estimation. You can use the diagnostic
information to analyze the estimation result and troubleshoot estimation problems. For more
information, see “Analyze Estimated Frequency Response” on page 5-18.

Note The Model Linearizer only collects diagnostic information when Diagnostic Viewer is
selected before performing an estimation task.

Version History
Introduced in R2011b

See Also
Apps
Steady State Manager

Functions
linearize | frestimate | findop

Topics
“Linearize Simulink Model at Model Operating Point” on page 2-54
“Linearize at Trimmed Operating Point” on page 2-66
“Linearize at Simulation Snapshot” on page 2-71
“Estimate Frequency Response Using Model Linearizer” on page 5-6
“Specify Portion of Model to Linearize in Model Linearizer” on page 2-22
“Analyze Results Using Model Linearizer Response Plots” on page 2-115
“Batch Linearize Model for Parameter Value Variations Using Model Linearizer” on page 3-53

22 Apps

22-8

Steady State Manager
Find operating points for Simulink models

Description
The Steady State Manager lets you compute steady-state operating points for Simulink models.

Using this tool you can:

• Interactively obtain operating points from state, input, and output specifications
• Validate operating points against specifications
• Interactively obtain operating points from simulation snapshots
• Generate MATLAB code for computing operating points

 Steady State Manager

22-9

Open the Steady State Manager App
• Simulink Toolstrip: On the Apps tab, under Control Systems, click the app icon.
• Simulink Toolstrip: On the Linearization tab, click Steady State Manager.

Examples
• “Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
• “Validate Operating Point Against Specifications” on page 1-38
• “Find Operating Points at Simulation Snapshots” on page 1-85
• “Simulate Simulink Model at Specific Operating Point” on page 1-95
• “Generate MATLAB Code for Operating Point Configuration” on page 1-112
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-82

Version History
Introduced in R2018b

See Also
Apps
Model Linearizer

Functions
findop | findopOptions

Topics
“Compute Operating Points from Specifications Using Steady State Manager” on page 1-19
“Validate Operating Point Against Specifications” on page 1-38
“Find Operating Points at Simulation Snapshots” on page 1-85
“Simulate Simulink Model at Specific Operating Point” on page 1-95
“Generate MATLAB Code for Operating Point Configuration” on page 1-112
“Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on page 1-82

22 Apps

22-10

	Steady-State Operating Points
	About Operating Points
	What Is an Operating Point?
	What Is a Steady-State Operating Point?
	Simulink Model States Included in Operating Point Object

	Compute Steady-State Operating Points
	Steady-State Operating Point Search (Trimming)
	Steady-State Operating Point from Simulation Snapshot
	Which Model States Must Be at Steady State?
	Choose Operating Point Search Tools

	View and Modify Operating Points
	View and Modify Operating Point in Steady State Manager
	View and Modify Operating Point in Model Linearizer
	View and Modify Operating Point at the Command Line

	Compute Steady-State Operating Points from Specifications
	Compute Operating Points from Specifications at the Command Line
	Compute Operating Points from Specifications Using Steady State Manager
	Open Steady State Manager
	Define Operating Point Specifications
	Trim Model
	Validate Operating Point
	Trim Model for Different Specifications
	Extract Operating Point from Report
	Export Operating Point Data

	Compute Operating Points from Specifications Using Model Linearizer
	Open Model Linearizer
	Define Operating Point Specifications
	Trim Model
	Constrain State Derivatives

	Validate Operating Point Against Specifications
	Validate Operating Point in Steady State Manager
	Validate Operating Point in Model Linearizer
	Validate Operating Point at the Command Line

	Initialize Steady-State Operating Point Search Using Simulation Snapshot
	Initialize Operating Point Search Using Steady State Manager
	Initialize Operating Point Search Using Model Linearizer
	Initialize Operating Point Search at the Command Line

	Change Operating Point Search Optimization Settings
	Interactively Change Optimization Settings
	Programmatically Change Optimization Settings

	Import and Export Specifications for Operating Point Search
	Import and Export Specification Using Steady State Manager
	Import and Export Specification Using Model Linearizer

	Compute Operating Points Using Custom Constraints and Objective Functions
	Batch Compute Steady-State Operating Points for Multiple Specifications
	Batch Compute Steady-State Operating Points for Parameter Variation
	Which Parameters Can Be Sampled?
	Vary Single Parameter
	Multidimensional Parameter Grids
	Vary Multiple Parameters
	Batch Trim Model for Parameter Variations
	Batch Trim Model at Known States Derived from Parameter Values

	Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code
	Find Operating Points at Simulation Snapshots
	Compute Operating Points at Simulation Snapshots Using Steady State Manager
	Compute Operating Points at Simulation Snapshots Using Model Linearizer
	Find Operating Points at Simulation Snapshots at Command Line

	Compute Operating Point Snapshots at Triggered Events
	Simulate Simulink Model at Specific Operating Point
	Set Model Operating Point Using Steady State Manager
	Set Model Operating Point Using Model Linearizer

	Handle Blocks with Internal State Representation
	Operating Point Object Excludes Blocks with Internal States
	Configure Blocks with Internal States for Steady-State Operating Point Search

	Synchronize Simulink Model Changes with Operating Point Specifications
	Synchronize Model Changes Using Steady State Manager
	Synchronize Model Changes Using Model Linearizer
	Synchronize Model Changes at the Command Line

	Find Steady-State Operating Points for Simscape Models
	Projection-Based Trim Optimizers

	Steady-State Simulation with Projection-Based Trim Optimizer
	Generate MATLAB Code for Operating Point Configuration
	Generate MATLAB Code from Steady State Manager
	Generate MATLAB Code from Model Linearizer

	Linearization
	Linearize Nonlinear Models
	What Is Linearization?
	Applications of Linearization
	Linearization in Simulink Control Design
	Model Requirements for Exact Linearization
	Operating Point Impact on Linearization

	Choose Linearization Tools
	Choosing Simulink Control Design Linearization Tools
	Choosing Exact Linearization Versus Frequency Response Estimation
	Linearization Using Simulink Control Design Versus Simulink

	Specify Portion of Model to Linearize
	Analysis Points
	Opening Feedback Loops
	Ways to Specify Portion of Model to Linearize

	Specify Portion of Model to Linearize in Simulink Model
	Specify Analysis Points
	Select Bus Elements as Analysis Points

	Specify Portion of Model to Linearize in Model Linearizer
	Specify Analysis Points
	Edit Analysis Points
	Edit Simulink Model Analysis Points

	Specify Portion of Model to Linearize at Command Line
	Specify Analysis Points
	Save Analysis Points in Simulink Model
	Obtain Analysis Points from Simulink Model

	How the Software Treats Loop Openings
	Linearize Plant
	Linearize Plant Using Model Linearizer
	Linearize Plant at Command Line

	Mark Signals of Interest for Control System Analysis and Design
	Analysis Points
	Specify Analysis Points for MATLAB Models
	Specify Analysis Points for Simulink Models
	Refer to Analysis Points for Analysis and Tuning

	Compute Open-Loop Response
	Compute Open-Loop Response Using Model Linearizer
	Compute Open-Loop Response at the Command Line

	Linearize Simulink Model at Model Operating Point
	Linearize Simulink Model Using Model Linearizer
	Linearize Simulink Model at Command Line

	Visualize Bode Response of Simulink Model During Simulation
	Linearize at Trimmed Operating Point
	Linearize at Simulation Snapshot
	Linearize at Triggered Simulation Events
	Linearize Models with Delays
	Linearize Models with Model References
	Visualize Linear System at Multiple Simulation Snapshots
	Visualize Linear System of a Continuous-Time Model Discretized During Simulation
	Plot Linear System Characteristics of a Chemical Reactor
	Order States in Linearized Model
	Specify State Order in Linearized Model Using Model Linearizer
	Specify State Order in Linearized Model at the Command Line

	Validate Linearization in Time Domain
	Validate Linearization In Frequency Domain Using Model Linearizer
	Linearize Model
	Estimate Frequency Response of Model
	Examine estimation results

	View Linearized Model Equations Using Model Linearizer
	Analyze Results Using Model Linearizer Response Plots
	View System Characteristics on Response Plots
	Generate Additional Response Plots of Linearized System
	Add Linear System to Existing Response Plot
	Customize Characteristics of Plot in Model Linearizer
	Print Plot to MATLAB Figure in Model Linearizer

	Generate MATLAB Code for Linearization from Model Linearizer
	When to Specify Individual Block Linearization
	Specify Linear System for Block Linearization Using MATLAB Expression
	Specify D-Matrix System for Block Linearization Using Function
	Specify Custom Linearizations for Simulink Blocks
	Augment Block Linearization
	Models with Time Delays
	Choose Approximate Versus Exact Time Delays
	Specify Exact Representation of Time Delays

	Linearize Multirate Models
	Change Sample Time of Linear Model
	Change Linearization Rate Conversion Method
	Multirate Linearization Algorithm

	Linearize Models Using Different Rate Conversion Methods
	Change Perturbation Level of Blocks Perturbed During Linearization
	Linearize Blocks with Non-Floating-Point Signals or States
	Override Data Type Using Data Type Conversion Block
	Overriding Data Types Using Fixed Point Tool

	Linearize Event-Based Subsystems (Externally Scheduled Subsystems)
	Linearizing Event-Based Subsystems
	Approaches for Linearizing Event-Based Subsystems
	Approximate Event-Based Subsystems Using Curve Fitting (Lump-Average Model)
	Approximate Event-Based Dynamics Using Periodic Function Call Subsystem

	Configure Models with Pulse Width Modulation Signals
	Linearize Simscape Networks
	Find Steady-State Operating Point
	Specify Analysis Points
	Linearize Model
	Troubleshoot Simscape Network Linearizations

	Linearize Sparse Models
	Linearize Sparse Models at the Command Line
	Linearize Sparse Models Using Model Linearizer
	Limitations

	Specify Linearization for Model Components Using System Identification
	Exact Linearization Algorithm
	Continuous-Time Models
	Multirate Models
	Perturbation of Individual Blocks
	User-Defined Blocks
	Look Up Tables

	Trim and Linearize an Airframe
	Linearize Pneumatic System at Simulation Snapshots
	Linearize Pulp Paper Process Model

	Batch Linearization
	What Is Batch Linearization?
	Choose Batch Linearization Methods
	Choose Batch Linearization Tool

	Batch Linearization Efficiency When You Vary Parameter Values
	Tunable and Nontunable Parameters
	Controlling Model Recompilation

	Mark Signals of Interest for Batch Linearization
	Analysis Points
	Specify Analysis Points
	Refer to Analysis Points

	Batch Linearize Model for Parameter Variations at Single Operating Point
	Batch Linearize Model at Multiple Operating Points Derived from Parameter Variations
	Batch Linearize Model at Multiple Operating Points Using linearize Command
	Vary Parameter Values and Obtain Multiple Transfer Functions
	Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer Interface
	Analyze Command-Line Batch Linearization Results Using Response Plots
	Analyze Batch Linearization Results in Model Linearizer
	Specify Parameter Samples for Batch Linearization
	About Parameter Samples
	Which Parameters Can Be Sampled?
	Vary Single Parameter at the Command Line
	Vary Single Parameter in Graphical Tools
	Multi-Dimension Parameter Grids
	Vary Multiple Parameters at the Command Line
	Vary Multiple Parameters in Graphical Tools

	Batch Linearize Model for Parameter Value Variations Using Model Linearizer
	More Efficient Batch Linearization Varying Parameters
	Validate Batch Linearization Results
	Approximate Nonlinear Behavior Using Array of LTI Systems
	LPV Approximation of Boost Converter Model
	Linearize Engine Speed Model
	Improve Linear Analysis Performance

	Troubleshooting Linearization Results
	Linearization Troubleshooting Overview
	Troubleshooting Workflow
	Troubleshoot Linearizations of Models with Special Characteristics

	Check Operating Point
	Check Analysis Point Placement
	Check Linearization I/O Points Placement
	Check Loop Opening Placement

	Identify and Fix Common Linearization Issues
	Enable Linearization Advisor
	Blocks That Are Potentially Problematic for Linearization
	Find Specific Blocks in Linearization Results
	Linearization Path
	Troubleshoot Batch Linearizations

	Troubleshoot Linearization Results in Model Linearizer
	Troubleshoot Linearization Results at Command Line
	Find Blocks in Linearization Results Matching Specific Criteria
	Run Built-In Queries
	Create and Run Queries

	Block Linearization Troubleshooting
	Diagnostic Messages
	Linearization Summary
	Block Linearization
	Block Operating Point
	Common Problematic Blocks

	Speed Up Linearization of Complex Models
	Factors That Impact Linearization Performance
	Blocks with Complex Initialization Functions
	Disabling the Linearization Advisor in the Model Linearizer
	Batch Linearization of Large Simulink Models

	Frequency Response Estimation
	Frequency Response Estimation Basics
	Frequency Response Models
	Offline and Online Estimation
	Basic Estimation Workflow
	Model Requirements

	Estimate Frequency Response Using Model Linearizer
	Estimate Frequency Response with Linearization-Based Input Using Model Linearizer
	Estimate Frequency Response at the Command Line
	Analyze Estimated Frequency Response
	View Simulation Results
	Interpret Frequency Response Estimation Results
	Analyze Simulated Output and FFT at Specific Frequencies
	Annotate Frequency Response Estimation Plots
	Displaying Estimation Results for Multiple-Input Multiple-Output (MIMO) Systems
	Result Thinning

	Estimation Input Signals
	Offline Estimation
	Online Estimation
	Sinestream Signals
	Chirp Signals
	PRBS Signals
	Random Signals
	Step Signals
	Arbitrary Signals
	Superposition Signals

	Sinestream Input Signals
	Create Sinestream Signals Using Model Linearizer
	Create Sinestream Signals Using MATLAB Code
	Sinestream Signals for Online Estimation

	Chirp Input Signals
	Create Chirp Signals Using Model Linearizer
	Create Chirp Signals Using MATLAB Code

	PRBS Input Signals
	Create PRBS Signals Using Model Linearizer
	Create PRBS Signals Using MATLAB Code
	Improve Frequency Response Result at Low Frequencies

	Modify Estimation Input Signals
	Modify Sinestream Signal Using Model Linearizer
	Modify Sinestream Signal Using MATLAB Code

	Troubleshooting Frequency Response Estimation
	When to Troubleshoot
	Time Response Not at Steady State
	FFT Contains Large Harmonics at Frequencies Other than the Input Signal Frequency
	Time Response Grows Without Bound
	Time Response Is Discontinuous or Zero
	Time Response Is Noisy
	Time Response Shows Harmonics That Do Not Change Smoothly

	Effects of Time-Varying Source Blocks on Frequency Response Estimation
	Set Time-Varying Sources to Constant for Estimation Using Model Linearizer
	Set Time-Varying Sources to Constant for Estimation at the Command Line

	Disable Noise Sources During Frequency Response Estimation
	Estimate Frequency Response Models with Noise Using Signal Processing Toolbox
	Estimate Frequency Response Models with Noise Using System Identification Toolbox
	Generate MATLAB Code for Repeated or Batch Frequency Response Estimation
	Managing Estimation Speed and Memory
	Ways to Speed up Frequency Response Estimation
	Speeding Up Estimation Using Parallel Computing
	Managing Memory During Frequency Response Estimation

	Frequency Response Estimation Using Simulation-Based Techniques
	Validate Linearization in Frequency Domain at Command Line
	Describing Function Analysis of Nonlinear Simulink Models
	Speed Up Frequency Response Estimation Using Parallel Computing
	Frequency Response Estimation for Power Electronics Model Using Pseudorandom Binary Signal
	Frequency Response Estimation in Model Linearizer Using Pseudorandom Binary Sequence
	Frequency Response Estimation for Permanent Magnet Synchronous Motor Model
	Frequency Response Estimation to Measure Input Admittance and Output Impedance of Boost Converter

	Online Frequency Response Estimation
	Online Frequency Response Estimation Basics
	When Not to Use Online Frequency-Response Estimation
	System Configurations for Online Frequency Response Estimation
	Estimation Workflow

	Online Estimation Using Plant Modeled in Simulink
	Workflow for Online Estimation in Simulink
	Step 1. Incorporate Frequency Response Estimator into Model
	Step 2. Configure Start/Stop Signal
	Step 3. Set Experiment Parameters
	Step 4. Run Model and Examine Estimated Frequency Response

	Deploy Frequency Response Estimation Algorithm for Real-Time Use
	Workflow
	Step 1. Create Deployable Simulink Model with Frequency Response Estimator Block
	Step 2. Configure Start/Stop Signal
	Step 3. Set Experiment Parameters
	Step 4. Run Experiment
	Access Experiment Parameters After Deployment

	Online Frequency Response Estimation During Simulation
	Collect Frequency Response Experiment Data for Offline Estimation
	Online Estimation of Frequency Responses of a Nonlinear Plant

	PID Controller Tuning
	Introduction to Model-Based PID Tuning in Simulink
	What Plant Does PID Tuner See?
	PID Tuning Algorithm

	Open PID Tuner
	Prerequisites for PID Tuning
	Opening PID Tuner

	Analyze Design in PID Tuner
	Plot System Responses
	View Numeric Values of System Characteristics
	Export Plant or Controller to MATLAB Workspace
	Refine the Design

	Verify the PID Design in Your Simulink Model
	Tune at a Different Operating Point
	Known State Values Yield the Desired Operating Conditions
	Model Reaches Desired Operating Conditions at a Finite Time
	You Computed an Operating Point in Model Linearizer

	Tune PID Controller to Favor Reference Tracking or Disturbance Rejection
	Single-Loop PI Control Model
	Design Initial PI Controller
	Adjust Transient Behavior
	Change PID Tuning Design Focus

	Design Two-Degree-of-Freedom PID Controllers
	About Two-Degree-of-Freedom PID Controllers
	Tuning Two-Degree-of-Freedom PID Controllers
	Fixed-Weight Controller Types

	Tune PID Controller Within Model Reference
	Specify PI-D and I-PD Controllers
	Simulate PI-D and I-PD Controllers in Simulink
	Automatic Tuning of PI-D and I-PD Controllers

	Design PID Controller from Plant Frequency-Response Data
	Use Frequency Response Based PID Tuner
	Use frestimate or Model Linearizer

	Frequency-Response Based Tuning
	How Frequency Response Based PID Tuner Works
	Open Frequency Response Based PID Tuner
	Configure Experiment Settings
	Configure Design Goals
	Tune and Validate Controller Gains

	Design PID Controller Using Plant Frequency Response Near Bandwidth
	Import Measured Response Data for Plant Estimation
	Interactively Estimate Plant from Measured or Simulated Response Data
	System Identification for PID Control
	Plant Identification
	Linear Approximation of Nonlinear Systems for PID Control
	Linear Process Models
	Advanced System Identification Tasks

	Preprocess Data
	Ways to Preprocess Data
	Remove Offset
	Scale Data
	Extract Data
	Filter Data
	Resample Data
	Replace Data

	Input/Output Data for Identification
	Data Preparation
	Data Preprocessing

	Choosing Identified Plant Structure
	Process Models
	State-Space Models
	Existing Plant Models
	Switching Between Model Structures
	Estimating Parameter Values
	Handling Initial Conditions

	Design Controller for Boost Converter Model Using Frequency Response Data
	Design Controller for Power Electronics Model Using Simulated I/O Data
	Boost Converter Model
	Find Model Operating Point
	Specify Controller Structure
	Identify Plant Model
	Tune Controller
	Validate Controller

	Design PID Controller Using Simulated I/O Data
	Design PID Controller Using Estimated Frequency Response
	Design Family of PID Controllers for Multiple Operating Points
	Implement Gain-Scheduled PID Controllers
	Design Controller for Vehicle Platooning
	Plant Cannot Be Linearized or Linearizes to Zero
	How to Fix It

	Cannot Find a Good Design in PID Tuner
	How to Fix It

	Simulated Response Does Not Match PID Tuner Response
	Cannot Find Acceptable PID Design in Simulated Model
	How to Fix It

	Controller Performance Deteriorates When Switching Time Domains
	How to Fix It

	When Tuning the PID Controller, the D Gain Has a Different Sign from the I Gain
	Tune Field-Oriented Controllers Using SYSTUNE
	Islanded Operation of Remote Microgrid Using Droop Controllers with Multiple Fidelity Levels
	Frequency Response Based PID Tuner
	Experiment Settings
	Design Specifications
	Automatically Update Block
	Tune and Cancel
	Tuning Results

	PID Autotuning
	When to Use PID Autotuning
	PID Autotuning for a Physical Plant
	PID Autotuning for a Plant Model in Simulink
	Closed-Loop vs. Open-Loop PID Autotuning
	When Not to Use PID Autotuning

	How PID Autotuning Works
	Autotuning Process
	Workflow for PID Autotuning

	PID Autotuning for a Plant Modeled in Simulink
	Workflow for Autotuning in Simulink
	Step 1. Incorporate Autotuner into Model
	Step 2. Configure Start/Stop Signal
	Step 3. Specify Controller Parameters and Tuning Goals
	Step 4. Set Experiment Parameters
	Step 5. Run Model and Initiate Tuning Experiment
	Step 6. Stop Experiment and Examine Tuned Gains
	Step 7. Update PID Controller with Tuned Gains

	PID Autotuning in Real Time
	Workflow
	Step 1. Create Deployable Simulink Model with PID Autotuner Block
	Step 2. Configure Start/Stop Signal
	Step 3. Set PID Tuning Parameters
	Step 4. Set Experiment Parameters
	Step 5. Tune and Validate
	Access Autotuning Parameters After Deployment

	Control Real-Time PID Autotuning in Simulink
	Simulink Model for External-Mode Tuning
	Run the Model and Tune the Controller Gains
	Reduce Memory Footprint When Using External Mode

	Tune PID Controller in Real Time Using Open-Loop PID Autotuner Block
	Tune PID Controller in Real Time Using Closed-Loop PID Autotuner Block
	BLDC Motor Speed Control with Cascade PI Controllers
	Tune Field-Oriented Controllers Using Closed-Loop PID Autotuner Block
	Tune Field-Oriented Controllers for an Asynchronous Machine Using Closed-Loop PID Autotuner Block
	Tune Field-Oriented Controllers for a PMSM Using Closed-Loop PID Autotuner Block
	Design PID Controllers for Three-Phase Rectifier Using Closed-Loop PID Autotuner Block
	PID Autotuning for UAV Quadcopter
	Tune Gain-Scheduled Controller Using Closed-Loop PID Autotuner Block
	Tune Gain-Scheduled Controller for PMSM Model Using Closed-Loop PID Autotuner Block

	Classical Control Design
	Choose a Control Design Approach
	Design in Simulink
	Real-Time PID Autotuning

	Control System Designer Tuning Methods
	Graphical Tuning Methods
	Automated Tuning Methods
	Effective Plant for Tuning
	Tuning Compensators In Simulink
	Select a Tuning Method

	What Blocks Are Tunable?
	Designing Compensators for Plants with Time Delays
	Design Compensator Using Automated PID Tuning and Graphical Bode Design
	Water Tank Model
	Design Requirements
	Open Control System Designer
	Specify Blocks to Tune
	Plot Closed-Loop Step Response
	Tune Compensator Using Automated PID Tuning
	Tune Compensator Using Bode Graphical Tuning
	Fine Tune Controller Using Compensator Editor
	Simulate Closed-Loop System in Simulink

	Analyze Designs Using Response Plots
	Analysis Plots
	Editor Plots
	Plot Characteristics
	Plot Tools
	Design Requirements

	Compare Performance of Multiple Designs
	Update Simulink Model and Validate Design
	Single Loop Feedback/Prefilter Compensator Design
	Cascaded Multiloop Feedback Design
	Tune Custom Masked Subsystems
	Tune Simulink Blocks Using Compensator Editor
	Reference Tracking of DC Motor with Parameter Variations
	Regulate Pressure in Drum Boiler
	Model Computational Delay and Sampling Effects

	Control System Tuning
	Automated Tuning Overview
	Choosing an Automated Tuning Approach
	Automated Tuning Workflow
	Specify Control Architecture in Control System Tuner
	About Control Architecture
	Predefined Feedback Architecture
	Arbitrary Feedback Control Architecture
	Control System Architecture in Simulink

	Open Control System Tuner for Tuning Simulink Model
	Command-Line Equivalents

	Specify Operating Points for Tuning in Control System Tuner
	About Operating Points in Control System Tuner
	Linearize at Simulation Snapshot Times
	Compute Operating Points at Simulation Snapshot Times
	Compute Steady-State Operating Points

	Specify Blocks to Tune in Control System Tuner
	View and Change Block Parameterization in Control System Tuner
	View Block Parameterization
	Fix Parameter Values or Limit Tuning Range
	Custom Parameterization
	Block Rate Conversion

	Setup for Tuning Control System Modeled in MATLAB
	How Tuned Simulink Blocks Are Parameterized
	Blocks With Predefined Parameterization
	Blocks Without Predefined Parameterization
	View and Change Block Parameterization

	Specify Goals for Interactive Tuning
	Quick Loop Tuning of Feedback Loops in Control System Tuner
	Quick Loop Tuning
	Purpose
	Description
	Feedback Loop Selection
	Desired Goals
	Options
	Algorithms

	Step Tracking Goal
	Purpose
	Description
	Step Response Selection
	Desired Response
	Options
	Algorithms

	Step Rejection Goal
	Purpose
	Description
	Step Disturbance Response Selection
	Desired Response to Step Disturbance
	Options
	Algorithms

	Transient Goal
	Purpose
	Description
	Response Selection
	Initial Signal Selection
	Desired Transient Response
	Options
	Tips
	Algorithms

	LQR/LQG Goal
	Purpose
	Description
	Signal Selection
	LQG Objective
	Options
	Tips
	Algorithms

	Gain Goal
	Purpose
	Description
	I/O Transfer Selection
	Options
	Algorithms

	Variance Goal
	Purpose
	Description
	I/O Transfer Selection
	Options
	Tips
	Algorithms

	Reference Tracking Goal
	Purpose
	Description
	Response Selection
	Tracking Performance
	Options
	Algorithms

	Overshoot Goal
	Purpose
	Description
	Response Selection
	Options
	Algorithms

	Disturbance Rejection Goal
	Purpose
	Description
	Disturbance Scenario
	Rejection Performance
	Options
	Algorithms

	Sensitivity Goal
	Purpose
	Description
	Sensitivity Evaluation
	Sensitivity Bound
	Options
	Algorithms

	Weighted Gain Goal
	Purpose
	Description
	I/O Transfer Selection
	Weights
	Options
	Algorithms

	Weighted Variance Goal
	Purpose
	Description
	I/O Transfer Selection
	Weights
	Options
	Tips
	Algorithms

	Minimum Loop Gain Goal
	Purpose
	Description
	Open-Loop Response Selection
	Desired Loop Gain
	Options
	Algorithms

	Maximum Loop Gain Goal
	Purpose
	Description
	Open-Loop Response Selection
	Desired Loop Gain
	Options
	Algorithms

	Loop Shape Goal
	Purpose
	Description
	Open-Loop Response Selection
	Desired Loop Shape
	Options
	Algorithms

	Margins Goal
	Purpose
	Description
	Feedback Loop Selection
	Desired Margins
	Options
	Algorithms

	Passivity Goal
	Purpose
	Description
	I/O Transfer Selection
	Options
	Algorithms

	Conic Sector Goal
	Purpose
	Description
	I/O Transfer Selection
	Options
	Tips
	Algorithms

	Weighted Passivity Goal
	Purpose
	Description
	I/O Transfer Selection
	Weights
	Options
	Algorithms

	Poles Goal
	Purpose
	Description
	Feedback Configuration
	Pole Location
	Options
	Algorithms

	Controller Poles Goal
	Purpose
	Description
	Constrain Dynamics of Tuned Block
	Keep Poles Inside the Following Region
	Algorithms

	Manage Tuning Goals
	Generate MATLAB Code from Control System Tuner for Command-Line Tuning
	Interpret Numeric Tuning Results
	Tuning-Goal Scalar Values
	Tuning Results at the Command Line
	Tuning Results in Control System Tuner
	Improve Tuning Results

	Visualize Tuning Goals
	Tuning-Goal Plots
	Difference Between Dashed Line and Shaded Region
	Improve Tuning Results

	Create Response Plots in Control System Tuner
	Examine Tuned Controller Parameters in Control System Tuner
	Compare Performance of Multiple Tuned Controllers
	Create and Configure slTuner Interface to Simulink Model
	Stability Margins in Control System Tuning
	Gain and Phase Margins
	Interpret Gain and Phase Margin Plots
	Simultaneous Gain and Phase Variations
	Algorithm

	Tune Control System at the Command Line
	Speed Up Tuning with Parallel Computing Toolbox Software
	Validate Tuned Control System
	Extract and Plot System Responses
	Validate Design in Simulink Model

	Extract Responses from Tuned MATLAB Model at the Command Line

	Gain-Scheduled Controllers
	Gain Scheduling Basics
	Gain Scheduling in Simulink
	Tune Gain Schedules

	Model Gain-Scheduled Control Systems in Simulink
	Model Scheduled Gains
	Gain-Scheduled Equivalents for Commonly Used Control Elements
	Custom Gain-Scheduled Control Structures
	Tunability of Gain Schedules

	Tune Gain Schedules in Simulink
	Workflow for Tuning Gain Schedules

	Plant Models for Gain-Scheduled Controller Tuning
	Obtaining the Family of Linear Models
	Set Up for Gain Scheduling by Linearizing at Design Points
	Sample System at Simulation Snapshots
	Sample System at Varying Parameter Values
	Eliminate Samples at Unneeded Design Points
	LPV Plants in MATLAB

	Multiple Design Points in slTuner Interface
	Block Substitution for Plant
	Multiple Block Substitutions
	Substituting Blocks that Depend on the Scheduling Variables
	Resolving Mismatches Between a Block and its Substitution
	Block Substitution for LPV Blocks

	Parameterize Gain Schedules
	Basis Function Parameterization
	Tunable Gain Surfaces
	Tunable Gain with Two Independent Scheduling Variables
	Tunable Surfaces in Simulink
	Tunable Surfaces in MATLAB

	Change Requirements with Operating Condition
	Define Variable Tuning Goal
	Enforce Tuning Goal at Subset of Design Points
	Exclude Design Points from systune Run

	Validate Gain-Scheduled Control Systems
	Examine Tuned Gain Surfaces
	Visualize Tuning Goals
	Check Linear Performance
	Validate Gain Schedules in Nonlinear System

	Gain-Scheduled Control of a Chemical Reactor
	Tuning of Gain-Scheduled Three-Loop Autopilot
	Trimming and Linearization of the HL-20 Airframe
	Angular Rate Control in the HL-20 Autopilot
	Attitude Control in the HL-20 Autopilot - SISO Design
	Attitude Control in the HL-20 Autopilot - MIMO Design
	MATLAB Workflow for Tuning the HL-20 Autopilot

	Loop-Shaping Design
	Structure of Control System for Tuning With looptune
	Set Up Your Control System for Tuning with looptune
	Set Up Your Control System for looptunein MATLAB
	Set Up Your Control System for looptune in Simulink

	Tune MIMO Control System for Specified Bandwidth
	Decoupling Controller for a Distillation Column
	Tuning of a Digital Motion Control System

	Control System Tuning Examples
	Tuning Multiloop Control Systems
	PID Tuning for Setpoint Tracking vs. Disturbance Rejection
	Time-Domain Specifications
	Frequency-Domain Specifications
	Loop Shape and Stability Margin Specifications
	System Dynamics Specifications
	Configuring Design Requirements
	Validating Results
	Tune Control Systems in Simulink
	Tune a Control System Using Control System Tuner
	Using Parallel Computing to Accelerate Tuning
	Control of a Linear Electric Actuator
	Control of a Linear Electric Actuator Using Control System Tuner
	Multi-Loop PI Control of a Robotic Arm
	Control of an Inverted Pendulum on a Cart
	Digital Control of Power Stage Voltage
	MIMO Control of Diesel Engine
	Tuning of a Two-Loop Autopilot
	Multiloop Control of a Helicopter
	Fixed-Structure Autopilot for a Passenger Jet
	Fault-Tolerant Control of a Passenger Jet
	Passive Control of Water Tank Level
	Tuning for Multiple Values of Plant Parameters

	Control System Tuning Applications
	UAV Inflight Failure Recovery
	Multiloop Control Design for Buck Converter

	Adaptive Control
	Extremum Seeking Control
	Time Domain
	Static Optimization
	Dynamic System Optimization
	ESC Design Guidelines

	Extremum Seeking Control for Reference Model Tracking of Uncertain Systems
	Anti-Lock Braking Using Extremum Seeking Control
	Adaptive Cruise Control Using Extremum Seeking Control
	Model Reference Adaptive Control
	Reference Model
	Disturbance and Uncertainty Model
	Direct MRAC
	Indirect MRAC
	Learning Modification

	Model Reference Adaptive Control of Satellite Spin
	Model Reference Adaptive Control of Aircraft Undergoing Wing Rock
	Indirect Model Reference Adaptive Control of First-Order System
	Indirect MRAC Control of Mass-Spring-Damper System
	Active Disturbance Rejection Control
	Controller Structure
	Specify Controller Parameters

	Design Active Disturbance Rejection Control for Water-Tank System
	Design Active Disturbance Rejection Control for Boost Converter
	Design Active Disturbance Rejection Control for BLDC Speed Control Using PWM

	Constraint Enforcement
	Constraint Enforcement for Control Design
	Constraint Enforcement Block
	Constraint Function Coefficients

	Barrier Certificate Enforcement for Control Design
	Barrier Certificate Enforcement Block
	Control Barrier Function

	Passivity Enforcement for Control Design
	Passivity Enforcement Block
	Passivity Functions

	Enforce Constraints for PID Controllers
	Learn and Apply Constraints for PID Controllers
	Train Reinforcement Learning Agent with Constraint Enforcement
	Train RL Agent for Adaptive Cruise Control with Constraint Enforcement
	Train RL Agent for Lane Keeping Assist with Constraint Enforcement
	Enforce Barrier Certificate Constraints for PID Controllers
	Enforce Barrier Certificate Constraints for Adaptive Cruise Control
	Enforce Barrier Certificate Constraints for Collision-Free Robots
	Enforce Barrier Certificate Constraints for Collision-Free Multi-Robot System
	Enforce Passivity Constraints for Quadruple-Tank System
	Enforce Passivity Constraint for Flexible Beam

	Model Verification
	Monitor Linear System Characteristics in Simulink Models
	Define Linear System for Model Verification Blocks
	Verifiable Linear System Characteristics
	Verify Model at Default Simulation Snapshot Time
	Verify Model at Multiple Simulation Snapshots
	Verify Model Using Simulink Control Design and Simulink Verification Blocks
	Verify Frequency-Domain Characteristics of an Aircraft

	Functions
	addoutputspec
	advise
	copy
	fastRestartForLinearAnalysis
	find
	findop
	findopOptions
	frest.createFixedTsSinestream
	frest.createStep
	frest.findDepend
	frest.findSources
	frest.simCompare
	frest.simView
	frestimate
	frestimateOptions
	fselect
	generateTimeseries
	get
	getBlockInfo
	getBlockPaths
	getInputIndex
	getinputstruct
	getlinio
	getlinplant
	getOffsetsForLPV
	getOutputIndex
	getSimulationTime
	getStateIndex
	getstatestruct
	getxu
	highlight
	initopspec
	linearize
	linearizeOptions
	linio
	linlft
	linlftfold
	operpoint
	operspec
	set
	setlinio
	setxu
	addOpening
	addPoint
	getCompSensitivity
	getIOTransfer
	getLoopTransfer
	getOpenings
	getPoints
	getSensitivity
	refresh
	removeAllOpenings
	removeAllPoints
	removeOpening
	removePoint
	addBlock
	getBlockParam
	getBlockRateConversion
	getBlockValue
	getTunedValue
	looptune
	looptuneSetup
	loopview
	removeBlock
	setBlockParam
	setBlockRateConversion
	setBlockValue
	setTunedValue
	showTunable
	systune
	writeBlockValue
	slTunerOptions
	update
	writeLookupTableData

	Blocks
	Active Disturbance Rejection Control
	Barrier Certificate Enforcement
	Bode Plot, Check Bode Characteristics
	Check Nichols Characteristics
	Check Pole-Zero Characteristics
	Check Singular Value Characteristics
	Closed-Loop PID Autotuner
	Constraint Enforcement
	Extremum Seeking Control
	Frequency Response Estimator
	Gain and Phase Margin Plot, Check Gain and Phase Margins
	Linear Step Response Plot, Check Linear Step Response Characteristics
	Model Reference Adaptive Control
	Nichols Plot
	Open-Loop PID Autotuner
	Passivity Enforcement
	Pole-Zero Plot
	Singular Value Plot
	Trigger-Based Operating Point Snapshot

	Objects
	BlockDiagnostic
	BlockOperatingPoint
	CompoundQuery
	frest.Chirp
	frest.Random
	frest.Sinestream
	frest.PRBS
	LinearizationAdvisor
	linqueryAdvise
	linqueryAllBlocks
	linqueryContributesToLinearization
	linqueryHasDiagnostics
	linqueryHasInputs
	linqueryHasOrder
	linqueryHasOutputs
	linqueryHasSampleTime
	linqueryHasZeroIOPair
	linqueryIsBlockSubstituted
	linqueryIsBlockType
	linqueryIsExact
	linqueryIsNumericallyPerturbed
	linqueryIsOnPath
	linqueryIsZero
	slLinearizer
	slTuner

	Model Advisor Checks
	Simulink Control Design Checks
	Identify time-varying source blocks interfering with frequency response estimation

	Apps
	Control Design Onramp with Simulink
	Model Linearizer
	Steady State Manager

